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Throughout k will denote an algebraically closed field of characteristic 
zero. If A is a (commutative) k-algebra, we denote by 9(A) the ring of all 
k-linear differential operators on .4. 

If A is a domain it is well known and easy to see that 9(A) is also a 
domain. In most studies of 9(A), see, for example, [S], it is assumed that 
A is a domain. Here we are mainly concerned with the case where A has 
zero divisors, and we study annihilator conditions in 9?(A). For example, 
in Section 2 we prove 

THEOREM A. Let A be a Jinitel~~ generated k-algebra. The following 
conditions are equivalent. 

(I} g(A) has a semisimple artinian (classicai) quotient ring. 

(2) S?(A) has an artinian quotient rittg. 

(3) g(A) has the maximum condition on left annihilators. 

(4) A has an artinian quotient ring. 

In Theorem B we obtain a description of the prime radical IV of 9?(d) for 
A a finitely generated k-algebra. The statement of Theorem B requires the 
introduction of some notation so we postpone it until Section 3.1. 
However, as an amusing consequence we show that N”’ ‘ = 0, where n is 
the Krull dimension of A (Corollary 3.7). We also show that 6@(A) is semi- 
prime if and only if A has an artinian quotient ring (Corollary 3.8). 

In Section 4 we study an analogue of Nakai’s conjecture for algebras 
which are not necessarily domains. We prove that if Q(d) is generated by 
operators of order at most one then A is reduced and we conjecture that 
in fact A is a direct sum of domains. 

Many of the results in this paper are motivated by an interesting exam- 
ple of Muhasky [S]. Let A = kc-x, y]/(x’, XY). An explicit calculation of 
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9(A) is given in [S, Example 7.21 and this calculation is used to show that 
9(A) is right but not left Noetherian. 

In a forthcoming paper we shall study .9(,4) for algebras of Krull dimen- 
sion at most one in greater detail, extending the main results of [S] and 
[S], where it is assumed that A is reduced or is a domain, respectively. 

1. BACKGROUND RESULTS 

1.1. Let A be a commutative k-algebra and A4, N A-modules. We denote 
by @l(M, N) the space of k-linear operators from M to N of order <n and 
gA(M, N)= U,“=,g:(M, N) as defined, for example, in [S, Sect. 1.21. 
Write aA = ?BA(M, M). 

1.2. If I and J are subsets of M we define 

A,(I,J)= {~E~&(M)~~(I)EJ). 

We shall drop the subscript A in the notation gA(M, N), dA(I, J), etc., 
whenever no confusion is likely to result. 

LEMMA. (a) rf I (resp. J) is a g(M)-submodule of M then A,(Z, J) is a 
right (resp. left) ideal of g(M). 

(b) If JG I are g(M)-submodules of A4, there is a ring homomorphism 
q5: g(M) +52(1/J) defined by &d)(m + J) = d(m) + J with Ker 4 = A,(I, J). 

ProoJ Straightforward. 

We caution that A(Z, J) should not be confused with 9(1, J) when both 
are defined. For example, 9(Z, 0) is always zero whereas A(Z, 0) may not 
be. We note that A(A, I) =9(A, I) for any ideal I of A. Although we 
mainly work with A(I, J), 9(1, J) is often useful, since it is defined for any 
A-modules I and J. Also as noted in [S, Sect. 1.31. 9(A, -) is a left exact 
functor from A-modules to right 9(A)-modules. A similar notational 
problem is discussed in [S, Sect. 2.71. 

1.3. If I is a right ideal in a ring R, the idealiser of I in R is the ring 
O.(I)= {rER(rIEI}. 

LEMMA. Let R= k[x,] be a polynomial ring in indeterminates {x1)*,,, 
I an ideal of R, and A = R/I. Then 

(a) There is a k-algebra ismorphism 

A AA Old AR, 0 2 WA) 

under which an operator dE A.(I, I) maps a + IE A to d(a) + I. 
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(bj We haue d.(Z, I)= U,,,,(Z$B(R)) and d,(R, Z)=ZQ(R). 

ProoJ: (a) This is [S, Lemma 1.41. 
(bj This follows in much the same way as (a); see also [S, Proposi- 

tion 1.61. 

