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Abstract

Let g be a classical simple Lie superalgebra. To every nilpotent
orbit O in g0 we associate a Clifford algebra over the field of rational
functions on O. We find the rank, k(O) of the bilinear form defining
this Clifford algebra, and deduce a lower bound on the multiplicity
of a U(g)-module with O or an orbital subvariety of O as associated
variety. In some cases we obtain modules where the lower bound on
multiplicity is attained using parabolic induction. The invariant k(O)
is in many cases, equal to the odd dimension of the orbit G · O where
G is a Lie supergroup with Lie superalgebra g.

1 Introduction

Completely prime primitive ideals play a central role in the study of the en-
veloping algebra of a semisimple Lie algebra. For example they are important
in the determination of the scale factor in Goldie rank polynomials, and they
are related to unitary representations, see [J3] for more details. On the other
hand if g is a classical simple Lie superalgebra, there are very few completely

∗partially supported by NSF grant DMS-0099923.
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prime ideals in U(g), see [M3, Lemma 1].

The results of this paper suggest that it may still be of interest to study
primitive ideals of low Goldie rank in U(g), and their module theoretic ana-
log, modules of low multiplicity.

To initiate this study we associate to any prime ideal q of S(g0), a Clifford
algebra Cq over the field of fractions of S(g0)/q. Let k(q) be the rank of the
bilinear form defining this Clifford algebra. Given a finitely generated module
M, we use some filtered-graded machinery along with an elementary result
about Clifford algebras to obtain a lower bound on the multiplicity of M in
terms of k(q), see Lemmas 2.1 and 5.1.

When g0 is reductive and P is a primitive ideal in U(g0) the subvariety
of g0 defined by grP is the closure of a nilpotent orbit, [BB], [J1]. For this
reason the most interesting primes in S(g0) are those defining nilpotent or-
bits or their orbital subvarieties. If g is classical simple and q is a prime ideal
of S(g0) defining a nilpotent orbit we give a formula for k(q) in terms of a
partition (or partitions) associated to the nilpotent orbit.

This work motivates the search for highest weight modules with given as-
sociated variety and low multiplicity. For g = g`(m,n), s`(m,n) or Q(n) we
explain how to find examples of such modules using induction from parabolic
subalgebras. For a precise statement, see Lemmas 5.5, 5.6 and Theorem 5.7.
We also investigate the primitive ideals that arise as annihilators of these
modules and the structure of the corresponding primitive factor algebras.
We remark that the orbital varieties which occur in our examples have the
simplest possible type, namely they are all linear subvarieties of the nilpotent
orbit. One difficulty is that the closest analog for semisimple Lie algebras of
the problem considered here is the quantization problem for orbital varieties,
which is unsolved, see [Be],[J3]. It is worth noting also that the associated
variety of a simple highest weight module is irreducible for sl(n), [Me]. This
is not true in general [J2],[T]. We plan to return to the issues raised here in a
subsequent paper. In particular we shall show that the modules we construct
in this paper are quantizations of superorbital varieties.

Additional motivation for the study of the invariants k(q) comes from
supergeometry. Suppose that g is classical simple, and that there is a non-
degenerate even bilinear form on g. If x ∈ g0, and mx is the corresponding
ideal of S(g0) then k(mx) is equal to the dimension of the centralizer of x in
g1. If G is a Lie supergroup with Lie superalgebra g, this allows us to find
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the superdimension of the orbit G · x, when x is nilpotent.
This paper is organized as follows. After some preliminaries in Section

2, we obtain our formulas for k(q) in Section 3. Although this is done on
a case-by-case basis, the formulas in most cases depend on the same basic
result (Lemma 2.4). Furthermore the exceptional algebras G(3) and F (4)
can be treated using essentially the same method as the orthosymplectic al-
gebras. In Section 5 we prove our main results about parabolically induced
modules. We prove a result (Theorem 5.3) describing the structure of such
modules as U(g0)-modules. This is used to derive analogs of several results
on induced modules and their annihilators from [Ja2, Kapitel 15]. Several
of the results in this section (for example Theorem 5.7 and Corollary 5.10)
apply to the modules F (µ) constructed by Serganova in section 3 of [S2] for
the Lie superalgebras g`(m,n). In Section 4 we give some background on
parabolic subalgebras needed in Section 5. Our results on nilpotent orbits
may be found in Section 6. Nilpotent orbits do not seem to have been widely
studied in the superalgebra case, see however [S1], so we spend some time
developing the background.

I would like to thank Olivier Mathieu, Vera Serganova and Jeb Willen-
bring for some useful discussions.

2 Preliminaries

2.1. Clifford Algebras. Let g = g0 ⊕ g1 be a finite dimensional
Lie superalgebra over C. The tensor algebra T (g) has a unique structure
T (g) = ⊕n≥0T

n(g) as a graded algebra such that T 0(g) = C, T 1(g) = g1 and
T 2(g) = g0 + g1 ⊗ g1. Set Tn = ⊕m≤nT

m(g) and let Un be the image of Tn

in U(g). Then {Un} is a filtration on U(g) and we describe the associated
graded ring S = grU(g). Observe that R = S(g0) is a central subalgebra of
S and that the bracket [ , ] on g1 extends to an R-bilinear form on g1 ⊗ R.
The algebra S is isomorphic to the Clifford algebra of this bilinear form. If
v1, . . . , vn is a basis of g1 over C then the matrix of the bilinear form with
respect to this basis is M(g) = ([vi, vj]). We do not refer to the basis in the
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notation for this matrix since we study only properties of the matrix which
are independent of the basis.

We showed in [M2] that there is a homeomorphism

π : SpecR −→ GrSpecS.

where GrSpec( ) refers to the space of Z2-graded prime ideals. Let us recall
the details. Fix q ∈ Spec(R) and let S = S/Sq and C = C(q), the set of
regular elements of R/q. Then Fq = Fract(R/q) is a central subfield of the
localization T = SC. Moreover the Lie bracket on g1 extends to a symmetric
Fq-bilinear form on g1⊗Fq. It is easy to see that T is the Clifford algebra of
this form over Fq. The nilradical N of T is generated by the radical of the
bilinear form on g1 ⊗ Fq, and T/N is the Clifford algebra of a nonsingular
bilinear form. Then π(q) is the kernel of the combined map

S = grU(g) −→ S −→ T/N.

It follows that π(q) =
√
Sq where

√
denotes the radical of an ideal. For

p ∈ GrSpecS, π−1(p) = p ∩ R. Note that if π(q) = p we have inclusions of
rings

R/q ⊆ S/p ⊆ T/N.

Moreover T/N is obtained from S/p by inverting the nonzero elements of
R/q. Hence S/p is an order in the Clifford algebra Cq = T/N . Let Bq be
the bilinear form defining this Clifford algebra, δq the determinant of Bq and
k(q) the rank of Bq. Thus

k(q) = {max m|some m×m minor of M(g) is nonzero mod q}.

A prime ideal q of S(g0) is homogeneous if q = ⊕n≥0(q ∩ Sn(g0)) where
S(g0) = ⊕n≥0S

n(g0) is the usual grading. All prime ideals q of S(g0) con-
sidered in this paper will be homogeneous. If q is homogeneous and k(q)
is odd then δq is a rational function of odd degree and hence not a square
in Fq. Therefore by [L, Theorems V.2.4 and V.2.5] Cq is a central simple
algebra. Hence Cq

∼= M2a(D) for a division algebra D. Using the fact that
dimFq Cq = 2k(q) it is easy to prove the following result.

Lemma Let L be a simple Cq-module where q is a homogeneous prime ideal
of S(g0).
(a) If k(q) is even then Cq is a central simple algebra over Fq and dimFq L ≥
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2k(q)/2. Equality holds if and only if D = Fq

(b) If k(q) is odd then Cq is a central simple algebra over Fq(
√
δq) and

dimFq L ≥ 2(k(q)+1)/2. Equality holds if and only if D = Fq(
√
δq).

We denote the greatest integer less than or equal to s by [s]. If dimFq L =
2[(k(q)+1)/2], we say that Cq is split.

2.2. Evaluation of M(g). Let g be classical simple. Since g0 is re-
ductive there is a nondegenerate invariant bilinear form on g0. This allows
us to identify g0 with g∗0 and thus to view elements of S(g0) as functions
on g0. If O ⊆ g0, and the ideal q of functions in S(g0) which vanish on
O is prime, we often write k(O) in place of k(q). It is convenient to set
`(q) = [(k(q)+ 1)/2] and `(O) = [(k(O)+ 1)/2]. We say that a closed subset
X of g0 is conical if x ∈ X implies that Cx ⊆ X. For example closures of
nilpotent orbits and their orbital subvarieties are conical. If X is a product
of conical subvarieties of the simple summands of g0, then the defining ideal
of X in S(g0) is independent of the choice of bilinear form, since any two
nondegenerate invariant forms on a simple Lie algebra are proportional. Fix
a nilpotent orbit O, and suppose q ∈ SpecS(g0) is such that V (q) = O. We
want to compute k(q). For x ∈ O, let M(x) be the evaluation of M(g) at
x and let mx be the maximal ideal of S(g0) corresponding to x. Since O is
dense in V (q) and the rank of M(g) is constant on O we have

k(q) = rank(M(x)) = k(mx) for all x ∈ O. (1)

Hence if X is an irreducible subvariety of O we have k(X) = k(O).

2.3. Matrix notation. We denote the n × n identity matrix by In,
and the matrix with a 1 in row i, column j and zeroes elsewhere by eij. Let
Υr be the r×r matrix with ones on the antidiagonal and zeros elsewhere. We
write Mm,n for the vector space of m × n complex matrices. The transpose
of a matrix A is denoted by At. Since M(g) is a matrix over S(g0), and g0 is
often an algebra of matrices, we need an ”external” version of the matrices
eij. For clarity, a matrix A with entries in S(g0) will often be written in the
form

A =
∑
i,j

ai,jei,j
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meaning that ai,j ∈ S(g0) is the entry in row i and column j of A.
Recall that if A and B are square matrices with rows and columns indexed

by I, J respectively, then the Kronecker product A⊗B has rows and columns
indexed by I×J , and has entry in row (i, k), column (j, `) equal to aijbk`. To
be more precise, we should also specify an ordering on the rows and columns
of A⊗B. If I ⊆ Z we give I the ordering inherited from Z. If I, J are ordered
sets then unless otherwise stated we give I × J the lexicographic order <`ex

defined by

(i, j) <`ex (k, `) if and only if i < k or i = k and j < `.

We need a twisted version of the Kronecker product. If A and B are as
above, we define A⊗̂B to be the matrix with rows indexed by I × J and
columns indexed by J × I such that the entry in row (i, k), column (`, j) is
equal to aijb`k. Here we order I × J the lexicographically and order J × I so
that (j, i) precedes (`, k) if and only if (i, j) <`ex (k, `) .

