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Abstract

Let k be an algebraically closed field of characteristic 0, Y = k" x (k*)® and
let G be an algebraic torus acting diagonally on the ring of algebraic differential
operators D(Y). We give necessary and sufficient conditions for D(Y)¢ to
have enough simple finite dimensional representations, in the sense that the
intersection of the kernels of all the simple finite dimensional representations is
zero. As an application we show that if K — GL(V) is a representation of a
reductive group K and if zero is not a weight of a maximal torus of K on V,
then D(V)X has enough finite dimensional representations. We also construct
examples of FCR-algebras with any GK dimension > 3.

1 Introduction

For a variety Y over k, we denote the ring of regular functions on Y by O(Y) and
the ring of differential operators by D(Y). Recently there has been much interest
in the study of the invariant ring D(Y)¢ when G is a reductive group acting on a
smooth affine variety Y, see for example [9], [11], [13], [14], [15], [17]. In this paper
our primary focus is on the case where Y = V x W for a vector space V and a torus
W, and G is a torus acting diagonally on Y. There is some motivation for the study
of diagonal torus actions on Y, rather than on the vector space V, coming from the
structure of differential operators on toric varieties, see [12],[13].
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We say that a k-algebra R has enough finite dimensional modules ( resp. enough
simple finite dimensional modules) if NanngM = 0, where the intersection is taken
over all finite dimensional (resp. simple finite dimensional) R-modules.

Proposition A If D(Y)% has a finite dimensional module, then G acts transi-
tively on W.

Now assume that G acts transitively on W and let H be the stabilizer in G of
w € W. Note that the connected component H? of the identity in H is a torus, but
we may have H # H°. The slice representation at w is isomorphic to (H,V), see
§ 3. We give necessary and sufficient conditions for D(Y)¢ to have enough finite
dimensional simple modules.

Theorem B Assume that G acts transitively on W. The following conditions
are equivalent.

1. VE =o.

2. D(V)H’° has enough simple finite dimensional modules.

8. D(Y)C has a nonzero finite dimensional module.

4. D(Y)C has enough simple finite dimensional modules.

Set h = Lie(H) C g = Lie(G). For X € g*, u € h* we set

BA(Y)=D(Y)/(g-Xg), BuV)=DV)"/(h - u(b)). (1)

Here (g — A(g)) is the ideal generated by all elements of the form z — A(x), with
z € g, and (h — p(h)) is defined similarly. The algebra By(Y') is studied in detail in
[13]. Let #* : g* — b* be the map obtained from the inclusion i : h — g.

Proposition C
1. There is an injective algebra homomorphism ¢ : D(V)H — D(Y)C.

2. If X\ € g* and p = i*(N), the above map induces an isomorphism B,(V) =
By(Y).

Note that any simple D(Y)%-module is a By(Y)-module for some X\ € g*. So
Propositions A and C reduce the study of finite dimensional simple D(Y)%-modules
to that of finite dimensional simple D(V')#-modules. Some other situations in which
slice representations have been used to study invariant differential operators may be
found in [14] and [17].

Now suppose that G is a maximal torus in a reductive subgroup K of GL(V).
Then D(V)¥ is a subring of D(V)%, so any D(V)%-module is also a D(V)X-module.
Thus we obtain as an immediate corollary to Theorem B.



Theorem D If 0 is not a weight of G on V, then D(V)X has enough finite
dimensional modules.

In general, it seems rather difficult to say much about finite dimensional D(V)%-
modules (or more generally primitive ideals in D(V)¥) if K is not a torus. As far
as we are aware if K is simple, the only cases where anything is known are the case
of the adjoint representation of SL(3) [15], and some representations arising from
classical invariant theory [9].

Here is a brief outline of the paper. First we establish some notation and express
the conditions in Proposition A and Theorem B in terms of the weights of the torus
action. If either the action of G on W is not transitive or if VH® # 0, we show
that D(Y)€ contains the fixed ring A} of the first Weyl algebra A; under the action
of a finite group F. Since A! is simple and infinite dimensional over k, it has no
nonzero finite dimensional modules. On the other hand, if G acts transitively on W
and V#° = 0, we show that D(Y) has enough finite dimensional modules by first
analyzing the case O(Y)¢ = k, and then using Fourier transforms to reduce to this
case.

