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Abstract. A class of algebras called down-up algebras was introduced by G.

Benkart and T. Roby [5]. We classify the finite dimensional simple modules

over Noetherian down-up algebras and show that in some cases every finite

dimensional module is semisimple. We also study the question of when two

down-up algebras are isomorphic.

1. Introduction

Given a field K and α, β, γ arbitrary elements of K, the associative algebra
A = A(α, β, γ) over K with generators d, u and defining relations

(R1) d2u = αdud+ βud2 + γd

(R2) du2 = αudu+ βu2d+ γu

is a down-up algebra.
In [13] it is shown that A(α, β, γ) is Noetherian if and only if β 6= 0. Down-up

algebras are also studied in [4], [5], [6], [9], [14] and [17]. In this paper we study
the representation theory and the isomorphism problem for Noetherian down-up
algebras.

By [13, 2.2] if β 6= 0 then A = A(α, β, γ) embeds in a skew group ring S =
R[z, z−1;σ]. Here R = K[x, y], σ is the automorphism of R defined by σ(x) = y

and σ(y) = αy + βx + γ. As a right R-module, S is free on the basis {zn|n ∈ Z}
and the multiplication in S is defined by rz = zσ(r). The embedding θ : A −→ S

is given by θ(d) = z−1, θ(u) = xz, so that θ(ud) = x and θ(du) = y.
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Project “Álgebra e Matemáticas Discretas”. The last version was done within the activities of
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Techniques involving skew group rings play an important role in this paper. We
show that S as defined above is isomorphic to Ad the localization of A at {dn|n ≥ 0}.
Similarly the localization Au is a skew group ring.

In section 2 we determine the finite dimensional simple modules over down-up
algebras. Here we use techniques of D. Jordan [8].

We say that a left A-module M is d-torsion (resp. u-torsion) if Ad ⊗A M = 0
(resp. Au ⊗A M = 0). If A is a down-up algebra arising from a finite poset then
the defining representation of A is both d and u torsion (see [5] for background and
some examples). Clearly skew group ring methods can tell us nothing about such
modules. In section 3 we study finitely generated modules which are both d-torsion
and u-torsion. In particular we obtain necessary and sufficient conditions for all
such modules to be finite dimensional.

The question of when two down-up algebras are isomorphic was raised by G.
Benkart and T. Roby in [5]. They divided down-up into four types such that
no two algebras of different types can be isomorphic. In section 4 we solve the
isomorphism problem for Noetherian down-up algebras in three of their cases and
in the last case for fields of characteristic 0.

A particularly interesting class of down-up algebras arises in the following way.
For η 6= 0, let Aη be the algebra with generators h, e, f and relations

he− eh = e,

hf − fh = −f,

ef − ηfe = h.

Then Aη is isomorphic to a down-up algebra A(1 + η,−η, 1) and conversely any
down-up algebra A(α, β, γ) with β 6= 0 6= γ and α + β = 1 has the above form.
For this and other reasons we write η = −β throughout this paper.. Note that
A1

∼= U(sl2) and A−1
∼= U(osp(1, 2)), the enveloping algebra of sl2 and osp(1, 2),

respectively. In section 5 we study the representation theory of the algebras Aη,
for η 6= 0 in detail. In particular we give a necessary and sufficient conditions for
every finite dimensional Aη-module to be semisimple.

Let N denote the set of positive integers and N0 = N ∪ {0}.
Throughout this paper we will assume that K is an algebraically closed field.

1.1. Note that if we define deg(d) = 1 and deg(u) = −1, then relations (R1) and
(R2) are homogeneous of degree 1,−1. It follows then that A is a Z-graded ring

A = ⊕n∈ZA(n).

Moreover if β 6= 0 then using the embedding of A into S easily one sees that A(0) =
R = K[ud, du], A(n) = dnA(0) = A(0)dn if n ≥ 0 and A(n) = u−nA(0) = A(0)u−n

if n ≤ 0.
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1.2. Unless otherwise stated, we will assume β 6= 0. Also write η = −β.

Lemma. Let A = A(α, β, γ) be a down-up algebra. The sets {dn|n ∈ N0} and
{un|n ∈ N0} are Ore sets in A.

Proof. Clearly d = z−1 is a unit in S. Let

B = R[z−1;σ] = {
m∑

i=0

z−iri|ri ∈ R}

so that B ⊆ A ⊆ S = R[z, z−1;σ]. Also any element of S has the form d−na =
σ−n(a)d−n, where n ≥ 0 and a ∈ B ⊆ A. Thus {dn|n ∈ N0} is (left and right) Ore
in A and S = Ad. By [5, §2] there is an antiautomorphism of A interchanging u
and d and it follows that {un|n ∈ N0} is Ore in A. �

1.3. Lemma. Any unit in A belongs to K∗.
Proof. It is well known that any unit in S has the form azn with a ∈ K∗ and
n ∈ Z, [16, Proposition VI.1.6]. The result follows since zn is not a unit in A unless
n = 0. �

1.4. Let R = K[x, y] and σ defined as before. Let f(λ) = λ2 − αλ− β and r1, r2

its roots.
Note that σ stabilizes the subspace W of R spanned by 1, x and y. It is useful

to find w1, w2 in R such that 1, w1, w2 is a basis for W and the matrix of σ with
respect to this basis is in Jordan canonical form. We can take w1, w2 as follows:

Case 1: α2 + 4β 6= 0 and α+ β 6= 1. Then r1, r2 are distinct and both different
from 1. We set

wi = β(ri − 1)x+ ri(ri − 1)y + γri,

for all i ∈ {1, 2}. Then σ(wi) = riwi for all i ∈ {1, 2}.
Case 2: α2 + 4β 6= 0 and α+ β = 1. In this case α 6= 2 and f(λ) has roots 1 and

η. Set
w1 = βx+ y

w2 = −x+ y + γ(α− 2)−1.

Then σ(w1) = w1 + γ and σ(w2) = ηw2.
Case 3: α2 + 4β = 0 and α+ β 6= 1. Then f(λ) has a multiple root α/2. Set

w1 = (2β + α)x+ (α− 2)y + 2γ

w2 = 2y − 2x.

Then σ(w1) = (α/2)w1 and σ(w2) = (α/2)w2 + w1.
Case 4: α2 + 4β = 0 and α + β = 1. Then (α, β) = (2,−1) and 1 is a multiple

root of f(λ). Set
w1 = −x+ y + γ
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w2 = y.

Then σ(w1) = w1 + γ and σ(w2) = w2 + w1.

2. Finite Dimensional Simple Modules over Down-up Algebras

2.1. We need a construction which is similar to the one given by D. Jordan in [8,
3.1]. Suppose P is a maximal ideal of R such that σn(P ) = P for some n ∈ N and
suppose n is minimal with this property. Set

MP =
n−1⊕
i=0

R/(σi(P )).

We can make MP a left S-module by defining for each i ∈ {0, 1, . . . , n − 1} and
r ∈ R,

z.(r + σi(P )) = σ−1(r) + σi−1(P ).

Lemma. Every finite dimensional d-torsion free simple left A-module is isomorphic
to MP for some maximal ideal P of R.

