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ABSTRACT. We give a complete study of Clifford-Weyl algebras C (n,2k) from
Bose-Fermi statistics, including Hochschild cohomology (with coefficients in
itself). We show that C (n,2k) is rigid when n is even or when k 6= 1. We find all
non-trivial deformations of C (2n+1,2) and study their representations.

0. INTRODUCTION

Throughout the paper, the base field is C. As usual in superalgebras theory, we
denote the ring Z/2Z by Z2.

Let C (n) be the Clifford algebra with n generators and W2k be the Weyl algebra
with 2k generators. Denote by V0 the vector space spanned by the generators of
C (n). Elements of V0 will be called Fermi-type operators. Similarly, let V1 be
the vector space spanned by the generators of W2k. Elements of V1 will be called
Bose-type operators.

There exist Z2-gradations on C (n) and W2k such that Fermi and Bose-type op-
erators all have degree one. The Clifford-Weyl algebra is:

C (n,2k) := C (n)⊗Z2 W2k.

where ⊗Z2 is relative to these gradations. It unifies Fermi and Bose-type opera-
tors in a unique algebra: as elements of C (n,2k), they anti-commute. There is
a Z2-gradation on C (n,2k) extending the natural gradation of V = V0⊕V1, and a
corresponding structure of Lie superalgebra. Palev has shown that V generates a
sub-superalgebra of C (n,2k) isomorphic to osp(n + 1,2k), and introduced corre-
sponding parastatistics relations [Pal82]. This was an outcome of previous results
by Wigner [Wig50], Green [Gre53] and others (see [FF89]). It gives an elegant
algebraic interpretation of the Green ansatz, using the Hopf structure of the en-
veloping algebra of osp(n+1,2k) [Pal94], and introduces a construction of repre-
sentations of parastatistics relations by Verma modules of osp(n + 1,2k). It also
gives an idea of what deformed (quantum) parastatistics could be: replace C (n,2k)
by a “quantum deformation”, which still has a Hopf structure. This idea was de-
veloped by Palev himself [Pal94] and other authors.
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The purpose of the present paper is to return to the first steps of these theories:
Clifford-Weyl algebras. At this level, there is a very natural question: does there
exist non-trivial deformations of C (n,2k)? By a deformation, we mean a formal
one, in the sense of Gerstenhaber theory [Ger64]. It is well-known that the answer
is no for C (n,0) = C (n) and C (0,2k) = W2k, but nothing was done in the general
case. We shall answer the question, but this is not our only goal. We also want
to introduce Clifford-Weyl algebras in a deformation quantization framework, em-
phasize their periodicity behavior and how it can be used, explain where Palev’s
theorem comes from, and so on.

Before describing the content of the paper, let us answer the initial question:
C (2n,2k) is rigid, for all n, k, C (2n + 1,2k) is rigid if, and only if, k 6= 1, so the
answer is no in these cases. In the case of C (2n+1,2) there exist non-trivial defor-
mations, that we completely describe in the paper, including their representations.

Let us give some details of our main results. In Section 1, we recall well-known
properties of Clifford and Weyl algebras needed in the paper. In particular, we
recall the deformation quantization construction of the Weyl algebra (resp. Clifford
algebra) through the Moyal product (resp. a Moyal-type product).

In Section 2, we construct the Clifford-Weyl algebra C (n,2k) by a similar de-
formation quantization procedure, as a deformation of the super-exterior algebra
of the Z2-graded vector space V = V0⊕V1 with an explicit Moyal-type formula for
the ? -product. From this construction, C (n,2k) is a Z2×Z2-graded algebra, with
natural left and right Z2-gradations.

We show in Section 3, that Clifford-Weyl algebras have a periodic behavior,
very similar to the well-known, and useful, periodicity of Clifford algebras :

PERIODICITY LEMMA 1:

C (2m+n,2k)' C (2m)⊗C (n,2k)

This simple Lemma has many consequences. For a given r ∈ N∗, denote by
Mr(A) the r× r-matrix algebra with coefficients in an algebra A. One has:

THEOREM 1:

(1) C (2n,2k)'M2n (W2k)

(2) C (2n+1,2k)'M2n (C (1,2k))

Note that C (1,2k) is the algebra generated by W2k and the parity operator of
the metaplectic (oscillator) representation. In other words, C (1,2k) is the smash
product S2 nW2k where S2 is the group {−1,1} (see Remark 3.4). By Periodicity
Lemma 1, it results that, though C (2n,2k) has been defined by anti-commuting
Fermi and Bose-type operators, sitting in osp(2n+1,2k), it can also be defined by
a new set of commuting generators, also of Fermi and Bose-type, no longer sitting
in osp(2n + 1,2k), but generating a superalgebra of type o(2n + 1)× osp(1,2k).
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This suggest that the enveloping algebra U (osp(2n + 1)× osp(1,2k)) could be
used for parastatistics. We shall not go further into this point in the present paper.

A second consequence, and the key for our purpose (to deform Clifford-Weyl al-
gebras) is the natural Morita equivalence (see [Lod92]) between W2k and C (2n,2k)
(resp. C (1,2k) and C (2n + 1,2k)). We shall see some consequences in Section 5
to 8.

A new proof of Palev’s theorem is given in Section 4:

THEOREM 2: [Pal82]
The sub-superalgebra of C (n,2k) generated by Fermi and Bose-type operators

is isomorphic to osp(n+1,2k).

The original proof uses a direct comparison of commutation rules, and does not
really explain why the result exists. This is what we want to do, and the reason
for giving this new proof. We explain it in a few words. First, we remark that
C (n,2k) is Z2×Z2-graded, and that the superbracket used in the Theorem 2 is
the one defined by the right Z2-gradation. There exists a twisted adjoint action
ad′ of C (n,2k) on itself, coming from the left Z2-gradation, and a supersymmetric
bilinear form of type (n + 1,2k) on H := C⊕V (graded by H0 = C⊕V0, H1 = V1)
coming from the natural super-Poisson bracket. Then g = V ⊕ [V,V ] is a sub-
superalgebra of C (n,2k), H is ad′(g)-stable, the bilinear form is ad′(g)-invariant,
and the result follows.

In Section 5, we go back to the initial question: to deform C (n,2k). As well-
known in deformation theory, the first step is to study the Hochschild cohomology
of C (n,2k) with coefficients in itself (see Appendix 1 for generalities in Hochschild
cohomology and its relations with deformation theory). Since Morita equivalent
algebras have isomorphic Hochschild cohomology [Lod92], using the Periodicity
Lemma 1, it results that:

THEOREM 3:

(1) H`(C (2n,2k)) = {0} if ` > 0.

(2) H`(C (2n+1,2k)) = H`(C (1,2k)), for all `.

So we have a partial answer to our question: C (2n,2k) cannot be non-trivially
deformed, and we are left with the case of C (1,2k). As we mentioned before,
C (1,2k) is a smash product S2 nW2k, but the cohomology of S2 nW2k is known,
as a particular case of general results in [AFLS00] and [Pin07], that give the coho-
mology of G nW2k, when G is a finite subgroup of SP(2k). We obtain:

THEOREM 4:
(1) If ` > 0 and ` 6= 2k, then

H`(C (2n+1,2k)) = {0}.
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(2) dim
(
H2k(C (2n+1,2k))

)
= 1. Denoting by ω1, . . . ,ω2k+1 the basic Fermi-

type operators and by s the canonical symplectic form on V1, then there
exists a 2k-cocycle Ω such that H2k(C (2n+1,2k)) = CΩ,

Ω(X1, . . . ,X2k) = sk(X1∧·· ·∧X2k)ω1 . . .ω2k+1, for Xi ∈V1,

Ω(X1, . . . ,X2k) = 0, if one Xi ∈V0.

If a 2k-cocycle Ω′ verifies Ω′(X1, . . . ,X2k) = Ω(X1, . . . ,X2k) for all Xi ∈V ,
then Ω′ = Ω mod B2k.

As a consequence, C (2n + 1,2k) is rigid if k 6= 1. In the case of C (2n + 1,2),
since H3(C (2n+1,2)) = {0}, there does exist non-trivial deformations, and more
precisely, a universal deformation formula (see Appendix 2).

THEOREM 5:
Let AΛ be the C[Λ]-algebra generated by V0 = C P and V1 = span{E+,E−} with

relations:

[E+,E−]L =−1
4

+ΛP, P2 = 1 and PE± =−E±P.

Then AΛ is a non-trivial polynomial deformation of C (1,2) and a universal
deformation formula.

This algebra AΛ is a particular case (the simplest one) of a symplectic reflection
algebra [EG02].

Given an algebra A, any deformation AΛ of A naturally produces a deformation
Mr(AΛ) of Mr(A) and conversely, any deformation of Mr(A) is of type Mr(AΛ)
up to equivalence (see Appendix 3). Therefore, Theorem 1 allows us to conclude
that M2n(AΛ) is a universal deformation formula of C (2n+1,2).

Another presentation of this deformation is given in Section 6. We introduce
algebras AΛ(n) and Aλ (n) (Λ formal, λ ∈ C,n ∈ N) by generators and relations,
with AΛ(0) = AΛ. We show that they can be constructed using Ore extensions,
and that they have a periodic behavior:

PERIODICITY LEMMA 2:

AΛ(n)' C (2n)⊗AΛ 'M2n(AΛ) and the same result holds for Aλ .

In Sections 7 and 8, we describe AΛ(n) and Aλ (n) using the enveloping algebra
U of the Lie superalgebra osp(1,2) and its primitive quotients [Pin90]. Denoting
by Aλ the algebra Aλ (0), one has:

THEOREM 6:
(1) AΛ(n)'M2n(S2 nU ) and Aλ (n)'AΛ(n)/(Λ−λ )AΛ(n).
(2) Let C be the Casimir element of U and Bc = U /(C− c)U , c ∈ C. Then

Aλ 'B
λ 2− 1

16
if λ 6= 0 and A0 = C (1,2).
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(3) If λ 2 6=
(
h+ 1

4

)2, 2h ∈ N, then Aλ (n) is a simple algebra.

If λ 2 =
(
h+ 1

4

)2, 2h ∈ N, then Aλ (n) is a primitive algebra with a unique
non-zero two-sided ideal that is the kernel of an irreducible representation
πh of dimension 2n (4h+1).

(4) AΛ(n) is a FCR-algebra. Any finite-dimensional representation of Aλ (n)
is completely reducible and isotypical of type πh, if λ 2 =

(
h+ 1

4

)2, 2h∈N.