The definition of A⊗̂B might seem unnatural at first, but it is very con-
venient for the computation of M(g) when g = g`(m,n). Note that if we
relabel column (`, j) of B as column (j, `), the rows and columns of A⊗̂B
are then both indexed by I × J ordered lexicographically. It follows that
A⊗̂B = A⊗Bt.

2.4. Partitions. If µ = (µ1 ≥ µ2 ≥ . . .) is a partition of m we de-
note the nilpotent matrix with Jordan blocks of size µ1, µ2, . . . by Jµ. The
dual partition µ′ of m is defined by

µ′i = |{j|µj ≥ i}|

for all i. We set µi = 0 for all i > µ′1. The set of all partitions of m is denoted
P(m).

Lemma For µ ∈ P(m) and ν ∈ P(n) we have

rank(Jµ ⊗ In + Im ⊗ Jν) = mn−
∑
i≥1

µ′iν
′
i.

Proof. For a ≥ 1, let L(a) be the simple s`(2)-module of dimension a. If

e =

[
0 1
0 0

]
we can choose bases for the modules L(µi) and L(νi) such that
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E = Jµ ⊗ In + Im ⊗ Jν is the matrix representing the action of e on

⊕i≥1L(µi)⊗⊕i≥1L(νi).

To compute rank E note that L(a)⊗L(b) is the direct sum of min(a, b) simple
modules, and the rank of e acting on L(a) is a− 1. This implies

rankE = mn−
∑
j,k

min(µj, νk).

Now set
Ai = {(j, k)|min(µj, νk) = i}
Bi = {(j, k)|min(µj, νk) ≥ i}.

Note that |Bi| = µ′iν
′
i and |Ai| = |Bi| − |Bi+1|. Thus

∑
j,k

min(µj, νk) =
∑

i

i|Ai| =
∑

i

|Bi| =
∑

i

µ′iν
′
i.

Remark. Since Jµ⊗̂In = Jµ ⊗ In and Im⊗̂Jν = Im ⊗ J t
ν we also have a

formula for rank(Jµ⊗̂In + Im⊗̂Jν).

2.5. Dimension and Multiplicity. Let N = ⊕m≥0N(m) be a finitely
generated graded S(g0)-module and set Nn = ⊕n

m=0N(m). For n >> 0 we
have

dimNn = ad

(
n
d

)
+ ad−1

(
n

d− 1

)
+ . . .+ a0

for suitable constants a0, . . . , ad with ad 6= 0. We set d(N) = d and e(N) =
ad. We filter U(g) as in Section 2.1 and denote associated graded ring by
grU(g). Let M be a finitely generated U(g)-module and equip M with a
good filtration {Mn}n≥0. Since N = grM is finitely generated over grU(g)
and hence over S(g0), the above remarks apply and we set d(M) = d(N) and
e(M) = e(N). It is not hard to show that d(M) and e(M) are independent
of the good filtration and that d(M) is the Gelfand-Kirillov dimension of
M calculated either as a U(g)-module or as a U(g0)-module. For details
see [KL, Chapter 7]. If M is finite dimensional, we have d(M) = 0 and
e(M) = dimCM .
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In Section 5 we use the following fact. Suppose q is a homogeneous prime
ideal of S(g0) and N a finitely generated torsionfree graded module over Z =
S(g0)/q. If F = Fract(Z) then d(N) = d(Z) and e(N) = e(Z) · dimF Z

−1N .
This follows easily from [GW, Exercise 4L, Corollary 4.17 and Lemma 6.17].
If V is the closed subset of g∗0 defined by q we set e(V) = e(Z).

A module M is homogeneous (resp. critical) if for any nonzero submodule
M ′ we have d(M) = d(M ′) (resp. d(M) = d(M ′) and e(M) = e(M ′)).

2.6. Induced Modules. Let p be a subalgebra of the Lie superal-
gebra g and N a finitely generated U(p)-module. We write Ind

g
p N for the

induced module U(g)⊗U(p) N .

Lemma Suppose M = Ind
g
p N and set ci = dim gi − dim pi for i = 0, 1.

Then
d(M) = d(N) + c0

and
e(M) = 2c1e(N).

Proof. This is easily adapted from the proof of [Ja2, Lemma 8.9].

2.7. Affiliated Series of a Module. Let N be a nonzero finitely gen-
erated module over a Noetherian ring S. An affiliated submodule of N is a
submodule of the form annN(P ) where P is an ideal of S maximal among
the annihilators of nonzero submodules of N , see [GW] for background. An
affiliated series for N is a series of submodules

0 = N0 ⊂ N1 ⊂ . . . ⊂ Nk = N

such that each Ni/Ni−1 is an affiliated submodule of N/Ni−1. The prime
ideals Pi = annS(Ni/Ni−1) are called the affiliated primes of the series.

2.8. Reductive Lie algebras. For the remainder of section 2, g0 will be
a reductive Lie algebra. Later we use the notation established here when g0

is the even part of a classical simple Lie superalgebra. Let n0⊕ h0⊕ n+
0 be a

triangular decomposition of g0. So h0 is a Cartan subalgebra and b = h0⊕n+
0

a Borel subalgebra of g0. Let G be the adjoint algebraic group of g0. If α is
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a root of g0 we denote the corresponding root space by gα. There is a unique
element hα ∈ [gα, g−α] such that α(hα) = 2. For λ ∈ h∗0 we denote the Verma
module with highest weight λ induced from b and its unique simple quotient
by M(λ) and L(λ) respectively. We write (λ, α∨) in place of λ(hα).

2.9. Richardson Orbits. Let p0 be a parabolic subalgebra of g0 and
suppose that p0 = l0 ⊕ m0 where m0 is the nilradical of p0 and l0 is a Levi
factor. Then Gm0 contains a unique dense orbit called the Richardson orbit
induced from l0 .

If L is a finite dimensional l0-module and M = Ind
g0

p0
L there are two

prime ideals of S(g0) that we can associate to M . The first of these is
q′ =

√
grannU(g0)M which is the defining ideal of the Richardson orbit O

induced from l0, [Ja2, 17.15] . On the other hand we can equip M with a
good filtration and consider q =

√
annS(g0)grM. Then q = S(g0)p0 is the

defining ideal of m0 ⊂ O, [Ja2, 17.12 (4)]. We have 2dim(m0) = dim(O).
However k(q) = k(q′) since O ∩ m0 is nonempty and by (1) in section 2.2
k(q) can be calculated by evaluating at any point of O.

2.10. Orbital Varieties. Let O be a nilpotent orbit in g0. The irre-
ducible components of O∩ n+

0 are called orbital varieties attached to O. If V
is such an orbital variety we have k(O) = k(V) as above. For example if O
is the Richardson orbit induced from l0 and m0 is as in section 2.9 then m0 is
an orbital variety in O. In general however Richardson orbits contain many
other orbital varieties, see [J3] for a recent survey.

2.11. The category O. We denote by O the category of U(g0)-modules
defined in [Ja1, section 1.9]. For M ∈ Ob O we write [M ] for the class of M
in the Grothendieck group G(O) of O. The group G(O) is free abelian on
the classes [L(λ)] with λ ∈ h∗0 . For M,M ′ ∈ Ob O we have [M ] = [M ′] if
and only if M and M ′ have the same character. We define a partial order ≤
on G(O) by the rule

∑
λ aλ[L(λ)] ≤

∑
λ bλ[L(λ)] if and only if aλ ≤ bλ for all

λ ∈ h∗0.
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3 Dimension Formulas

3.1. We describe the matrix M(g) explicitly when g = g`(m,n). Let
I1 = {1, . . . ,m}, I2 = {m + 1, . . . ,m + n}, I = I1 ∪ I2 and consider the
following matrices

N1 =
∑

i,j∈I1

eijei,j, N2 =
∑

k,`∈I2

(ek,`)ek,`,

with entries in g0.

Lemma With a suitable choice of ordered basis for g1,M(g) has block ma-
trix form [

0 N
N t 0

]
where N = N1⊗̂In + Im⊗̂N2.

Proof. Write g+
1 = span{eik|(i, k) ∈ I1×I2}, g−1 = span{e`j|(`, j) ∈ I2×I1},

so that g1 = g+
1 ⊕ g−1 . The rows and columns of M(g) are indexed by I1× I2

ordered lexicographically followed by I2 × I1 ordered so that (j, i) precedes
(`, k) if and only if (i, j) <`ex (k, `) .

The block matrix decomposition follows since [g±1 , g
±
1 ] = 0 and M(g) is

symmetric. To compute N suppose (i, k) ∈ I1 × I2 and (`, j) ∈ I2 × I1, then
[eik, e`j] = δk`eij + δije`k and the result follows.

3.2. Let N1 =
∑

i,j∈I1
eijei,j as above and y =

∑
k,` yk`ek` ∈ g`(m).

Using the bilinear form (A,B) = trace(AB) to evaluate N1 at y we have
that

N1(y) = (yji) ∈ g`(m)

is the m ×m matrix with i, j entry equal to yji. Thus N1(y) has the same
Jordan form as y. Of course similar remarks apply to the evaluation of N2.

We denote the orbit of (Jµ, Jν) in g0 = g`(m)× g`(n) by Oµ,ν .
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Theorem For µ ∈ P(m) and ν ∈ P(n) we have

k(Oµ,ν) = 2(mn−
∑

i

µ′iν
′
i).

Proof. This is immediate by Lemmas 2.4 and 3.1.

Remark. If g = s`(m,n) then g has the same odd part as g`(m,n) and
the matrix M(g) can be calculated using Lemma 3.1. We can identify the
nilpotent orbits in g0 with those in the even part of s`(m,n) and then Theo-
rem 3.2 applies to g . Similar remarks apply to the Lie superalgebra ps`(n, n).

3.3. If V is a vector space we write ∧kV and SkV for the kth exterior
and symmetric power of V respectively. For v, w ∈ V we set v ∧ w =
1/2(v⊗w−w⊗ v) ∈ ∧2V, v ◦w = 1/2(v⊗w+w⊗ v) ∈ S2V . The following
description of the orthosymplectic Lie superalgebra algebra osp(m,n) can
be found in [K, 2.1.2]. Let V1 be an m-dimensional vector space with a
nondegenerate symmetric bilinear form ψ1 and V2 an n-dimensional vector
space with a nondegenerate skew-symmetric bilinear form ψ2.

Then we can realize g = osp(m,n) by setting

g0 = ∧2V1 ⊕ S2V2, g1 = V1 ⊗ V2.

