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1 Introduction

Given a field k and elements α, β, γ ∈ k, Benkart and Roby [BR] defined the down-up
algebra A(α, β, γ) to be the algebra generated by two generators u and d subject to
the two relations:

d2u = αdud + βud2 + γd,

du2 = αudu + βu2d + γu.

By [KMP] A(α, β, γ) is a Noetherian ring if and only if β 6= 0. When γ 6= 0, the down-
up algebra A(α, β, γ) is isomorphic to the down-up algebra A(α, β, 1). Throughout
let A = A(α, β, γ) be a Noetherian down-up algebra over an algebraically closed field
of characteristic zero.

The down-up algebras A(−2,−1, γ) are isomorphic to the enveloping algebra of
the 3 dimensional Heisenberg Lie algebra when γ = 0, or to the enveloping algebra of
sl2 when γ 6= 0, and hence they are Hopf algebras. Since general down-up algebras
possess many properties of the down-up algebra U(sl2), it might be reasonable to
expect they have Hopf structures. In [BR] the question of determining when a
down-up algebra is a Hopf algebra is raised, and in [BW] it is shown that when
γ = 0 there is a group G of automorphisms of A such that the twisted group ring
A ∗ G is a Hopf algebra. The question of determining when a down-up algebra
has a Hopf structure can be considered as a case of the following more general test
problem in noncommutative algebras: given an algebra A, what do ring theoretic
and representation theoretic properties of the ring A tell us about possible bialgebra
or Hopf structures on A? An analog of this problem for commutative rings is to
investigate the structure of algebraic groups of small dimension.

In this paper our aim is to determine whether there are other down-up algebras
that possess Hopf structures. Our main result is the following theorem:
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Theorem 1.1. Let A = A(α, β, γ) be a Noetherian down-up algebra that is a Hopf
algebra; then α + β = 1. If γ = 0 then (α, β) = (2,−1) and, as algebras, A ∼= U(h),
the universal enveloping algebra of the three dimensional Heisenberg Lie algebra. If
γ 6= 0 then −β is not an nth root of unity for n ≥ 3.

The class of down-up algebras with α+β = 1 and γ 6= 0 has been studied previously.
In [CM] this class of algebras has been parameterized as A−β = A(1+β,−β, 1), and
in [CM] 5.4 it is shown that the down-up algebra A−β has the property that all finite
dimensional modules are completely reducible if and only if −β is a root of unity or
−β is not a root of the polynomials

f(n,m)(x) = n(xm − 1)−m(xn − 1)

for any m 6= n; hence all but possibly countably many algebras A−β have all finite
dimensional modules completely reducible. DeConcini and Procesi have given suffi-
cient conditions (see Theorem 3.2) for a Hopf algebra to have the property that all
finite dimensional modules are completely reducible; these conditions do not apply
to the algebras A−β when −β is not a root of unity, since in that case the center of
A is k.

Our main theorem leaves unanswered the question of whether a Noetherian down-
up algebra is a Hopf algebra in two cases: (1). A(0, 1, 1), and (2). A(1 + β,−β, 1),
when−β is not a root of unity. In case (1) the down-up algebra A(0, 1, 1) is isomorphic
to the enveloping algebra of the Lie superalgebra osp(1, 2) and hence we know it has
a graded Hopf structure, but we do not know if it has a Hopf structure.

In the third section we consider some localizations of down-up algebras that were
considered by D. Jordan [J], and we use the techniques developed for down-up alge-
bras and a theorem of DeConcini and Procesi to show that some of these localizations
of down-up algebras are not Hopf algebras.

Throughout this paper let H be a k-algebra which is a bialgebra with coproduct
∆ and counit ε. When H is a Hopf algebra we denote the antipode by S. We begin
with a general result.

Lemma 1.2. Let H be a bialgebra with coproduct ∆, and let

I =
⋂
{J : J is an ideal of H and H/J is commutative }

be the smallest ideal I of H such that H/I is commutative. Then I is a bi-ideal of
H. If H is a Hopf algebra with antipode S, then I is a Hopf ideal of H.

Proof. Consider the natural map

f : H ⊗H → H

I
⊗ H

I
,
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and let K be the kernel of the composition of maps:

H
∆→ H ⊗H

f→ H

I
⊗ H

I
∼=

H ⊗H

I ⊗H + H ⊗ I
.