Kraft and Small [6] call an algebra R an FCR-algebra if R has enough finite
dimensional modules and every finite dimensional R-module is completely reducible.
In the last section of the paper, we combine Theorem B with results from [13] to
give examples of FCR-algebras with any given integer Gelfand-Kirillov dimension
> 3. We denote the Gelfand-Kirillov dimension of an algebra A by GK-dim A, see
[8] for background.

We thank the editor and the referee for many helpful comments, especially in
connection with the proofs of Theorem 6.2 and Proposition C.

2 Notation

2.1 Actions of Tori

We assume that V = k"W = (k*)*, and Y =V x W C k", wheren =7+ s. A
diagonal action of a torus G on Y is an action that extends to a diagonal action
on k™. Such an action is given by an embedding of G into the group T' of diagonal
matrices in GL(n). Set X(T) = Hom(T,k*), Y(T) = Hom(k*,T), the groups
of characters and one-parameter subgroups of 7', respectively. There is a natural
bilinear pairing

(,):X(T)xY(T) — Z. (2)
defined by the requirement that
(aob)(r) =AY (3)
for all a € X(T'), b € Y(T') and A € k*. Define the bilinear pairing

[, ]:X(G) xY(G) — Z (4)



in a similar way.
Let ¢ : X(T') — X(G) be the restriction map. Let K = kerty and

K+ = {x € Y(T)|(K, x) = 0}. (5)
There is a homomorphism
w:Y(G) — K+ (6)
defined by
(a,w(b)) = [15(a), ], (7)

for a € X(T') and b € Y(G). A slightly different situation is described in [12].

By introducing bases we can describe these maps using matrices. Identify G with
(k™)™ and for 1 < i < m define v; € X(G) by vi(9) = gi, for g = (91,-.- ,9m) € G.
We call {v;} the standard basis for X(G). Similarly, identifying 7" with (k*)", we
obtain the standard basis {e;} for X(T'). We write {v}}, {ef} for the dual bases
of Y(G) and Y(T'). For matrix computations we identify X(7T'), Y(T), X(G), Y(G)
as Z-modules of column vectors using these bases. Let I; denote the ¢ X t identity
matrix. If M is an abelian group, we set Mg = M ®z Q.

For 1 <i < n let n; = 1(e;). There is an m x n integer matrix L = (I;;) such
that

m
ni= Y lLivj, (8)
7j=1
fori=1,...,n. From (7) it follows that
w(vy) = lije}. (9)
j=1

Thus the maps X(7) — X(G) and Y(G) — Y(T') are given by multiplication by
L and the transpose of L respectively. If 3 = (84,... , 3,) belongs to the submodule
R of Z™ spanned by the rows of L, then

B(t) = (tPr,tP2,... tPr)eT (10)

determines the action of a one-parameter subgroup of G on Y. We summarize this
data by saying that G acts on Y by the matriz L, or that G acts on Y with weights

,r’17 te ’nn *
Note that Y is a toric variety with a dense torus T' = (k*)" C Y. Write Q; for

the character e; considered as a regular function on 7. Then
oY) =k[Q1,...,Qr,Qrly,..., Q5. (11)
We consider the action of G on O(T') (or O(Y')) given by right translation, that
is
(- 1)) = f(tg), (12)

for g € G, f € O(T), t € T. This convention implies that @; has weight 7; as in
[13], section 6.



Lemma 2.1. If npy1,... ,nn are linearly independent, there exist matrices T' €
GL,(Z), A € GL,(Z) such that

1. TLA has the block matriz form

| Ly 0
LA = [L2 D]’ (13)
where D is a diagonal matriz with nonzero diagonal entries di,... ,ds.
2. A has the block matriz form
| I, 0
A= [ N ] , (14)

with A1 € GLS(Z).