We obtain in this way all primitive quotients of AΛ(n): 22n (4h+1)2-dimensional
quotients (2h ∈ N) and infinite-dimensional ones: Aλ (n) 'B

λ 2− 1
16

if λ 6= 0 and
A0(n) = C (2n+1,2).

The isomorphism AΛ(n)'M2n(S2 nU ) is useful to construct representations.
Remark that representations of S2 nU are merely graded representations of U .
Then, from a graded representation of osp(1,2) on a space H, one constructs a rep-
resentation of AΛ(n) on H2n

. All irreducible finite-dimensional representations are
obtained in this way: from irreducible (4h + 1)-dimensional (2h ∈ N) representa-
tions of osp(1,2), one obtains πh. From the metaplectic (oscillator) representation
of osp(1,2), natural infinite-dimensional representations can be also obtained, us-
ing Dunkl-type formulas given in [LP01].

Finally, we extend the obtained supersymmetry by showing that AΛ is a quotient
of S2 nU (osp(2,2)). Therefore AΛ(n) is a quotient of M2n (S2 nU (osp(2,2))).

There are three Appendices: the first one is a short introduction to Hochschild
cohomology relating it to deformation theory. In the second Appendix, we explain,
with proofs, what a “universal deformation formula” is. We show in the third
Appendix, that given an algebra A, deformations of Mr(A) are of type Mr(AΛ) up
to equivalence, where AΛ is a deformation of A. Results in Appendices 2 and 3 are
known, but since we have not found a convenient reference, short proofs are given.

1. CLIFFORD ALGEBRAS AND WEYL ALGEBRAS

We begin by recalling some classical properties of Clifford and Weyl algebras
needed in the paper. Throughout this Section, we denote by [�, �] the super bracket
and by [�, �]L the Lie bracket.

1.1. Weyl algebras.
Let k ∈ N∗ and S2k = C[p1,q1, . . . , pk,qk] be the polynomial algebra in 2k inde-

terminates equipped with the Poisson bracket:

{F,G}=
k

∑
i=1

(
∂F
∂ pi

∂G
∂qi
− ∂F

∂qi

∂G
∂ pi

)
, ∀ F,G ∈ S2k.

Let ℘: S2k⊗S2k→ S2k⊗S2k be the operator defined by:

℘ :=
k

∑
i=1

(
∂

∂ pi
⊗ ∂

∂qi
− ∂

∂qi
⊗ ∂

∂ pi

)
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Let m be the product of S2k and t be a formal parameter (or t ∈ C). A new
associative product m?

t
is defined by:

(1) m?
t

:= m◦ exp
( t

2
℘

)
This product m?

t
is a deformation of S2k guided by the Poisson bracket.

Definition 1.1. The Weyl algebra W2k is the vector space S2k endowed with the
product ? := m ?

1
, called the Moyal product.

A presentation of W2k is given by generators {p1,q1, . . . , pk,qk} and relations:

[u,v]L = {u,v} . 1, ∀ u,v ∈ span{p1,q1, . . . , pk,qk}.

Structurally, W2k is central, simple, naturally Z2-graded by the parity of S2k and
has a supertrace [PU05]:

(2) Str(F) := F(0), ∀F ∈W2k.

The space Mk := C[x1, . . . ,xk] is a faithful simple W2k-module if we realize pi

as ∂

∂xi
and qi as the multiplication by xi, for all i = 1, . . . ,k. In the sequel, Mk is

called the metaplectic representation of the Weyl algebra W2k.
The algebra of operators L (Mk) appears as a completion of the Weyl algebra:

W2k is the algebra of differential operators of finite order, and any element T in
L (Mk) is a differential operator, in general of infinite order (i.e., in the formal
sense, the sum is not finite), given by the formula:

(3) T = ∑
N

1
N!
(
m◦ (T ⊗S )◦∆(xN)

) ∂ N

∂xN

where S is the antipode of M2k, ∆ is its co-product, xN := xn1
1 . . .xnk

k and ∂ N

∂xN :=
∂

n1+···+nk

∂xn1
1 ...∂x

nk
k

if N = (n1, . . . ,nk). This formula gives the (formal) symbol of T in the

normal ordering, and for well-behaved T , its (formal) symbol in the Weyl ordering
(see [PU05]).

From the point of view of deformation theory, W2k is rigid. More precisely, we
have Hr(W2k) = {0}, for all r > 0 ([Sri61]).

We refer to [PU05] for more details on the Weyl algebra in the context of this
Section.

1.2. Clifford algebras.
Let n ∈ N∗ and

∧
n be the Grassmann algebra in n anti-commutative variables

ω1, . . . ,ωn. Recall that
∧

n is Z-graded. Denote by ∂1, . . . ,∂n the super-derivations
defined by ∂i(ω j) = δi j, ∀ i, j. The algebra

∧
n is endowed with a super Poisson

bracket:

{Ω,Ω′}= 2(−1)degZ(Ω)+1
n

∑
i=1

∂i(Ω)∧∂i(Ω′),
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for all Ω,Ω′ ∈
∧

n ([PU07]). We define the operator ℘ of
∧

n⊗
∧

n by:

℘ :=
n

∑
i=1

∂i⊗∂i,

where ⊗ is the graded tensor product of operators.
Let m∧ be the product of

∧
n and t be a formal parameter (or t ∈ C). A new

product m?
t

can be defined by (see [PU07]):

(4) m?
t

:= m∧ ◦ exp(−t℘)

Definition 1.2. The Clifford algebra C (n) is the vector space
∧

n equipped with
the product ? := m ?

1
.

There is a Z2-gradation on C (n) defined by degZ2
(ωi) = 1, for all i = 1, . . . ,n.

A presentation of C (n) is given by basic generators ω1, . . . ,ωn and relations:

[v,v′] = {v,v′} . 1, ∀ v,v′ ∈ span{ω1, , . . . ,ωn}.
In particular, we have:

ω
2
i = 1, ∀i, ωi ? ω j +ω j ? ωi = 0, ∀i 6= j and

ωi1 ∧·· ·∧ωip = ωi1 ? . . . ? ωip if i1 < i2 < .. . ip, p≤ n

1.3. Even Clifford algebras.
For i = 1, . . . ,n, let Pi = ∂i and Qi = xi∧ . be respectively the operator of deriva-

tion and multiplication of the Grassmann algebra Φn in n anti-commutative vari-
ables x1, . . . ,xn. The operators ω2 j−1 = Q j +Pj and ω2 j = i(Q j−Pj), j = 1, . . . ,n
verify the defining relations of the Clifford algebra C (2n), so there is a homo-
morphism from C (2n) onto the algebra of differential operators Diff(Φn). It is
easy to see that dim(C (2n)) = dim(Diff(Φn)) = dim(L (Φn)), so we can iden-
tify C (2n) = Diff(Φn) = M2n(C), where M2n(C) denotes the algebra of complex
matrices of order 2n. As a consequence, Φn is the unique simple C (2n)-module,
called the spin representation of C (2n).

Structurally, the even Clifford algebra C (2n) = M2n(C) is simple and its center
is C. From the point of view of deformation theory, C (2n) is rigid and we have
Hr(C (2n)) = {0} if r > 0.

Since C (2n) = M2n(C), there is a natural trace on C (2n) that can be written in
an analogous way as in (2):

Tr(Ω) := 2n
Ω(0), ∀Ω ∈ C (2n).

There is also a similar formula to (3) in the case of C (2n). In other words, any
operator T ∈L (Φn) is differential and an explicit formula is given by:

T = ∑
I∈{0,1}n

(−1)θ(I,I) (m∧ ◦ (T ⊗S )◦∆(xI)
)
∧∂

I,

where θ is the bilinear form on Nn associated to the matrix (θrs)n
r,s=1 with θrs = 1

if r > s and 0 otherwise, ⊗ is the non-graded tensor product of operators, S is the
antipode of Φn, ∆ is its co-product, xI := xi1

1 ∧ ·· · ∧ xin
n and ∂ I := ∂

i1
1 ◦ · · · ◦ ∂ in

n if
I = (i1, . . . , in).
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1.4. Periodicity of Clifford algebras.
There is an algebra isomorphism between C (2n + k) and C (2n)⊗C (k) since

ω1⊗1, . . . ,ω2n⊗1 and in ω1 ? . . . ? ω2n⊗ω ′j, j = 1, . . . ,k in C (2n)⊗C (k) verify
the defining relations of C (2n+ k) thanks to the formula:

(ω1 ? . . . ? ω2n)2 = (−1)n.

It results that:

C (2n)' C (2)⊗n and C (2n+1)' C (2n)⊗C (1)'M2n (C (1)) .

1.5. Odd Clifford algebras.
Since C (1)'C×C, from the isomorphism C (2n+1)'M2n (C (1)) it follows

that C (2n + 1) is the product C (2n)×C (2n). Therefore Hr(C (2n + 1)) = {0} if
r > 0, and that implies that C (2n+1) is rigid.

We will make more explicit the above isomorphism: C (2n + 1) ' C (2n)×
C (2n). The element z = ω1 ? . . . ? ω2n+1 is central and verifies z2 = (−1)n. Set
Z = span{1,z}. Then C (2n+1)' Z⊗C (2n) as algebras. Let z+ = 1

2(1+ inz) and
z− = 1

2(1− inz). Therefore z2
± = z±, z+ ? z− = z− ? z+ = 0 and 1 = z+ + z−. We

conclude that

C (2n+1) = z+ ? C (2n)⊕ z− ? C (2n),

that is, a reduction of C (2n+1) in a direct sum of two ideals isomorphic to C (2n)
as algebras. It follows that C (2n+1) has exactly two 2n-dimensional simple mod-
ules built from the spin representation of C (2n). To give more details, we need the
following Lemma:

Lemma 1.3. Let P be the natural parity of Φn. Then in the spin representation of
C (2n), one has:

ω1 ? . . . ? ω2n = in P

Proof. We set T = ω1 ? . . . ? ω2n. The operator T of Φn is diagonalizable since
T 2 = (−1)n, and it commutes with P. We denote by S0,±in and S1,±in its eigenspaces
in S0 and S1 respectively, where S = Φn. The subspaces S0,in⊕S1,−in and S0,−in⊕S1,in

are C (2n)-stable since T anti-commutes with ωi, 1 ≤ i ≤ 2n. It follows that T =
±inP. To determine the sign, we compute:

T (1) = in(Q1 +P1) ? (Q2−P2) ? . . . ? (Qn +Pn) ? (Qn−Pn)(1) = in

Finally, we obtain T = inP. �

The element z is central, z2 = (−1)n, hence z = ±in in any simple C (2n + 1)-
module. Since z = (ω1 ? . . . ? ω2n) ? ω2n+1, using the Lemma we obtain the spin
representations Φ±n of C (2n + 1) as follows: C (2n) ⊂ C (2n + 1) acts on Φn by
the spin representation (see 1.3), for Φ+

n , define ω2n+1 = P and for Φ−n , define
ω2n+1 =−P.
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1.6. Weyl algebras and supersymmetry.
Let W = W2k =⊕r≥0W

r be the Z-gradation of the vector space W. Recall that
W is a Z2-graded algebra. By (1), we have:

[F,G]L = {F,G}, ∀F ∈
⊕
r≤2

Wr.