1.4. if S is a multiplicatively closed subset of A and M an A-module we 
denote by S(0) the kernel of the localisation map M + M,. Thus S(Oj = 
(m~Mlsm=O some SES). 

LEMMA. S(0) is a 9(M)-submodule of A4. 

Proof. Set N= S(0). If de 9(M) is an operator of order r we show by 
induction on r that d(N) G N. This is clear if r = 0. Let IZ E N and suppose 
sn=O for SES. Then -sd(n) = [d, s](n) E N by induction. Hence 
slsd(n) = 0 for some sr ES and d(n) E N. 

1.5. For de 9(M) we define @(d)E Hom,(M,, M,) by @(d)(m/s)= 
C;=o (- lYC4 sip (m)/s p+l for m E M, s E S, where Cd, s], is defined 
inductively by [d, s10 = d and [d, s], = [[d, s], _, , s]. It is known that CD 
gives a well defined ring homomorphism @,: 9(M) -+ 9(M,j. The image of 
@ is contained in 9(M/S(O)). For RZEM we have @(d)(m + S(0)) = 
d(m) + S(Oj. Hence by 1.2, Ker CD = d,(M, S(0)). Also by [S, Lemma 1.81 
we have Ker @ = { dE 9(M) 1 sd = 0 some s E S). Finally, note that if d has 
order n and sd = 0 for some s E S then by induction on IE, ds” + ’ = 0. Thus 
Ker@= {dES?(M)jds=O for some SES~. 

1.6. Suppose A, M, S are as above and set A= M/S(O). 

LEMMA. Zf c E A and cS(0) = 0 then &2(&T) c Im CD. 

Suppose d E 9(A) and let 2: M -+ A4 be any k-linear map which lifts ci. 
It suffices to show that cdi~ 9?(M) since then clearly cd= @(cd) E Im @. We 
use induction on the order of d. If d has order 0, then for all aE A and 
m E A4 we have d(am j - ad(m) = 0. Therefore a(am) - az(m) E S(0). Hence 
&?(am) -a&?(m) = 0 and CUE Hom,(M, M) E 9(M). For the inductive step 
note that for aE A, the map [s, a] lifts [d, a]. Hence [cJ, a] = c[d a] E 
9(M) by induction. It follows that &?E 9(M). 

Remarks. (1) If M is a finitely generated module over a Noetherian 
ring A, we can find c E S such that cS(0 j = 0, and the above applies. 

(2) If dES?(li;i) has order n and c is as in the lemma then by induc- 
tion on fz, dc” + ’ E Im CD. 

1.7. EXAMPLE. We give an example to show that Im @ may be strictly 
contained in 9(R). 
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Let A =k[x, J~]/(xJJ). Then A is isomorphic to the subring k(1, 1) + 
(xk[x], $[JJ]) of k[.x]@k[~~]. It is easily seen that 9(A)sk(l, 1)+ 
(xg(k[x]), @(k[v])). Let P= (y), S= A -P, then S(0) = P and 
A/S(O) E k[~]. However, the image of 9(A) under the localisation map is 
k + xsqk[x]) s 9(k[x]). 

1.8. We need a slight generalization of [S, Proposition 1.141. 

LEMMA. Let AI, N be A-modules such that Hom,(M, N) = 0 then 
9(M, N) = 0. 

Proof. An easy induction on n shows 9’(M, N) = 0 for all n. 

COROLLARY. LetA=A,@ ‘. . @A, and suppose I is an ideal of A. Write 
Z=Z,@ ... @I,, where Z,=ZnA,. 

Then 9(Z)z9(Z,)@ ... @9(Z,) 

ProoJ We may assume t = 2. Since e, = (1, 0), e2 = (0, 1) belong to A, 
Z is a direct sum as above. If say f E Hom,(Z,, Z2) then for Y E I,, f(r) = 
f(reIj=f(u)e,=O so f=O. Hence 9(Z1,Z2)=0 by the lemma. For 
dED(Z), let di be the restriction of d to Ii. It is easily seen that the map 
d + (d,, d2) is an isomorphism of 9(Z) onto 9(Z,) 0 g(Z,). 