Then K = ∆−1(I ⊗ H + H ⊗ I). Since H/K is a commutative ring, I ⊆ K;
since H/ker ε is a commutative ring, I ⊆ ker ε, and hence I is a bi-ideal. Now
set J = {a ∈ H | S(a) ∈ I}. Then a + J → S(a) + I defines an injective ring
homomorphism (H/J)op → H/I. Since H/I is commutative, so is H/J and we have
I ⊆ J . Thus S(I) ⊆ I.2

Throughout this paper we will denote by I the ideal described in Lemma 1.2. For
down-up algebras the ideal I was described in [CM] 4.2, the analysis depending on
the four cases that were first described by Benkart and Roby in considering the iso-
morphism problem for down-up algebras. We will prove the main theorem in each of
these four cases in the indicated paragraph of section 2:
Case (a): γ = 0, α + β = 1 (section 2.7),
Case (b): γ = 0, α + β 6= 1 (section 2.6),
Case (c): γ 6= 0, α + β 6= 1 (section 2.5), and
Case (d): γ 6= 0, α + β = 1 (section 2.11).

This work was begun when both authors were members of the Mathematical
Sciences Research Institute; we appreciate the institute’s hospitality.

2 Proof of Main Theorem

In this section we will prove Theorem 1.1.

2.1 . Recall the standard actions by which the tensor product V ⊗k W and
Homk(V,W ) of (left) H-modules V and W become H-modules:

h.(v ⊗ w) =
∑
(h)

h(1).v ⊗ h(2).w, (h.f)(v) =
∑
(h)

h(1)[f(S(h(2)).v)].

It is a standard fact ([K] Proposition III.5.2) that for any (left) H modules V and W
the natural map θ : V ⊗k W ∗ → Homk(W,V ) given by θ(v⊗f)(w) = f(w)v, is an H-
module map, and when V and W are finite dimensional it is bijective. Furthermore,
if k = H/ker ε is the trivial module, then the “coevaluation map” δ : k → V ⊗k V ∗

given by δ(α) =
∑

i αvi⊗kwi (where {vi} is a basis of V and {wi} is the corresponding
dual basis of V ∗) is an H-module homomorphism that is a monomorphism (see [K],
Proposition III.5.3(b) or [BG] Proposition 1.6); when V is a module of dimension
one, it is an isomorphism since V ⊗k V ∗ has dimension one.
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We will use the fact, following from the coassociative property of a Hopf algebra,
that (U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ) as H-modules.

We will also use the following homological property of Hopf algebras:

Proposition 2.2. ( [BG] Proposition 1.3.) If H is a Hopf algebra, then for all left
H-modules W,V, and X and all i we have

Exti
H(W ⊗k V,X) ∼= Exti

H(W,Homk(V,X))

as H-modules.

It follows from this proposition that (two-sided) ideals of H having codimension
1 have the following uniform homological behavior.

Proposition 2.3. Let H be a Hopf algebra and let Mg and Mh be two ideals of
codimension 1 and let Vg = H/Mg and Vh = H/Mh be the corresponding modules of
dimension one. Then for all i we have Exti

H(Vg, Vg) ∼= Exti
H(Vh, Vh) as H-modules.

Proof. Recall that in a Hopf algebra H the set of algebra homomorphisms
Alghom(H, k) is the set of grouplike elements in the Hopf dual H◦, and that the
set of grouplike elements forms a group. Thus the set of isomorphism classes of one
dimensional modules forms a group. Let X = Vg,W = Vh, and choose V so that
W ⊗k V ∼= X. Since H is a Hopf algebra by Proposition 2.2 we have the following
isomorphism (as H-modules):

Exti
H(Vg, Vg) ∼= Exti

H(Vh,Homk(V, Vg)),

and by 2.1 and coassociativity we have

Homk(V, Vg) ∼= Homk(V, Vh ⊗k V ) ∼= (Vh ⊗k V )⊗k V ∗

∼= Vh ⊗k (V ⊗k V ∗) ∼= Vh ⊗k k ∼= Vh,

giving the result. 2

Corollary 2.4. If R is an algebra having both an idempotent ideal Mh of codimension
1 and an ideal Mg of codimension 1 which is not idempotent, then R is not a Hopf
algebra.