The action of ∧2V1 on V1 is given by

[a ∧ b, c] = ψ1(a, c)b− ψ1(b, c)a.

Similarly S2V2 acts on V2 via

[a ◦ b, c] = ψ2(a, c)b+ ψ2(b, c)a.

The bilinear forms ψ1 and ψ2 are invariant under these actions, so ∧2V1 and
S2V2 identify with so(m) and sp(n) respectively. The product g1×g1 −→ g0

is given by

[a⊗ c, b⊗ d] = ψ1(a, b)(c ◦ d) + ψ2(c, d)(a ∧ b).

3.4. The following lemma applies to the computation of the matrix M(g)
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when g0 is not simple, g1 is an irreducible g0-module and g is not isomorphic
to Γ(σ1, σ2, σ3). The discussion leading up to [Sch, page 143, equation (5.9)]
allows us to make the following assumptions about the structure of g. Firstly
g0 = g1 × g2 and g1 = V1 ⊗ V2 where the gi are nonzero semisimple Lie
algebras and the Vi are simple gi-modules. Furthermore, for i = 1, 2 there
are gi-invariant bilinear maps

πi : Vi × Vi −→ gi , ψi : Vi × Vi −→ C

such that

[u1 ⊗ u2, v1 ⊗ v2] = ψ2(u2, v2)π1(u1, v1) + ψ1(u1, v1)π2(u2, v2) (2)

for u1, v1 ∈ V1;u2, v2 ∈ V2. In addition we can assume that π2, ψ1 are sym-
metric and π1, ψ2 are skew-symmetric.

We claim that if g 6= Γ(σ1, σ2, σ3) there are nonzero constants si such that
the maps π1, π2 are given by

πi(u, v)w = si(ψi(v, w)u− ψi(w, u)v) (3)

for ui, vi ∈ Vi, cf. [Sch, page 144, equation (5.16)].

Indeed, from Section 3.3 equation (3) holds when g = osp(m,n) with
m ≥ 3, n ≥ 2. Also equation (3) defines gi-invariant bilinear maps πi :
Vi × Vi −→ gi , so (3) holds whenever g1 and g2 are simple and the adjoint
representation of g1 resp. g2 occurs with multiplicity one in ∧2V1 resp. S2V2.
This is the case for the Lie superalgebras G(3) and F (4). Note however that
if g = Γ(σ1, σ2, σ3) then we can write g0 as g1 × g2 where g1 ∼= so(4) and
g2 ∼= sl(2). In this case the map π1 : V1 × V1 −→ g1 is not, in general given
by (3). This exhausts all the classical simple Lie superalgebras g such that
g0 is not simple and g1 is an irreducible g0-module.

Let {e1, . . . , em} and {f1, . . . , fn} bases for V1, V2 respectively, and let J1,
resp. J2 be the matrix with entry in row i and column j equal to ψ1(ei, ej),
resp. ψ2(fi, fj). We denote by so(V1), sp(V2) the orthogonal and symplectic
algebras preserving the forms ψ1, ψ2 respectively. Let Aik = π1(ei, ek) and
Bj` = π2(fj, f`). We evaluate matrices with entries in so(V1), and sp(V2)
using the trace form (a, b) −→ trace(ab) for a, b ∈ so(V1), or a, b ∈ sp(V2).
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Lemma (a) With respect to the basis {ei ⊗ fj} of g1, we have

M(g) = A⊗ J2 + J1 ⊗B.

(b) For all x ∈ so(V1), y ∈ sp(V2), we have

(J−1
1 A)(x) = −2s1x, (J−1

2 B)(y) = 2s2y.

Proof. (a) This follows easily from formula (2).
(b) We prove the statement about so(V1); the other part is similar. We
assume that s1 = 1 and write ψ, π and J in place of ψ1, π1, and J1. Recall
the notation for matrices with entries in S(g`(V1)) from section 2.3. Write
K = J−1 and A in the form

K =
∑
p,q

Kp,qep,q, A =
∑
i,j

Ai,jei,j

Using equation (3) we compute that

trace(π(ei, ej)π(ek, e`)) = 2(ψ(ej, ek)ψ(e`, ei)− ψ(e`, ej)ψ(ek, ei)).

Hence if x = π(ek, e`), we have

KA(x)er = 2
∑
i,j,p,q

(ψ(ej, ek)ψ(e`, ei)− ψ(e`, ej)ψ(ek, ei))Kp,qep,qei,jer

= −2[ψ(e`, er)ek − ψ(er, ek)e`]

= −2π(ek, e`)er.

3.5. To apply Lemma 3.4 we need to consider three cases separately.
Suppose first that g = osp(m,n) with m ≥ 3, n ≥ 2. Then g0 = g1 × g2

where g1 = so(m), g2 = sp(n). Also g1 = V1 ⊗ V2 where V1 is the natural
module for so(m) and V2 is the natural module for sp(n). There are maps
πi, ψi for i = 1, 2 such that the product g1 × g1 −→ g0 is given by equation
(2) in section 3.4.

We recall how nilpotent orbits in simple Lie algebras of types B, C and
D can be described in terms of partitions. Let P1(m) (resp. P−1(m)) be
the set of partitions of m in which even (resp. odd) parts occur with even
multiplicity. Then by [CM, Theorems 5.1.2 and 5.1.3], nilpotent orbits in
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so(2r+ 1), r ≥ 1 (resp. sp(2s), s ≥ 1) are in one-to-one correspondence with
partitions in P1(2r+ 1) (resp. P−1(2s)). We denote the orbit corresponding
to a partition µ by Oµ. We say that a partition is very even if it has only
even parts, each with even multiplicity. By [CM, Theorem 5.1.4] any partition
µ ∈ P1(2r) corresponds to a unique orbit Oµ in so(2r), r ≥ 1 unless µ is very
even in which case µ corresponds to two orbits OI

µ and OII
µ .

From the proofs of [CM, Propositions 5.2.3, 5.2.5 and 5.2.8], we see that
if a simple Lie algebra of type B, C or D is regarded as a subalgebra of g`(N)
using the defining representation then the Jordan form of a matrix in Oµ (or
OI

µ,OII
µ ) corresponds to the partition µ.

If µ ∈ P1(m), ν ∈ P−1(2s) and µ is not very even, we consider the orbits

Oµ,ν = Oµ ×Oν .

If m = 2r and µ is very even the existence of two orbits OI
µ and OII

µ

causes some notational difficulties. The simplest solution is to abuse no-
tation slightly and allow Oµ,ν to denote either of the orbits OI

µ × Oν or
OII

µ × Oν . Since the values of k(OI
µ × Oν) and k(OII

µ × Oν) turn out to be
the same this does not create any problems.

3.6. Let g = G(3), then g0 = g1 × g2 and g1 = V1 ⊗ V2 where g1 ∼= g2,
the 14 dimensional exceptional simple Lie algebra, g2 ∼= s`(2), V1 is the 7-
dimensional simple g2-module and V2 the 2-dimensional simple s`(2)-module.
There are invariant maps π1 : ∧2V1 −→ g2, π2 : S2V2 −→ s`(2) and invariant
bilinear forms ψ1, ψ2 such that the product g1×g1 −→ g0 is given by equation
(2). In particular since g2 preserves ψ1 it can be regarded as a subalgebra of
so(V1) = so(7). If O is a nilpotent orbit in g2 we write O = Oµ where µ is the
partition of 7 determined by the Jordan form of a representative element of
O when viewed as an element of g`(V1). These partitions, together with the
usual Bala-Carter notation for orbits in g2 [CM, page 128] and the dimension
of the orbits are given in the table below.

O = Oµ 0 A1 Ã1 G2(a1) G2

µ 17 22, 13 3, 22 32, 1 7
dimO 0 6 8 10 12

For µ in the table and ν ∈ P(2) set Oµ,ν = Oµ ×Oν .
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In section 3.8 we apply Lemma 3.4 to calculate k(Oµ,ν). However to do
this we need to evaluate the matrix using an invariant bilinear form on g2,
rather than on g`(7) as was done in Lemma 3.4. Similar remarks apply when
g is the Lie superalgebra F(4). Recall that any nonzero invariant form on a
simple Lie algebra is proportional to the Killing form. Therefore since Oµ,ν is
a product of conical subvarieties (see section 2.2), our method is justified by
the following well-known lemma. Our proof is a modification of [LS, Lemma
2.5].

Lemma Suppose that k ⊆ l are finite dimensional simple complex Lie alge-
bras. Then the restriction of the Killing form B on l to k is nondegenerate.

Proof. There are connected, simply connected complex Lie groups K and
L, unique up to isomorphism, such that k = Lie(K) and l = Lie(L). We can
take K to be a subgroup of L since k ⊆ l.

Let K0 denote a maximal compact subgroup of K. Then K0 is contained
in a maximal compact subgroup, L0, of L. Let k0 (resp. l0) denote the (real)
Lie algebra of the compact Lie group K0 (resp. L0). We have l = l0⊕ il0 and
k = k0 ⊕ ik0.

Now B is negative definite when restricted to l0 and hence it is negative
definite on k0. Therefore the restriction B′ of B to k is nonzero. However the
radical of B′ is an ideal of k, so B′ is nondegenerate.

3.7. Now let g = F (4). Then g0 = g1 × g2 and g1 = V1 ⊗ V2 where
g1 ∼= so(7), g2 ∼= s`(2), V1 is the spin representation of so(7) and V2 is the
2-dimensional simple s`(2)-module. We have the same analysis as for G(3)
except that so(7) is now regarded as a subalgebra of so(V1) = so(8).

Nilpotent orbits in so(7) correspond to partitions η ∈ P1(7). For η ∈
P1(7) we write µ = σ(η) for where µ is the partition of 8 determined by
the Jordan form of an element of the corresponding orbit when viewed as an
element of g`(V1). We use µ to label the orbit. The map σ : P1(7) −→ P(8),
together with the dimension of the orbits are given in the table below.

η 17 22, 13 3, 14 3, 22 32, 1 5, 12 7
µ = σ(η) 18 22, 14 24 3, 22, 1 32, 12 42 7, 1
dimOµ 0 8 10 12 14 16 18

As before we set Oµ,ν = Oµ ×Oν for µ in the table and ν ∈ P(2).
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3.8. Let g = osp(m,n) (m ≥ 3), G(3) or F (4) and consider the nilpotent
orbit Oµ,ν as defined in one of the three preceding subsections. Let dimV1 =
m and dimV2 = n.

Theorem We have

k(Oµ,ν) = dimg1 −
∑

i

µ′iν
′
i.