2. ARTINIAN QUOTIENT RINGS 

2.1. In this section we prove Theorem A. The implications (1) * (2) and 
(2) =+ (3) are trivial so it suffices to prove (3) 3 (4) and (4) * (1). The next 
result is used in both parts of the proof. 

LEMMA. Suppose A = 3 0 N, where N is a nilpotent ideal and A a sub- 
algebra of A. Zf L, M are A-modules, then gA(L, M) = 5?&(L, M). 

Proof: Clearly gA( L, M) E 9,-(L, M). If de 9;(L, M) and NP = 0, 
we show that dE9)“,+2p-2 (L, M). If S and T are subsets of Hom,(L, M) 
and A, respectively, we write [S, T], = S and for i > 0, [S, T] i+ 1 = 
([a, t] laE [S, Tli, tE T}. Since [d, A] = [d, A] + [d, N] and 
CCd~Nl~~I=CCd~~l,Nl we have [d~Al~=~~+~=i[[d~~lj,Nl~~ 
x,+ j+m=i N’[d, AliNm. In the last sum all terms are zero unless 1, m < 
p- 1 and j<n- 1. Hence [d, A]n+Zp--2=0 as required. 

2.2. Proof of Theorem A. (3) * (4). We actually prove the contra- 
positive. Suppose A g R/Z, where Z is an ideal of R = k[x i, . . . . x,,], and A 
does not have an artinian quotient ring. This is equivalent to the 
assumption that there exist prime ideals P, Q of R belonging to Z such that 
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Ps Q. By [l, Proposition 7.171, Q/I is an annihilator ideal of R/I. Thus if 
J/I = ann,/,Q/I, we have Q/I = arm,;, J/I. 

Let Q(” be the tth symbolic power of Q, and L,= 
I- ann,,,,(((Q’f’+I)/I) 9(A)). Since Qcr)z Qcr+ ‘) we have L,E L,,,. We 
show below that for fixed r, there exists 8 E 9(R) such that 

(1) LyPjzQ, 

(2) a( g Q, 
(3) a(Q’“lij~Q. 

Hence by (2) there exists y E Q(” such that L?(Y)+ Q. By the first 
paragraph of the proof we can find x E J such that xc?(y) $ I. Now by (1 ), 
x8(I) c ?ra(P) c JQ c Z, so by 1.3, x-d induces a differential operator (also 
denoted xa) on A. Since xa(Q(‘)) @ I we have ~6 $ L,. However, by (3): 
xa(Q(‘+‘) ) G XQ E I. This will show that L, s L,, i and give an ascending 
chain of left annihilators in 9(A) as required. 

Let R= R/Q@+') and use the overbar to denote images of elements and 
ideals of R in i?. Suppose we can find 8, E 9’(R) such that 

(1) &(P)GQ and (2)’ &(Q”‘, ~2 p. 

Then by 1.3 there exists t3~9(R) with a(Q(““) E Q(‘+” and 
a(r) + Q(‘+ ‘)= d,(r + Q “+ “) for YE R. Then d will satisfy (1 j-(3), SO it 
suffices to find 8, satisfying (1)’ and (2)‘. 

Let M=Q,, S=&=Rp/M’+‘, and &f=M/Mrf’=&. Then S is a 
complete local artinian ring with maximal ideal &!. Hence by Cohen’s 
theorem [4, 28.51, there exists a subfield K of S with S= K@ a. 

Suppose that m = M’/M’+ i E (Pg + M’ f ’ )/M’+ ’ = is,. Then M’ z 
P, + M’ + i, and so 

M=M’+l+P,-Mt+P, 
- 

PQ PQ 

By Nakayama’s lemma this would imply M* E P,, but this is impossible 
since P, is a prime ideal of R, strictly contained in M. Therefore A?? @ P, 
and these are K-subspaces of S. 