Proof. Let R be the submodule of Z™ spanned by the rows of L, and let € : Z"™ — 7Z°
be the projection onto the last s coordinates. Since the submatrix of L obtained by
deleting the first » columns has rank s, it follows that ¢(R) is free abelian of rank
s. Thus if R = ker ¢, the map R — R/R’ splits and there is a submodule R" of
R such that R = R' @ R". By choosing bases for R’ and R", we find I'; € GL,,,(Z)
such that

L; 0

hb = [ Ly L3 ] ’

where L; has m — s rows and r columns and the rows of [L1,0] form a basis for R'.
There exist matrices I'y € GL4(Z) and A; € GL4(Z) such that D = I'yL3A; has
the desired form, and we set

NP
O
Now suppose G acts on Y via the matrix L and set
Yr={aeN xZ°|La=0}. (15)

It is often convenient to use exponential notation for elements of O(Y). If a =
(Q1,...,0n) € N X Z5 we set Q% = QF*...Q2%. Then O(Y)¢ = span{Q* €
O(Y)|La = 0} = kX, the semigroup algebra on ¥z. If I', A are as in the lemma
and L' = T'LA, there is an isomorphism

Y — X2 ) (16)
given by = — A 'z. Thus if 7,,1,...,n, are linearly independent, we assume
henceforth that L has the special form

Ly 0
where D is a diagonal matrix with nonzero diagonal entries dy, ... ,d;.



2.2 Rings of differential operators
Let P; = 0/0Q;,
DY) =k[Q1,...,Qr, @1, , Q5 Pr, ..., P (18)
Note that D(Y) is a localization of the n'® Weyl algebra
An =k[Q1,...,Qn, P1,..., Pyl (19)

We denote the generators of A; simply by @ and P = §/0Q.
The action of G on O(Y") extends to an action on D(Y") defined by

(g-d)(f) =g(d(g™"f)) (20)

forg € G,de DY), f e O).
If/'l’:(u].)-.- ,/,l,n)eNn,SGt P,U:P{“P#“ Thenforg:(g].)“‘ ’gm)eG

m m
S Al S nsl
9. =]lg7"7"@" g.Pr=][g "Pr (21)
i=1 i=1

The elements Q*P* € D(Y), with L\ = Ly, form a basis of D(Y)€.
For a € N' x Z° we define

Uy = gaﬂ...Q(ar)ngll... an (22)

T

where

Q(ai):{ Qiﬂfa,-ZO iG{l,...,T}- (23)

i Pz-iai ifo; <0’
Then D(Y') = @D(Y )y, where D(Y )y = Aug, a € Z", with A = Ek[I14, ... ,II,].
If II; = Q;P;, then [II;, u,] = a;u,. Using this it is easy to see that

D(Y)G = EBt)tESupp’D(Y)G’D(},)Ot7 (24)

with SuppD(Y)® = {a € Z"|La = 0}, see [11], Lemma 2.2.
Define A C Z™ by A = {Laja € N x Z*}. For x € A define

O(Y), = span{Q* € O(Y)|L) = x}- (25)
It is easy to see that
OY) = ®xerOY)y- (26)
We denote the canonical action of D(Y') on O(Y) by
(d,f) = d-f, (27)

for d € D(Y) and f € O(Y).

Each O(Y), is a D(Y)%-module: for a given Q* € O(Y), and Q*P" € D(Y)C,
L)\ = x and Ly = Lv. Hence Q“P¥-Q” is a multiple of Q*#~ with L(A+p—v) =
L)\ =x.



2.3 Some remarks on the algebra D(V)#

Note that D(V)¥ is the fixed ring of D(V)#° under the action of the finite abelian
group H/H®. Thus D(V)H° is graded by the character group of H/H° and D(V)#
is the identity component of this grading. Hence if I is any right ideal of D(V)#,
we have

DWW nDWV)E =1. (28)

Now fix 4 € h* and let m be the ideal of A’ = k[IIy, ... ,TI,] generated by b — u(h).
We can apply the above remarks with I = mD(V)H. Tt follows that there is an
embedding of algebras

D(V)H D(V)H*
mD(V)E — mD(V)E°

(29)

From now on we denote these algebras simply by D(V)# /(h—pu(h)) and D(V)H* /(h—
u(h)). Note that by [8], Lemma 3.1 and [13], Theorem 8.2.1 we have

L DO
GK-dim CEO) <2(n ) (30)

Using a suitable filtration and passing to the associated graded ring as in [13], §8.2,
it can be shown that equality holds.