Proof. We use the notation from section 3.4. If (x, y) ∈ Oµ,ν then k(q) is
the rank of the evaluation of M(g) at (x, y). This rank is the same as the
rank of the evaluation of (J1⊗J2)

−1M(g) = J−1
1 A⊗In +Im⊗J−1

2 B at (x, y).
Thus the result follows from Lemmas 2.4 and 3.4 .

3.9. Theorem 3.8 does not apply to the Lie superalgebras g = osp(m, 2r)
when m = 1, 2. To handle these cases we use the description of osp(m,n)
given in section 3.3.

If m = 1, we choose e ∈ V1 such that ψ1(e, e) = 1. Then for v, w ∈ V2 we
have

[e⊗ v, e⊗ w] = v ◦ w. (4)

If m = 2, we choose e−, e+ ∈ V1 such that

ψ1(e−, e−) = ψ1(e+, e+) = 0, ψ1(e−, e+) = 1.

Set g±1 = Ce±⊗V2, and z = e−∧e+. Then g0 = [g0, g0]⊕Cz, and g1 = g+
1 ⊕g−1 ,

is a direct sum of g0-modules. Also [g±1 , g
±
1 ] = 0 and for v, w ∈ V2 we have

[e− ⊗ v, e+ ⊗ w] = v ◦ w + ψ2(v, w)z. (5)

If g = osp(m, 2r) where m = 1, 2, then nilpotent orbits in g0 are param-
eterized by partitions in P−1(2r). We denote the orbit corresponding to a
partition µ by Oµ. Note that the rank of Jµ is

∑
i(µi − 1) = 2r − µ′1.

Theorem (a) If g = osp(1, 2r) and µ ∈ P−1(2r) we have

k(Oµ) = rank Jµ.
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(b) If g = osp(2, 2r) and µ ∈ P−1(2r) we have

k(Oµ) = 2(rank Jµ).

Proof. (a) Identify g1 = Ce ⊗ V2 with V2 via the map e ⊗ v −→ v. Let
e1, . . . , e2r be a basis for g1 and let J be the matrix of ψ on this basis.

The matrix M(g) equals
∑

i,j∈K(ei ◦ ej)ei,j, and as in the proof of Lemma
3.4 there is a nonzero constant λ such that

J−1M(g)(x) = λx

for all x ∈ g0. This easily gives the result.
(b) Let g = osp(2, 2r), and k = osp(1, 2r). By comparing equations (4) and
(5), we see that with respect to a suitable ordered basis, M(g) has the block
matrix form [

0 M(k)
M(k) 0

]
mod (z).

The result follows since z vanishes on any nilpotent orbit in g0.

3.10. Now let g = Γ(σ1, σ2, σ3) as in [Sch]. Then g0 = g1× g2× g3, g1 =
V1⊗V2⊗V3 where gi ∼= s`(2) and Vi is the 2-dimensional simple s`(2)-module.

Let ψi : Vi×Vi −→ C be a nonzero gi-invariant skew-symmetric map and
define a gi-invariant symmetric map

πi : Vi × Vi −→ gi

by
πi(x, y)z = ψi(y, z)x− ψi(z, x)y

for x, y, z ∈ Vi. Then for a1 ⊗ a2 ⊗ a3, b1 ⊗ b2 ⊗ b3 ∈ g1 we have

[a1 ⊗ a2 ⊗ a3, b1 ⊗ b2 ⊗ b3] = =
∑

σkψi(a1, b1)ψj(a2, b2)πk(a3, b3) (6)

where the sum is over all even permutations (i, j, k) of {1, 2, 3}. Let f, h, e
be the basis of s`(2) given by

f =

[
0 0
1 0

]
, h =

[
1 0
0 −1

]
, e =

[
0 1
0 0

]
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and let x = (1, 0)t and y = (0, 1)t be basis vectors for the 2-dimensional
s`(2)-module. We write fi, hi, ei (resp. xi, yi) for the corresponding elements
of gi (resp. Vi), and set Si = {xi, yi}. Consider the matrices

Ψ =

[
0 1
−1 0

]
, Πi =

[
2ei −hi

−hi −2fi

]
.

We assume that the matrix for each ψi on the ordered basis (xi, yi) for
Vi is Ψ. Then the matrix for πi on this basis is Πi. We order the basis
{a1 ⊗ a2 ⊗ a3|ai ∈ Si} of g1 lexicographically. It follows from equation (6)
that the matrix M(g) is given by

M(g) = σ3Ψ⊗Ψ⊗ Π3 + σ2Ψ⊗ Π2 ⊗Ψ + σ1Π1 ⊗Ψ⊗Ψ (7)

This can also be deduced from Table I in [Z].
For µ, υ, η ∈ P(2) let O{µ,υ,η} denote the orbit of (Jµ, Jυ, Jη) in g0. Note

that the evaluation of the matrix Ψ−1Πi at any element x of gi is a nonzero
multiple of x. It follows from equation (7) that we can find x ∈ O{µ,υ,η} such
that the evaluation of (Ψ⊗Ψ⊗Ψ)−1M(g) at x equals

Jµ ⊗ I2 ⊗ I2 + I2 ⊗ Jν ⊗ I2 + I2 ⊗ I2 ⊗ Jη.

The values of dimO{µ,υ,η} and k(O{µ,υ,η}) depend only on the set {µ, υ, η}.
These values are given in the table below.

{µ, υ, η} {2, 2, 2} {2, 2, 12} {2, 12, 12} {12, 12, 12}
dimO{µ,υ,η} 6 4 2 0
k(O{µ,υ,η}) 5 4 4 0

We can view g as a deformation of D(2, 1) = osp(4, 2) and the values of k(O)
for g are the same as those for the corresponding orbits for D(2, 1).

3.11. Let V0, V1 be vector spaces with bases e1, . . . , en and e′1, . . . e
′
n

respectively, V = V0 ⊕ V1, and let ψ : V −→ V be the map sending ei to e′i
and e′i to −ei. Let g denote the Lie superalgebra of all endomorphisms of V
which supercommute with ψ. Then g is isomorphic to the Lie superalgebra
of matrices of the form [

a b
b a

]
18



with a, b ∈ g`(n). Thus g0
∼= g`(n) and g1

∼= g0 as a g0-module. The derived
algebra g′ consists of all matrices as above with b ∈ s`(n). Also g′ has a
one-dimensional center z = CI2n. The factor algebra g′/z is the simple Lie
superalgebra denoted Q(n− 1) in [K]. We assume that n ≥ 3. Then the Lie
superalgebra Q(n − 1) is simple. As a Cartan subalgebra h0 of g0 we take
all matrices of the above form with a diagonal and b = 0. We modify this in
the obvious way to obtain Cartan subalgebras of g′0 and Q(n− 1)0.

If O is any nilpotent orbit in g′0 then z vanishes on O and O may be
regarded as a nilpotent orbit in (g′/z)0. All nilpotent orbits in (g′/z)0 arise in
this way. Therefore it suffices to consider the Clifford algebras arising from
g and g′.

If µ ∈ P(n) let Jµ and Oµ denote the corresponding Jordan matrix and
nilpotent orbit. Set

ε(µ) = 1 if all parts of µ are even

0 otherwise.

Note that g′0 = g0. If q ∈ SpecS(g0) let k(q) (resp. k′(q)) be the rank of the
bilinear form on g1 ⊗ Fq (resp g

′
1 ⊗ Fq) defined in the usual way.

Theorem If V (q) = Oµ then

(a) k(q) = dim g1 −
∑

i(µ
′
i)

2

(b) k′(q) = k(q)− 2ε(µ).

Proof. For a ∈ g`(n) set

a =

[
0 a
a 0

]
.

Let K = {1, . . . , n} and calculate M(g) using the basis {eij} of g1. The rows
and columns of M(g) are indexed by K ×K ordered lexicographically with
entry in row (i, j) and column (k, `) given by

[eij, ek`] = δjkei` + δi`ekj.

Thus
M(g) =

∑
i,j,k,`

(δjkei` + δi`ekj)ei,k ⊗ ej,`.
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If L =
∑

er,s ⊗ es,r, then L is nonsingular since L2 is the identity matrix.
Let A =

∑
i,j∈K eijei,j. Then (ei,k ⊗ ej`)L = ei,` ⊗ ej,k and hence

M(g)L = A⊗ In + In ⊗ At.

Since M(g) and M(g)L have the same rank, part (a) of the Theorem follows
from Lemma 2.4. Part (b) follows from the lemma in the next subsection.

3.12. With g, g′ as in subsection 3.11 we compare the matrices M(g) and
M(g′). For 1 ≤ i ≤ n − 1 let hi = eii − ei+1,i+1 and let hn be the identity
matrix. We calculate M(g) using the basis

{eij, hk|1 ≤ i 6= j ≤ n, 1 ≤ k ≤ n}

of g1. We order this basis in any way such that the last n elements are
h1, . . . , hn.

Note that for 1 ≤ i ≤ n− 1 we have

[hi, ek,k+1] = (δi,k+1 − δi,k−1)ek,k+1 (8)

[hn, ek,k+1] = 2ek,k+1. (9)

The evaluation of M(g) at Jµ has the block-matrix form[
∗ N(Jµ)

N(Jµ)t 0

]
where N is the matrix with entries [hi, ek`] (1 ≤ i ≤ n, 1 ≤ k 6= ` ≤ n). The
evaluation of M(g′) at Jµ is obtained by deleting the last row and column.

For i 6= j let Cij be the column of M(g) corresponding to eij. Also for
1 ≤ i ≤ n− 1 let Ci be the column corresponding to hi. The evaluation of a
column C at Jµ is denoted C(Jµ).

Lemma (a) If (
∑

k,` λk,`Ck,` +
∑n

k=1 νkCk)(Jµ) = 0 then

n∑
i=1

νiCi(Jµ) = 0.
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(b) The linear span of the columns C1(Jµ), . . . , Cn−1(Jµ) contains Cn(Jµ)
if and only if some part of µ is odd.

Proof. (a) This follows since (
∑

k νkCk)(Jµ) can have nonzero entries only
in rows (i, i+ 1) and (

∑
λk`Ck`)(Jµ) has zero entries in these rows.

(b) Consider the system of equations

Cn(Jµ) = 2
n−1∑
i=1

xiCi(Jµ) (10)

in the unknowns x1, . . . , xn−1. By equations (8) and (9) this system is equiv-
alent to the evaluation of the system of equations

ek,k+1 = (xk+1 − xk−1)ek,k+1 (11)

at Jµ. Here we set x0 = xn = 0. Thus the system (10) is equivalent to the
equations

1 = xk+1 − xk−1 for 1 ≤ k ≤ n− 1, k 6= µ1 + . . .+ µi. (12)

If µi is even for all i, then (12) involves the equations

1 = xn − xn−2 = . . . = x2 − x0

which are inconsistent.
On the other hand if some µi is odd, then µ1 + . . .+µj is odd for some j,

so the system (12) is equivalent to a number of systems of equations of the
form

1 = xp − xp−2 = . . . = xq+2 − xq. (13)

Moreover the sets of variables which occur in two such systems are disjoint,
and in each system (13) we have either p < n or q > 0. If p < n (resp. q > 0),
we can set xq = 0 (resp. xp = 0) and solve the equations (13) recursively for
xq+2i (resp. xp−2i).