Let h = h1⊕h0 where h1 = W1 = span{pi,qi, i = 1, . . . ,k} and h0 = W2. The su-
per bracket stabilizes h. Besides, h is isomorphic to the Lie superalgebra osp(1,2k).
In particular, h0 ' sp(2k) and the adjoint action of h0 on h1 is the standard action
of sp(2k) on C2k. As a consequence, W is a semisimple h0-module for the adjoint
action and W =⊕r≥0W

r is its reduction in isotypical components.
By (1), we have:

[v,F ] = 2vF, ∀F ∈W2r+1 and [v,F ]L = {v,F}, ∀F ∈W2r,v ∈W1

Therefore W is also semi-simple for the adjoint action of h and W =⊕r≥0A
r is

its reduction into isotypical components, where A0 = C and Ar = W2r−1⊕W2r, if
r > 0. We refer to [Mus99] or [PU05] for more details.

1.7. Clifford algebras and symmetry.
Let C = C (n). There is a Z-gradation on the vector space C and, as an algebra,

C is Z2-graded. By (4), we have:

[Ω,Ω′] = {Ω,Ω′}, ∀Ω ∈
⊕
r≤2

C r.

Let g = g1⊕g0 where g1 = C 1 and g0 = C 2. The Lie bracket stabilizes g. More-
over, g is isomorphic to the Lie algebra o(n + 1). In particular, g0 ' o(n) and
the adjoint action of g0 on g1 is the standard action of o(n) on Cn. The direct sum
g = g1⊕g0 is a Z2-gradation for the Lie algebra g, that is [gi,g j]L ⊂ gi+ j (this is not
a graded Lie algebra!). For the adjoint action, C is a semisimple g0-module and is
isomorphic to the o(n)-module

∧
Cn, whose reduction into isotypical components

is well-known (see [Sam69] or [FH91]). The reduction into isotypical components
of the g-module C can be deduced, but this is simply not the subject of this paper.

2. CLIFFORD-WEYL ALGEBRAS

We recall the construction of the exterior algebra of a Z2-graded vector space
V = V0⊕V1: let

∧
:=
∧

V0 be the exterior algebra of V0 and S := Sym(V1) be the
symmetric algebra of V1. Using their Z-gradation, define a Z×Z2 gradation on

∧
and on S by∧

(i,0) =
∧

i,
∧

(i,1) = {0} and S(i,i) = Si,S(i, j) = {0} if i 6= j.

The exterior algebra of V is the Z×Z2-graded algebra

E :=
∧
⊗

Z×Z2

S =
∧
⊗
Z

S

endowed with the product:

(Ω⊗F)∧ (Ω′⊗F ′) = (−1) f ω ′(Ω∧Ω
′)⊗FF ′,
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for all Ω ∈
∧

, Ω′ ∈
∧

ω ′ , F ∈ S f , F ′ ∈ S. We have

A′∧A = (−1)aa′+bb′A∧A′, ∀ A ∈ E(a,b), A′ ∈ E(a′,b′)

and that means that E is Z×Z2-commutative.
Now, assume that the dimension of V1 is even, say dim(V1) = 2k. Set n =

dim(V0).
We have defined Poisson brackets on

∧
and S in Section 1. Associated operators

℘∧ and ℘S are respectively defined on
∧
⊗
∧

and S⊗S.
A super Z×Z2-Poisson bracket on E is then defined by:

{Ω⊗F,Ω′⊗F ′}= (−1) f ω ′
(
{Ω,Ω′}⊗FF ′+(Ω∧Ω

′)⊗{F,F ′}
)
,

for all Ω ∈
∧

, Ω′ ∈
∧

ω ′ , F ∈ S f , F ′ ∈ S. Now, let σ23 and ℘ be operators on E⊗E

defined by:

σ23(Ω⊗F⊗Ω′⊗F ′) = (−1) f ω ′Ω⊗Ω′⊗F⊗F ′

℘= σ23 ◦ (−2℘∧⊗ Id+ Id⊗℘S)◦σ23.

for all Ω ∈
∧

, Ω′ ∈
∧

ω ′ , F ∈ S f , F ′ ∈ S.
Let t be a formal parameter (or t ∈ C). A new product m?

t
on E is defined from

these operators and from the product mE on E by:

(5) m?
t

:= mE ◦ exp
( t

2
℘

)
.

Since m?
t
= m∧⊗mS◦exp(−t℘∧)⊗exp

( t
2

℘S

)
◦σ23, it results that m?

t
is exactly

the Z2×Z2-graded tensor algebra product:

C t(n)⊗Z2×Z2 Wt
2k = C t(n)⊗Z2 Wt

2k

where ⊗Z2 means the graded tensor product with respect to left Z2-gradations,
C (n)t denotes the algebra equipped with product m?

t
and similarly for Wt

2k (see
Section 1). By definition, m?

t
is a deformation of mE guided by the Poisson super

bracket.

Definition 2.1. The Clifford-Weyl algebra C (n,2k) is the vector space E endowed
with the product ? := m ?

1
.

Denote by {ω1, . . . ,ωn} and {p1,q1, . . . , pk,qk} respectively the basis of C (n)
and W2k as in Section 1. The algebra C (n,2k) has a presentation given by genera-
tors {ω1, . . . ,ωn, p1,q1, . . . , pk,qk} and relations

[ωi,ω j]+ = 2δi j, [pi,q j]− = δi j, [pi, p j]− = [qi,q j]− = 0 if i 6= j
and [ωi, p j]+ = 0, [ωi,q j]+ = 0, ∀ i, j

where [A,B]± := A ? B±B ? A.

When n = 2` is even, we set

Pj =
1
2
(ω2 j−1 + iω2 j) and Q j =

1
2
(ω2 j−1− iω2 j) for j ≤ `.
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The first two relations above become:

[Pi,Q j]+ = δi j, [Pi,Pj]+ = [Qi,Q j]+ = 0.

Consider now Φ` the Grassmann algebra in ` anti-commutative variables ξ1, . . . ,ξ`,
Mk the polynomial algebra in k variables x1, . . . ,xk and SM(`,k) the exterior alge-
bra of the Z2-graded space W = W0⊕W1 with W0 = span{ξ1, . . . ,ξ`} and W1 =
span{x1, . . . ,xk}. There is a C (2`,2k)-module structure on SM(`,k) given by Pi =

∂

∂ξi
, Qi = ξi∧ � (1≤ i≤ `), p j = ∂

∂x j
, q j = x j � (1≤ j ≤ k). Besides, SM(`,k) is a

simple C (2`,2k)-module. In the sequel, we call SM(`,k) the spin-metaplectic rep-
resentation of C (n,2k). This provides a homomorphism from C (2`,2k) onto the
algebra of differential operators of the Z2×Z2-graded exterior algebra SM(`,k).
We will show later that C (n,2k) is simple, so we have actually an isomorphism,
C (2`,2k) ' Diff(SM(`,k)) and that generalizes the cases of C (2`) and W2k seen
in Section 1.

When n = 2`+1 is odd, we obtain two spin-metaplectic representations SM(`,k)±

of C (2`+1,2k) by acting C (2`,2k) on SM(`,k) as above and by setting ω2`+1 = Q
for SM(`,k)+ and ω2`+1 =−Q for SM(`,k)−, where Q is the parity:

Q(ω⊗ f ) = (−1)degZ(ω)+degZ( f )
ω⊗ f , ∀ ω ∈Φ`, f ∈Mk.

It will be shown later that if k 6= 0, C (2`+1,2k) is simple and as a consequence,
both representations SM(`,k)± are faithful.

3. PERIODICITY OF CLIFFORD-WEYL ALGEBRAS

Clifford algebras have a periodic behavior (1.4) and we now show that this peri-
odicity can be extended to Clifford-Weyl algebras. We denote by C (r), the Clifford
algebra in r variables and by W2k, the Weyl algebra constructed from 2k variables
(see Section 1).

Lemma 3.1. [Periodicity Lemma 1]

C (2m+n,2k)' C (2m)⊗C (n,2k)

Proof. Let {ω1, . . . ,ω2m} and {ω ′1, . . . ,ω ′n, p1,q1, . . . , pk,qk} be respectively the set
of generators of C (2m) and C (n,2k). Let z = imω1 ? . . . ? ω2m. So z2 = 1 and
z anti-commutes with ω1, . . . ,ω2m. The following elements of C (2m)⊗C (n,2k):
ω1⊗1, . . . ,ω2m⊗1, z⊗ω ′1, . . . ,z⊗ω ′n, z⊗ p1, . . . ,z⊗ pk and z⊗q1, . . . ,z⊗qk verify
the defining relations of C (2m + n,2k). Since they generate C (2m)⊗C (2n,k) as
an algebra, we get an algebra homomorphism from C (2m + n,2k) onto C (2m)⊗
C (n,2k).

Denote by {ω̃1, . . . , ω̃2m+n, p̃1, q̃1, . . . , p̃k, q̃k} the set of generators of C (2m +
n,2k). Let z̃ =
imω̃1 ? . . . ? ω̃2m. So z̃2 = 1, z̃ anti-commutes with ω̃1, . . . , ω̃2m+n and z̃ com-
mutes with p1, . . . , pk and q1, . . . ,qk. The following elements of C (2m + n,2k):
ω̃1, . . . , ω̃2m, z̃ ? ω̃2m+1, . . . , z̃ ? ω̃2m+n, z̃ ? p̃1, z̃ ? q̃1, . . . , z̃ ? p̃k, z̃ ? q̃k verify the defin-
ing relations of C (2m)⊗C (n,2k), so we get the inverse homomorphism. �
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Corollary 3.2. One has:

C (2n,2k)' C (2n)⊗W2k 'M2n (W2k) and

C (2n+1,2k)' C (2n)⊗C (1,2k)'M2n (C (1,2k))
where Mr(A) denotes the r×r-matrix algebra with coefficients in an algebra A for
a given r ∈ N∗.

Corollary 3.3.
(1) C (2n,2k) is simple with center C.
(2) If k 6= 0, then C (2n+1,2k) is simple with center C.