Proof. Let Vg = R/Mg and Vh = R/Mh. Since Mh is idempotent Ext1R(Vh, Vh) =
0, and since Mg is not idempotent Ext1R(Vg, Vg) 6= 0. Hence R cannot be a Hopf
algebra.2
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2.5. We now prove Theorem 1.1 in case (c), where A = A(α, β, γ) is a down-up
algebra with γ 6= 0 and α + β 6= 1. We will show that in this case A is never a Hopf
algebra. By [CM] 4.4, A has an ideal Mh of codimension 1 which is idempotent
(namely Mh = 〈u, d〉), and an ideal Mg of codimension 1 which is not idempotent (in
fact A has a one parameter family of such ideals). Hence by Corollary 2.4, A is not
a Hopf algebra.

2.6. We now prove Theorem 1.1 in case (b), where γ = 0 and α+β 6= 1; we will show
that A is never a Hopf algebra. By [CM] 4.2(b) A = A/I ∼= k[a, b]/(a2b, ab2) where
a, b are the images of d, u, respectively. If A were a Hopf algebra then Proposition 1.2
would imply that A is a Hopf algebra. One family of ideals of A with codimension 1
is Mt = (a− t, b) for t ∈ k, giving the family Vt = A/Mt of A-modules with dimension
1. We claim that the (vector space) dim Ext1

A
(Vt, Vt) is 2 when t = 0 and 1 when

t 6= 0. It then will follow from Proposition 2.3 that A is not a Hopf algebra. For
the maximal ideal Mt in the commutative ring A we have dim Ext1

A
(A/Mt, A/Mt) =

dim Mt/M
2
t , and this easily gives the result.

2.7. We now prove Theorem 1.1 in case (a), where γ = 0 and α + β = 1. We will
show in 2.10 that if A is a Hopf algebra then α = 2 and β = −1, and hence as algebras
A ∼= U(h), the enveloping algebra of the 3 dimensional Heisenberg Lie algebra.

By [CM] 4.2(a) I = ωA, where ω = (du − ud) is a normal element of A, and
A = A/I ∼= K[a, b], a commutative polynomial ring. If A is a Hopf algebra, then by
Proposition 1.2, A = A/I is a Hopf algebra. Next we consider the induced structure
of A.

Lemma 2.8. Suppose that H is a finitely generated commutative Hopf algebra over
an algebraically closed field k of characteristic zero such that:

1. H is a domain,

2. H has Krull dimension 2, and

3. the only units of H belong to k.

Then (as a Hopf algebra) H ∼= O(G), the coordinate ring of the algebraic group
G = Ga ⊕Ga, where Ga is the additive group of the field k.

Proof. Since H is a finitely generated reduced commutative k-algebra, by [A],
p. 163, the pair (G(H◦),H) is an affine algebraic group in the sense of [H]; hence
H ∼= O(G), the coordinate ring of the algebraic group G. Note first that G is con-
nected by 1., next by 2. and [Bo], Corollary 11.6, G is a solvable group, and finally by
[Bo], Theorem 10.6, G = T ·Gu is the semidirect product of the unipotent radical Gu
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by the maximal torus T . However 3. implies that G has no nonconstant characters,
so G = Gu. By [H] Theorem XVI.4.2 Lie G is nilpotent and it suffices to show that
Lie G is abelian, but this follows [Ja], p. 11. 2

Remark: The assumption that characteristic k = 0 is essential in the lemma above,
see [H] p.92, exercise 2.

In the proof of case (a) we will use the following Lemma, which follows easily by
induction.

Lemma 2.9. If J is a biideal in a bialgebra H then the J-adic filtration is a bialgebra
filtration on H; that is

∆Jn ⊆
n∑

i=0

J i ⊗ Jn−i.

If J is a Hopf ideal then {Jn} is a Hopf algebra filtration.

2.10. To conclude the proof of Theorem 1.1 in case (a), let A be a down-up algebra
with γ = 0 and α + β = 1. Since γ = 0, A = ⊕m≥0A(m) is a graded algebra, where
A(1) = span{d, u}. Set J = (d, u) then Jn = ⊕m≥nA(m). We have A = A/I ∼= O(G),
with G as in Lemma 2.8, where A is a Hopf algebra with the usual maps ∆, ε, and
S for O(G). We will show that β = −1. Since A = A/I ∼= O(G)

∆d = d⊗ 1 + 1⊗ d mod(I ⊗A + A⊗ I).