Remark. If V (q) = Oµ it follows from Theorem 3.11 and [CM, Corollary
7.2.4] that k(q) = dimOµ.

3.13. For any classical simple Lie superalgebra g considered up to this
point, the matrix M(g) is nonsingular. This fact together with some Clifford
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algebra theory can be used to show that U(g) is prime, [B]. However if
g = P (n), it is shown in [KK] that U(g) is not prime, and it follows thatM(g)
is singular. Because of this it seems unlikely that M(g) can be expressed in
terms of a Kronecker product. However if O is a nilpotent orbit in g0 there
is a formula for k(O) which is similar to the formula for the corresponding
orbit for the Lie superalgebra Q(n).

For n ≥ 2 the Lie superalgebra P (n) is the subalgebra of s`(n+ 1, n+ 1)
consisting of all matrices of the form[

A B
C −At

]
where trace (A) = 0, Bt = B and Ct = −C.

If g = P (n), then g0
∼= s`(n + 1). As a g0-module, g1 is the direct sum

of two submodules g±1 where g+
1 (resp. g−1 ) consists of all matrices as above

with B = 0 (resp. C = 0). Let V be the natural module for s`(n + 1) with
weights ε1, . . . , εn+1. Then, as g0-modules g+

1
∼= S2V and g−1

∼= ∧2V ∗.

Fix µ a partition of n. We assume that the nonzero entries in the Jordan
matrix Jµ occur immediately below the main diagonal. For 1 ≤ i ≤ n − 1,
let bi be the entry of Jµ in row i+ 1, column i, and let b0 = bn = 0. Denote
the orbit of Oµ in g0 by Jµ.

Theorem For µ ∈ P(n) we have

k(Oµ) = 2
n−1∑
i=1

(n− i)bi = n2 −
∑

i

(µ′i)
2.

Proof. If we choose a basis for g1 such that elements of g+
1 precede elements

of g−1 , then M(g) has the form [
0 N
N t 0

]
.

Let ε1, . . . , εn+1 be the weights of V . We use the weights −εi− εj of ∧2V ∗ to
index the rows, and the weights εk + ε` (k ≤ `) of S2V to index the columns
of N . We order the rows of N lexicographically and order the columns so
that column (i, j) precedes column (k, `) if and only if (k, `) <`ex (i, j).
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Note that the evaluation Nµ of N at Jµ has the following properties:

(a) The entry in row (i, j) and column (i + 1, j) is nonzero if and only if
bi = 1

(b) The entry in row (i, j) and column (i, j + 1) is nonzero if and only if
bj = 1.

(c) All other entries in row (i, j) are zero.

We claim that Nµ is row equivalent to the matrix Nµ obtained from Nµ

by replacing row (i, j) by zero for all j > i whenever bi = 0. We can assume
that i > 1, since if b1 = 0 then Jµ = 0, and also that bj = 1. Then bi−1 = 1.
Suppose that bi = bi−q−1 = 0 but bi−p 6= 0 for p = 1, . . . , q. This means
that the Jordan block of Jµ ending in row i has size q + 1. Since the Jordan
blocks of Jµ are arranged in order of decreasing size and i < j it follows
that the Jordan block of Jµ containing row j has size at most q + 1. Hence
bj+p = 0 for some p with p ≤ q and we fix p minimal with this property.

Then the submatrix of Nµ formed by rows (i− p− 1 + k, j + p+ 1− k),
for k = 1, . . . , p+ 1, and columns (i− k, j + k + 1), for k = 0, . . . , p− 1 has
the form 

0 0 0 · · · 0 0 ∗
0 0 0 · · · 0 ∗ ∗
0 0 0 · · · ∗ ∗ 0
· · · · · ·
· · · · · ·
0 ∗ ∗ · · · 0 0 0
∗ ∗ 0 · · · 0 0 0
∗ 0 0 · · · 0 0 0


where each * is nonzero. In addition every nonzero entry in each of the rows
listed above occurs in this submatrix. Hence the last row, row (i, j) of Nµ,
is a linear combination of the preceding rows. The claim follows from this.

Now if bi 6= 0, then for j > i the first entry in row (i, j) of Nµ occurs in
column (i + 1, j). Each such index i contributes n − i linearly independent
rows to the rank of Nµ, so we obtain the first formula in the theorem.

To obtain the second formula, note that bi = 0 if i = µ1 + . . . + µk for
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some k and that bi = 1 otherwise. Hence

k(Oµ) = 2
∑

i

(n− i)bi

= n(n− 1)− 2
∑

k

(n− (µ1 + . . .+ µk)).

Observe that n−(µ1 + . . .+µk) is the number of boxes in the Young diagram
for µ which are not contained in the first k rows. Using the columns instead
to count boxes we have

k(Oµ) = n(n− 1)− 2
∑
i≥1

∑
j≥1

(µ′i − j)

= n(n− 1)−
∑
i≥1

µ′i(µ
′
i − 1)

= n2 −
∑

i

(µ′i)
2.

4 Parabolic Subalgebras

4.1. Although the connection with Clifford algebras works best for
the Lie superalgebras g`(m,n), and Q(n) many of our results on induced
modules hold more generally. Therefore we adopt an axiomatic approach.
Henceforth we assume that

(i) g = ⊕i∈Zg(i) is a graded Lie superalgebra with g0 reductive.

(ii) h0 ⊆ g(0) where h0 is a Cartan subalgebra (CSA) of g0 and g is a
semisimple h0-module.

Assume axioms (i) - (ii) and set

m = ⊕i<0g(i), l = g(0), m+ = ⊕i>0g(i), p = l⊕m+

so that
g = m⊕ l⊕m+.
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Let h be the centralizer of h0 in g. Axiom (ii) implies the existence of a
root space decomposition

g = h⊕⊕α∈∆gα

where
gα = {x ∈ g|[h, x] = α(h)x for all h ∈ h0}

and
∆ = {α ∈ h∗0|α 6= 0, gα 6= 0}.

We also assume that
(iii) ∆ = ∆+ ∪ ∆−, a disjoint union, where ∆± are subsets of ∆ such that
α, β ∈ ∆± implies that α + β ∈ ∆± or gα+β = 0, and such that gα ∩ g0 ⊆ p

for all α ∈ ∆+.

Now let ∆(l) be the set of roots of l and set ∆±(l) = ∆± ∩∆(l). If Γ is a
subset of ∆ and i = 0, 1 we set Γi = {α ∈ Γ|gα ∩ gi 6= 0}.
We refer to the subalgebra

b = h⊕⊕α∈∆+gα

as a Borel subalgebra of g. Note that b is determined by ∆+ in axiom (iii) and
that in general there may be several choices for ∆+ even if ∆+

0 is specified in
advance. By axiom (iii) b0 ⊆ p. The subalgebra

c = h⊕⊕
α∈∆+(l)g

α = b ∩ l

is a Borel subalgebra of l. We say that a root α ∈ ∆+(l)0 (resp. α ∈ ∆+(l)) is
indecomposable if we cannot write α in the form α′ +α′′ with α′, α′′ ∈ ∆+(l)0

(resp. α′, α′′ ∈ ∆+(l)). Let S (resp. T ) be the set of indecomposable roots
of ∆+(l0), (resp. ∆+(l)).

Let O be the Richardson orbit induced from a Levi factor of p0. We say
p is a good parabolic if dim(g/p)1 = `(O), (see Section 2.2 for notation). In
Section 5 we show that modules induced from a one dimensional module for
a good parabolic have the least possible multiplicity allowed by the Clifford
algebra theory.

4.2. We assume axioms (i)-(iii). For λ ∈ h∗0 we define the simple highest
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weight l0-module L̂S(λ) as the unique simple quotient of the Verma module
with highest weight λ induced from the Borel subalgebra c(0) of l0, c.f. [Ja2,

5.11]. The module L̂S(λ) is finite dimensional if and only if λ ∈ P++
S where

P++
S = {λ ∈ h∗0|(λ, α∨) ∈ N for all α ∈ S}.

For λ ∈ h∗0 there is a unique graded simple c-module Vλ such that gαVλ = 0
for all α ∈ ∆+(l))and (h − λ(h))Vλ = 0 for all h ∈ h∗0. We remark that if
c involves no classical simple Lie superalgebra of type Q, then h = h0 and

dim Vλ = 1 for all λ ∈ h∗0. The induced module Indlc Vλ has a unique simple

graded quotient which we denote by L̂T (λ). The conditions for L̂T (λ) to be
finite dimensional are rather involved c.f. [K]. However it is easy to show

that dimL̂T (λ) = 1 if and only if λ ∈ l⊥ where

l⊥ = {λ ∈ h∗0|λ([l, l] ∩ h0) = 0}.

We can regard L̂S(λ), (resp. L̂T (λ)) as a U(p0)-module (resp. U(p)-module)
by allowing m+

0 , (resp. m+) to act trivially and form the induced modules

MS(λ) = Ind
g0

p0
L̂S(λ), MT (λ) = Ind

g
p L̂T (λ).

By Lemma 2.6
d(MT (λ)) = dim(g/p)0 + d(L̂T (λ))

and
e(MT (λ)) = 2(g/p)1e(L̂T (λ)).

To explain the choice of notation: MS(λ) conforms to the usage in [Ja2]

while L̂S(λ) is denoted L̂S(λ) in [Ja2]. For L̂T (λ) and MT (λ) we want some-
thing similar which emphasizes the dependence on T rather than S.

4.3. We can obtain a Lie superalgebra satisfying axioms (i) - (iii) as
follows. Suppose that g0 is reductive with CSA h0, V is a Z2-graded g-
module and V = ⊕t

k=1V (k) where V (k) is a Z2-graded, h0-stable subspace.
Set V (k) = 0 unless 1 ≤ k ≤ t and

g(i) = {x ∈ g|xV (k) ⊆ V (k − i) for all k}.

In all the examples we consider g = ⊕i∈Zg(i) satisfies axioms (i) - (iii).
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For the rest of this subsection suppose that g = g`(m,n) and that I =
I1 ∪ I2 is as in section 3.1. Set V = span{ei|i ∈ I}, the natural g-module.
Consider the function σ : I −→ {1, . . . , t} defined by ei ∈ V (σ(i)) for all i.
Then eij ∈ g(σ(j) − σ(i)). We assume the Borel subalgebra b of upper
triangular matrices in g0 is a subalgebra of p. In terms of σ this means that
if i < j and either j ≤ m or n+1 ≤ i we have σ(i) ≤ σ(j). For 1 ≤ k ≤ t
set

Λk = {i ∈ I|σ(i) = k}

and
rk = |Λk ∩ I1|, sk = |Λk ∩ I2|.