Proof.
(1) C (2n,2k)'M2n(W2k) is simple since W2k is simple.
(2) Since C (2n + 1,2k) 'M2n(C (1,2k)), it is enough to prove the result for

C (1,2k).
But C (1,2k)'S2 nW2k and W2k is simple, so the result is a particular

case of a general theorem in [Mon97].
For the sake of completeness, here is a direct proof: we write C (1,2k) =

C (1)⊗
Z2

W2k where C (1) is the Clifford algebra generated by P such that

P2 = 1. Recall that using the Moyal ? -product, the Weyl algebra W = W2k
can be realized as a deformation of the polynomial algebra C[p1,q1, . . . , pk,qk].
Fix p = p1 and q = q1.

We have [p, f ]L = ∂ f
∂q , ∀ f ∈W. In addition, for all g ∈W:

[p,P ? g]L = p ? P ? g−P ? g ? p =−P ? (p ? g+g ? p)

= −P ?

(
pg+

1
2
{p,g}+gp+

1
2
{g, p}

)
=−2P ? (pg)

Let I be a non-zero two-sided ideal of C (1,2k) and let f + P ? g ∈ I,
f +P ? g 6= 0. Then [p, f +P ? g]L ∈ I gives ∂ f

∂q − 2P ? (pg) ∈ I and we
can reiterate. Hence:
• if g = 0, then f ∈ I. It follows that I∩W 6= {0}.
• if g 6= 0, since there exists j such that ∂ j f

∂q j = 0, one has (−1) j2 jP ? (p jg)∈
I, implying p jg ∈ I. But p jg 6= 0, so it follows that I ∩W 6= {0} as
well.

In both cases, I∩W is a non-zero ideal of the Weyl algebra W. Since W
is simple, I∩W = W. So 1 ∈ I and we conclude that I = C (1,2k).

The center of C (1,2k) is C since the center of W is C.
�

Remark 3.4. Let us first recall what a smash product is. Let A be an algebra, G a
finite group acting on A by automorphisms and C[G] the group algebra. The smash
product G n A is the algebra with underlying space A⊗C[G] and product defined
by:

(a⊗g)(a′⊗g′) = a(g.a′)⊗gg′,∀ a,a′ ∈ A,g,g′ ∈ G.
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Smash products used in this paper are defined from a Z2-graded algebra A and G =
S2 = {−1,1}. Denoting by P the parity operator of A, P(a) := (−1)deg(a)a, ∀a∈A,
S2 acts on A by (−1)α .a := Pα(a), ∀a ∈ A, α = 0,1 and there is a corresponding
smash product S2 n A. It is the algebra generated by P and A with relations Pa =
P(a)P, ∀a ∈ A and P2 = 1. It is easy to check that S2 nA-modules and Z2-graded
A-modules are exactly the same notion.

Now consider the Clifford-Weyl algebra C (1,2k). Using the Z2-graded struc-
ture of W2k, C (1,2k)'S2 nW2k. Also C (1,2k) is isomorphic to a subalgebra of
M2(W2k):

C (1,2k)'
{(

a b
σ(b) σ(a)

)
,a,b ∈W2k

}
where σ is the parity operator of W2k. In this isomorphism, ω1 ∈ C (1) is realized

as the matrix
(

0 1
1 0

)
and W2k as

{(
a 0
0 σ(a)

)
,a ∈W2k

}
.

Finally, C (1,2k) is isomorphic to the algebra generated by the parity operator P

of Mk = C[x1, . . . ,xk] and W2k, realized as the algebra of differential operators of
Mk (see Section 1).

4. CLIFFORD-WEYL ALGEBRAS AND SUPERSYMMETRY

Let us consider the Z2×Z2-graded algebra C (n,2k) and the subspace V = V0⊕
V1 where V0 = C (n,2k)(1,0)

=
∧1

n and V1 = C (n,2k)(1,1) = S1
2k (see Section 2 for the notation).

If k = 0, then V0⊕ [V0,V0]L is a Lie algebra for the natural Lie bracket of the Clif-
ford algebra, isomorphic to o(n+1) and [V0,V0]L is a Lie subalgebra isomorphic to
o(n) (for details, see Section 1).

If n = 0, then V1⊕ [V1,V1] is a Lie superalgebra for the natural super bracket of
the Weyl algebra, isomorphic to osp(1,2k) and [V1,V1] is a Lie algebra isomorphic
to sp(2k).

To generalize this situation, we need some notation: for an element a∈C (n,2k),
denote its Z2×Z2-degree by ∆(a) := (∆1(a),∆2(a)). We consider C (n,2k) as an
algebra Z2-graded by ∆2 and we denote by [�, �] the associated super bracket.

The proposition below shows how to realize osp(n+1,2k) as a Lie sub-superalgebra
of C (n,2k). This important result was first obtained by [Pal82] for osp(2`+1,2k).
We propose here another method to show the same result, inspired by [PU05] and
based on a well-chosen twisted adjoint action.

Proposition 4.1. [Pal82]
Let g = V ⊕ [V,V ]. Then g is a Lie sub-superalgebra of C (n,2k) isomorphic to

osp(n+1,2k). Moreover

g0 = V0⊕ [V0,V0]⊕ [V1,V1]

with [V0,V0] ' o(n), [V1,V1] ' sp(2k), V0⊕ [V0,V0] ' o(n + 1) and g0 ' o(n + 1)×
sp(2k). Also,

g1 = V1⊕ [V0,V1]
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and V1⊕ [V1,V1] ' osp(1,2k). If we set h = [V0,V0]⊕ [V1,V1]⊕ [V0,V1] , then h '
osp(n,2k).

Proof. By a case by case straightforward computation, using the product formula
(5), we get the formula:

(6) [[X ,Y ],Z] = 2
(
{Y,Z}X− (−1)∆2(X)∆2(Y ){X ,Z}Y

)
, ∀ X ,Y,Z ∈V,

where {�, �} is the super Poisson bracket defined in Section 2.
Hence [[V,V ],V ]⊂V . If H ∈ [V,V ] and X ,Y ∈V , then:

[H, [X ,Y ]] = [[H,X ],Y ]+ (−1)∆2(H)∆2(X)[X , [H,Y ]].

Using (6), we conclude that [[V,V ], [V,V ]]⊂ [V,V ], therefore g is a Lie superal-
gebra and h is a sub-superalgebra.

To prove the isomorphisms, we set V ′ = C⊕V . Define a non-degenerate super-
symmetric 2-form (�|�) on V ′ by:

(X |Y ) := {X ,Y}, ∀ X ,Y ∈V and (1|1) =−2.

Then formula (6) becomes:
(PS)
[[X ,Y ],Z] = 2

(
(Y |Z)X− (−1)∆2(X)∆2(Y )(X |Z)Y

)
, ∀ Z ∈V. (parastatistics relations)

Next, we define the ∆1-twisted adjoint representation of the Lie superalgebra
C (n,2k):

ad′(a)(b) := a ? b− (−1)∆2(a)∆2(b)+∆1(a)b ? a, ∀a,b ∈ C (n,2k).

It is easy to check that it is indeed a representation. If H ∈ h, ad′(H) = ad(H),
writing H = [X ,Y ] and using (PS), one obtains:

(ad′(H)(Z)|T ) =−(−1)∆2(Z)∆2(H)(Z|ad′(H)(T )), ∀ T ∈V,

henceforth ad′(h)(V ′)⊂V ′ and h⊂ osp(n,2k). Since both spaces have the same
dimension n(n−1)

2 +2nk + k(2k +1) (see [Sch79]), it follows h' osp(n,2k).
It remains to examine the action of ad′(X) on V ′ when X ∈V . We have ad′(X)(Y )=

0 if X ∈ Vi, Y ∈ Vj with i 6= j. Moreover, if X ,Y ∈ V0, then ad′(X)(Y ) = X ? Y +
Y ? X = {X ,Y} . 1 = (X |Y ). If X ,Y ∈ V1, then ad′(X)(Y ) = X ? Y −Y ? X =
{X ,Y} . 1 = (X |Y ). Since ad′(X)(1) = 2X , finally (ad′(X)(Y )|1) = −2(X |Y )=
−(−1)∆2(X)∆2(Y )(Y |ad′(X)(1)). So g ⊂ osp(n + 1,2k) and both spaces have the
same dimension. �

Corollary 4.2. Let V =V0⊕V1 be a Z2-graded space with dim(V0)= n and dim(V1)=
2k. Assume that V is equipped with a non-degenerate supersymmetric bilinear form
(�|�). Let A be the Z2-graded algebra generated by V = V0⊕V1 and relations (PS).
Then A is isomorphic to the enveloping algebra U (osp(n+1,2k)).

Proof. We denote by [�, �]A the super bracket of A. Proceeding exactly as in the
proof of Proposition 4.1, we show that V +[V,V ]A is a Lie superalgebra using the
parastatistics relations (PS). From the definition of A together with Proposition 4.1,
there is an algebra homomorphism from A onto C (n,2k) that is the identity when
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restricted to V . This homomorphism induces a Lie superalgebra homomorphism
from V +[V,V ]A onto V ⊕ [V,V ] (realized in C (n,2k) and isomorphic to osp(n +
1,2k) by Proposition 4.1). That implies dim(V +[V,V ]A)≥ dim(osp(n+1,2k)).

On the other hand, dim(V +[V,V ]A)≤ dim(V ⊕ [V,V ]) since we can write

[V,V ]A = [V0,V0]A +[V1,V1]A +[V0,V1]A

and dim([V,V ]) = dim(V0∧V0)+dim(V0⊗V1)+dim(V0V1).
It results that V ⊕ [V,V ]A ' osp(n + 1,2k). Remark that the parastatistics rela-

tions hold in the enveloping algebra U (osp(n+1,2k)) since they hold in osp(n+
1,2k). To finish, we apply the universal property of U (osp(n+1,2k)). �

Remark 4.3. The result in Proposition 4.1 is helpful to obtain explicit descriptions
of osp(n+1,2k) (for instance, the root system).

Remark 4.4. As observed in [Pal82], the fact that generators of C (n) (Fermi-type
operators) and those of W2k (Bose-type operators) anti-commute in C (n,2k) is a
main argument to prove that the Lie sub-superalgebra that they generate is osp(n+
1,2k). However, the periodicity of Clifford-Weyl algebras, namely C (2n,2k) '
C (2n)⊗W2k, shows that it is always possible to obtain C (2n,2k) from commut-
ing Bose-type and Fermi-type operators (that will not live in the Lie superalgebra
osp(2n+1,2k), but rather in o(2n+1)×osp(1,2k)).

In the sequel, all ? products will simply be denoted by juxtaposition.