Since I ⊆ J it follows that ∆(d) ∈ J⊗A+A⊗J , and similarly ∆(u) ∈ J⊗A+A⊗J .
In A/I we have ε(d) = 0 mod I (similarly for u), so J/I is a biideal of A/I. We have
S(d) = −d mod I (and similarly for u) so S(J) ⊆ J +I = J and so J/I is a Hopf ideal
of A/I. Then by Lemma 2.9 and [Sw] (page 238, Exercise 3) the associated graded
algebra gr(A) = ⊕Jn/Jn+1 is a Hopf algebra. Note that as k-algebras A ∼= grA. The
images of d and u are primitive in gr(A), so it follows that ω = [d, u] is also primitive.
Since dω = −βωd, expanding ∆(d)∆(ω) = −β∆(ω)∆(d) and comparing terms shows
that β = −1 and then α = 2, and hence A ∼= U(h), the enveloping algebra of the 3
dimensional Heisenberg Lie algebra.

Remark: Since the isomorphism A ∼= grA in the proof is an isomorphism only of
algebras, it does not follow that A ∼= U(h) as bialgebras. In fact there are nonstandard
bialgebra structures on U(h) by [CG].

2.11. We now prove Theorem 1.1 in case (d), when γ 6= 0 and α + β = 1. We will
show that any A−β = A(1 + β,−β, 1) that is a Hopf algebra and has the property
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that all finite dimensional modules are completely reducible must also have the same
Clebsch-Gordan decomposition for tensor products of finite dimensional modules as
U(sl2). A corollary of this decomposition is that if −β is an nth root of unity for
n ≥ 3 then A−β is not a Hopf algebra.

Let H be a Hopf algebra with at most one irreducible module Vn of dimension n.
Since there is only one irreducible module in each dimension, each finite dimensional
module is self dual. Furthermore, for irreducible finite dimensional modules V and
W we have [V ⊗k W : V1] is 0 when V 6∼= W and 1 when V ∼= W .

Theorem 2.12. Let H be a Hopf algebra with exactly one irreducible module Vn

of dimension n for n = 1 and n = 2, and at most one irreducible module Vn of
dimension n for n ≥ 3. If all finite dimensional H-modules are completely reducible
then for all n ≥ m ≥ 1 we have

Vm ⊗k Vn
∼= ⊕m

`=1Vn+m−2`+1
∼= Vn ⊗k Vm.

In particular H has exactly one irreducible module of every dimension ≥ 1.

Proof. The result is true for m = 1, so consider the case where m = 2, where we
will induct on n ≥ 2. Since the 4 dimensional module V2 ⊗k V2 has exactly one V1 in
its decomposition it must split as claimed. Inductively we fix n ≥ 2 and assume that
V2 ⊗k Vi

∼= Vi−1 ⊕ Vi+1
∼= Vi ⊗k V2 for all 1 ≤ i ≤ n, and we will prove the claimed

decomposition for V2 ⊗k Vn+1 (a similar argument works for Vn+1 ⊗k V2). Clearly
V2 ⊗k Vn+1 has no copy of V1, and for 2 ≤ i ≤ n

Vi ⊗k (V2 ⊗k Vn+1) ∼= (Vi ⊗k V2)⊗k Vn+1
∼= (Vi−1 ⊕ Vi+1)⊗k Vn+1

∼= (Vi−1 ⊗k Vn+1)⊕ (Vi+1 ⊗k Vn+1).

Hence for 2 ≤ i ≤ n − 1 the module Vi ⊗k (V2 ⊗k Vn+1) has no copy of V1 in its
decomposition, so V2 ⊗k Vn+1 has no copy of Vi. Furthermore applying the above
when i = n shows that V2 ⊗k Vn+1 has a unique copy of Vn. Since n ≥ 2 the only
way to write V2 ⊗k Vn+1 as a sum involving Vn and no modules of dimension i for
1 ≤ i ≤ n−1 is as V2⊗k Vn+1 = Vn⊕Vn+2. This establishes the result for m = 2 and
any n ≥ 2. It follows that H has exactly one irreducible module of every dimension
≥ 1.