Proof. Since Ad
∼= S, MP is a torsion free left A-module. It is easy to show that

MP is simple.
Conversely, assume that M is a finite dimensional d-torsion free simple left A-

module. From the Euclidean algorithm and the fact that M is finite dimensional
and d-torsion free it is easy to conclude that dM = M . Hence we can identify
M with the Ad-module Ad ⊗A M . As M is finite dimensional, M has a finite
composition series as a R = K[x, y]-module with composition factors isomorphic
to R/Pi, for some finite number of distinct maximal ideals P1, . . . , Pn of R. As an
R-module, we have that

M = ⊕n
i=1M(Pi)

where M(Pi) = {m ∈ M |P ki
i m = 0} for some ki ∈ N is an R-submodule of M .

As for each i ∈ {1, . . . , n}, zM(Pi) = M(σ−1(Pi)), we conclude that the maximal
ideals P1, . . . , Pn are all in a single orbit, and that this orbit is finite.

If Mi = {m ∈ M |Pim = 0}, then ⊕n
i=1Mi is an Ad-submodule of M . Hence we

have M = ⊕n
i=1Mi, and the result follows. �

2.2. We investigate when the σ-orbit of a given maximal ideal is finite. The proof
of the following lemma will be omitted as it is straightforward.

Lemma. Let A = A(α, β, γ) be a down-up algebra and P = (w1 − a1, w2 − a2) for
(a1, a2) ∈ K2. Then there is n > 0 such that σn(P ) = P if and only if one of the
following holds:

i) In case 1, (rn
i − 1)ai = 0, for i = 1, 2;

ii) In case 2, nγ = (ηn − 1)a2 = 0;
iii) In case 3, na1 = 0 and [(α/2)n − 1]ai = 0 for i = 1, 2 ;
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iv) In case 4, char(K) divides n or γ = a1 = 0.

Following the notation in [5], we denote by V (λ) the Verma module of highest
weight λ. Let λ−1 = 0, λ0 = λ and define for each n ∈ N, λn = αλn−1 +βλn−2 +γ.
The Verma module V (λ) has basis {vn|n ∈ N0}. The action of A = A(α, β, γ) is
defined as follows, see [5, Proposition 2.2]

d.v0 = 0

d.vn = λn−1vn−1, for all n ≥ 1

u.vn = vn+1.

In [5, Proposition 2.4] it is shown that V (λ) is simple if and only if λn 6= 0 for all
n. Furthermore if m is minimal with λm = 0, then M(λ) = spanK{vj |j ≥ m+ 1}
is a maximal submodule of V (λ) and we set L(λ) = V (λ)/M(λ).

Let h = Kud ⊕ Kdu. We say that an A-module V is a weight module if V =∑
ν∈h∗ Vν , where Vν = {v ∈ V |h.v = ν(h)v for all h ∈ h}, and the sum is over

elements in the dual space h∗ of h. If Vν 6= 0, then ν is a weight and Vν is the
corresponding weight space. Each weight ν is determined by a pair of elements
(ν′, ν′′) of K where ν′ = ν(du) and ν′′ = ν(ud), and we will identify ν with (ν′, ν′′).

An A(α, β, γ)-module V is said to be a highest weight module of weight λ if V
has a vector v such that d.v = 0, du.v = λv and V = A(α, β, γ)v. The vector v is
said to be a highest weight vector of V .

2.3. The next Lemma is easily proved by induction, taking into account the re-
cursive construction of the λi.

Lemma. 1) For all n ∈ N, σ−1(x− λn, y − λn+1) = (x− λn+1, y − λn+2).
2) For all n ∈ N, σ−n(x, y − λ) = (x− λn−1, y − λn).

We remark that, if {vn|n = 0, 1, 2, ...} is the basis of the Verma module, V (λ),
Kvi

∼= R/σ−i((x, y − λ)) and we can write the Verma modules using the notation
of [8], as

V (λ) ∼= ⊕i≥0R/σ
−i((x, y − λ)).

Also if dim(L(λ)) = n and we set for a given maximal ideal m of R = K[x, y],
L[m] = {a ∈ L(λ)|ma = 0}, then

L(λ) = ⊕n−1
i=0 L[σ−i((x, y − λ))].

If L[m] 6= 0, we say that m is a weight of L(λ).
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2.4. Proposition. Every finite dimensional simple A-module M is isomorphic to
one of the following

1) a simple homomorphic image of a Verma module;
2) MP where P is a maximal ideal of R which has a finite σ-orbit.

Proof. LetM be any finite dimensional simpleA-module. TheAd-moduleAd⊗AM

is either simple or zero, by [7, Theorem 9.17].
If Ad⊗AM = 0, M is d-torsion. Let M0 = {m ∈M |dm = 0}. Then (ud)M0 = 0

and as d2um = αdudm+βud2m+γdm = 0, for all m ∈M0, we have (du)M0 ⊆M0.
Hence there is m ∈ M0 such that dum = λm for λ ∈ K. Now Am is a highest
weight module of weight λ, hence a homomorphic image of the Verma module V (λ),
[5, Proposition 2.8]. As M is a simple module we have M = Am.

If Ad ⊗A M 6= 0, then as M is simple, M is torsion free and we can identify M
with Ad ⊗A M . The result follows now by Lemma 2.1. �

Remarks. i) The simple homomorphic images of Verma modules are de-
scribed in [5, Corollary 2.28], see also the addendum to [5].

ii) We mention that analogues of the category O of modules over a semisimple
Lie algebra are introduced for down-up algebras in [5, Sections 4 and 5]. In
addition the representation theory of a down-up algebra is related to its left
spectrum in [14].

Corollary. Let A(α, β, γ) be a down-up algebra with the parameters α, β, γ satis-
fying case (2) of §1.4 and assume that γ 6= 0. Then any Verma module V (λ) has a
unique maximal submodule M(λ). Also any finite dimensional simple A-module is
d-torsion and isomorphic to L(λ) for some λ.

Proof. Necessary and sufficient conditions for the weight spaces of V (λ) to be one
dimensional are given in [5, Theorem 2.13], and in particular these conditions hold
in case (2) of §1.4 when γ 6= 0. The statement about Verma modules now follows
from [5, Proposition 2.23]. By Lemma 2.2 any finite dimensional simple A-module
is d-torsion, and so has the form L(λ) by the proof of Proposition 2.4. �

2.5. Assume that K has characteristic zero. As mentioned in the introduction the
algebras Aη are exactly the down-up algebras A(α, β, γ) with α+β = 1 and γ 6= 0.
The next result shows that the representation theory of these algebras has certain
similarities with that of U(osp(1, 2)) and U(sl2). We return to this topic in section
5.

Note that the algebra U(sl2) is the only down-up algebra with γ 6= 0 whose
parameters satisfy case (4). We ignore this case below.

The recurrence relation for the λn is solved explicitly in [5, Proposition 2.12].
We use this result below.
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Lemma. Assume char(K)=0. Let A = Aη with η 6= 1. Then

i) if λn−1 = 0 and ηn = 1 then n = 0;
ii) λn−1 = 0 if and only if

λ(η − 1) = −γ(1− n(
n−1∑
i=0

ηi)−1).

Proof. By [5, Proposition 2.12 (i)], λn = c1r
n
1 + c2r

n
2 + xn where r1 = 1, r2 = η,

xn = γn(1 − η)−1, c1 = (η − 1)−1[−λ − γ + γ(1 − η)−1] and c2 = (η − 1)−1[ηλ +
γ − γ(1− η)−1]. Thus

λn =
ηn+1 − 1
η − 1

λ+
ηn+1 − 1
(η − 1)2

γ − (n+ 1)γ
η − 1

.