5. COHOMOLOGY OF CLIFFORD-WEYL ALGEBRAS

In Appendix 1, the reader can find a short introduction to Hochschild cohomol-
ogy of an algebra with coefficients in itself.

By Periodicity Lemma 1 and Corollary 3.2, we have

C (2n,2k)'M2n (W2k) and C (2n+1,2k)'M2n (C (1,2k)) .

But for an algebra A, Mr(A) and A have isomorphic cohomology spaces [Lod92],
so it results that the cohomology of Clifford-Weyl algebras can be computed from
the cohomology of W2k and C (1,2k):

Proposition 5.1.
(1) H`(C (2n,2k)) = {0} if ` > 0.
(2) H`(C (2n+1,2k)) = H`(C (1,2k)), for all `.

Proof. It is enough to remark that H`(W2k) = {0} if ` > 0 [Sri61]. �

We now give more details on the identifications in the above Proposition. We use
the isomorphisms in Corollary 3.2: C (2n,2k)'C (2n)⊗W2k and C (2n+1,2k)'
C (2n)⊗C (1,2k). The letter A denotes either W2k or C (1,2k).

Since C (2n) is separable, we compute the cohomology of C (2n)⊗ A using
normalized C (2n)-relative cochains (see [GS88]), that is, cochains

Ω : (C (2n)⊗A)`→ C (2n)⊗A
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that verify:

Ω(Ca1,a2, . . . ,a`) = CΩ(a1, . . . ,a`)
Ω(a1, . . . ,aiC,ai+1, . . . ,a`) = Ω(a1, . . . ,ai,Cai+1, . . . ,a`),
Ω(a1, . . . ,a`C) = Ω(a1, . . . ,a`)C
Ω(a1, . . . ,a`) = 0 if one ai ∈ C (2n)

for all C ∈ C (2n). Since C (2n) commutes with A, such a cochain is completely
determined by its restriction Ω̃ : A`→ C (2n)⊗A verifying

CΩ̃(a1, . . . ,a`) = Ω̃(a1, . . . ,a`)C.

for all C ∈ C (2n). It results that Ω̃ is actually A-valued. Then the map Ω Ω̃

induces an isomorphism [GS88]:

H`(C (2n)⊗A)' H`(A).

To obtain the desired cohomology, that is, H`(C (2n,2k)) or H`(C (2n+1,2k)),
we use the isomorphism φ : C (2n)⊗A→ C (2n,2k) or C (2n + 1,2k) in the Peri-
odicity Lemma 1 (3.1): given a cochain Ω of C (2n)⊗A, we introduce a cochain
φ ∗(Ω) of C (2n,2k) or C (2n+1,2k) defined by

φ
∗(Ω)(x1, . . . ,x`) = φ(Ω(φ−1(x1), . . . ,φ−1(x`))),

for all x1, . . . ,x` ∈ C (2n,2k) or C (2n + 1,2k). Then the map Ω φ ∗(Ω) induces
a cohomology isomorphism.

It remains to compute the cohomology of C (1,2k) = C (1)⊗Z2 W2k. Since
C (1,2k) = S2 n W2k, this is a particular case of a result in [AFLS00] where the
cohomology of GnW2k is given for G a finite group of symplectic linear transfor-
mations. There is an improved version of this result in [Pin07], that allows a better
management of cocycles. Denote by P the generator of C (1) satisfying P2 = 1.
One has:

Proposition 5.2. [AFLS00, Pin07]
(1) If ` > 0 and ` 6= 2k, then

H`(C (1,2k)) = {0}.
(2) dim

(
H2k(C (1,2k))

)
= 1. Moreover, there exists a normalized C (1)-relative

cocycle θ such that H2k(C (1,2k)) = Cθ and

θ(X1, . . . ,X2k) = sk(X1∧·· ·∧X2k)P, for X1, . . . ,X2k ∈V1,

where s is the canonical symplectic form on V1. If a 2k-cocycle θ ′ verifies
θ ′(X1, . . . ,X2k) = θ(X1, . . . ,X2k) for all Xi ∈V , then θ ′ = θ mod B2k.

Proof. See [AFLS00] for the dimension of H`(C (1,2k)). See [Pin07] for the last
claims. �

Corollary 5.3.
(1) If ` > 0 and ` 6= 2k, then

H`(C (2n+1,2k)) = {0}.
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(2) Denote by ω1, . . . ,ω2n,P the canonical generators of C (2n+1) realized in
C (2n+1,2k). Then there exists a cocycle Ω such that such that H2k(C (2n+
1,2k)) = CΩ,

Ω(X1, . . . ,X2k) = insk(X1∧·· ·∧X2k)ω1 . . .ω2k+1, for Xi ∈V1,

Ω(X1, . . . ,X2k) = 0, if one Xi ∈V0.

If a 2k-cocycle Ω′ verifies Ω′(X1, . . . ,X2k) = Ω(X1, . . . ,X2k) for all Xi ∈
V , then Ω′ = Ω mod B2k.

Proof. Proposition 5.2 provides a cocycle θ that allows us to construct a cocycle θ̂

of C (2n)⊗C (1,2k) such that:

θ̂(C1⊗ x1, . . . ,C2k⊗ x2k) = C1 . . .C2k⊗θ(x1, . . . ,x2k)

for x1, . . . ,x2k ∈ W2k, C1, . . . ,C2k ∈ C (2n). Next we compute Ω = φ ∗(θ̂) using
formulas in the proof of Lemma 3.1:

Ω(X1, . . . ,X2k) = φ(θ̂(inω1 . . .ω2n⊗X1, . . . , inω1 . . .ω2n⊗X2k))

= φ((in)2k(ω1 . . .ω2n)2ksk(X1∧·· ·∧X2k)P)

for X1, . . . ,X2k ∈V1. Since (ω1 . . .ω2n)2 = (−1)n (see Section 1), then

Ω(X1, . . . ,X2k) = φ(sk(X1∧·· ·∧X2k)P) = insk(X1∧·· ·∧X2k)ω1 . . .ω2nP.

�

Corollary 5.4. The Clifford-Weyl algebra C (2n+1,2k) is rigid if k 6= 1.

Since dim
(
H2(C (2n+1,2))

)
= 1 and H3(C (2n + 1,2)) = {0}, then C (2n +

1,2) can be non trivially deformed by a universal deformation formula (see Ap-
pendix 2). For C (1,2), this formula is a particular case of a symplectic reflection
algebras (see [EG02]):

Proposition 5.5. Let AΛ be the C[Λ]-algebra generated by V0 = C P and V1 =
span{E+,E−} with relations:

[E+,E−]L =−1
4

+ΛP, P2 = 1 and PE± =−E±P.

Then AΛ is a non-trivial polynomial deformation of C (1,2) and a universal
deformation formula.

Proof. See [EG02] or [Pin07]. �

6. UNIVERSAL DEFORMATION FORMULA OF C (2n+1,2)

Definition 6.1. Let Aλ (n), λ ∈C be the algebra with generators ω1, . . . ,ω2n+1,E±
and relations:

[E+,E−]L =−1
4

+ inλω1 . . .ω2n+1,

ω jωk +ωkω j = 2δ jk (1≤ j,k ≤ 2n+1)
E±ω j =−ω jE± (1≤ j ≤ 2n+1)
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Definition 6.2. The algebra AΛ(n), when Λ is a formal parameter, is defined in a
similar way: it is the algebra with generators ω1, . . . ,ω2n+1,E±,Λ with Λ central
and same relations as Aλ (n) with λ replaced by Λ. Note that AΛ(0) = AΛ.

6.1. Construction using Ore extensions.

Definition 6.3. Suppose that R is an algebra, σ an automorphism of R and δ a
σ -derivation of R, that is, a linear map δ : R→ R such that

δ (rs) = δ (r)s+σ(r)δ (s)

for all r,s ∈ R. Then the Ore extension R[t] is the free left R-module on the set
{tn | n≥ 0}, with multiplication defined by

tr = σ(r)t +δ (r).

Let C = C (2n +1) be the Clifford algebra in 2n +1 generators, ω1, . . . ,ω2n+1.
Consider the polynomial ring C [Λ] where Λ commutes with all elements of C .
Elements of C [Λ] are denoted by C(Λ).

Let τ be the automorphism of C [Λ] defined by

τ(ωr) =−ωr,∀ r and τ(Λ) = Λ.

The free C [Λ]-module C [Λ][E+] with basis {En
+ | n ∈ N} gives us a a first Ore

extension with
E+C(Λ) = τ(C(Λ))E+, ∀C(Λ) ∈ C [Λ].

The following Lemma is easy:

Lemma 6.4. There exists an automorphism σ of the Ore extension C [Λ][E+] sat-
isfying:

σ(E+) = E+, σ(ωr) =−ωr,∀ r and σ(Λ) = Λ.

Let θ be the element inω1 . . .ω2n+1Λ in C [Λ]. So θ commutes with Λ and ωr,
∀ r and anti-commutes with E+.

Let ∆ be the operator of C [E+] defined by

∆( f ) =
f (E+)− f (−E+)

2E+
,∀ f ∈ C [E+]

and D be the operator of C [Λ][E+] defined by

D( f (E+) C(Λ)) =
(

1
4

d f
dE+

−∆( f )θ
)

C(Λ), ∀ f ∈ C [E+], C(Λ) ∈ C [Λ].

Lemma 6.5. One has D(AB) = σ(A)D(B)+D(A)B for all A, B ∈ C [Λ][E+].

Proof. This is a straightforward verification.
�

From Lemmas 6.4 and 6.5, we can now construct a second Ore extension C [Λ][E+][E−]
satisfying

E−A = σ(A)E−+D(A),∀ A ∈ C [Λ][E+]
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It follows that :

[E+,E−]L =−1
4

+θ ,

ωkω j +ω jωk = 2δ jk (1≤ j,k ≤ 2n+1)(7)
E±ω j =−ω jE± (1≤ j ≤ 2n+1).

Proposition 6.6.
(1) The Ore extension C [Λ][E+][E−] and AΛ(n) are isomorphic algebras.
(2) A basis of AΛ(n) is given by:{

ω
I Eα

+ Eβ

− Λ
r | I ∈ {0,1}2n+1,α,β ,r ∈ N

}
where ω I = ω

i1
1 . . .ω

i2n+1
2n+1 for all I = (i1, . . . , i2n+1) ∈ {0,1}2n+1.