We can rearrange the sequences r = (r1, . . . , rt) and s = (s1, . . . , st) to obtain
partitions µ′ ∈ P(m), ν ′ ∈ P(n). Note that the sequences r, s determine the
subspaces V (k). Also l = g(0) ∼= ⊕t

i=1g`(ri, si). It follows that

dim(g/p)1 = mn−
t∑

i=1

risi.

Lemma (a) The Richardson orbit induced from l0 is Oµ,ν.
(b) p is a good parabolic if and only if there is a permutation η of {1, . . . , t}
such that µ′i = rη(i) and ν ′i = sη(i) for 1 ≤ i ≤ t.

Proof. (a) follows from [CM, Theorem 7.2.3].
(b) By Lemma 3.4 p is good if and only if

∑
µ′iν

′
i =

∑
risi.

We can assume that µ′i = ri for all i. Suppose that rj > rj+1 but sj < sj+1 and
define s′j = sj+1, s

′
j+1 = sj and s′i = si for i 6= j, j+1. Then

∑
ris

′
i >

∑
risi.

The result follows from this observation.

We define εi ∈ h∗0 so that εi(x) is the ith diagonal entry of x. We take

∆+ = {εi − εj|i < j}. For this choice of ∆ we have dim L̂T (λ) < ∞ if and

only if dim L̂S(λ) <∞. Note that p need not contain the distinguished Borel
subalgebra of g as the following examples show.

Example. Let (m,n) = (4, 3) and define σ by

σ(1) = σ(2) = σ(5) = 1,

σ(3) = σ(6) = σ(7) = 2,

σ(4) = 3.
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Then
Λ1 = {1, 2, 5},Λ2 = {3, 6, 7},Λ3 = {4}

so r = (2, 1, 1), s = (1, 2, 0). Also S = {ε1 − ε2, ε6 − ε7} and

l ∼= g`(2, 1)⊕ g`(1, 2)⊕ g`(1, 0).

In this case p is not a good parabolic.
If we arrange instead that

Λ1 = {1, 2, 5, 6},Λ2 = {3, 7},Λ3 = {4}

then

l ∼= g`(2, 2)⊕ g`(1, 1)⊕ g`(1, 0).

In this case p is a good parabolic.

4.4. Now let V, ψ, g and g′ be as in section 3.11 and set g = g′/z,
the simple Lie superalgebra of type Q(n − 1) . We show how to asso-
ciate a good parabolic in g and g to most nilpotent orbits. Suppose that
V = ⊕t

k=1V (k) where V (k) is a Z2-graded subspace of V stable under h0

and ψ. Set rk = dimV (k)0 and rearrange the sequence r = (r1, . . . , rt) to
obtain a partition µ′ ∈ P(n). The grading on g defined in section 4.3 induces
a grading on g′ and g.

Let lr be the block diagonal subalgebra of g`(n) with diagonal entries of
size r1, . . . , rt and set l′r = {x ∈ lr|trace(x) = 0}. By [CM, Theorem 7.2.3]
the Richardson orbit in g`(n) (resp. s`(n) ) induced from lr (resp l′r) is Oµ.
Also g(0) consists of all matrices of the form[

a b
b a

]
with a, b ∈ lr, while g(0) consists of the images mod z of matrices of this
form with a, b ∈ l′r. Set p = ⊕i≥0g(i) and p = ⊕i≥0g(i). Then dim(g/p)1 =
n2 −

∑
i(µ

′
i)

2. Thus from Theorem 3.12 we get the following result.

Lemma (a) p is a good parabolic in g.
(b) If some part of µ is odd then p is a good parabolic in g.
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5 Induced Modules and Primitive Ideals

5.1. The connection between the Clifford algebras Cq and modules of
low multiplicity is based on the following result.

Lemma Let N be a nonzero finitely generated graded grU(g)-module such
that q = annS(g0)N is prime and N is torsion free as a S(g0)/q-module. If
V is the closed set in g∗0 defined by q then d(N) = d(S(g0)/q) and e(N) ≥
2`(V)e(V). Furthermore if e(N) = 2`(V)e(V) then Cq is split.

Proof. Clearly d(N) ≤ d(S(g0)/q). Let C = C(q) so that NC is a
(grU(g)/q)C-module. There is a factor module of NC which is a simple mod-
ule over Cq = (grU(g)/π(q))C. By [GW, Theorem 9.17 (a)] this factor has
the form NC for some grU(g)/π(q) factor module N of N . Hence by the
remarks in Section 2.5 and Lemma 2.1

d(N) ≥ d(N) = d(S(g0)/q)

and
e(N) ≥ e(N) = 2`(V)e(V).

The last statement follows from Lemma 2.1.

5.2. To apply Lemma 5.1 let M be a finitely generated U(g)-module.
We equip M with a good filtration and consider an affiliated series

0 = N0 ⊂ N1 ⊂ . . . ⊂ Nk = N

for the graded module N = grM . Let p1, . . . , pk be the affiliated primes
of this series and qi = π−1(pi). By [GW, Prop. 2.13] each factor Ni/Ni+1

is torsion-free as a grU(g)/pi-module and hence also as a S(g0)/qi-module.
Thus

e(M) = e(N) =
∑

e(Ni/Ni+1) ≥
∑

2`(qi)e(S(g0)/qi)

where both sums are taken over all indices i such that d(Ni/Ni+1) = d(N).

By [GW, Proposition 2.14], any prime ideal of which is minimal over
ann N is equal to one of the pi and it follows easily that

√
annS(g0)N =
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q1∩q2 . . .∩qk. The closed subset of SpecS(g0) defined by annS(g0)N is called
the associated variety of M . This definition is independent of the choice of
good filtration [Ja2, 17.2]. These considerations motivate the study of mod-
ules M whose associated variety has a unique component V with dimension
equal to d(M) and such that e(M) = 2`(V)e(V).
For primitive factors U(g)/P the Goldie rank, rank(U(g)/P ) is a more im-
portant invariant than e(U(g)/P ) so we should try to find primitives P such
that rank(U(g)/P ) ≤ 2`(q). where q =

√
grP ∩ S(g0).

5.3. For the remainder of the paper we assume that conditions (i) - (iii)
of Section 4.1 hold.

Theorem Suppose that dim L̂T (λ) < ∞ and that dim(g/p)1 = c. Then
MT (λ) has a filtration by g0-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mk = MT (λ)

such that for i = 1, . . . , k

Mi/Mi−1
∼= MS(λi)

for certain λi ∈ P++
S and

k∑
i=1

dim L̂S(λi) = 2c dim L̂T (λ). (14)

Proof. To simplify notation set M = MT (λ). We extend the grading on
g defined in section 4.1 to U(g) and ∧m1. Note that m1 is an l0-module.
Antisymmetrization gives an injective map of l0-modules

∧m1 −→ U(m)

and we identify ∧m1 with its image. Then

U(m) = U(m0)⊗ ∧m1.

It is easy to see that the extended grading satisfies

[m+
0 (j), (∧m1)(−i)] ⊆ ⊕r,s,tU(m0)(−r)⊗ (∧m1)(−s)⊗ U(p)(t) (15)
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for all i, j > 0, where the sum is over all r, s, t ≥ 0 such that j− i = t− r− s.
Furthermore since [m+

0 (j),m1(−k)] ⊆ g(j−k) we can restrict the sum on the
right to terms with t < j. In particular, each summand satisfies s < i.

Now for i ≥ 0, set ∧i =
⊕

j≤i ∧m1(−j), L′i = ∧i⊗ L̂T (λ) ⊆M, and define

M ′
i = U(g0)L

′
i . This process terminates when L′N = (∧m1) ⊗ L̂T (λ) and

M ′
N = M for some N. Note that each L′i is an l0-module. Since L̂T (λ) is a

U(p)-module with m+
0 L̂T (λ) = 0 it follows from equation (15) that m+

0 L
′
i ⊆

M ′
i−1.

We refine the series 0 = L′0 ⊂ L′1 ⊂ . . . ⊂ L′N = ∧m1 ⊗ L̂T (λ) to a
composition series

0 = L0 ⊂ L1 ⊂ . . . ⊂ Lk = ∧m1 ⊗ L̂T (λ)

of ∧m1⊗L̂T (λ) as an l0-module and define Mi = U(g0)Li. Since each Li/Li−1

is finite dimensional it follows that Li/Li−1
∼= L̂S(λi) for λi ∈ P++

S .
Also for each i we have L′j−1 ⊆ Li−1 ⊂ Li ⊆ L′j for some j and hence

m+
0 Li ⊆ m+

0 L
′
j ⊆M ′

j−1 ⊆Mi−1. Thus

Li = (Li +Mi−1)/Mi−1

is a U(p0)-module and Mi/Mi−1 = U(g0)Li. Hence Mi/Mi−1 is a homomor-

phic image of Ind
g0

p0
Li and Li is a homomorphic image of Li/Li−1. It follows

that
[Mi/Mi−1] ≤ [Ind

g0

p0
Li/Li−1]. (16)

Therefore

[M ] =
k∑

i=1

[Mi/Mi−1] ≤
k∑

i=1

[Ind
g0

p0
Li/Li−1] = [M ]

where the last equality is obtained by comparing characters using the PBW
theorem. Thus equality holds in (16) and it follows that Mi/Mi−1

∼= MS(λi).

Remark. From the proof we see that as an l0-module

⊕iL̂S(λi) ∼= ∧m1 ⊗ L̂T (λ).

With this additional information the theorem generalizes [M1, Theorem 3.2].
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5.4. The next result is an analog of [Ja2,15.5(a)].

Corollary If L̂T (λ) is finite dimensional then MT (λ) is a homogeneous
U(g)-module.

Proof. Let N be a nonzero submodule of MT (λ) and choose i minimal such
that N ∩Mi 6= 0. Then N ∩Mi is isomorphic to a nonzero submodule of
MS(λi) which is a homogeneous U(g0)-module by [Ja2, Satz 15.5(a)]. Hence

d(MS(λi)) = d(N ∩Mi)

≤ d(N) ≤ d(MT (λ)).

The result follows since d(MS(λi)) = d(MT (λ)) = dim(g/p)0.

5.5. The following result is an analog of [Ja2, 17.16].

Lemma The associated variety V (grannU(g0)MT (λ)) is the closure of the
Richardson orbit induced from a Levi factor of p0.