Therefore if λn−1 = 0 and ηn = 1, then since γ 6= 0, it follows that

n(1− η) = 0

so n = 0. This proves i) and ii) follows by multiplying the expression for λn−1by
(η − 1)2/(ηn − 1). �

Proposition. Let A = Aη with η 6= 1. The only finite dimensional simple modules
of dimension n ∈ N are d-torsion modules of the form L(λ) where n is the least
positive integer such that λ satisfies λn−1 = 0.

Proof. Let A be a down-up algebra as in the statement of the proposition. By
Corollary 2.4 we have that the only finite dimensional simple A-modules are d-
torsion and of the form L(λ).

By construction, the dimension of L(λ) is n if and only if n is minimal with
λn−1 = 0, and the result follows. �

It is well known that all simple modules over U(osp(1, 2)) have odd dimension.
The next result gives a generalization of this fact.

Corollary. Assume char(K) = 0. Let A = Aη with η 6= 1 and η a primitive N th

root of unity. Then

i) if n is a multiple of N there are no finite dimensional simple modules of
dimension n.

ii) if n is not a multiple of N there is a unique finite dimensional simple module
of dimension n.

Proof. Immediate from the Proposition and the Lemma. �
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2.6. By [5, §2], there is an antiautomorphism τ of A given by τ(u) = d, τ(d) = u.
Let C be the category of finite dimensional left A-modules. If M ∈ C, let M∗ be
the dual vector space to M . Then M∗ is a left A-module via

(af)(m) = f(τ(a)m)

for a ∈ A, f ∈M∗,m ∈M . We can now define a contragradient functor ( )∗ on the
category C as follows. If M ∈ Obj(C), let M∗ be the dual vector space to M and if
ψ : M −→ N is a map of left A-modules, then ψ∗ : N∗ −→M∗ is the transpose of
ψ.

Next suppose L(λ) is a simple finite dimensional highest weight module with
dimension n. Then L(λ) has a basis v0, . . . , vn−1 such that

uvi = vi+1 0 ≤ i ≤ n− 2, uvn−1 = 0,

dvi = λi−1vi−1 1 ≤ i ≤ n− 1, dv0 = 0.

Let f0, . . . , fn−1 be the basis of L(λ)∗ such that fi(vj) = δij for all i, j. Then,

ufi = λifi+1 0 ≤ i ≤ n− 2, ufn−1 = 0,

dfi = fi−1 1 ≤ i ≤ n− 1, df0 = 0.

In particular f0 is a highest weight vector with weight λ and L(λ)∗ ∼= L(λ).
Now suppose that L(λ), L(µ) are finite dimensional highest weight modules and

that Ext(L(µ), L(λ)) 6= 0. Then there is a nonsplit exact sequence

0 −→ L(λ) −→M −→ L(µ) −→ 0

of A-modules. Dualizing we obtain Ext(L(λ), L(µ)) 6= 0.

Corollary. Suppose that L(λ), L(µ) are finite dimensional. Then Ext(L(λ), L(µ)) =
0 if and only if Ext(L(µ), L(λ)) = 0.

3. Down-up modules

3.1. In this subsection and 3.2, β is allowed to be zero.
Let A = A(α, β, γ) be a down-up algebra and M a left A-module. We define

two filtrations on M and view d and u as operators which move down and up
these filtrations (whence the title of this section). The filtrations need not to be
exhaustive. For any r and s in N, we define

Mr = {m ∈M |dr+1m = 0},

Ms = {m ∈M |us+1m = 0},
and

Ms
r = Mr ∩Ms.

It is obvious that
M0 ⊆M1 ⊆M2 ⊆ . . .

and that Mr = {m ∈M |dm ∈Mr−1}.
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If β 6= 0 then ∪Mr is the d-torsion submodule and ∪Ms is the u-torsion sub-
module of M .

Lemma. For any r ∈ N, uMr ⊆Mr+1 and dMs ⊆Ms+1.

Proof. Let m ∈ M0. By (R1) we have d2um = 0 and so uM0 ⊆ M1. Suppose
uMn ⊆Mn+1 for all n < r. Then duMn ⊆Mn for all n < r. If m ∈Mr, then since
dudm ∈ (du)Mr−1 ⊆Mr−1, ud2m ∈ uMr−2 ⊆Mr−1 and dm ∈Mr−1 we have

d2um = (αdud+ βud2 + γd)m ∈Mr−1.

It follows that uMr ⊆Mr+1.
The other inclusion is proved in a similar way. �

Corollary. For any r, s ∈ N, dMs
r ⊆Ms+1

r−1 and uMs
r ⊆Ms−1

r+1 .

Proof. Follows easily from Lemma 3.1. �

3.2. Let M∞ = ∪Ms, M∞ = ∪Mr and for each t ∈ N let M(t) =
∑

r+s=tM
s
r .

It follows easily that the sets M∞, M∞ and M(t) are A-submodules of M .

Proposition. If M is a Noetherian A-module such that M = M∞ = M∞ then
M = M(t) for some t ∈ N.

Proof. Consider the chain of A-submodule of M , M(1) ⊆ M(2) ⊆ . . . . Choose
t ∈ N such that M(t) = M(t + s) for all s ∈ N. If m ∈ M then there are p, q ∈ N
such that dp+1m = uq+1m = 0 and this implies that m ∈M(t). �

3.3. Given a module M as in Proposition in 3.2, we study conditions for M to be
finite dimensional. From now on we will assume that β 6= 0.

We define two sequences of elements of R = K[x, y]

x0 = 1, y0 = 1

xn = σ(xn−1x) and yn = xσ−1(yn−1)

for any n ∈ N. We claim that for any n ∈ N, dnun = xn.
For n = 0 this is obvious. The induction step follows from

dn+1un+1 = dxnu = z−1xnxz = σ(xnx) = xn+1.

Similarly we have for all n ∈ N, undn = yn.

Lemma. i) If σn(x) /∈ (x) for all n ∈ N, then xt /∈ (x), for all t ∈ N;
ii) if σ−n(x) /∈ (y) for all n ∈ N0, then yt /∈ (y), for all t ∈ N0.

Proof. For each t ∈ N write xt =
∏t

i=1 σ
i(x) and yt =

∏t
i=1 σ

−(i−1)(x). The result
follows since (x), (y) are prime ideals of R. �
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Remark. We note that the conditions σn(x) /∈ (x) for all n ≥ 1 and σ−n(x) /∈ (y)
for all n ≥ 0 are equivalent. Indeed if there is n ∈ N such that
σn(x) ∈ (x) then σn(x) = λx for some λ ∈ K∗. So y = σ(x) = λσ1−n(x) and
σ1−n(x) ∈ (y). The converse follows by a similar argument.

3.4. We now state the main result of this section.

Theorem. Assume that K is an algebraically closed field and that β 6= 0. Let M
be a finitely generated left A-module and suppose that σn(x) /∈ (x) for all n ∈ N.
Then Ad⊗AM = Au⊗AM = 0 if and only if M has a finite filtration whose factor
modules are finite dimensional modules of the form L(λ) for various λ ∈ K.