If Λ is replaced by a small λ (λ ∈ C) in the definition of AΛ(n), the same
procedure works to construct an Ore extension of C[E+][E−], isomorphic to Aλ (n).
So

Proposition 6.7. A basis of Aλ (n) is given by:{
ω

I Eα
+ Eβ

− | I ∈ {0,1}2n+1,α,β ∈ N
}

The algebra Aλ (n) is the quotient AΛ(n)/Iλ where Iλ is the ideal AΛ(n)(Λ−λ ).
As a particular case, setting p = 2E− and q = 2E+, we obtain:

A0(n)' C (2n+1,2)'AΛ(n)/ΛAΛ(n).

Since AΛ(n) = A0(n)[Λ] as vector spaces, we obtain:

Proposition 6.8. The algebra AΛ(n) is a non-trivial polynomial deformation of
the Clifford-Weyl algebra A0(n) = C (2n+1,2).

Proof. We just have to show that the deformation is non-trivial, but that results
from the fact that the deformation cocycle is non-trivial by Corollary 5.3. �

Remark 6.9. From Corollary 5.3 and Lemma 10.2, this polynomial deformation
AΛ(n) is a universal deformation formula of C (2n+1,2).

Corollary 6.10. The center of AΛ(n) is C[Λ]. Moreover, AΛ(n) and Aλ (n) are
Noetherian algebras.

Proof. We have A0(n) ' C(2n + 1,2) with center C (Corollary 3.3). Let ã be
a central element of AΛ(n). By Proposition 6.8, we can write ã = a + Λb̃ with
a ∈A0(n) and b̃ ∈AΛ(n). Therefore in AΛ(n):

xa0 +Λxb̃ = a0x+Λb̃x, ∀ x ∈A0(n).

But xa0 = x× a0 + Λc̃ and a0x = a0× x + Λd̃ where × denotes the product of
A0(n). So a0 is central in A0(n), henceforth a0 ∈ C. It follows b̃ is central in
AΛ(n) and repeating the same argument, we obtain ã ∈ C[Λ]. Finally, AΛ(n) and
Aλ (n) are Noetherian since they are constructed by Ore extensions of Noetherian
algebras ([MR01]). �



20 IAN M. MUSSON, GEORGES PINCZON, ROSANE USHIROBIRA

In the sequel, we denote Aλ the algebra Aλ (0). The periodicity of Clifford
algebras can be extended to the algebras AΛ(n) and Aλ (n):

Proposition 6.11. [Periodicity Lemma 2]
One has

AΛ(n)' C (2n)⊗AΛ 'M2n (AΛ) and

Aλ (n)' C (2n)⊗Aλ 'M2n (Aλ )

Proof. We denote by P and E± the generators of AΛ(0) satisfying PE± = −E±P,
P2 = 1 and [E+,E−]L =−1

4 +ΛP. Let ω1, . . . ,ω2n be the generators of C (2n).
We define ω ′1, . . . ,ω

′
2n+1 and E ′± elements of C (2n)⊗AΛ(0) by:

ω
′
i = ωi⊗P (1≤ i≤ 2n)

ω
′
2n+1 = inω1 . . .ω2n⊗P

E ′± = 1⊗E±

Using (ω1 . . .ω2n)2 = (−1)n, we check that ω ′1, . . . ,ω
′
2n+1 verify the defining

relations of C (2n+1) and anti-commute with E ′±. The relation [E ′+,E ′−]L =−1
4 +

inΛ ω ′1 . . .ω ′2n+1 results from 1⊗P = inω ′1 . . .ω ′2n+1.
Finally, this last equality and the fact that ωi = ω ′i (1⊗P) imply that ω ′i (1≤ i≤

2n+1) and E ′± generate the algebra C (2n)⊗AΛ(n).
On the other hand, if ω1, . . . ,ω2n+1, E± are the generators of AΛ(n), we define

ω ′1, . . . ,ω
′
2n, E ′± and P′ by:

P′ = inω1 . . .ω2n+1

ω
′
i = ωiP′ (1≤ i≤ 2n)

E ′± = E±

Since P′ commutes with ωi, it commutes with ω ′i . Since E ′± anti-commute with
ωi, they anti-commute with P′ and commute with ω ′i . The equality P′2 = 1 fol-
lows from (ω1 . . .ω2n+1)2 = (−1)n and we conclude ω ′2i = 1. Moreover ω ′i anti-
commutes with ω ′j for i 6= j and [E ′+,E ′−]L =−1

4 + inΛ ω1 . . .ω2n+1 =−1
4 +ΛP′.

All defining relations of C (2n)⊗AΛ(0) are satisfied. Moreover ωi = ω ′i P
′ and

in(ω ′1 . . .ω ′2n+1)P
′ = i2n(ω1 . . .ω2n)2P′2nω2n+1 = ω2n+1. So we conclude that ω ′i ,

E± and P′ generate AΛ(n).
This ends the proof that AΛ(n) ' C (2n)⊗AΛ. Since C (2n) 'M2n(C), then

AΛ(n)'M2n (AΛ).
A similar reasoning works for Aλ (n). �

Remark 6.12. The first isomorphism in Lemma 6.11 is not a surprise: if A is an al-
gebra, all deformations of Mk(A) are of type Mk(AΛ) where AΛ is a deformation of
A (see Appendix 3). Here, C (2n+1,2)'M2n (C (1,2)) and AΛ is a deformation
of C (1,2).
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7. ALGEBRAS AΛ(n) AND THEIR REPRESENTATIONS

Let {E+,E−,Y,F,G} be the usual generators of the Lie superalgebra osp(1,2):
one has osp(1,2)0 = span{Y,F,G}, osp(1,2)1 = span{E+,E−} and the commuta-
tion relations

[Y,E±] =±1
2 E±, [Y,F ] = F, [Y,G] =−G, [F,G] = 2Y,

[F,E+] = [G,E−] = 0, [F,E−] =−E+, [G,E+] =−E−
[E+,E+] = F, [E−,E−] =−G, [E+,E−] = Y.

where [�, �] denotes the super bracket.
Let U := U (osp(1,2)) be the enveloping algebra of osp(1,2). Denote by θ ∈

U the ghost:

θ :=
1
4

+[E+,E−]L

where [�, �]L denotes the Lie bracket.

Lemma 7.1. [Pin90, ABP94, ABF97]
The relation θE± =−E±θ holds in U .

Proof. We have θ = 1
4 +E+E−−E−E+, hence

E+θ =
1
4

E+ +E2
+E−−E+E−E+

θE+ =
1
4

E+ +E+E−E+−E−E2
+

Therefore E+θ + θE+ = 1
2 E+− [Y,E+] = 0. Similarly, we can prove that E−θ =

−E−θ . �

Let us now consider the C-algebra Uϑ defined by:

Uϑ :=
〈

E+,E−,ϑ | [E+,E−]L =−1
4

+ϑ ,E±ϑ =−ϑE±

〉
By Lemma 7.1, the enveloping algebra U is a quotient of Uϑ .

Proposition 7.2. [LP01]
There exists an algebra isomorphism between U and Uϑ .

Proof. Consider the subspace V =V0⊕V1 of Uϑ , with V0 = {0} and V1 = span{E+,E−}.
Define a supersymmetric bilinear form (�, �) on V (hence symplectic on V1) by:

(E+,E−) =−1
4
,(E+,E+) = (E−,E−) = 0.

The algebra Uϑ is Z2-graded by the Z2-gradation of V .
Starting from [E+,E−] = 2E+E−+ 1

4 −θ with E±θ =−θE±, we have:

[[E+,E−],E±] =±1
2
E±.

Using the Jacobi identity, we get [[E+,E+],E−] =−2[[E+,E−],E+] =−E+ and
[[E+,E+],E+] = 0.
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In the same way, [[E−,E−],E+] = E− and [[E−,E−],E−] = 0. We conclude that

[[X ,Y ],Z] = 2((Y,Z)X +(X ,Z)Y ) , ∀ X ,Y ∈V1.

By Corollary 4.2, we deduce a surjective algebra homomorphism from U to Uϑ

and using Lemma 7.1, we finish the proof. �

Proposition 7.3.
(1) AΛ(n)' C (2n+1)⊗

Z2

U .

(2) AΛ(n)' C (2n)⊗ (S2 nU )'M2n(S2 nU ).

Proof.
(1) Let ω1, . . . ,ω2n+1 be the generators of C (2n + 1). Here C (2n + 1) is Z2-

graded by degZ2
(ωi) = 1, ∀i. Define Λ ∈ C (2n+1)⊗

Z2

U by

Λ = inω1 . . .ω2n+1θ .

We see immediately that Λ is a central element and that ω1, . . . ,ω2n+1,
E± and Λ satisfy the defining relations of AΛ(n). Moreover, they generate
C (2n + 1)⊗

Z2

U since θ = inω1 . . .ω2n+1Λ. Then there exists a surjective

algebra homomorphism from AΛ(n) to C (2n+1)⊗
Z2

U .

To define the inverse map, we introduce an element θ ∈AΛ(n) by

θ = inω1 . . .ω2n+1Λ.

To finish the proof, we notice that elements E+, E− and θ verify the
defining relations of Uϑ ' U , hence ω1, . . . ,ω2n+1, E± and θ satisfy the
defining relations of C (2n+1)⊗

Z2

U and they generate AΛ(n).

(2) The parity of U is used to define the smash product S2 nU = C (1)⊗
Z2

U .

To prove (2), apply Lemma 6.11 and (1).
�

Remark 7.4. The algebra AΛ is a deformation of C (1,2) = S2 n W2. Besides
AΛ = S2 nU . So here is a particular case where a deformation of a smash product
remains a smash product. Moreover, representations of AΛ are merely graded
representations of U .

Definition 7.5. An algebra A is a FCR algebra if:
(1) Every finite-dimensional representation of A is completely reducible.
(2) The intersection of all kernels of finite-dimensional representations is {0}.

If A is an algebra and V is an A-module, there is a corresponding structure of
Mn(A)-module on V = V n, since n× n-matrices with coefficients in A act on n-
column vectors with coefficients in V . The following well-known Lemma shows
that all Mn(A)-modules are of this type:

Lemma 7.6. Given an Mn(A)-module V , there exists a corresponding A-module
V such that V 'V n, and ker(V ) = Mn(ker(V )).
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Proof. Let Ei j be the elementary matrices in Mn. They satisfy Id = ∑
n
i=1 Eii and

EiiE j j = δi jEii. So V =⊕n
i=1Wi where Wi = Eii.V . Since A and Mn commute, Wi

are A-modules. Since Ei j.Wj = Eii.(Ei j.Wj), Ei j maps Wj into Wi and Ei jWk = {0}
if k 6= j. Using E jiEi j = E j j., it results that Wi and Wj are isomorphic A-modules,
for all i, j. Let V be any of the A-modules Wi, it is easy to verify that V ' V n

as Mn(A)-modules. For the second claim, use the following easy statement: if
J is a two-sided ideal of Mn(A), there exists a two-sided ideal I of A such that
J = Mn(I). �

Remark 7.7. The above correspondence between A-modules and Mn(A)-modules
respects isomorphisms, irreducibility and direct sum decompositions.