By Lemma 2.1, Hom,(S, K) is a K-subspace of 9(S). Hence by vector 
space duality we can find a2 Ed such that a,(P,) =O, a,(&?) = K, 
and a1 is K-linear. In particular there exists TEA’ such that w) $ &?. 
Now there exist ci, c2 E R- Q such that cir E En A’= Q(‘l and 
a, = cza,E9(R). Write ci ERG S in the form c, =c) +m with c3 E K, 
rnE&?t Then c,r=c,r+vrzr and msE&?‘+‘=O. HenKc,rEQ(‘) and since 
d, is K-linear, a,(c,rj = c,c,a,(r) 6 M. Therefore a,(Q(‘)) & Q and a,(B) s 
c,a,(P,) = 0. Hence we have found a, satisfying ( 1)’ and (2)’ and this 
completes the proof. 
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2.3. LEMMA. Suppose A= A@3 N, M?here N is a nilpotent ideal and 2 a 
subalgebra of A. If V is an A-module direct surnmand of A there exists an 
idempotent e E 9(A) such that e9(A) e E 9x(V). 

ProoJ Suppose A = V@ W as A-modules and let e be the projection of 
A onto V relative to this decomposition. By Lemma 2.1 with L = A4 = A, 
e E gX(A) = 9(A) = 9. Clearly elements of ese act as k-linear maps on V. 
For aE 2 and de 9 we have [ede, a] = edea-aede= edae -eade = 
e[d, a] e. Hence elements of ege act as differential operators on the 
A-module V and we obtain a ring homomorphism 4: ege + G&(V). If d E 9 
and &ede) = 0 then since e( W) = 0, we obtain ede = 0 in ege so 4 is injec- 
tive. For dE gZ( V) we extend d to a k-linear map d’ on A by defining 
d’( W) = 0. For a E A we have [d’, a] = [d, a]‘. It follows that d’ E &(A) = 
9(A). Since d(ed’e) = d we have shown that ege 2 gZ( V). 

2.4. LEMMA. Suppose A = A@ N, lohere N is a nilpotent ideal and A a 
subalgebra of A, and that N is free of rank n - 1 as an A-module. Then 
9(A) E Mat,(g(A)) the ring of n x n matrices over 9(A). 

Proof: Let ur = 1 and let v2, . . . . v, be a basis for N as an A-module. Let 
eV be the A-linear map defined by eii(uk) = Jjkui, where 6, is the Kronecker 
delta. Then eiiE 9(A) = 9 by Lemma 2.1, eijekl= djkeil, and 1 = 
e,,+e,,+ ‘.. +e,. Also by the proof of Lemma2.3, e,,$@er, ZZJ?(A). 
Hence by [6, Lemma 6.151, 9(A) z Mat,(g(A)). 

2.5. Proof of Theorem A. (4) 3 (1). Assume that A has an artinian 
quotient ring, and let P,, . . . . P, be the minimal primes of A. If 
S= A - Uf= r Pi, then S is the set of non-zero divisors of A and Asz 
A,@ ... 0 A,, where Ai= Apt. Since 3?(A,) = As@, 9(A) is a localisation 
of 9(A) at a set of regular elements it suffices to show that 9(A,) has a 
semisimple artinian quotient ring. By [5, Proposition 1.141, 9?(A,) = 
WA,)@ ... @9(A,). 

Let M be the maximal ideal of the local artinian k-algebra Ai. By 
Cohen’s theorem there exists a subfield L of Ai with Aj = L@ M. If 
n=dim,A, then by Lemma 2.4, 9(Ai)r Mat,(B(L)). Since L is a finitely 
generated field extension of k, 9(L) is a Noetherian domain by [S, 
Proposition 2.61, for example. Hence S?(L) has a simple artinian quotient 
ring Q and Mat,(Q) is the simple artinian quotient ring of 9(Ai). It 
follows that 9(A,) has a semisimple artinian quotient ring. 

2.6. COROLLARY. 9(A) has a simple artinian quotient ring if and only if 
A has a local artinian quotient ring. 

Proof: This is immediate from the proof of 2.5. 
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2.7. We denote by Q(R) the quotient ring of R if it exists In the next 
section we shall require the following generalization of 2.5. 