Next we induct on m. Hence we assume

Vp ⊗k Vn = ⊕p
`=1Vn+p−2`+1 for 2 ≤ p < m ≤ n,

so that Vm−1 ⊗k Vn = ⊕m−1
`=1 Vn+m−2`. It follows that

(V2 ⊗k Vm−1)⊗k Vn = V2 ⊗k (Vm−1 ⊗k Vn) = ⊕m−1
`=1 V2 ⊗k Vn+m−2`,
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so by the case n = 2

(Vm−2⊗kVn)⊕(Vm⊗kVn) = ⊕m−1
`=1 V2⊗kVn+m−2` = ⊕m−1

`=1 Vn+m−2`−1⊕m−1
`=1 Vn+m−2`+1.

Since by induction
Vm−2 ⊗k Vn = ⊕m−2

`=1 Vn+m−2`−1,

it follows that

Vm ⊗k Vn = Vn−m+1 ⊕m−1
`=1 Vn+m−2`+1 = ⊕m

`=1Vn+m−2`+1,

proving the result. 2

Corollary 2.13 . If −β is a primitive nth root of unity for n ≥ 3, then A =
A(1 + β,−β, 1) is not a Hopf algebra.

Proof. By Theorem 2.12 if A is a Hopf algebra then A must have irreducible modules
of each dimension. However it was shown in [CM] 2.5 and [J] Proposition 5.3 that
for −β a primitive nth root of unity A has no irreducible modules of dimension n. 2

We note that the missing modules of dimensions that are multiples of n cre-
ate no contradiction when n = 2 and A−1

∼= U(osp(1, 2)). The enveloping algebra
U(osp(1, 2)) has a graded Hopf structure, but no Hopf structure that we know.

3 Localizations

By [KMP] a down-up algebra is a generalized Weyl algebra of the form A = k[x, y](x;σ),
for x = ud and y = du. David Jordan has noted that when k[x, y] contains an eigen-
vector t for σ then t will be a normal element in A, and it is natural to consider the
localization S of A at the powers of t. There are situations where S has all finite di-
mensional modules completely reducible, while A does not. Examples of such algebras
include the algebra defined by Woronowicz [W] and the (q, r)-differential algebras for
q not a root of 1 and r 6= 0, which initiated the study of down-up algebras (see [BR],
and [J] Example 5.7). In these cases the localized rings S have finite dimensional
representations similar to the down-up algebras A of case (d). It seems a natural
question to determine if these localizations may produce some Hopf algebras. S. P.
Smith [S] notes (p 170) that of certain deformations of U(sl2), the localization of the
deformation of Woronowicz, Wv[K−4] in his notation, is the most like U(sl2) in terms
of finite dimensional simple modules, although “it does not have a Hopf structure”.
In this section we will use the techniques described in the previous section to present
cases in which we can prove that the ring S is not a Hopf algebra; in Proposition 3.1
we shall prove that in cases (a), (b), and under certain conditions case (c), S is not a
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Hopf algebra. In Proposition 3.3 we shall use a theorem of DeConcini and Procesi to
present other conditions in case (c) when we can prove that S is not a Hopf algebra.

In [J] § 5.4 Jordan studied the representation theory of S in the cases to which
his earlier papers applied. Let r and s be roots of the equation x2 − αx − β = 0;
note that rs = −β and r + s = α. Jordan’s results are phased in terms of parameters
µ1 = 1/r, and µ2 = 1/s. Following Jordan, let H∗ denote the multiplicative group
generated by r and s and τ = s/r.

Let A/I (resp. S/J) be the largest commutative image of A (resp. S). Using
the techniques of the first section we next classify the one-dimensional modules of
S in cases (a), (b), and (c) (extending results of Jordan). We obtain as a corollary
the fact that in cases (a) and (b) S is not a Hopf algebra, and in case (c), if S is a
Hopf algebra, the counit ε must have kernel 〈u, d〉. By [J] Proposition 5.5 (iv) and
(v). in case (c) when the rank of H∗ is at least one and µ2 is not a root of unity,
there is an arithmetic condition that determines if all finite dimensional S-modules
are semisimple: there are no positive integers e and d with d 6= e, τd 6= 1, τ e 6= 1 and

(µe
1 − 1)(τd − 1) = (τ e − 1)(µd

1 − 1). (1)

Proposition 3.1. Let A be a down-up algebra, and let s and r be the roots of the
equation x2−αx−β = 0. In cases (a) and (b), there is an eigenvector t in k[x, y] so
that the localization S of A at the powers of t has no one-dimensional modules, and
so S is not a Hopf algebra. In case (c) there is an eigenvector t so that S has exactly
one one-dimensional module; if τ = s/r is an nth root of unity for n ≥ 3, s is not
a root of unity, and if all finite dimensional modules are semisimple then S is not a
Hopf algebra.