3 Actions of tori and slice representations

In this section we express the hypotheses in Proposition A and Theorem B in terms
of the weights of the action.

Lemma 3.1. Suppose the torus G = (k*)™ acts on W = (k*)® with weights
Mr+1y--- 570 -

1. If np41,--. ,Nn are linearly independent, then G acts transitively on W.

2. If nyy1,. .. .0 are linearly dependent, then any orbit of G on W has dimension
less than dim W.

Proof. 1. Note that n := (9p41,-.- ;M) : G — W is a homomorphism of tori.
Since the 7; are linearly independent, the rank of 7(G) is s, hence 7 is onto
W, and it follows that G acts transitively on W.

2. We can assume that G acts faithfully on W. Then N7, kern; = 1. If
Np+1,--- ,Nn are linearly dependent, this implies that dim G = m < s. Any
element w € W has trivial stabilizer, so dim Gw = dim G < dim W.

O



Suppose that
¢p:Gx X — X (31)

is an action of a reductive group G on a variety X and consider a point u € X with
stabilizer H = G, and tangent space T, (X). The differential

do g — Ty(X) (32)
has kernel h = Lie(H). If H is reductive, we have
Tu(X)=g/haU, (33)

for some H-module U. We call the pair (H,U) the slice representation at u, see [10],
[16].

Now suppose G = (k™)™ is a torus acting faithfully on Y = V x W with weights
M,--- ,Mn- Suppose that G acts transitively on W, and let w = (wyp41,... ,wy,) be
an element of W. Then

H =Gy =N, ker n. (34)
Lemma 3.2. The slice representation at w is isomorphic to (H,V).

Proof. Since the G-orbit of w in W is W, g maps onto T, W and T,,W = g/§. Thus
the H-invariant complement to Tp 4, (G . (0,w)) in Tp,,Y is V. O

Finally, H? is the subtorus of G generated by images of one parameter subgroups
corresponding to rows of Ly. For 1 < i < 7, let p; be the restriction of 7; to H.
These characters can be thought of as columns of L;.

We can easily see the following,

Lemma 3.3. VE° =0 if and only if p; #0 for all i =1,... ,r.

4 The special case O(Y)% =k

Lemma 4.1. 1. If O(Y)¢ =k, then n,11,... ,M, are linearly independent.

2. Assume Npy1,... ,Mn are linearly independent. Then the following conditions
are equivalent.

(a) O(Y)¢ = k.
(b) For all x € A, O(Y)y is finite dimensional.

(c) There exists B = (B1,...,Bn) € K+ such that B; > 0 fori =1,... r,
and B; =0 fori=r+1,... ,n.



Proof. 1. If np41,... ,7ny, are linearly dependent, we can write

> aimi= Y b, (35)

il jeJ
where I, J are disjoint subsets of {r + 1,... ,n}, I # 0 and the a;,b; are positive
integers. Then
b; ;
IjesQ; /Micr Q5 (36)

is a nonconstant element of O(Y)%

2. (a) = (c) Suppose O(Y)% = k. For 1 <i < r, set

Ci= > Qomi+> Qi CX(G)g (37)
oL j=1
and
Cy = {y € Y(G)ql[Ci,] > 0}. (38)

If « € K with oy >0, for i = 1,...7, we have a = 0 since Q* € O(Y)¢. It follows
that —n; ¢ Cj, for 1 < ¢ < r. Hence by equation (*) on page 9 of [3], there exists
v € C} such that (e;,w(vi)) = [m,7] > 0. If v = >0, ~, then some integer
multiple 3 of w(7y) satisfies the condition in (c).

(c) = (b) We may assume that L has the form (17). Suppose that x € A and
fix ¢ € N' x Z* with Ly = x. If Y(T') is identified with Z", we have

O )y = span{Q*la € N" x Z°, L(a — ¢) = 0}. (39)

!

For a € N' x Z%, write a = ( 3,, ), with o’ € N' and o” € Z*. Define ¢’ and ¢”

similarly. To show O(Y'), is finite dimensional it suffices to show there are at most
finitely many o € N' x Z* such that

Li(a' - ¢') =0, (40)

Ly(a' — ")+ D(a" — ") = 0. (41)

Since D is invertible o/ is determined once we fix o/. (Note however that if D!
does not have integer entries, equation (41) may impose additional conditions on
o).