LEMMA. Zf A has an artinian quotient ring and Z is an ideal of -4, then 
9(Z) has a semisimple artinian quotient ring. In fact there is an idempotenr 
eE Q(g(A)) such that 9?(I) has quotient ring eQ(9(A)) e. 

Proof It is enough to prove the last statement. Let S be the set of 
non-zero divisors in A and ‘4, = A, @ .. . @A, as in 2.5. We have 
Z,=Z,@ ... @Z,, where Zi=Z,n Ai and g(Z,)z5?(Z,)@ . . . @5?(Z,) by 
Corollary 1.8. 

As in 2.5 we have Ai = L @ M, where M is the maximal ideal of i4j and 
L a subfield. By Lemmas 2.3 and 2.1 there exists an idempotent ei E a(Ai) 
such that ei9(Ai) e,z CSL(Zi) = gA(Zi) = 9(Zi). Hence eiQ(g(Ai)) e,z 
Q(g(Z!)) by [7, Theorem31. If e-e,+ ... +e,~9(A~)~Q(2?(Aj)~ it 
follows that Q(g(Z)) 2 eQ(9(A)) e. 

2.8. It is convenient also to have the following description of 5?(Z) which 
is implicit in the above. For simplicity we assume that Z is an ideal in a 
local artinian ring A and that A = L 0 N, where L is a subfield and N the 
nilpotent radical of A. Let I’,, . . . . v, be a basis for I over L and extend to 
a basis u r, . ..? u, of A. For each i, let ej denote the L-linear map from A to 
L defined by e,(v, ) = 1, e,(z:-) = 0, j # i. Under composition of maps 
vi gL(L) e, acts as differential operators from uiL to cjL. 

LEMMA. With the above notation 

L;~~(L) ei = 2?L(viL, cjL j 

and 

gA(I) = QL(Z) = C vj2?L(Lj ej. 
l<i, j<r 

3. THE PRIME RADICAL 

3.1. In this section we describe the prime radical of g( A ), where A is a 
finitely generated k-algebra. We first establish some notation. Let 
O=f-LEA KA be an irredundant primary decomposition of 0 in A, where ZC/. 
is P,-primary. Suppose A has Krull dimension n. For 0 d i <II we set /ii = 
(A~n/rank(P,)di), Zi=n,,.,,, K,, and .Si=A- UnE,,,, P,. Then by [I? 
Proposition 4.91, Si(0) = Ii and in particular Ii is independent of the chosen 
primary decomposition. It is convenient to set I- L = A. By Lemma 1.4 each 
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ideal in the chain A = ZZ, 2 I, 2 I, 2 ... 3 Z, = 0 is a g(A)-submodule of 
A. For 0 < i<n, set Ji= d,(Zj_ i, Ii). Then by Lemma 1.2, Ji is an ideal 
of g(A) and by construction J, ... J1 Jo = 0. Hence if we set N = 
J,nJ,n ... A J,,, then N”+i=O. 

THEOREM B. With the above notation N is the prime radical of $2(A). 

Since N is nilpotent it will suffice to show that each Jj is a semiprime 
ideal. We do this by showing that each factor ring 2?(A)/Jj has a semi- 
simple artinian quotient ring. 

3.2. From now on fix i and set J= Ji, Z= Zip r. Let Q = Ai- Ajp i and 
for each ~ESZ set Z,=ZnK, and S2=Si-,n(A-PP,). By [l, Proposi- 
tion 4.91, In = S,(O), so by Lemma 1.4, In is a g(A)-submodule of A. Hence 
by Lemma 1.2, J,=d,(Z, In) is an ideal of 52(A). Since nlea ZA=Zi we 
have nlcR JA = J. We prove 

THEOREM. (a) Each factor ring g(A)/J, has a simple artinian quotient 
ring Q,. 

(b) The ideals JA/J, A E 0, are the minimal primes of 52(A)/J. 
(c) g(A)/J is an order in the semisimple artinian ring elen Q1. 