Conversely if every finitely generated left A-module which is both d-torsion and
u-torsion has finite dimension then σn(x) /∈ (x) for all n ∈ N.

Proof. Obviously if M has a finite filtration whose factor modules are finite di-
mensional modules of the form L(λ) then M is d-torsion and u-torsion.

Let M be a finitely generated left A-module such that Ad ⊗A M =
Au⊗AM = 0. Then M is d-torsion and u-torsion or equivalently, M = M∞ = M∞.

As M is a finitely generated left A-module and A is Noetherian, so is M and by
Lemma 3.2 it follows that M = M(t) for some t.

Assume that σn(x) /∈ (x) for all n ∈ N. It is enough to show that M contains a
finite dimensional submodule N which is a highest weight module. The only such
modules which are u-torsion are those of the form L(λ) so we can set N = N1 and
use the same argument to construct 0 ⊂ N1 ⊂ N2 ⊂ . . . provided (M/Ni) 6= 0.

Pick m ∈ M0 such that m 6= 0. Then dm = 0. Since M = M(t) we have
ut+1m = 0. Hence

xt+1m = dt+1ut+1m = 0.

By Lemma 3.3, xt+1 /∈ (x) so annA(m) contains a nonzero polynomial in du. There-
fore du has a nonzero eigenvector in M0 and the result follows.

Assume that every finitely generated d-torsion and u-torsion A-module has finite
dimension. Fix n ≥ 1 and set I = Aun +Ad, J = I ∩K[x, y] and M = A/I. Since
{dm|m ∈ N} and {um|m ∈ N} are Ore sets, M is d-torsion and u-torsion. Thus M
has finite dimension.

Since K[x, y]/J embeds in M , J has finite codimension in K[x, y]. Using the
graded ring structure of A, 1.1, it is easily seen that J is the ideal of K[x, y]
generated by x and xn. Hence xn /∈ (x) and so σn(x) /∈ (x). �

3.5. Next we give an example where the conclusions of Theorem 3.4 do not hold.

Example. Let A = A(0, β, 0) and consider the A-module M with a basis {mi, ni|i ∈
N} and such that umi = ni, dni = mi+1, uni = 0 and dmi = 0.

In this case d2M = u2M = 0 so the relations d2u = βud2, du2 = βu2d are
obviously satisfied, and M is generated as an A-module by m1.
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4. The Isomorphism problem for Down-up Algebras

Benkart and Roby divide down-up algebras into four classes such that no two
algebras from different classes are isomorphic (see Proposition 4.2 below). Here
we solve the isomorphism problem for three of the classes and make substantial
progress on the fourth.

4.1. First we note the existence of certain isomorphisms and automorphisms.

Lemma. i) If β 6= 0, then A(α, β, γ) ∼= A(−αβ−1, β−1,−γβ−1) via the map
interchanging d and u.

ii) If γ 6= 0 then A(α, β, γ) ∼= A(α, β, 1).
iii) If A = A(α, β, γ), A′ = A(α′, β′, γ′) and Ψ : A −→ A′ is an isomorphism

with Ψ(d) = λd′, Ψ(u) = µu′ and λ, µ ∈ K∗ then α′ = α and β′ = β.
iv) If β 6= 0, A = A(α, β, γ), A′ = A(α′, β′, γ′) and Ψ : A −→ A′ is an

isomorphism with Ψ(d) = λu′, Ψ(u) = µd′ and λ, µ ∈ K∗ then α′ = −αβ−1

and β′ = β−1.

Proof. Straightforward �

4.2. Next we consider commutative homomorphic images of A = A(α, β, γ). Let
I = ∩{J |A/J is commutative}. Note that B = A/I is commutative since it is
a subdirect product of commutative rings. Thus B is the largest commutative
image of A and Spec(B) should perhaps be thought of as the largest commutative
subscheme of Spec(A). The algebra B is given by adding the relations du = ud to
the defining relations for A. Note that the closed points of Spec(B) correspond to
the one-dimensional A-modules, so we recover [5, Theorem 6.1].

Similarly let A′ = A(α′, β′, γ′) be another down-up algebra and I ′ be the unique
smallest ideal of A′ such that A′/I ′ is commutative. Suppose there exists an iso-
morphism Ψ from A onto A′. It is easily seen that Ψ(I) = I ′. Moreover

Ψ(
∑

{P |P minimal over I}) =
∑

{P ′|P ′ minimal over I ′}.

The images a, b of d, u in B satisfy

(R3) a(ab(1− α− β)− γ) = 0

(R4) b(ab(1− α− β)− γ) = 0.

Thus we obtain.

Proposition. The largest commutative homomorphic image B of A is the factor
ring of the commutative polynomial ring K[a, b] defined by (R3), (R4). In particular
one of the following cases holds

(a) γ = 0, α+ β = 1 and B = K[a, b];
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(b) γ = 0, α+β 6= 1, B = K[a, b]/(a2b, ab2) and the primes of A minimal over
I are (d) and (u);

(c) If γ 6= 0, α + β 6= 1 then the primes of A minimal over I have the form
M0 = (d, u) and P = Ker (Φ) where Φ : A −→ K[v, v−1] is defined by
Φ(u) = (1− α− β)−1v and Φ(d) = γv−1.

(d) If γ 6= 0, α+ β = 1 then B = K and I = (d, u).

4.3. We say that the down-up algebra A = A(α, β, γ) has type (a) (resp. (b), (c),
(d)) if the parameters α, β, γ satisfy condition (a) (resp. (b), (c), (d)) of Proposition
4.2.

Let A = A(α, β, γ) and A′ = A(α′, β′, γ′) be down-up algebras of the same
type and let d′, u′ be the generators of A′. If A and A′ have type (a) or (d) and
η 6= 1 6= η′, let w2 and w′2 be the elements constructed in case (2) of 1.4. If A
and A′ have type (c), let P be the ideal of A defined in Proposition 4.2 and P ′ the
corresponding ideal of A′.

Corollary. With the notation as above assume that A and A′ are isomorphic via
Ψ. We have

i) If A, A′ have type (a), then Ψ(w2) = (w′2);
ii) If A, A′ have type (b), then Ψ(d, u) = (d′, u′);
iii) If A, A′ have type (c), then Ψ(P ) = P ′.

Proof. If A and A′ have type (a) then using the decomposition in 1.1, we see
that w2 = −x+ y generates the ideal I. Hence (i) follows from the remarks before
Proposition 4.2. The proofs of the remaining statements are similar. �

4.4. Before stating our main result on the isomorphism problem, it is worth com-
menting on the geometry of one-dimensional representations, for algebras of type
(c). The maximal ideals of K[v, v−1] have the form (v − µ), µ ∈ K∗, so we have
homomorphisms Φµ : A −→ K given by

Φµ(u) = (1− α− β)µ, Φµ(d) = γµ−1.

Set Mµ = Ker(Φµ). Then as in [5], the one dimensional modules are indexed by
K∗ ∪ {0} = K. However from Proposition 4.2 we might expect the ideal M0 to
behave differently from the other Mµ. Indeed we have

Lemma. For algebras of type (c), M2
µ = Mµ if and only if µ = 0.

Proof. Since M0 = (d, u) and γ 6= 0, relations (R1), (R2) imply that M3
0 = M0.