Thus we may assume that r = n and L; = L. The condition L(a — ¢) = 0 is
equivalent to (o — ¢, K+) = 0. Hence given 8 € K as in (c) we have

D Biai =) B (42)
i=1 i=1

and this equation has only finitely many solutions for a € N", since all 3; are
positive.
This completes the proof since obviously (b) = (a). O



Remark 4.2. If k = C , there is a more geometric proof of the equivalence of (a)
and (c) in the Lemma. Indeed if (a) holds then there is a unique closed orbit of G
on'Y, namely O = 0 x W where 0 is the zero subspace of V. On the other hand
if B € K+ is a one-parameter subgroup of G as in (c), then for all y € Y we have
%i_l)% B(t)y € O. Thus the equivalence of (a) and (c) follows from the Hilbert-Mumford

criterion for tori [5], IIT 2.2.

Let ani) be as in (23). The following identities are easily proved:

if a; > 0, then Q) . QN = Q)+, (43)

Aq! Aita;
. . — e A 1 f — o < A
.f P < 07 th (Ot@) . .AZ = (Al'i'az)'Ql 1 T =N
if a; en @, Q; S

Lemma 4.3. If O(Y), # 0, then it is a simple D(Y)%-module.

Proof. Let @*, Q* € O(Y)y. Then LA = Ly = x. Hence u,_ € D(Y)%. Set
a=p—A If1<i<r, then y; >0, so from (43), (44) we get u,_» - Q* = c Q*,
where c is a nonzero integer. Since all weight spaces of O(Y'),, are one dimensional,
the result follows from this. O

Assume that O(Y)% = k. We assume the action of G on Y is defined via the
matrix L in (17). The dimensions of the modules O(Y'), can be calculated using
the following result. To state it we require some notation. Let I be a product of
cyclic groups of order dy, ... ,ds; and R = Z[F|[[t1,... ,tm—s|] a ring of formal power
series over the group ring Z[F. For 1 < i < s, let t,,,—s1; be a generator for the
cyclic subgroup of F of order d;. For x = (x1,--- ,Xm) € Z™, set tX = t{*¢5* - - -t}

Proposition 4.4. The dimensions of the modules O(Y'), satisfy
T m
S dim oY), ¢ = [J -] (45)
x€A j=1 i=1

Proof. The coefficient of ¢X in the expansion of the right side equals the number of
solutions for a € N" to the equations

.
xi =Y lijay, (46)
j=1
for 1 <i < m — s, and the congruences

,
Xitm s = Y litm s, jo; mod d;, (47)
7j=1

for 1 < ¢ < s. This is easily seen to equal the number of solutions to equations (40)
and (41). O

10



5 Reduction to the special case

Suppose I C {1,... ,r}. For 1 <i < n, set
) —miifiel
g’_{ mifi gl (48)
Let L; be the matrix with columns ¢i1,...,¢,. Then L; defines an action of a new

torus Gy on Y. As before Gj can be thought of as a subtorus of 7.
Lemma 5.1. If VHZ° =0, there is a subset I of {1,... ,r} such that O(Y)%" = k.

Proof. Let R' be the submodule of Z" spanned by the rows of L1, and let ¢; : Ry —
Q be the restriction of the projection onto the j** coordinate. Since VH° = 0, it
follows that €;(Rgp) # 0, for all j so ker ¢; # Rp. Therefore U]_ ker ¢; # R, and
we can find B € Rpy such that ¢;(8) # 0, for j = 1,...,7. Now set I = {j €
{1,... ,7}|ej(B) < 0}. Using Lemma 4.1, it is easy to see that O(Y)% = k. O

Lemma 5.2. Let I be a subset of {1,... ,r}. Then the map or : D(Y) — D(Y)
defined by

. [ -Rifier [ Qifiel
i=1,...,n induces an isomorphism between D(Y)C and D(Y ).