Proof. Consider the series M0 ⊂ M1 ⊂ . . . ⊂ Mk = MT (λ) of Theorem 5.3
and set IS(λi) = annU(g0)MS(λi). Then

IS(λ1) . . . IS(λk) ⊆ annU(g0)MT (λ) ⊆ IS(λi)

so that ∏
grIS(λi) ⊆ grannU(g0)MT (λ) ⊆ grIS(λi)

for all i. On the other hand by [Ja2, 17.16] V (grannU(g0)MS(λi)) = Gm0 for
all i so the result follows.

5.6. For the proof of Theorem 5.7 we need a good filtration on MT (λ)
with special properties.

Lemma If M = MT (λ) and q = S(g0)p0, there is a good filtration on M
such that annS(g0)(grM) = q and grM is a torsion free S(g0)/q-module.
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Proof. Let Un(m) = Un(g) ∩ U(m) and

Mn = Un(m)⊗ L̂T (λ)

Since pL̂T (λ) ⊆ L̂T (λ), an easy induction shows that g0Mn ⊆ Mn+2 and
g1Mn ⊆Mn+1, so {Mn} is a filtration of M as a U(g)-module.

Similarly we have p0Mn ⊆ Mn which implies S(g0)p0 ⊆ annS(g0)grM .

On the other hand grM ' grU(m) ⊗ L̂T (λ) is a free S(m0)-module. The
result follows from this.

5.7. Part (a) of the next result is an analog of [Ja2, Satz 15.5b)].

Theorem Suppose that p is a good parabolic in g and that dim L̂T (λ) = 1.
Set M = MT (λ) and q = S(g0)p0 . Then
(a) M is a critical U(g)-module with e(M) = 2`(q)

(b) annU(g)M is a primitive ideal.

Proof. (a) Consider a good filtration on M as in Lemma 5.6. If M ′ is
a nonzero submodule of M then N ′ = grM ′ is a nonzero submodule of
N = grM , and we have d(N ′) = d(M ′) and e(N ′) = e(M ′). Let q′ be
the prime ideal of S(g0) defining the Richardson orbit induced from l0 and
q = S(g0)p0. Since p is a good parabolic

dim(g/p)1 = `(q).

By Lemma 5.6 N ′ is torsionfree, so by Lemma 5.1 we have

dim(g/p)0 ≤ d(N ′) ≤ d(M) = dim(g/p)0

and
2dim(g/p)1 ≤ e(N ′) ≤ e(M) = 2dim(g/p)1 .

Thus equality holds in both cases and this proves the result.

(b) Note that M has finite length, so the arguments in [Ja2, 8.14-8.15] show
that socM is simple and annU(g)M = annU(g)socM .
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5.8. If M,N are U(g0)-modules we set as in [Ja2]

L(M,N) = {φ ∈ HomC(M,N)| dimU(g0)φ <∞}.

Then L(M,N) is a U(g0)-bimodule, and if M,N are actually U(g)-modules
then L(M,N) is a U(g)-bimodule.

For X a U(g0)-bimodule we write RannX for the annihilator of X as a
right U(g0)-module. If ∧ is a coset of the integral weight lattice of g0 in h∗0
the set ∧++ is defined as in [Ja2, 2.5].

Lemma If λ ∈ ∧++, L̂T (µ) is finite dimensional and M = Ind
g
p L̂T (µ) then

RannU(g0)L(M(λ),M) is a primitive ideal of U(g0).

Proof. There is a surjective map of U(g0)-modules

M ′ = U(g)⊗U(p0) L̂T (µ) −→M.

Since the finite dimensional module L̂T (µ) is semisimple as a l0-module, we
can write

L̂T (µ) ∼= ⊕L̂S(µi).

with µi ∈ ∧ ∩ P++
S . Thus as a g0-module

M ′ ∼=
⊕

i

U(g)⊗U(g0) U(g0)⊗U(p0) L̂S(µi)

=
⊕

i

U(g)⊗U(g0) MS(µi)

∼=
⊕

i

E ⊗U(g0) MS(µi)

for some finite dimensional U(g0)-module E. Since λ ∈ ∧++ the functor
L(M(λ), ) is exact on the category O, see [Ja2, Lemma 4.8 and 6.9 (9)].
Hence X ′ = L(M(λ),M ′) maps onto X = L(M(λ),M) and RannX ⊇
RannX ′. Similarly sinceM ′′ = MS(µ) ⊆MT (µ) we haveX ′′ = L(M(λ),M ′′) ⊆
L(M(λ),M) and so RannX ′′ ⊇ RannX. Finally [Ja2, 6.8 (2′) and Lemma
15.7] imply that RannX ′′ = RannX ′ is a primitive ideal in U(g0).

5.9. By Corollary 5.4 and Lemma 5.8 the hypotheses of [Ja2, Satz 12.3]
are satisfied. We apply this below.
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Theorem If dim L̂T (λ) < ∞, M = MT (λ) and c = dim(g/p)1, then

L(M,M) is prime Noetherian with Goldie rank 2c dim L̂T (λ).

Proof. By [Ja2, Satz 12.3 (a), (c) ] L(M,M) is prime Noetherian and

rank L(M,M) =
∑

L

[M : L] rank L(L,L)

where the sum runs over composition factors L of M as a U(g0)-module such
that d(L) = d(M), and [M : L] is the multiplicity of L in M . Now if

0 = M0 ⊂M1 ⊂ . . . ⊂Mk = M

is the series given in Theorem 5.3 then

[M : L] =
k∑

i=1

[MS(λi) : L].

Using [Ja2, 15.8], then [Ja2, 15.21 (2)] and finally equation (14) we obtain

rank L(M,M) =
k∑

i=1

rank L(MS(λi),MS(λi))

=
k∑

i=1

dim L̂S(λi) = 2cdimL̂T (λ).

5.10. In the final result of this subsection we assume that g = ⊕i∈zg(i)
is a graded Lie superalgebra as in section 4.1 and set p = ⊕i≥0g(i), l = g(0).
Suppose that λ ∈ l⊥ and set M = MT (λ), q = S(g0)p0.

Corollary. Suppose that p is a good parabolic in g. Then e(M) = 2`(q),
annU(g)M is a prime ideal of U(g) and L(M,M) is a primitive ring with
Goldie rank 2`(q). Furthermore the Clifford algebra Cq is split.

Proof. Since dim L̂T (λ) = 1, the statements about L(M,M) follow from
Theorem 5.9, while the claims about M and annU(g)M hold by Theorem 5.7.
Since e(M) = 2`(q), Cq is split by Lemma 2.1 .

Observe that U(g)/annU(g)M embeds in L(M,M). It follows from a ver-

sion of the additivity principle [GW, Corollary 7.26] that U = U(g)/annU(g)M
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has Goldie rank at most 2`(q). However the Goldie rank of U can be strictly
less than 2`(q). For example suppose that g = osp(1, 2) and let M be a Verma
module. The associated variety of M in g0 is the nilpotent cone N and we
have k(N ) = `(N ) = 1, by Theorem 3.9. By the Corollary the Goldie rank
of L(M,M) is 2, but for an appropriate choice of M,U is isomorphic to the
first Weyl algebra, which has Goldie rank 1, see [P].

6 Nilpotent Orbits in Lie superalgebras

6.1. Suppose that g is a Lie superalgebra such that g0 is reductive, and
that there is a non-degenerate even invariant bilinear form B on g. We use
B to identify g∗0 with g0. For x ∈ g0, let gx be the centralizer of x in g.

Lemma We have
k(mx) = dimg1 − dimgx

1 .

Proof. If u ∈ g1, then u ∈ gx if and only if 0 = B([x, u], w) = B(x, [u,w])
for all w ∈ g1. This holds if and only if u is in the radical of the C-valued
bilinear form on g1 whose matrix is obtained by reducing M(g) mod mx. The
result follows since k(mx) is the rank of this bilinear form.

Remarks. If ad x is nilpotent, then the value of k(mx) is given by the
formulas in Section 3. When g = g`(m,n), and x ∈ g0, we can compute
dimgx

1 directly as follows. If

x =

[
Jµ 0
0 Jν

]
, y =

[
0 C
D 0

]
,

we have y ∈ gx
1 if and only if JµC = CJν and DJµ = JνD. Let U =

{C ∈ Mm,n|JµC = CJν}. Then U is the space of highest weight vectors in
Hom(⊕i≥1L(µi),⊕i≥1L(νi)). Hence as in the proof of Lemma 2.4, we have
dim U =

∑
i µ

′
iν
′
i. This easily gives dimgx

1 = 2
∑

i µ
′
iν
′
i.

6.2. Consider the action of an algebraic group K on its Lie algebra k

by the adjoint representation Ad : K −→ GL(k). It follows from [H,Theorem
10.4] that the tangent space to the orbit at x ∈ k is given by Tx(K ·x) = k/kx.
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We prove a parallel result for certain Lie superalgabras. Before we can state
it however, we need to review some notions concerning the functor of points
and Lie supergroups, see [DG],[Ja3] and [Ma].

The category of supercommutative C-algebras will be denoted Alg and
the category of sets by Set. Whenever we construct a functor X from Alg
to Set, we do so by specifying the value of X on an object R of Alg in a way
which is functorial in R. Hence there is no need to say anything about the
effect of X on morphisms. We call X(R) the set of R-points of X. We say
that X is a subfunctor of Y if X(R) ⊆ Y (R) for all supercommutative R. An
affine superscheme X is a representable functor from Alg to Set. Thus there
is a supercommutative C-algebra O(X) such that X(R) = MorAlg(O(X), R)
for any supercommutative algebra R.

6.3. Suppose that V = V0 ⊕ V1 is a Z2-graded vector space and let V ∗

be the dual vector space. To specify V as a representable functor we need to
define O(V ). This is done by setting

O(V ) = S(V ∗
0 )⊗ ∧(V ∗

1 ),

the tensor product of the symmetric algebra on the vector space V ∗
0 and

the exterior algebra on the vector space V ∗
1 . It is easy to see that for any

supercommutative algebra R

V (R) = V0 ⊗R0 + V1 ⊗R1.

It should be clear from the context whether V is to be thought of as a Z2-
graded vector space or as a functor. We say that an affine superscheme X
is a closed subscheme of V if O(X) is a Z2-graded factor algebra of O(V ).
If g is a Lie superalgebra, then for any supercommutative algebra R, g(R)
becomes a Lie algebra when we set

[u⊗ r, v ⊗ s] = [u, v]rs

for all u⊗ r ∈ gi ⊗Ri, v ⊗ s ∈ gj ⊗Rj, (i, j = 0, 1).