3.3. LEMMA. Let S = (s + KA 1 s E S,). Then S is precisely the set of non- 
zero divisors in A/K,. 

ProoJ Since S, c A - PA, elements of S are non-zero divisors in A/K,. 
Conversely suppose s + K* is a non-zero divisor in A/K,, then s $ P,. 
Number the maximal elements of the set {Ppj p E ACpl) as P,, . . . . P,, 
P m+l, ee.2 P “7 where SE Pi if and only if 1 <j< m. Let B= 
P m+l n ... nP,nK,. If B!& P,u ... u P, then by [3, Theorem811, 
B c Pj for some j with 19 j d m. Since Pi is prime it follows that P, c Pj for 
some 1 with nz + 1 d Id n or K1 E Pi. The first case is impossible by the 
incomparability of P,, P, and the second case gives P, c Pi, which con- 
tradicts the facts that rank(P,) = i, rank(Pj) < i- 1. Hence we can find 
x E B with x $ P,, . . . . P,. It then follows that s+x+ K, =s+ K2 and 
s + x E SA, which proves the lemma. 

3.4. LEMMA. Let Z and K be ideals of the finitely generated algebra A 
and suppose A/K has a local artinian quotient ring. Let S be the set of non- 
zero divisors in A/K. Given d E g((Z+ K)/K) there exist s E S and 
A’ E .52(A/Zn K) such that for all a E Z, d’(a + (Zn K)) + K= sd(a + K). 

Proof. Write A as a homomorphic image of a polynomial algebra A’ 
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and let 7, E be the inverse images of Z, K, respectively. Since A”/i?r A/K, 
A”/fn g, .4/In K, and Z+ K/Kg 7+ z/E as A-modules we may replace A 
by A in proving the lemma, to assume that A is a polynomial algebra. 

Since S-‘(A/K) is a local artinian ring it contains a copy of its residue 
field L by Cohen’s theorem. We can choose L’~, ~.., Do E Z such that 
o1 + K, . ..) 0,. + K form a basis for S- ‘(I+ K/K) as a vector space over L. If 
e,, . . . . e,. are as in 2.8 we have 

9(S-‘(Z+K/K))= c (u~+K)i%?~(L)e;. 
i<i,j<r 

Write n~9(Z+ K/K) in the form n=~,(~~-k K)hj, where 
6i~ z.i 5$(L) e,c 9(F’(A/K)). There exists SE S such that s~~E~(A/K) 
for allj. Therefore by Lemma 1.3, there exists 8;~ 9(A) such that h;(Kj c K 
and $(a) + K= sbj(, + K) for all a E A. Let QI, = C L;-~JE Z9jA). Then 
d,(K) G K and 

d,(u)+ K=sd(a+ K) for all 51 EZ. 

Also since d,( A j E Z, we have n,(Zn K) c Zn K. Hence d, induces a 
differential operator d’ E i%(A/Zn Kj such that d’(a + (In K)) = d,(a) + 
(Zn K) for all a E A. In particular for a E Z we have 

d’(a + (Zn K)) + K=sd(a + K) as required. 

3.5. We can now prove part (a) of Theorem 3.2. By Lemma 1.2 we can 
regard Gi?(A)/J, as a subring of 9(Z/Z,). Since Z/Z2 g Z+ K,/K, as 
A-modules we have a(Zil,) 2 9?(Z+ K,/K,j. Now (It K,)/K, is an ideal in 
the primary ring A/K, so g(Z/Z,) has a simple artinian quotient ring Q1 by 
Corollary 2.6 and Lemma 2.7. 

If s E S,, then s + JA is a non-zero divisor in 9(Aj/Ji and 9(Z/Z,) since 
s acts as a non-zero divisor on the module Z/Z,. We show that given 
de g(Z/Z,), there exists CE Sj. such that (c+ J;.j dE9(z4)jJi. If d is an 
operator of order n then we shall also have d(ciz + ’ + Jn j E 9(,4)/J,. It 
follows from this that Qj. is the simple artinian quotient ring of g(A),,‘J,~ 