Proof. The map o7 is an isomorphism. Therefore its restriction to D(Y)% is one-to-
one. Consider the Z"-grading of D(Y)¢ given by (24). Since

[ - —1ifiel
O'I(Hz)_{ Hz lfl¢I ’

we can easily see that o7(A) = A. We can also check that o7(uq) = fu,r, with
of = (af,...  al), where

I { —q;ifi el (50)

T qifigl

From this we conclude that o;(D(Y),) = D(Y),r. Therefore a;(D(Y)%) = D(Y)%1.
U

The automorphism o7 can be thought of as a partial Fourier transform [2], Chap-
ter 5. We consider the D(Y)%-module O(Y)!, which equals O(Y) as a vector space
with a new action given by

axu=or(a)-u, (51)

for a € D(Y)%, u € O(Y). Since o(D(Y)%) = D(Y)%1, it follows from Lemma 5.2
that

O(Y)" = @yen, O(Y)y, (52)

11



where A; = {Ljala € N x Z°} and
O(Y))I( = span{Q®|Lra = x}. (53)

Note in particular that

6 Main results

The following lemma can be easily proved.

Lemma 6.1. Suppose R is a Z*°-graded ring. There is a homomorphism

®:R— Rz, zF!

rvs

defined by ®(r) = rz® for r € R(a), a € Z°.

Assume that 9y41,... , 7, are linearly independent. As in [16], H acts on G x S
by the rule

h.(g,s) = (gh™ 1, hs) (55)

for h € H, g € G, and s € S. Since all points in G x S have trivial stabilizer, all
orbits are closed, and the quotient by H, denoted G x¥ S is geometric. We denote
the H-orbit of (g, s) by [g, s]-

Part of the Luna slice theorem states that there is a closed H-stable subvariety
S containing w and a G-equivariant étale map G x¥ § — Y. Furthermore there
are étale maps V//H «— S//H — Y//G, [10], [16]. Taking S = V + w we can
strengthen this statement in our case.

Theorem 6.2. There is a G-equivariant isomorphism o : G xS — Y, and this
map induces an isomorphism between V//H and Y//G.

Proof. The map o is defined by

olg, s] = gs. (56)

It is easy to check that o is one to one and onto. Since the source and target of o
are affine, and Y is smooth, it follows from Richardson’s Lemma, [5] I1.3.4 that o
is an isomorphism. This proves the first statement and the second is an immediate
consequence. O

The second statement in Theorem 6.2 asserts that O(V)# = O(Y)%. Because this
isomorphism is used in the proof of Proposition C, we wish to make it more explicit.

12



Assume that G acts on Y by the matrix L as in (17) and set

Ty ={B € Z"|L1B = 0}, (57)
T, ={B € Z"|LB = 0} (58)

and
T ={B €T|LB € d1Z x ... x dsT}. (59)

For B3 € T/, let x(8) € Z° be the column vector with i* entry —v;/d; where

v = Loff € Z*, and set €(B) = ( n(ﬂﬂ) > Since O(V)H = span{QP|L18 =0, B €
N NT{} and O(Y)% = span{QBm € (N x Z%) N T}, there is an isomorphism
between O(V)H# 2 O(Y)¢ sending Q° to Q<).

Proof of Proposition C.

Using the notation of § 2 we have
R =DV = @peri Aua
and
D(Y)% = Buer, Atta.

We regard R as a Z*-graded ring with deg(A'u,) = k(a), and apply Lemma 6.1
to obtain a homomorphism

R — Rzl zfl), (60)

which is the identity on R and maps uq to uez™®. Composition with the map
specializing a:jtl to ini, for 1 <i <'s, gives the map £. Note that {(uq) = Ue(q)-

Since (h — p(h)) is in the kernel of the map from D(V)# to By(Y), ¢ induces a
map &y : Bu(V) — Bi(Y). To show that &) is surjective, it remains to show that
the image of A in B)(Y') is contained in the image of ). For 1 < i < s, we have
dill,4; + 22:1 lm—s+ijII; € g. Hence modulo (g — A(g)), II,4; is in the span of
II4,...,II, and 1. On the other hand £(IL;) =1I; for 1 < ¢ < r.

By [13], Theorem 8.2.1 and the remarks in § 2.3 we have

GK-dim(B,(V)) < GK-dim(Bx(Y)) = 2(n — m). (61)

The surjectivity of £y implies that we have equality here. Since B,(V') is a domain,
it follows from [8], Proposition 3.15 that £ is injective.