Corollary 7.8. If A is an FCR algebra, then Mn(A) is also a FCR algebra.

Proof. Apply Lemma 7.6 and the Remark above. �

Corollary 7.9.
(1) The algebra AΛ(n) is a FCR algebra.
(2) All finite-dimensional representations of Aλ (n) are completely reducible.

Proof.
(1) By Periodicity Lemma 2, AΛ(n)'M2n(AΛ) and by Proposition 7.3, AΛ'

S2 nU . Representations of S2 nU are simply Z2-graded representations
of U and by [DH76], finite-dimensional ones are completely reducible.
Moreover by [Beh87], the intersection of all kernels of finite-dimensional
representations of S2 nU is {0}. So S2 nU is FCR, then apply Corollary
7.8.

(2) Use Aλ (n)'AΛ(n)/(Λ−λ )AΛ(n).
�

Remark 7.10. By Lemma 7.6, the representation theory of AΛ(n) 'M2n(AΛ) is
reduced to the representation theory of AΛ ' S2 n U and therefore to the Z2-
graded representation theory of U .

Example 7.11. To study finite-dimensional representations of AΛ(n), it is enough
to study irreducible ones by Corollary 7.9. Irreducible representations of osp(1,2)
are well-known, they are all Z2-graded: given h ∈ 1

2N, there exists an irreducible
representation on a (4h + 1)-dimensional space Vh to which corresponds an irre-
ducible representation of AΛ(n) given by 2n × 2n-matrices with coefficients in
S2 n U acting on Vh = V 2n

h , therefore of dimension 2n(4h + 1). Alternatively,
since AΛ(n)'C (2n)⊗AΛ, this representation is the natural action of C (2n)⊗AΛ

on Vh = Φn⊗Vh where Φn is the spin representation of C (2n) (see Section 1). This
describes all finite-dimensional representations of AΛ(n).

Example 7.12. We will now construct examples of simple Aλ -modules from the
metaplectic representation of W2. Let V = C[z] as in [LP01]. We define the opera-
tor ∆ of V :

∆(h) =
1
z
(h(z)−h(−z)),∀ h ∈V.
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Denote by P the parity operator of V . Define operators ρ
±
λ

by:

ρ
+
λ

=
1
2

d
dz
−λ∆, ρ

−
λ

=−1
2

z.

Then [ρ+
λ

,ρ−
λ

]L =−1
4 +λP, ρ

±
λ

P =−Pρ
±
λ

and P2 = 1. In this way, we obtain
a representation ρλ of Aλ in V such that:

ρλ (E±) = ρ
±
λ

, ρλ (P) = P.

We recover exactly the Z2-graded osp(1,2)-Verma module V
λ− 1

4
of highest

weight λ − 1
4 .

If λ 6= h+ 1
4 , 2h∈N, then ρλ (E+) does not vanish and the corresponding module

is simple. If λ = h + 1
4 , 2h ∈ N, we have ρλ (E+)(z4h+1) = 0. Therefore Wh =

span{z`, ` ≥ 4h + 1} is a simple submodule of dominant weight −
(
h+ 1

2

)
, the

quotient V/Wh is the simple osp(1,2)-module of dimension 4h+1 and the module
(V,ρh+ 1

4
) is a non-trivial extension of Wh by V/Wh (see [LP01] for more details).

Denote by Vλ the Aλ -module just built. Using Aλ (n) = M2n(Aλ ), define a cor-
responding Aλ (n)-module by setting Vλ (n) = Φ2n⊗Vλ where Φ2n is the spin repre-
sentation of C (2n). When λ 6=

(
h+ 1

4

)
, 2h∈N, we obtain a simple Aλ (n)-module.

When λ = h + 1
4 , 2h ∈ N, we obtain an indecomposable Aλ (n)-module with a

unique simple submodule and a unique simple quotient of dimension 2n(4h+1).
Since AΛ(n)'AΛ(n)/(Λ−λ )AΛ(n), these modules are AΛ(n)-modules.

Remark 7.13. When A is a Z2-graded algebra, Mn(A) = Mn⊗A has a natural
Z2-gradation induced by the gradation of A and deg(M) = 0 for all M ∈Mn. But
algebras S2 nMn(A) and Mn(S2 n A) have the same underlying vector space. It
is easy to verify that they coincide as algebras. Using Proposition 7.3, Remark 3.4
and Lemma 7.6, it results that all representations of AΛ(n) are graded and obtained
from graded representations of U .

8. ALGEBRAS Aλ (n)

We keep the notation of last Section. Write g = osp(1,2) as g = g0⊕g1 where
g0 = span{Y,F,G} and g1 = span{E+,E−}, U = U (g) its enveloping algebra and
θ = 1

4 + [E+,E−]L the ghost. We have Z (g) = C[C] where Z (g) denotes the
center of U , C = θ 2− 1

16 and Z (g0) = C[Q] where Z (g0) denotes the center of
U (g0), Q =

(
θ − 1

4

)(
θ + 3

4

)
([Pin90,ABP94]). For c∈C, let Bc := U /(C−c)U .

Let us consider the C-algebra Aλ := Aλ (0). Recall that:

Aλ =
〈

E+,E−,P | P2 = 1, [E+,E−]L =−1
4

+λP,E±P =−PE±

〉
If λ = 0, A0 is the Clifford-Weyl algebra C (1,2) = S2 nW2. In general:

Proposition 8.1. One has Aλ 'B
λ 2− 1

16
whenever λ 6= 0.
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Proof. For u ∈ U , we denote by u its class in B
λ 2− 1

16
. Therefore [E+,E−]L =

−1
4 + θ and E± θ = ±θ E±. Moreover, C = λ 2− 1

16 = θ
2− 1

16 . Setting P = 1
λ

θ ,
one recovers exactly the defining relations of Aλ and a map from Aλ onto B

λ 2− 1
16

.
For the inverse map, one can check that elements E+ and E− in Aλ generate

a superalgebra isomorphic to g, hence a homomorphism ρ from U to Aλ . We
have ρ(θ) = λP, so ρ is surjective. Since ρ

(
C−λ 2 + 1

16

)
= 0, one can define the

inverse map ρ from B
λ 2− 1

16
onto Aλ . �

The structure of the algebra Aλ is deduced from the Proposition above and
[Pin90].

Proposition 8.2.

(1) If λ 2 6=
(
h+ 1

4

)2
, 2h ∈ N, then Aλ is a simple algebra.

(2) If λ 2 =
(
h+ 1

4

)2
, 2h ∈ N, then Aλ is a primitive algebra. Moreover,

there exists a unique non-zero two-sided ideal Iλ in Aλ of codimension
(4h+1)2, with Iλ = ker(Vh) and Vh is the simple osp(1,2)-module of di-
mension 4h+1.

Proof.
It is proved in [Pin90] that Bc, c 6= 0 has the following properties:

• if c 6= h (2h+1)
2 ,2h ∈ N, then Bc is Z2-simple.

• if c = h (2h+1)
2 ,2h∈N, then Bc is primitive. Moreover, there exists a unique

non-zero Z2-graded two-sided ideal with codimension (4h+1)2 that is the
kernel of the simple osp(1,2)-module of dimension 4h+1.

If λ = 0, then A0 ' C (1,2) is simple.
If λ 6= 0, then Aλ ' B

λ 2− 1
16

. It is enough to show that any two-sided ideal
of B

λ 2− 1
16

is Z2-graded and then translate the results just above in term of λ .

So, let I be a two-sided ideal of B
λ 2− 1

16
. We set P = 1

λ
θ . We have P2 = 1 and

PbP = (−1)degZ2
(b)b, ∀b ∈B

λ 2− 1
16

. If a = a0 +a1 ∈ I, it follows PaP = a0−a1 ∈ I,
therefore a0 and a1 ∈ I.

�

Corollary 8.3.

(1) If λ 2 6=
(
h+ 1

4

)2
, 2h ∈ N, then Aλ (n) is a simple algebra.

(2) If λ 2 =
(
h+ 1

4

)2
, 2h ∈ N, then Aλ (n) is a primitive algebra. Moreover,

there exists a unique non-zero two-sided ideal in Aλ (n) of codimension
22n (4h+1)2, that is the kernel of the irreducible representation of dimen-
sion 2n (4h+1).

Proof. By Lemma 6.11, Aλ (n) 'M2n (Aλ ), so two-sided ideals of Aλ (n) are all
of type M2n(I), I a two-sided ideal of Aλ . Then apply Proposition 8.2 and Example
7.12.

�
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Remark 8.4. We have AΛ(n) ' AΛ(n)/(Λ− λ )AΛ(n). Moreover, the center of
AΛ(n) is C[Λ], so Corollary 8.3 lists all primitive quotients of AΛ(n).

The algebra A0 = C (1,2) is a quotient of U (osp(2,2)) (see Proposition 4.1).
More generally:

Proposition 8.5. The algebra AΛ is a quotient of S2 nU (osp(2,2)). Moreover,
the Casimir operator of osp(2,2) (see [ABP94]) vanishes in this quotient.

Proof. Using the notation in Section 6, we consider in AΛ:

K =−1
4

ω1 +Λ, H0 = CK, H1 = span{E+,E−}, H = H0⊕H1.

Define (·|·) a supersymmetric bilinear form on H by (K|K) = 1
8 and (E+|E−) =

−1
4 . It is easy to check that relations (PS) hold in H, so by Corollary 4.2, the

subalgebra of AΛ generated by H is a quotient of U (osp(2,2)). Now, the sub-
algebra of AΛ generated by H and ω1 is AΛ itself, and it is clearly a quotient of
S2 nU (osp(2,2)). The second claim results from a direct computation using the
Casimir formula given in [ABP94]. �

Corollary 8.6.
Any graded osp(1,2)-module can be extended to an osp(2,2)-module (with

same underlying space).

Proof. First, remark that given a graded algebra A, graded A-modules and S2 nA-
modules are exactly the same notion.

Now, start with a graded osp(1,2)-module with parity P. Recall that [E+,E−]L =
−1

4 +θ with θE± =−E±θ . We define Λ = θP and ω1 = P to obtain a graded AΛ-
module. By Proposition 8.5, this module is a S2 nU (osp(2,2))-module, therefore
a graded osp(2,2)-module.

�

Remark 8.7. Let C be the Casimir element of U (osp(2,2)). It is proved in [ABP94]
that a simple osp(2,2)-module is still simple as an osp(1,2)-module if, and only
if, C = 0.