On the other hand if µ 6= 0 then (v − µ) 6= (v − µ)2 in the commutative ring
K[v, v−1], so it follows that Mµ 6= M2

µ. �
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4.5. It follows from [5, Corollary 6.2] that if two down-up algebras are isomorphic
then they have the same type. The next result gives a partial answer to [5, Problem
(h)] and a partial converse of Lemma 4.1.

Theorem. Suppose that A = A(α, β, γ) and A′ = A(α′, β′, γ′) are Noetherian
down-up algebras of the same type. If both have type (d) assume also that char(K) =
0. Then A ∼= A′ if and only if

1) γ = 0 if and only if γ′ = 0 and
either 2) α = α′, β = β′

or 3) α′ = −αβ−1, β′ = β−1.

4.6. Assume that A = A(α, β, γ) with α + β = 1, and η 6= 1. Then case 2 of 1.4
holds and we set w = w2, so that σ(w) = ηw. Recall the definition of A(n) from
1.1.

Lemma. The set {a ∈ A|aw = ηmwa} equals
A(m) if η is not a root of unity⊕

{A(m′)|m′ ≡ m (modn)} if η is a primitive nth root of unity.

Proof. This is proved by computation using the decomposition in 1.1. �

4.7. Now assume that A is a down-up algebra of type (a) or (b).

Lemma. Let A and A′ be down-up algebras both of type (a) with η 6= 1 6= η′ or of
type (b). Assume that A and A′ are isomorphic via Ψ. Then Ψ(d, u) ⊆ (d′, u′).

Proof. In type (b) this follows directly from Corollary 4.3. Suppose that A,A′

have type (a) and that η 6= 1 6= η′. By Corollary 4.3 and the fact that A has only
trivial units we have Ψ(w) = λw′ for some λ ∈ K∗, where w′ ∈ A′ is defined in a
similar manner to w. Applying Ψ to the equation dw = ηwd, we get by Lemma
4.6, Ψ(d) ∈

∑
{A′(m)|(η′)m = η} ⊆ (d′, u′). Similarly Ψ(u) ∈ (d′, u′). �

4.8. Proof of Theorem 4.5 for type (a) and type (b).
Adopting some terminology from group theory we say that a subset X of A =

A(α, β, γ) is characteristic if Ψ(X) = X for all Ψ ∈ Aut(A).
Assume that A and A′ are down-up algebras both of type (a) or type (b). Assume

as well that β, β′ 6= −1 if A and A′ are of type (a). Since γ = 0, A = ⊕m∈N0A[m]
is a graded algebra with A[0] = K and A[1] = span{d, u} and similarly for A′.
Set An = ⊕m≥nA[m]. Then (d, u) = A1 and (d, u)n = An

1 = An. Hence if
Ψ : A −→ A′ is an isomorphism we have Ψ(An) ⊆ A′n by Lemma 4.7. This means
that Ψ induces an isomorphism of graded algebras ⊕An/An+1 −→ ⊕A′n/A′n+1.

However A ∼= ⊕An/An+1 as graded algebras. Thus we may assume that Ψ is an
isomorphism of graded algebras. As noted in [13, Theorem 4.1 and Lemma 4.2] A
is Auslander regular of global dimension 3. Since A has GK-dimension 3 by [4, 4.2]
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it follows from [10, Theorem 6.3] that A is Artin-Schelter regular. Therefore the
isomorphism type of A as a graded algebra is determined in [1]. However instead of
appealing to [1] we can now complete the proof with a short calculation. Since the
relations are of degree three we work modA′4. Note that the algebra A/A4 inherits
the Z-grading of 1.1. Write

Ψ(d) = bd′ + cu′

Ψ(u) = rd′ + su′

modA′2. Obviously ∆ = bs − cr 6= 0. Suppose first that A, A′ have type (b), so
α + β 6= 1. Applying Ψ to the relation d2u− αdud− βud2 = 0 and looking at the
terms of degree 3 and −3 we see that br = cs = 0. Since ∆ 6= 0 this gives two
possibilities. Either b 6= 0 6= s and c = r = 0 or c 6= 0 6= r and b = s = 0. It is
easily seen that we have one of the two statements of the Theorem.

Now suppose that A and A′ have type (a) and β, β′ 6= −1. Applying Ψ to the
relation d2u− αdud− βud2 and cancelling ∆ we obtain

0 = b[(d′)2u′ − αd′u′d′ − βu′(d′)2] + c[βd′(u′)2 + αu′d′u′ − (u′)2d′]

modA′4. Comparing to the relations in A′ gives the result.
Finally suppose that A,A′ are down-up algebras of type (a), η = 1 and β′ 6= −1.

By Lemma 4.7, A′ has a characteristic ideal of the form (d′, u′). Since η = 1,
A = U(h), the enveloping algebra of the Heisenberg algebra h. Now h has basis
{x, y, z} such that [x, y] = z is central in h. By [5, Theorem 6.1] any codimension
one ideal in A has the form (x − a, y − b, z). It is easy to see that Aut(A) acts
transitively on maximal ideals of codimension 1, hence there are no characteristic
ideals of codimension 1. This proves Theorem 4.5 for type (a) and (b).

4.9. Proof of Theorem 4.5 for type (c).
To solve the isomorphism problem for down-up algebras of type (c) we consider

the class of bimodules over C = K[v, v−1] which are free of rank n on the left. Let F
be such a bimodule with basis e1, . . . , en. We can define a Z-grading {F (m)|m ∈ Z}
on F by F (m) =

∑n
i=1Kv

mei. We assume that the right C-action preserves this
grading, that is eiv ∈ F (1) for all i. Then we can write

eiv =
∑

j

pijvej

for some n× n matrix P = (pij) with pij ∈ K. If φ is an automorphism of F and

φ(ei) =
∑

qijej = fi

with qij ∈ C, then the right action of v on the basis f1, . . . fn is determined by the
matrix QPQ−1. Thus the isomorphism class of the bimodule F is determined by
the conjugacy class of P under the action of GLn(C). An element t in a ring T is
normal if tT = Tt.
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Lemma. Suppose A = A(α, β, γ) is a down-up algebra of type (c), let
Φ : A −→ C = K[v, v−1] be the homomorphism described in Proposition 4.2 and
P = Ker (Φ). Then P/P 2 is free of rank 2 as a left and right C-module. In addition
one of the following holds:

i) α2 + 4β 6= 0. Let r1, r2 be the roots of the polynomial f(λ) and

wi = β(ri − 1)ud− ri(ri − 1)du+ γri.

Then w1, w2 are normal elements of A and P = (w1, w2). The bimod-
ule P/P 2 is free of rank two on the left and right as a C-module whose
isomorphism class is determined by the conjugacy class of the matrix[

r1 0
0 r2

]
ii) α2 + 4β = 0. Then α/2 is a double root of f(λ). Let

w1 = (2β + α)ud+ (α− 2)du+ 2γ

w2 = 2(du− ud).