Define d, E 9(Z+ K,/K,) by 

d,(a + K,) = d’(u) + K>. for UEZ, (11 

where d’(u) is any element of Z such that d’(u) + I, = d(a + I;.). 
By Lemmas 3.3 and 3.4, there exist s E S, and d, E 9(A/Z;.) such that 

dz(a + Z,) + K* = (s + Kj.) d,(a + K,) for aE I. (21 

Now consider the localisation map @: S?(A) + 9(A/Z,). By Lemma 1.6 
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there exists t~s, such that (t+ II) 9(,4/Z,) G Im @. Hence we can find 
d3 E 9(A ) such that 

d,(a) + 1, = (t + ZJ dz(a + ZJ for UEA, (3) 

Combining Eq. (1 t(3) we have, since Z, G K,, 

d,(u) + K1 = (t + K,)(d,(a + In) + KL) 

= (ts + Kn) d,(a + K,) 

= (tsd’(a) + K,) for u EZ. 

Hence d,(u) - tsd’(u) E K2. However, d3(Z)sZ, since Z is a g(A)- 
submodule of A, and d’(u) E Z, so d,(u) - M’(u) E In K, = IL. Therefore 

d,(a) + ZA = fSd’(U) + ZA 

= fSd( a + z,J for all UE Z. 

It follows that d, + J1 = (c + JL) d with c = ts E SL as claimed. 

3.6. The proof of Theorem 3.2 is now easy to complete. For each 13 E 0, 
Z/Z, is isomorphic to an ideal of A/K,. Hence K,~ann,(Z/Z~)e PA. If 
n Ir fL K,, G P, then K, E P, for some ZL # 1 since Pn is prime and so 
P, E P,, which is impossible. Hence for each 1 E 52 we can choose 
c1 E nrzn K,, c,$ P,. In particular, it follows that cLeJP = d,(Z, Z,) for 
p # Iz and C~ $ JL. Hence the ideals (JA 11 E Sz} are incomparable. Since 
these ideals are prime by part (a) of the theorem and 0 J2 = J, part (b) 
follows. 

Also we have an embedding 

9(A)/Jc @ g(A)/J,=Rc Q Q,=Q. 
IER AeR 

An element of Q will be written (q2), where q1 is the component in Q, for 
all L To show that 5?(A)/J is an order in Q it will suffice in view of part (a) 
to show that if d= (dl + Ji.) E R, with d,e a(A), there exists a non-zero 
divisor c E R such that cde g(A)/J. If d has order n we will also have 
dc n+l E~?(A)/J. 

Since ci. $ P,, c2 + J2 is a non-zero divisor in S?(A)/J,. Hence 
c = (c~ + JA) is a non-zero divisor in R. Set 6 = C c,d, E g(A). Since cP E JA 
for ,u#l we have S=c,d,modJ,. Therefore 6 maps to (c,d, + J1) = 
(ci + J,)(di + J,) = cd. Hence 6 + J= cd as required. 

3.7. An immediate consequence of Theorem B is the following. 
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COROLLARY. If A is a finitely generated k-algebra qf Kruil dimension n, 
and N is the prime radical of 9(A), then iV + ’ = 0. 

This is perhaps surprising since clearly we cannot bound the index of 
nilpotence of the nilradical of A in terms of any function of n. 

It is easy to construct examples where the bound in the corollary is 
achieved. For example, let B= k[x,, x1, . . . . x,] and for 0 <i < n, Pi = 
x,B+ ... +x,B, Ki=Pj+I, K=K,nK,n ... nKn, and A=B/K. Then A 
has Krull dimension n and Ki is Pi-primary ideal. In the notation of 3.1 we 
have Ii=(KOn ... nKi)/K. Let X=X,+ K. Then ~l~~-1~+, for -1 di<n. 
Therefore x E n Ji = N and X” # 0. Hence N” # 0. 

3.8. COROLLARY. rf A is a finitely generated k-algebra then 9(A) is 
semiprime (resp. prime) if and only if A has an artinian (resp. iocal artinian) 
quotient ring. 

Prooj The sufficiency of the conditions follows from 2.5 and 2.6. Con- 
versely if 9(,4) is semiprime we need to show that I, = 0 (in the notation 
of 3.1). It is easily seen that I, is a nilpotent ideal of A. If I, # 0 suppose 
that I’ # 0 but 1; ’ = 0 for some integer 13 1. Then we have I;. A E I, and 
Zh .1, s 0. This gives 16 G N, which contradicts 9(‘4) semiprime. If in addi- 
tion 9(A) is prime then by the proof of 2.5, the artinian quotient ring of 
A is local. 