Remark 6.3. The fact that there is an injective algebra homomorphism from D(V)H
to D(Y)C is a general fact resulting from the isomorphisms G xH# S ~ GxHV ~ Y.
If f € O(G x®V), then f is of the form Y, u; ® v; where the u; are in O(G), the
v; are in O(V) and the sum >, u; ® v; is H-invariant. If P € D(V)H, then we can
let P act on ), u; ® v; sending it to Y, u; ® P(v;). One can check easily that this
action gives an element of D(Y)C.

13



Proof of Proposition A

By Lemma 3.1, it suffices to show that D(Y')¢ has no finite dimensional modules if
Nr+1,--- ,Mpn are linearly dependent. This follows from [13], Proposition 10.1.1(1),
but we can give a direct proof as follows. There exist integers ¢,+1, ... , ¢, not all zero
such that ) r+1 cin; = 0. We can assume that ¢ = ¢, # 0. Then @ = [[iL, ., Qf
and P = P§ Hz 1 @; @ belong to D(Y)C.
Let w = €2™/¢ and consider the automorphism of A; = k[P, Q] sending P to
wP and Q to w™'Q. Let F be the subgroup of Aut(A;) generated by this auto-
morphism. We have A} = k[P¢,Q¢, PQ)], and it is well known that A is a simple
ring, [1]. Note that A} is Z-graded when we set deg(Q°) = 1,deg(P°) = —1, and
deg(PQ) = 0. Applying Lemma 6.1, we see that there is a ring homomorphism
®: AT — Al[z*!] with ®(Q°) = Q°x, ®(PQ) = PQ, ®(P°) = P°z~!. In addition,
there is a homomorphism U : A[z*] — D(Y) given by ¥(Q) = Qp, ¥(P) = P,
Tz =TI} o1 Q5)F!. The composite ¥ o ® : AT — D(Y) sends Q° to Q, P°
to P and PQ to P,Q,. Since A} is simple, it follows that this map is injective and
D(Y)% has no finite dimensional modules.

Proof of Theorem B

(1) = (4) If VH® = 0, then by Lemma 5.1 there exists I C {1,...,r} such
that O(Y)%" = k. Therefore, by Lemmas 4.1 and 5.2 the faithful D(Y)%-module
O(Y)! is a direct sum of finite dimensional simple modules O(Y)i. Hence D(Y)¢
has enough finite dimensional simple modules.

(3) = (1) If VE® # 0, we claim that D(Y)¢ has no finite dimensional repre-
sentations. Using the notation introduced immediately before Lemma 3.3, we can
assume that p; = 0. Then A; = k[Qq, P;] is a subalgebra of D(V)#°. Hence the
invariants in A; under the action of the finite group H/H? form a subalgebra of
D(V)H. Since D(V)¥ is a subalgebra of D(Y)¢ by Proposition C the claim follows.

Since (4) obviously implies (3), this proves the equivalence of (1), (3), (4). The
equivalence of (1) and (2) is a special case of the equivalence of (1) and (4).

7 More on the modules O(Y)!

We give some alternative descriptions of the modules O(Y')! defined in §5. First, it
is easy to see that as D(Y)-modules

oY) =2D¥)/D)_ DX)Qi+ > DY) (62)

el i¢T

Next, for I C {1,... ,r} set Qr = [[;c; Qi and let

oY) =o0()Qr']- (63)
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Note that O(Y); is a D(Y)-module. Now let M be the sum of all submodules of
O(Y)1 of the form O(Y')s, where J is a proper subset of I. Then set

Ny = O(Y)r/M;. (64)

Proposition 7.1. As a D(Y)-module (and hence also as a D(Y )% -module) O(Y)! =
Ny.

Proof. Let ny be the image of Q1_1 in Ny. It is easy to verify that @Q;-ny =0ifi € I
and P;-ny =0if ¢ ¢ I. Since Ny is generated by ny, it follows from (62) that there
is a surjective map from O(Y')! onto N;. This map is an isomorphism since O(Y')!
is a simple D(Y")-module. O

8 FCR-algebras

We give examples of Noetherian FCR-algebras of every given integer GK dimension
> 3. It is conjectured in [4] that FCR-algebras with GK dimension 2 do not exist.
It was proved in [13], Theorem 8.2.1(4) that GK-dim D(Y)%¢ = 2n — m.