6.4. Let H be a supercommutative Hopf superalgebra with coproduct
∆. For h ∈ H, write

∆(h) =
∑

h1 ⊗ h2.
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Then for any R ∈ Ob Alg, HomC(H,R) is an algebra under the convolution
product

(φ · ω)(h) =
∑

φ(h1)ω(h2) (17)

for
φ, ω ∈ HomC(H,R).

Note that the identity ofHomC(H,R) is the composite of the counitH −→ C
followed by the inclusion C −→ R. Also MorAlg(H,R) is a subgroup of
the group of units of HomC(H,R). The inverse of φ ∈ MorAlg(H,R) is
φ−1 = φ ◦ σ where σ is the antipode of H.

6.5. Let V be a Z2-graded vector space and K = GL(V ). By choice of a
basis we identify K with GL(m,n). For R ∈ Ob Alg the R-points of K are
matrices over R. We use the set I = I1∪I2 as in section 3.1 to index the rows
and columns of these matrices, as well as elements of k = g`(m,n). We think
of K as the group scheme represented by the Hopf superalgebra H = O(K)
which we describe below.

Treating k as a Z2-graded vector space, the construction of the previous
subsection yields an algebra O(k). It is often convenient to arrange the gen-
erators xij, (i, j ∈ I) of O(k) in standard matrix format [Ma, page158]. This
means that we arrange them in the form

x = (xij) =

[
x1 x2

x3 x4

]
where x1 is the matrix of indeterminates (xij)i,j∈I1 and the other submatrices
are defined similarly. All entries in the matrices x1, x4 are even while those
in x2, x3 are odd. As an algebra O(k) is the tensor product of the polynomial
algebra generated by the even entries of x with the exterior algebra on the
vector space spanned by the odd entries of x.

We can make O(k) into a bialgebra by defining the coproduct ∆ and
counit ε on the generators xij, (i, j ∈ I) by

∆(xij) =
∑
`∈I

xi` ⊗ x`j

ε(xij) = δij.

This implies that the product defined by equation (17) is just matrix multi-
plication.

38



Note that d = (det x1)(detx4) is a polynomial in the central variables
xij, xkl with i, j ∈ I1, k, l ∈ I2. Inverting d we obtain the Hopf superalgebra
H = O(K). The coproduct and counit for H are uniquely determined by
their counterparts for O(Mm,n). The antipode σ is defined on generators xij

symbolically by

σ

([
x1 x2

x3 x4

])
=

[
y1 −x−1

1 x2y4

−x−1
4 x3y1 y4

]
where

y1 = (x1 − x2x
−1
4 x3)

−1, y4 = (x4 − x3x
−1
1 x2)

−1.

Thus for example if i, j ∈ I1, then σ(xij) is the entry in row i and column j
of y1.

We say that G is a closed subgroup of GL(V ) if G is a subfunctor of
MorAlg(H, ) of the form G = MorAlg(H/I, ) for some Hopf ideal I of
H. If this is the case we set O(G) = H/I. We say that the functor G is a
(linear) Lie supergroup if it is isomorphic to a closed subgroup of GL(V ) for
some V. A Lie supergroup G acts on an affine superscheme X if O(X) is
an O(G)-comodule algebra, [Mo,4.1.2]. This means that there is a natural
transformation of functors G × X −→ X satisfying the usual axioms for
group actions, see [DG, page 160].

6.6. We define orbits for actions of Lie supergroups and study their
tangent spaces. Suppose that G is a Lie supergroup which acts on an affine
superscheme X. We write Xred for the C-points of X, that is

Xred = MorAlg(O(X),C).

If x ∈ Xred, then using the inclusion C −→ R we can regard x as an element
of X(R) for any supercommutative algebra R. It is therefore meaningful to
define a subfunctor G · x of X by setting

(G · x)(R) = {g · x|g ∈ G(R)},

compare [DG, page 243]. The orbit map g → g · x gives a natural trans-
formation of functors µ : G → G · x ⊆ X. The orbit closure G · x, can be
described as follows, cf [S1]. By Yoneda’s lemma, µ induces an algebra map
µ∗ : O(X) −→ O(G), and G · x is the closed subfunctor of X defined by the
ideal Kerµ∗.
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6.7. For a supercommutative algebra R, the algebra of dual numbers
over R is the algebra R[ε] obtained from R by adjoining an even central
indeterminate ε such that ε2 = 0. Suppose that X is a subfunctor of a Z2-
graded vector space V. We define the tangent space, Tx(X) to X at x ∈ Xred.
As a first attempt we consider the subfunctor of V given by

tx(X)(R) = {y ∈ HomC(O(V ), R)|x+ yε ∈ X(R[ε])}.

That is tx(X)(R) is the fiber over x under the map X(R[ε]) −→ X(R). How-
ever it is not clear that tx(X) is a subspace of V, compare the discussion in
[EH, VI.1.3] on the tangent space to a functor. So we define Tx(X) to be
the smallest Z2-graded subspace of V such that tx(X)(R) ⊆ Tx(X)(R) for all
supercommutative R. For X ⊆ K = GL(V ), tx(X) and Tx(X) are defined
in similar ways except that V is replaced by k = g`(V ). This definition works
well in the cases of interest to us which are as follows.

Case 1. Suppose that X is a closed subscheme of V and let mx be the
maximal ideal ofO(X) corresponding to x. Using a Taylor expansion centered
at x, see [Le,II.2], we can see that tx(X) = Tx(X) is naturally isomorphic to
(mx/m

2
x)
∗. Note also that if y ∈ HomC(O(V ), R), then y ∈ Tx(X)(R) if and

only if y is an R-valued point derivation at x (compare [H, page 38]), that is

y(fg) = x(f)y(g) + y(f)x(g)

for all f, g ∈ O(X).
Case 2. If G is a closed subgroup of K, the tangent space to the identity

1 ∈ G is

T1(G)(R) = {y ∈ HomC(O(k), R)|1 + yε ∈ G(R[ε])}.

An easy computation, [A, Chapter 8, (6.19)], shows that T1(G)(R) is a Lie
subalgebra of k(R) for any supercommutative algebra R. Thus T1(G) is a Lie
superalgebra which we denote by Lie(G).

Case 3. For G,K as in Case 2, set g = Lie(G) and k = Lie(K). Then
G(R) acts by conjugation on g(R). Since the action is functorial in R, we
can say that G acts on g. Consider the orbit of a C-point of g, that is of an
element x ∈ g0. We have

tx(G · x)(R) = {y ∈ HomC(O(k), R)|x+ yε ∈ (G · x)(R[ε])}.
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To compute this, suppose g0 ∈ G(R) and g1 ∈ HomC(O(k), R) and set
g = g0 + g1ε. Then g−1 = g−1

0 − g−1
0 g1g

−1
0 ε. Since G(R) ⊆ G(R[ε]) we have

g ∈ (G(R[ε]) if and only if gg−1
0 = 1+g1g

−1
0 ε ∈ G(R[ε]) and this is equivalent

to z = g1g
−1
0 ∈ g(R).

We have gxg−1 = x+yε if and only if g0xg
−1
0 = x and gxg−1 = x+[z, x]ε.

The calculations take place in the algebra HomC(O(k), R[ε]). It follows that
x + yε ∈ (G · x)(R[ε]) if and only if y = [z, x] ∈ [g(R), x] = [g, x](R).
Therefore tx(G · x) = [g, x], which is a subspace of g. We have proved the
following result.

Theorem We have
Tx(G · x) = [g, x]

and the map z −→ [z, x] gives a natural isomorphism of functors

g/gx −→ Tx(G · x).

Remark. We do not know whether, in the situation of the Theorem, we
have Tx(G · x) = Tx(G · x).

We define the superdimension of a Z2-graded vector space U = U0 ⊕ U1

to be
dim U = (dim U0, dim U1).

In the non-super case, if X is an irreducible variety, we have dim Tx(X) ≥
dim X with equality on a dense subset of X, [H,Theorem 5.2]. For an orbit
X = G · x as above, it only makes sense to consider the tangent space at a
C-point y of X. In this case, clearly G · x = G · y so Ty(G · x) = Ty(G · y) has
the same dimension as Tx(G · x). Hence it is reasonable to define dim G · x
to be dim Tx(G · x).

6.8. Since there are Lie algebras which are not the Lie algebra of any
algebraic group, see [McR,14.7.4], the question now arises whether Theorem
6.7 applies to classical simple Lie superalgebras. This is the case at least in
the following examples.

Example 1. If G = GL(V ), then clearly Lie(G) = g`(V ).

Example 2. Let Ber ∈ O(GL(V )) be the Berezinian, or superde-
terminant, [Ma, Section 3.3]. This is a grouplike element of O(GL(V )).
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We define SL(V ) to be the group scheme represented by the Hopf super-
algebra O(GL(V ))/(Ber − 1). It is well known that if G = SL(V ), then
Lie(G) = s`(V ). This is easy to see using our definition of T1(G).

Example 3. Let K = GL(V ), and k = g`(V ) and suppose that ( , ) is
a homogeneous bilinear form on V. The Lie superalgebra g preserving this
form is defined, see [Sch page 129], by setting

ga = {x ∈ ka|(xu, v) + (−1)au(u, xv) = 0 for all u, v ∈ V,with deg u = u}.

We extend ( , ) to a bilinear form ( , )R on V (R) by the rule

(u⊗ r, v ⊗ s)R = (u, v)rs

for all u⊗ r ∈ Vi ⊗ Ri, v ⊗ s ∈ Vj ⊗ Rj, (i, j = 0, 1). It is easy to show that
if R1 is sufficiently large, then

g(R) = {g ∈ k(R)|(gu, v)R + (u, gv)R = 0 for all u, v ∈ V (R)}.

That is g(R) is the Lie subalgebra of k(R) preserving the form ( , )R. On the
other hand the Lie supergroup G preserving ( , ) is the functor defined by

G(R) = {g ∈ K(R)|(gu, gv)R = (u, v)R for all u, v ∈ V (R)}.

A simple computation shows that Lie(G) = g.

Theorem Let g = s`(m,n), (m 6= n), g`(m,n), or osp(m,n) and let G be
the Lie supergroup with Lie(G) = g defined above. Then if x ∈ g0 we have

dim G · x = (dim G0 · x, k(mx)).

Proof. In these cases there is a non-degenerate even invariant bilinear form
on g. Hence by Lemma 6.1 we have k(mx) = dimg1−dimgx

1 . But by Theorem
6.7 we have dim Tx(G · x)1 = dim g1/g

x
1 . This proves the statement about

dim Tx(G · x)1, and the claim about dim Tx(G · x)0 follows similarly.

We remark that the values of dim G0 · x for nilpotent orbits in classical
Lie algebras are given in [CM, Corollary 6.1.4].
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