Then w1 is normal in A, the image of w2 is normal in A/(w1) and
P = (w1, w2). The bimodule P/P 2 is free of rank two on the left and right
as a C-module whose isomorphism class is determined by the conjugacy
class of the matrix [

α/2 1
0 α/2

]
Proof. We prove only part ii). The proof of part i) is similar. The fact that w1 is
normal in A and w2 normal mod(w1) follows from 1.4. A short computation shows
that w1, w2 ∈ Ker (Φ). Using the decomposition of A as a Z-graded ring in 1.1 we
see that P/P 2 is free as a left and right C-module with basis wi = wi +P 2, i = 1, 2.
From 1.4, we obtain

w1v = v(α/2w1 + w2),

w2v = (α/2)vw2

and the result follows. �

Before concluding the proof of Theorem 4.5 in this case we need another defini-
tion. Suppose that M is a C-bimodule and µ ∈ Aut(C). The C-bimodule twisted
by µ has the same underlying vector space as M , and has bimodule structure maps
C ×M →M , M × C →M given by (c,m) 7→ µ(c)m and (m, c) 7→ mµ(c).

Now suppose Ψ : A → A′ is an isomorphism of down-up algebras of type (c)
and let Φ : A → C, Φ′ : A′ → C be the maps described in Proposition 4.2 (c).
Let P = Ker (Φ), P ′ = Ker (Φ′) and write φ : A/P → C, φ′ : A′/P ′ → C for the
induced isomorphisms. There is an automorphism µ of C satisfying µΦ = Φ′Ψ.
Since Ψ(P ) = P ′, by 4.3, Ψ induces a linear isomorphism from P/P 2 to P ′/(P ′)2.
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If we regard P/P 2 as a C-bimodule via φ−1 and P ′/(P ′)2 as a C-bimodule via
(φ′)−1µ then the above map is an isomorphism of C-bimodules.

Now the isomorphism type of P/P 2 (resp. P ′/(P ′)2) is determined by the conju-
gacy classes of a matrix J , respectively J ′, as in the Lemma. It follows that these bi-
modules structures can be obtained from one another twisting by µ, µ−1 ∈ Aut(C).

There are now two possibilities. If µ(v) = λv for some λ ∈ K∗, then J, J ′ are
conjugate and we have conclusion (2) of Theorem 4.5 while if µ(v) = λv−1 for some
λ ∈ K∗, then J−1 and J ′ are conjugate and we have conclusion (3).

4.10. We want to establish an analogue of Corollary 4.3 (a) for down-up algebras
of type (d).

Let A be a down-up algebra of type (d) and assume η 6= 1. Let
w2 = du−ud+γ(η−1)−1. From section 1.4 we have dw2 = ηw2d and w2u = ηuw2.
In particular w2 is a normal element. Clearly A/(w2) is isomorphic to the first
Weyl algebra since γ 6= 0. Thus (w2) is a completely prime ideal of A.

Lemma. Let A be a down-up algebra of type (d) and assume that char(K) = 0 and
η 6= 1. If P is a completely prime ideal of A such that A/P has infinite dimension
over K, then P = (w2).

Proof. Suppose P is a completely prime ideal such that A/P has infinite dimension
over K. Then (d, u) * P so assume that d /∈ P and localize at d. If u /∈ P we
localize at u instead and use a similar argument. Then Q = Pd is a nontrivial
ideal of S = Ad = R[z, z−1;σ]. If Q ∩ R = 0 we can localize at R\{0} to obtain
a nontrivial ideal in F [z, z−1;σ] where F = Fract(R). However it follows from
section 1.4 and the assumption that char(F ) = 0, that σ has infinite order. Hence
by [15, Theorem 1.8.5], F [z, z−1;σ] is a simple ring.

This contradiction shows that I = Q∩R 6= 0. Now by 1.4, R = K[w1, w2] where
σ(w1) = w1 + γ and σ(w2) = −βw2.

Now R/I embeds in S/Q which is a domain, so I is prime and clearly σ-invariant.
By choosing a polynomial of least degree in w2 with coefficients in K[w1] we see
that (w2) ⊆ I and the lemma follows easily. �

Corollary. Assume that char(K) = 0 and η 6= 1 6= η′. Let A = A(α, β, γ) and
A′ = A(α′, β′, γ′) be isomorphic down-up algebras of type (d) via the isomorphism
Ψ. Let w2 be the element of A defined above and w′2 the corresponding element of
A′. Then Ψ(w2) = (w′2).

4.11. Proof of Theorem 4.5 for type (d) and char(K)=0.
Suppose first that α2 + 4β 6= 0 and (α′)2 + 4β′ 6= 0. Using the notation of

Corollary 4.10 we have

Ψ(w2) = λw′2
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for some λ ∈ K∗ since A′ has no nontrivial units. By Corollary 2.5, η is an nth root
of unity if and only if η′ is an nth root of unity.

If η and η′ are not roots of unity, applying Ψ to the equation dw2 = ηw2d and
using Lemma 4.6 gives Ψ(d) ∈

∑
{A′(m)|m ∈ Z, (η′)m = η}. There can be at most

one m ∈ Z such that (η′)m = η. If m > 0 then Ψ(d) ∈ (d′)mR ⊆ d′A′ and Ψ(u) ∈
(u′)mR ⊆ u′A′. If m < 0, Ψ(d) ∈ (u′)−mR ⊆ u′A′ and Ψ(u) ∈ (d′)−mR ⊆ d′A′.
Similar remarks apply to the map Ψ−1. As A has no nontrivial units, the result
follows from Lemma 4.1.

Assume now that η, η′ are primitive nth roots of unity, n > 1 and that γ = 1.
If n = 2, then η = η′ = −1, so we can assume n > 2. By Proposition 2.5,
there are unique simple modules L1, L2 of dimension 1, 2 and these modules are
weight modules with highest weights 0 and −α−1 = (β − 1)−1, respectively. Since
w2 = du− ud− (β + 1)−1 we see that w2 acts on the highest weight vectors of L1,
L2 by the eigenvalues −(β+1)−1 and 2(β2−1)−1, respectively. Since wn

2 is central
it acts as the nth power of these eigenvalues on L1, L2.

Now suppose Ψ : A = A(α, β, 1) −→ A′ = A(α′, β′, 1) is an isomorphism and
define w′2 ∈ A′ analogously to the way w2 ∈ A is defined. By Corollary 4.10 Ψ(w2) =
εw′2 for some ε ∈ K∗. Let ρi : A −→ End(Li) (resp. ρ′i : A′ −→ End(Li)) be the
representation of A (resp. A′) afforded by Li for i = 1, 2. Then the representations
ρi and ρ′iΨ are equivalent for i = 1, 2. Hence

tr(ρi(wn
2 )) = tr(ρ′iΨ(wn

2 )) = εntr(ρ′i((w
′
2)

n)).

Thus

εn = (
(β′)2 − 1
β2 − 1

)n = (
β′ + 1
β + 1

)n.

Hence (β − 1)n = (β′ − 1)n. This is an equation in Q(β, β′) which we can identify
with a subfield of C. This implies that |β−1| = |β′−1| and then by writing β = eiθ

that β′ = β or β′ = β−1.
It remains to rule out the possibility that A and A′ are isomorphic down-up

algebras of type (d) and α2 + 4β = 0, (α′)2 + 4β′ 6= 0. Hence A ∼= A(2,−1, 1) ∼=
U(sl2)). If η′ is a root of unity we obtain a contradiction by Corollary 2.5. Thus η′

is not a root of unity and by [14, Theorem 4.0.2] or [17, Theorem 1.3], the centre
of A′, Z(A′) = K 6= Z(A), so A � A′.