9. APPENDIX 1

For the convenience of the reader, we recall here some notions of Hochschild
cohomology theory relating it to Gerstenhaber deformation theory of (associative)
algebras [Ger64,Gre53]. See [BFF+78,SD05] for applications of deformation the-
ory to quantization.

Let A be an (associative) algebra. By Hochschild cohomology of A, we mean
Hochschild cohomology with coefficients in A, defined as follows.

For k > 0, k-cochains are k-linear maps from Ak to A. When k = 0, 0-cochains
are simply elements of A. We denote by Mk(A) the space of k-cochains and by
M(A) =⊕k≥0Mk(A), the space of cochains. We define the Hochschild coboundary
operator d acting on M(A) by:

• if a ∈ A = M0(A), da =−ad(a) where ad(a)(b) := [a,b], for all a,b ∈ A.
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• if Ω ∈Mk(A), k > 0:

dΩ(a1, . . . ,ak+1) = a1Ω(a2, . . . ,ak+1)−Ω(a1a2,a3, . . . ,ak+1)+

Ω(a1,a2a3, . . . ,ak+1)+ · · ·+(−1)k+1
Ω(a1, . . . ,ak)ak+1

One has d2 = 0. Let B0(A) = {0}, Bk(A) = dMk−1(A), k > 0. Set Zk(A) =
ker
(

d|Mk(A)

)
, k ≥ 0 and Hk(A) = Zk(A)/Bk(A). Elements of Bk(A) (resp. Zk(A))

are k-coboundaries (resp. k-cocycles) and Hk(A) is the kth-space of Hochschild
cohomology of A. Note that H0(A) is the center of A. Here are some examples of
algebras A such that Hk(A) = {0} for all k > 0: semi-simple algebras (e.g. alge-
bras of finite groups, algebras of complex matrices, Clifford algebras), enveloping
algebras of semi-simple Lie algebras, Weyl algebras, etc.

A deformation of A with formal parameter Λ is a C[[Λ]]-algebra structure on
A[[Λ]] defined by:

a ? b = ab+ ∑
n≥1

Λ
n
Ωn(a,b), ∀a,b ∈ A,Ωn ∈M2(A),∀n.

The associativity of ? can be reinterpreted in terms of Hochschild cohomol-
ogy: Ω1 ∈ Z2(A) and when Ω1 ∈ B2(A), it can be removed by an equivalence,
i.e. an isomorphism of C[[Λ]]-algebras. When H2(A) = {0}, repeating the same
argument, it results that any deformation is equivalent to the initial product, so A
is rigid. For instance, all algebras we just mentioned above are rigid. Second, the
conditions on Ωn, n≥ 2 can be written in terms of 3-cohomology, and it results that
if H3(A) = {0}, then given any Ω1 ∈ Z2(A), there exits a deformation with leading
cocycle Ω1.

These two results are known as the rigidity and integrability theorems.

10. APPENDIX 2

The terminology and results presented in this Appendix are rather standard, but
for the sake of completeness we include them here with proofs.

Let A be an associative algebra with product m0. Let M(A) = ∑k≥0 Mk(A) be the
space of multilinear maps from A to A. The space M(A) is graded, M(k) := Mk+1(A)
and endowed with the Gerstenhaber bracket, it is a graded Lie algebra [PU07].
Let d = −ad(m0). Since d2 = 0, d defines a complex on M(A), the Hochschild
cohomology complex of A (see [GS88]). Let Z2(A) be the set of 2-cocycles, B2(A)
the 2-coboundaries, and H2(A) chosen such that Z2(A) = B2(A)⊕H2(A).

Given two vector spaces V and W , a formal map F : V →W is a power series
F = ∑k≥0 Fk where Fk is a homogeneous polynomial function of degree k from V
to W . In the sequel, we will need essentially formal maps F : H2(A)→M(A) and
we define a graded Lie algebra bracket coming from the one defined on M(A) by:

[F,F ′] = ∑
k≥0

∑
r+s=k

[Fr,F ′s ] for F = ∑
k≥0

Fk,F ′ = ∑
k≥0

F ′k

with [Fr,F ′s ](h) = [Fr(h),F ′s (h)], ∀h ∈ H2(A).
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Definition 10.1. A universal deformation formula of A is a formal map F : Z2(A)→
M2(A) such that:

(1) F = m0 + IdH2(A) +∑k≥2 Fk,
(2) [F,F ] = 0.

If F is a universal formula of deformation, λ a formal parameter and h∈H2(A),
then mλ

h := F(λh) = m0 +λh+∑k≥2 λ kFk is a deformation of m0. More generally,
if we have a formal curve in H2(A)[[λ ]], h̃ = ∑n≥1 λ nhn, then

mλ

h̃
:= F(h̃(λ )) = m0 +λh1 + ∑

k≥2
λ

k
∑

i1+···+in=k
i1,...,in≥1,1≤n≤k

Fn(hi1 , . . . ,hin)

is a deformation of m0. The Lemma below is simply a translation of the classical
criterion of integrability:

Lemma 10.2. Let D2(A) be a complementary subspace of Z2(A) in M2(A). If
H3(A) = {0}, then there exists a universal deformation formula

F = m0 + IdH2(A) + ∑
k≥2

Fk, with Fk ∈ D2(A),∀k ≥ 2.

Proof. Let σ be a section of d : M2(A)→ B3(A) such that σ ◦ d is the projec-
tion onto D2(A) along Z2(A). Step by step, we construct F verifying [F,F ] =
0, F = m0 + IdH2(A) +∑k≥2 Fk: first, we find d(F2) = 1

2 [IdH2(A), IdH2(A)]. Since
[IdH2(A), IdH2(A)] is valued in Z3(A)=B3(A), define a suitable F2 = 1

2 σ ◦[IdH2(A), IdH2(A)]
(remark that d ◦σ = IdB3(A)). It is easy to see that the remaining Fk can be con-
structed by the same procedure. �

Lemma 10.3.
(1) Let mλ be a deformation of m0. Then, up to equivalence, mλ can be written

as:

mλ = m0 +h(λ )+d(λ ), with h(λ ) ∈ λH2[[λ ]], d ∈ λ
2D2[[λ ]].

(2) If m′λ is another deformation with

m′λ = m0 +h(λ )+d′(λ ), with d′(λ ) ∈ λ
2D2[[λ ]],

then d′(λ ) = d(λ ).

Proof.
(1) Up to equivalence, we can assume that the leading cocycle of mλ is in

H2(A), mλ = m0 +λh1 +λ 2C2 + . . . .
We have C2 = d2 + h2 + b2, d2 ∈ D2(A), h2 ∈ H2(A) and b2 ∈ B2(A).

We can assume that b2 = 0, therefore mλ = m0 +(λh1 + λ 2h2)+ λ 2d2 +
λ 3C3 + . . . . Repeat the same argument to obtain the result.

(2) Let mλ = m0 + λh1 + λ 2(h2 + d2)+ . . . , m′
λ

= m0 + λh1 + λ 2(h2 + d′2)+
. . . , then d(h2 + d2) = 1

2 [h1,h1] = d(h2 + d′2), hence d(d2) = d(d′2) and
that implies d2− d′2 ∈ Z2(A)∩D2(A) = {0}. Apply repeatedly the same
reasoning to obtain m′

λ
= mλ .
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�

Proposition 10.4. Assume that H3(A) = {0}. Let F be a universal deformation
formula and mλ a deformation. Up to equivalence, there exists a formal curve
h(λ ) in H2(A)[[λ ]] such that h(0) = 0 and mλ = F(h(λ )). In other words, F
characterizes all deformations of m0 up to equivalence and up to change of formal
parameter.

Proof. The existence is given by the Lemma 10.2. Up to equivalence, we can
assume that mλ = m0 +h(λ )+d(λ ) where h(λ )∈ λH2[[λ ]] and d(λ )∈ λ 2H2[[λ ]]
(Lemma 10.3). But the deformation m′λ = F(h(λ )) can be written as m′λ = m0 +
h(λ )+d′(λ ) with d′(λ ) ∈ λ 2H2[[λ ]]. Henceforth m′λ = mλ by Lemma 10.3. �

11. APPENDIX 3

Let A be an algebra and AΛ be a deformation of A with product ? . The under-
lying space of AΛ is A[[Λ]], and it is easy to check that Mn(A[[Λ]]) = Mn(A)[[Λ]].
Then Mn(AΛ) is a deformation of Mn(A), the product is the natural one, defined
by (aM) ? (a′M′) = (a ? a′)MM′, ∀a,a′ ∈ A, M,M′ ∈Mn(A). Conversely:

Proposition 11.1. Any deformation of Mn(A) is equivalent to a deformation Mn(AΛ)
with AΛ a deformation of A.

This result is known, but since we have not been able to find a reference, we
give a short proof.

Proof. We refer to [GS88] for relative deformation theory with respect to a sep-
arable subalgebra. In the present case, the separable subalgebra of Mn(A) is
Mn, and any deformation is equivalent to a deformation with normalized Mn-
relative cochains [GS88], that is, cochains Ω : (Mn(A))2→Mn(A) that verify for
all M ∈Mn,a1,a2 ∈ A:

Ω(Ma1,a2) = MΩ(a1,a2), Ω(a1M,a2) = Ω(a1,Ma2),
Ω(a1,a2M) = Ω(a1,a2)M, and Ω(x1,x2) = 0 if one xi ∈Mn.

Since Mn and A commute, such a cochain is completely determined by its restric-
tion Ω̃ : A2→Mn(A) that verifies MΩ̃(a1,a2) = Ω̃(a1,a2)M, ∀M ∈Mn, a1,a2 ∈A,
and is therefore A-valued. Summarizing, up to equivalence, we have a new product
? that satisfies

M1 ? M2 = M1M2, M1 ? a = a ? M1 = aM1, (a1M1) ? (a2M2) = (a1 ? a2)M1M2

for all M1,M2 ∈Mn, a,a1,a2 ∈ A and

a1 ? a2 = a1a2 + ∑
n≥1

Λ
nCn(a1,a2), ∀a1,a2 ∈ A

with Cn : A2→ A. So ? defines a deformation AΛ of A.
Now, we will prove that our initial deformation ? of Mn(A) is exactly the

deformation Mn(AΛ): it is enough to show that (aM) ? (a′M′) is the product of
(aM) and (a′M′) in Mn(AΛ), for all a,a′ ∈ A, M,M′ ∈Mn. But this is true since
aM ? a′M′ = (a ? a′)MM′, that is exactly the product of Mn(AΛ).
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