Proof. In case (a), where α + β = 1 and γ = 0, we set t = x− y. Then I = (t), so
inverting t destroys I, so all one dimensional modules. In fact, when β is not a root
of unity, S has no finite dimensional modules by [J] Proposition 5.9. Since S has no
one dimensional modules, it cannot be a Hopf algebra.

In case (b), where α + β 6= 1 and γ = 0, then both r and s are not 1, and we may
set t = sx− y for one of the roots s (it is possible that s = r). Then

S

J
=

A

I
[t−1] =

k[a, b]
(a2b, ab2)

[(s− 1)ab]−1 = 0

since (ab)2 ∈ I and ab is a unit in S/J . Hence there are no one dimensional modules
(c.f. [J] Propositions 5.5 (ii) and (iii) and 5.10 (ii) when the rank of H∗ is at least
one), and S cannot be a Hopf algebra.

In case (c), where α+β 6= 1 and γ = 1, we may chose t = −r(s−1)x+(s−1)y+1,
an eigenvector for s, and abelianizing (where we take a (resp. b) to be the image of
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d (resp. u) in A/I) we find that the image of t in A/I is (1− r)(s− 1)ab + 1. Since
in A/I we have the following relations (as in [CM] 4.2)

a((r − 1)(s− 1)ab− 1) = 0, and

b((r − 1)(s− 1)ab− 1) = 0,

it follows that a = b = 0 in S/J . Therefore S/J ∼= k so there is a unique one-
dimensional module (c.f. [J] Proposition 5.5 in the case that the rank of H∗ is at
least 1).

In case (c) with the further assumptions given, by [J] Proposition 5.5 (v) S has
exactly one d-dimensional simple module for all d ≥ 1, unless d is a multiple of n, in
which case there is no d-dimensional simple module. Hence S is not a Hopf algebra
by Theorem 2.12.2

To consider case (c) under different conditions we will use a result of DeConcini
and Procesi. Let H be a Hopf algebra with counit ε : H → k, where k is a field in the
center of H. Let ω be the kernel of ε, and let H/ω ∼= k be the trivial module. Hence
ω is an ideal of H of finite codimension; when all finite dimensional representations
are semisimple, ideals of finite codimension must be idempotent.

Theorem 3.2 . (DeConcini and Procesi) Let H be a Hopf algebra satisfying the
following two conditions:

1. The kernel ω = Ker (ε) of the counit satisfies ω2 = ω.

2. For each non-trivial finite dimensional irreducible representation, the central
character is different from the trivial character.

Then all finite dimensional H-modules are semisimple.

Proof. This follows by making some minor changes to the proof in [DP], p.40-41. 2

Proposition 3.3. Let A be a down-up algebra of type (c), and let s and r be the roots
of the equation x2−αx−β = 0. Assume that r is a primitive nth root of unity and s
is not a root of unity. Let S be the localization of A at the powers of the eigenvector
t = −r(s− 1)x + (s− 1)y + 1 for s. If for all d ≥ 2 and all 1 ≤ j ≤ n the equation

(sd − rd)
(rj − 1)
(r − 1)

=
(rd − 1)
(r − 1)

− (sd − 1)
(s− 1)

(2)

does not hold, then S is not a Hopf algebra.
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Proof. Since r is a root of unity there are integers d 6= e where both sides of
equation (1) are 0, so S has finite dimensional modules that are not completely
reducible. Without loss of generality, take γ = 1. Since there is only one simple
module of dimension 1, if the algebra S is a Hopf algebra then this module must be
the trivial module; furthermore J = 〈u, d〉 is an idempotent ideal when γ 6= 0. By [J]
Proposition 5.5 (i) S has at most one simple module in each dimension.