5. semisimplicity

In this section we assume char(K) = 0 and we study down-up algebras of type
(d). For brevity we use the notation Aη to refer to these algebras, since as observed
in the introduction the Aη are exactly the down-up algebras of type (d). However
we continue to use the generators d, u and relations (R1), (R2) rather than the
generators h, e, f to preserve continuity. Recall that α = η + 1, β = −η and γ 6= 0.
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Our main result is that all finitely generated Aη modules are semisimple if η is a
root of unity.

Given any λ, we define the following maximal ideals of R = K[x, y],

Jλ = (x, y − λ),

Hλ = (x− (λ− γ)β−1, y).

It is trivial to confirm that Hλ = σ(Jλ) and that dJλ = Hλd.

5.1. The proof of the next result is adapted from [8, Theorem 5.2].

Proposition. Let A = Aη, λ 6= µ and

0 −→ L(λ) −→M −→ L(µ) −→ 0

a nonsplit short exact sequence of finite dimensional A-modules. Then one of the
following occurs

i) M is an epimorphic image of V (µ);
ii) there is a nonzero w ∈ L(λ) such that Hµw = 0.

Proof. As in [8, Theorem 5.2] we can choose v ∈ M\L(λ) such that the image in
L(µ) is a highest weight vector in L(µ) and that J2

µv = 0. Now Jµv ⊆ L(λ) and we
consider two cases.

If dJµv 6= 0. Then since J2
µv = 0 we get 0 = dJ2

µv = Hµ(dJµv) = 0 so ii) holds.
If dJµv = 0, then Jµv = 0, since otherwise we would find w ∈ Jµv, w 6= 0 and

then Jµw = dw = 0 would contradict λ 6= µ. If also dv = 0 then i) holds. If
Jµv = 0 6= dv, then since Hµdv = dJµv = 0, ii) holds. �

5.2. Easy calculations show that there is no nonzero integer k such that σk(Jλ) =
Jλ.

Lemma. If there is k ∈ Z such that σk(Jλ) = Jλ, then k = 0.

Proof. Suppose that k ≥ 0 and Jλ = σ−k(Jλ). By Lemma 2.3

Jλ = (x− λk−1, y − λk).

Hence λ−1 = λk−1, λ0 = λk, and by [5, Theorem 2.23] we conclude that k = 0.
The result follows from this. �
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5.3. We prove that no nonsplit extensions of L(λ) by itself ever occur for Aη.

Lemma. Let A = Aη such that η 6= 1. Assume that dim(L(λ)) = n. Then

(x, σn(x)) = (x, y − λ).

Proof. Let {vi} be a basis for the Verma module V (λ). As dim(L(λ)) = n, λi 6= 0
for all i < n−1 and λn−1 = 0. We have that Jλ = annR(v0) and σ−n(Jλ) = ann(vn).
Since σ−n(Jλ) = (x, y − λn) by Lemma 2.3, σn(x) ∈ Jλ. Hence (x, σn(x)) ⊆
(x, y− λ). Combined with the fact that σ stabilizes span{1, x, y}, this implies that
we can write σn(x) = ax+ b(y − λ), for some a, b ∈ K. If b = 0, then σn(x) = ax.
Thus a is either 1 or ηn and a short calculation shows that x ∈ span{w2, 1}, a
contradiction. Hence y − λ ∈ (x, σn(x)) �

The proof of next result is adapted from [8, Theorem 5.4]

Proposition. Let A = Aη and η 6= 1. There are no nonsplit short exact sequences
of Aη-modules of the form

0 −→ L −→M −→ N −→ 0

with L ∼= N ∼= L(λ) finite dimensional.

Proof. Assume that there are sequences as above. First suppose that dim(L(λ)) =
n > 1. As in [8, Theorem 5.2] choose v ∈M\L such that the image in N is a highest
weight vector and such that J2

λv = 0. By Lemma 2.3 the weights of L(λ) are the
maximal ideals σ−i(Jλ) with i = 0, . . . , n − 1. Thus by Lemma 5.2, Hλ = σ(Jλ)
and σ−n(Jλ) are not weights of L(λ). On the other hand H2

λdv = dJ2
λv = 0, so

dv = 0. Similarly since dim(L(λ)) = n we have unv ∈ L, and J2
λv = 0 implies that

0 = unJ2
λv = σ−n(J2

λ)unv. Thus unv = 0.
Now un−1σn(x)v = σ(x)un−1v = yun−1v = dunv = 0 and also dσn(x)v =

σn+1(x)dv = 0. Since σn(x) ∈ Jλ, σn(x)v ∈ L. Since n > 1 an easy computation
shows that the only element of L annihilated by un−1 and by d is the zero element.
Hence σn(x)v = 0. Since (x, σn(x)) = Jλ, we have Jλv = 0. Since L and M are
simple, we have that M = Av and hence M is a highest weight module of weight λ.
As unv = 0, we conclude that M ∼= L(λ) and hence such a nonsplit exact sequence
can not occur.

Finally suppose that dim(L(λ)) = 1, that is λ = 0. Since L(0) ∼= A/(d, u), we
have (d, u)2M = 0. As in Lemma 4.3, we have (d, u)2 = (d, u). Hence M is a
module over the field A/(d, u), so the sequence splits, a contradiction. �
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5.4. If A is a down-up algebra such that all finite dimensional A-modules are
semisimple then A has type (d) since otherwise by Proposition 4.2 A has a commu-
tative image which is not simple Artinian. Set

Xm,n = {η ∈ K∗|ηm 6= 1 6= ηn and n(ηm − 1) = m(ηn − 1)}

for m,n ≥ 1.

Theorem. Let A = Aη with η 6= 1. Then the following are equivalent

i) all finite dimensional Aη-modules are semisimple;
ii) every Verma module for Aη has composition length ≤ 2;
iii) η /∈ Xm,n, for all m 6= n.

Proof. We first show the equivalence of conditions i) and ii). By [5, Theorem 2.13
and Proposition 2.23] any submodule of V (λ) has the form N = span{vj |j ≥ n}
for some n > 0. It follows that V (λ) has length ≤ 2 if and only if every finite
dimensional homomorphic image of V (λ) is simple. Thus i) implies ii). Conversely
suppose that ii) holds and there is a nonsplit exact sequence

0 −→ L(λ) −→M −→ L(µ) −→ 0

with M finite dimensional. By Proposition 5.3 λ 6= µ. Since all Verma modules
have composition length ≤ 2, case (i) of Proposition 5.1 cannot occur. Thus σ(Jµ)
is a weight of L(λ), that is σi(Jµ) = Jλ for some i > 0. Similarly by dualizing the
above exact sequence and applying Proposition 5.1 we get σj(Jλ) = Jµ for some
j > 0. Hence Jλ = σi+j(Jλ), but this contradicts Lemma 5.2.

Next we prove iii) implies ii) by showing that if V (λ) is a Verma module over
Aη of length > 2, then η ∈ Xm,n, for some m 6= n. By the description of the
submodules of V (λ) from [5] cited above we have λm−1 = λn−1 = 0 for some
m > n > 0. Thus by Lemma 2.5, ηm 6= 1 6= ηn and

λ(η − 1) = −γ(1− n(
n−1∑
i=0

ηi)−1)

λ(η − 1) = −γ(1−m(
m−1∑
i=0

ηi)−1).