4. AN ANALOGUE OF NAKAI'S CONJECTURE 

4.1. If A is a finitely generated k-algebra, we can ask for conditions 
under which 9(A) is generated by 9l(A). If A is a domain then Nakai’s 
conjecture asserts that this is equivalent to A being the coordinate ring of 
a non-singular variety. In general we show A must be reduced. It seems 
likely that A must in fact be a direct sum of domains. 

LEMMA. If S is a multiplicatiuel~~ closed subset of A and Q(A) is 
generated b!l 3l(A), then 9(‘4,) is generated b;? ~Z”f.4,). 

ProoJ This follows easily from the fact that &2(A,) 2 A,@, ~2(,4). 

4.2. THEOREM. 0” A is a finitely generated k-algebra such that Q(A) is 
generated by B’(A) then A is reduced. 

Proof. If we filter 9(A) by the order of the differential operators, then 
the associated graded ring gr 9(A) is generated by A and the image of 
der(A). Since der(A) is a finitely generated A-module, it follows that 
gr 9(A) is a finitely generated commutative A-aigebra and hence 
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Noetherian. Therefore g(A) is left Noetherian. It follows from Theorem A 
that A has an artinian quotient ring. 

Now let N be the nilradical of A and S the set of non-zero divisors of 
A. If N# 0, then N, #O and N, is the nilradical of A,. By Lemma 4.1, 
g(As) is generated by A, and der(A,). Now A,rA,@ ... @A,, where 
each Ai is a local artinian ring. Since g(A,) E g(A,) @ ... @ g(A,), each 
g(Ai) is generated by Ai and der(A,). If M is the maximal ideal of Ai, then 
any derivation of Ai preserves M by [2,4.1]. By Cohen’s theorem, there 
exists a subfield K of Ai such that Ai = K@ M. By Lemma 2.1 any K-linear 
endomorphism of Aj is a differential operator. It follows that M = 0, and 
each Ai is a field, but this contradicts the assumption that N, # 0. 

For the case where A = k[x,, . . . . x,]/(f) is a factor algebra of a polyno- 
mial algebra by a principal ideal, the above result has been proved by 
D. P. Patil and B. Singh; see [IS, Note Added in Proof]. It was their result 
which inspired Theorem 4.2. 

4.3. LEMMA. Suppose A is reduced with minimal primes P,, . . . . P,. rf 
9(A) is generated bl’ 9’(A), and each A/Pi is the coordinate ring of a non- 
singular variety, then AZ AfP, 0 ... ~73 AfP,. 

Prooj Set Ai = AfP,. Since P, n . . . n P, = 0 we can identify A with a 
subalgebra of A i 0 . . . 0 A,z. Suppose that 

that is, P, + (Pz n ... n P,) #A. Let M be a maximal ideal of A contain- 
ing P,+(P,n ... n P,). By replacing A with A,,, we can assume that A is 
local.. If Sj= A - Pi, then Pi= S,(O) and thus 9(A) may be identified with 
a subalgebra of 9(A,)@ .-. @9(A,). Let Z=P,+(P,n ... n P,). Since 
each Pi is invariant under every derivation of A by [2,4.1] so also is 
P, + I”’ for all nz Z 1. Therefore if 9(A) is generated by A and der(A), 
P, +p is a s(A)-submodule of A. If xEP,n -.. n P,, x#O, then by 
Lemma 1.6, ((x+ P,) 9(A,), 0, :.., 0) G 9(A). We can choose m such that 
x $ P, + P”. Since P, + r” is a non-zero ideal in the regular local ring A,, 
there exists a E 9(A,) such that 8(P, + r”) contains a unit of A,. Thus 
(x + P,) d(P, +r”) G P, + r”. This contradicts the fact that P, + p is a 
g(A)-submodule. It follows that (A,, 0, . . . . 0) c A and similarly (0, . . . . 
Ai, . . . . O)~Aforalli..Hence A=A,@ . ..@A.,. 
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