Let z = −s(r− 1)x + (r− 1)y + 1, an eigenvector for r. One can check that zn is
central in A and ε(zn) = 1; by [Hi] or [Z] zn generates the center of A. The ring S
has a d dimensional simple if and only if d is the minimal positive integer such that
λd−1 = 0. It follows from our appendix (6) that λd−1 = 0 if λ satisfies

λ(sd − rd) =
(rd − 1)
(r − 1)

− (sd − 1)
(s− 1)

. (3)

To determine the central character induced by the element zn on the d dimensional
simple module L(λ) (if it exists), we can use the action of zn on the generator
v0 ∈ L(λ). The vector zn acts on v0 as the scalar ((r − 1)λ + 1))n. The value of the
central character at zn is the same as the trivial character if ((r − 1)λ + 1))n = 1,
i.e. if (r− 1)λ + 1 = rj for some j. Solving this equation for λ, and substituting into
equation (3) we get the condition (2). If this equation is not satisfied for all d ≥ 2
and all j, then for each non-trivial finite dimensional irreducible representation, the
central character is different from the trivial character. If S were a Hopf algebra it
would follow from Theorem 3.2 that all finite dimensional representations are com-
pletely reducible; since this is not the case, S cannot be a Hopf algebra. 2.

It can be shown, for example, that the conditions above hold when r = i and
s = 2 (and hence α = i + 2 and β = −2i).

There remain cases where the techniques we have developed do not apply, and we
are unable to determine if S has a Hopf structure. This concludes the analysis of the
localizations considered by Jordan in [J].
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Appendix

Here we give proofs, which are shorter than those available in the literature, of
some results that we use.

Fix λ ∈ k and consider the recurrence relation

λn = αλn−1 + βλn−2 + γ (4)

where λ−1 = 0, λ0 = λ. This equation arises in connection with the structure of
Verma modules [BR]. The explicit solutions to (4) are given in [BR] Proposition
2.12. However often we are interested in knowing merely when λn−1 = 0, and this
can be determined without explicitly solving (4).

Let
(

0 β
1 α

)
, v−1 = (0, γ) and vn = (λn−1, λn) for n ≥ 0. We can write (4) in

the form
vn = vn−1σ + v−1.

Now suppose that P is an invertible matrix and D = P−1σP . We set wn = vnP .
Then clearly wn = wn−1D + v−1P and hence by induction

wn = w0D
n + v−1P (I + D + · · ·+ Dn−1). (5)

For simplicity we assume that β 6= 0 and that σ is diagonalizable. Here we will
consider only the particular cases that arose in our analysis of cases (c) and (d). We
leave the other cases to the interested reader.

Case (c) when r 6= s: This case occurs in Case 1 of [CM] and in Case A of [J].
Assume γ = 1 6= α + β, and that σ has distinct eigenvalues r and s. Notice that in
this case neither eigenvalue is 1. To diagonalize σ we take

P =
(

β/r β/s
1 1

)
.

By (5)
wn = (λrn, λsn) + (1 + r + · · ·+ rn−1, 1 + s + · · ·+ sn−1).

On the other hand wn = vnP = λn−1(β/r, β/s)+λn(1, 1). Thus λn−1 = 0 if and only
if wn has equal entries, and this happens if and only if

λ(sn − rn) = (rn−1 + rn−2 + · · ·+ r + 1)− (sn−1 + sn−2 + · · ·+ s + 1);

this means that

λ(sn − rn) =
(

rn − 1
r − 1

)
−

(
sn − 1
s− 1

)
. (6)

12



Case (d) when r 6= s: Assume that γ = 1 = α + β and that σ has eigenvalues r =
η = −β 6= 1 and s = 1. We take

P =
(
−1 −η
1 1

)
.

Then by (5) we have

wn = λ(ηn, 1) + (
ηn − 1
η − 1

, n).

As before we see that λn−1 = 0 if and only if

λ(ηn − 1) = n− (ηn − 1)
(η − 1)

.

Thus ηn = 1 implies that n = 0, and if n > 0 then λn−1 = 0 if and only if

λ(η − 1) = −(1− n(
n−1∑
i=0

ηi)−1).

This condition is [CM] Lemma 2.5. If λm−1 = λn−1 = 0 for 0 < n < m we easily
obtain

n(ηm − 1) = m(ηn − 1),

c.f. [CM] 5.4 and [J] equation (28).
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