Forming the difference between these equations we get

γ[m(
m−1∑
i=0

ηi)−1 − n(
n−1∑
i=0

ηi)−1] = 0.

As γ 6= 0

(ηn − 1)m = (ηm − 1)n.

Thus η ∈ Xm,n.
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Finally, if η ∈ Xm,n and λ is chosen so that

λ(η − 1) = −γ(1−m(
m−1∑
i=0

ηi)−1)

it follows that λm−1 = λn−1 = 0 and the Verma module V (λ) has length > 2. �

In the preliminary version of this paper, we proved semisimplicity of finite dimen-
sional Aη-modules when η was a root of unity. The present version of Theorem 5.4
involves only minor changes to the earlier proof. We thank D. Jordan for pointing
out the equivalence of conditions i) and iii), see also [9, Proposition 5.3].

5.5. Finally we show that

Lemma. If η is a root of unity or K = C and |η| = 1, then η ∈ Xm,n implies
m = n.

Proof. Suppose ηm 6= 1, ηn 6= 1 and

(ηn − 1)m = (ηm − 1)n (∗).

Again this is an equation in Q(η) which we can identify with a subfield of C. Then
(ηm − 1)/(ηn − 1) = mn−1 ∈ R. Consideration of the imaginary part of this
expression shows that

sin(mθ)(cos(nθ)− 1) = sin(nθ)(cos(mθ)− 1)

where η = eiθ. If sin(mθ) = 0, then since ηm 6= 1 we get mθ + π ∈ 2πZ, and
cos(mθ) = −1. Thus sin(nθ) = 0, ηm = ηn = −1 and (∗) forces m = n. Hence we
can assume that sin(mθ) 6= 0 6= sin(nθ). Let g(x) = (cos(x) − 1)/sin(x), so that
g(mθ) = g(nθ). Then g(x) is decreasing on (−π, π) so (m− n)θ ∈ 2πZ. Therefore
(∗) forces m = n. �

Proposition. Any Verma module over Aη has length ≤ 3.

Proof. If the result is false then from the description of the submodules of V (λ),
we can find positive integers m < n < p such that λm−1 = λn−1 = λp−1 = 0. As in
the proof of Theorem 5.4 this means that ηm 6= 1, ηn 6= 1, ηp 6= 1,

m(ηn − 1) = n(ηm − 1)
and m(ηp − 1) = p(ηm − 1).

As before we identify Q(η) with a subfield of C. By the previous Lemma a =
|η| 6= 1. Now consider the function h(x) = m(ax − 1) − x(am − 1). Note that
h(m) = h(n) = h(p) = 0. We obtain a contradiction since h′(x) has at most one
zero. �
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6. Concluding Remarks

6.1. We apply the methods developed earlier in this paper to the case where β = 0.
Let A = A(α, 0, γ). By [13, Lemma 4.3] A is not Noetherian. We show that there is
usually a proper homomorphic image of A which is not Noetherian. The elements

w1 = du− αud− γ

w2 = (α− 1)du+ γ.

are analogous to those introduced in Section 1.4. We have dw1 = w1u = 0. Also
dw2 = αw2d and w2u = αuw2. In particular if α 6= 0 then Aw2 = w2A and A/(w2)
is isomorphic to the algebra B = k[x, y] generated by x, y subject to the relation
xy = γ. It is well known that B is not Noetherian if γ = 0. If γ 6= 0 B is not von
Neuman finite and in particular B is not Noetherian. Further results on down-up
algebras A(α, β, γ) with β = 0 can be found in [9] and [12].

6.2. We conclude with some remarks about homogenizations of down-up algebras.
Assume β 6= 0. If A = ∪An is a filtered algebra, the Rees algebra or homogenization
of the filtration is the subalgebra ⊕AnT

n of A[T ].
A natural way to define a filtration on A is to take A0 = K, A1 a subspace of

A, containing A0 and a set of algebra generators for A, and set An = (A1)n for
n ∈ N. When A = A(α, β, γ) is a down-up algebra an obvious choice for A1 is
A1 = span{1, d, u}. We denote the Rees algebra of the filtration obtained in this
way by H1 = H1(α, β, γ). Clearly H1 is generated by D = dT , U = uT and the
central element T . Moreover we have

(R5) D2U = d2uT 3 = (αdud+ βud2 + γd)T 3

= αDUD + βUD2 + γDT 2.

This relation is a homogenization of relation (R1). Similarly H1 satisfies a ho-
mogenization of relation (R2). Thus H1 is the algebra refered to in [5, Question f)].
It is possible to show that H1 has Hilbert series [(1− t)3(1− t2)]−1, [3, Proposition
4.2.8].

However there is another set of generators for A which resembles the usual set
of generators for U(sl2). Let λ, µ be the roots of the equation x2 − αx − β = 0.
Thus λ+ µ = α, λµ = −β and set

(R6) h = du− λud.

Then
(R7) dh− µhd = γd

and
(R8) hu− µuh = γu.

By modifying the argument given in [13, §3.3], for the case γ = 0, we see that A
is generated by h, u, d with relations (R6), (R7), (R8).
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Now set A′1 = span{1, h, u, d} and let A′n = (A′1)
n to obtain a second filtration on

A. The Rees algebra of this filtration is denoted H2 = H2(α, β, γ) = ⊕A′nTn. The
Hilbert series for H2 is the same as that of a polynomial algebra in four variables.

Theorem. The algebras H1 and H2 are Auslander-regular and Cohen-Macaulay
with global dimension four.

Proof. Note that H1/(T ) ∼= A(α, β, 0) is Auslander regular of global dimension 3
and Cohen-Macaulay by [13, Lemma 4.2 and Theorem 4.1]. Using the Lemma in
[11] and writing H2/(T ) as an iterated Ore extension it follows that H2/(T ) also
satisfies these properties. From now on let H denote either H1 or H2. Note that H
is graded and T is a homogeneous central element of positive degree in H which is
not a zero divisor. Thus we can use a graded version of Nakayama’s lemma and the
proof of [15, Theorem 7.3.7] to show that gl.dim(H) = 4. The result now follows
from [10, Theorem 3.6]. �

Remark. Parts of the theorem have been obtained independently by Bauwens [3,
Remark 4.2.9 and Proposition 4.4.1]. The noncommutative algebraic geometry aris-
ing from the graded algebras H1, H2 is studied in detail in [3]. In particular the
point and line modules are obtained in the “generic” case.

Finally we note that when A = A(α, β, 0), A is a graded algebra which is
Auslander-regular of global dimension 3. In [2], the regular algebras with 2 gener-
ators and 2 defining relations of degree 3 are classified in terms of a divisor E in
P1 × P1, and an automorphism σ of E. It is easily checked that E = P1 × P1 when
α = 0. If α 6= 0, A = A(α, β, 0) is an algebra of type S1 in [2, 4.13], see also [1,
Table 3.9], that is E = E1 ∪ E2 is the union of two curves of bidegree (1, 1) and σ

stabilizes each component. Furthermore we have E1 = E2 if and only the equation
x2 − αx− β = 0 has multiple roots. This occurs for example for A(2,−1, 0) which
is the enveloping algebra of the Heisenberg Lie algebra and this case is worked out
in detail in [2, pages 36-37].
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