1. Odd GK dimension > 3. Assume dim G = 1. We can take n > 2. Let the
action of G on the n* Weyl algebra A, be given by the matrix:

(b ... by ], (65)

with b; # 0 for all 4 € {1,... ,n}. By [13], Proposition 10.2.1(3), these are
algebras with the reductive property, and by Theorem B they have enough
simple finite dimensional modules. Then GK-dimAS = 2n — 1. In this way
we have many examples of FCR-algebras with odd GK-dim > 3.

If we take all the b; equal to 1, so that k* acts by scalar multiplication on k",
we obtain an unpublished example of the first author and M. Van den Bergh
which is also mentioned in [4], §3.

2. Even GK dimension > 6. Assume dim G = 2 and n > 4 . Then
GK-dimAS = 2n — 2. Let the action of G on A, be given by the matrix:

(1) ... 01 (66)

1 0]

In this way we get examples of FCR-algebras with even GK-dim > 6. By
[13], Corollary 10.1.6 , AS has the reductive property, and by Theorem B it
has enough simple finite dimensional modules.

3. GK dimension 4. Take dim G =2, n =3, s =1 and r = 2. Consider the
algebra

A =k[Q1,Q2,QF", P, Py, P3).
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Let the action of G on A be given by the matrix

110

0 0 1]
Then GK-dim A = 4. By [13], Corollary 10.1.6 and Theorem B, A® is an
FCR-algebra.

References

[1] J. Alev, Action de groupes sur A;(C), Ring theory (Antwerp, 1985), Lecture
Notes in Math. 1197, (Springer, Berlin, 1986), 1-9.

[2] S.C. Coutinho, A primer of algebraic D-modules (Cambridge University Press,
1995).

[3] W. Fulton, Introduction to toric varieties (Princeton University Press, 1993).

[4] E.E. Kirkman and L.W. Small, Examples of FCR-algebras, Comm. Algebra
30 (2002), no 7, 3311-3326.

[6] H. Kraft, Geometrische Methoden in der Invariantentheorie, (Vieweg-Verlag,
Braunschweig, 1984).

[6] H. Kraft and L.W. Small, Invariant algebras and Completely reducible repre-
sentations, Math. Research Lett. 1 (1994), 297-307.

[8] G.R. Krause and T.H. Lenagan, Growth of algebras and Gelfand-Kirillov di-
mension, Research notes in mathematics vol. 116, (Pitman, Boston, 1985).

[9] T.Levasseur and J.T. Stafford, Rings of differential operators on classical rings
of invariants. Mem. Amer. Math. Soc. 81 (1989), no. 412.

[10] D. Luna, Slices étales. Sur les groupes algébriques, Bull. Soc. Math. France 33
(Soc. Math. France, Paris, 1973), 81-105.

[11] I.M. Musson, Rings of differential operators on invariant rings of tori, Trans.
Amer. Math. Soc. 303 (1987), 805-827.

[12] I.M. Musson, Differential operators on toric varieties, J. Pure and Applied
Algebra 95 (1994), 303-315.

[13] IM. Musson and M. Van den Bergh, Invariants under tori of rings of dif-
ferential operators and related topics, Mem. Amer. Math. Soc. 136 (1998),
(650).

[14] G.W. Schwarz, Lifting differential operators from orbit spaces. Ann. Sci. Ecole

Norm. Sup. 4 28 (1995), no. 3, 253-305.

16



[15]

[16]

[17]

G.W. Schwarz, Finite dimensional representations of invariant differential op-
erators, J. of Alg 258 (2002), 160-204.

P. Slodowy, Der Scheibensatz fiir algebraische Transformationsgruppen (pp.
89-113); Algebraische Transformationsgruppen und Invariantentheorie. Edited
by H. Kraft, P. Slodowy and T. A. Springer. DMV Seminar, 13. Birkhuser
Verlag, Basel, 1989.

M. Van den Bergh, Some rings of differential operators for Slp-invariants are
simple. Contact Franco-Belge en Algebre (Diepenbeek, 1993). J. Pure Appl.
Algebra 107 (1996), no. 2-3, 309-335.

17



