Rings of Differential Operators and Zero Divisors

IAN M. MUSSON

Department of Mathematical Sciences, University of Wisconsin, Milwaukee, Wisconsin 53201

Communicated by A. W. Goldie

Received February 22, 1988

Throughout k will denote an algebraically closed field of characteristic zero. If A is a (commutative) k-algebra, we denote by $\mathcal{D}(A)$ the ring of all k-linear differential operators on A.

If A is a domain it is well known and easy to see that $\mathcal{D}(A)$ is also a domain. In most studies of $\mathcal{D}(A)$, see, for example, [8], it is assumed that A is a domain. Here we are mainly concerned with the case where A has zero divisors, and we study annihilator conditions in $\mathcal{D}(A)$. For example, in Section 2 we prove

THEOREM A. Let A be a finitely generated k-algebra. The following conditions are equivalent.

- (1) $\mathcal{D}(A)$ has a semisimple artinian (classical) quotient ring.
- (2) $\mathscr{D}(A)$ has an artinian quotient ring.
- (3) $\mathscr{D}(A)$ has the maximum condition on left annihilators.
- (4) A has an artinian quotient ring.

In Theorem B we obtain a description of the prime radical N of $\mathcal{D}(A)$ for A a finitely generated k-algebra. The statement of Theorem B requires the introduction of some notation so we postpone it until Section 3.1. However, as an amusing consequence we show that $N^{n+1} = 0$, where n is the Krull dimension of A (Corollary 3.7). We also show that $\mathcal{D}(A)$ is semi-prime if and only if A has an artinian quotient ring (Corollary 3.8).

In Section 4 we study an analogue of Nakai's conjecture for algebras which are not necessarily domains. We prove that if $\mathcal{D}(A)$ is generated by operators of order at most one then A is reduced and we conjecture that in fact A is a direct sum of domains.

Many of the results in this paper are motivated by an interesting example of Muhasky [5]. Let $A = k[x, y]/(x^2, xy)$. An explicit calculation of

IAN M. MUSSON

 $\mathscr{D}(A)$ is given in [5, Example 7.2] and this calculation is used to show that $\mathscr{D}(A)$ is right but not left Noetherian.

In a forthcoming paper we shall study $\mathcal{D}(A)$ for algebras of Krull dimension at most one in greater detail, extending the main results of [5] and [8], where it is assumed that A is reduced or is a domain, respectively.

1. BACKGROUND RESULTS

1.1. Let A be a commutative k-algebra and M, N A-modules. We denote by $\mathscr{D}_{A}^{n}(M, N)$ the space of k-linear operators from M to N of order $\leq n$ and $\mathscr{D}_{A}(M, N) = \bigcup_{n=0}^{\infty} \mathscr{D}_{A}^{n}(M, N)$ as defined, for example, in [8, Sect. 1.2]. Write $\mathscr{D}_{A}(M) = \mathscr{D}_{A}(M, M)$.

1.2. If I and J are subsets of M we define

$$\Delta_M(I,J) = \{ d \in \mathcal{D}_A(M) \mid d(I) \subseteq J \}.$$

We shall drop the subscript A in the notation $\mathcal{D}_A(M, N)$, $\Delta_A(I, J)$, etc., whenever no confusion is likely to result.

LEMMA. (a) If I (resp. J) is a $\mathcal{D}(M)$ -submodule of M then $\Delta_M(I, J)$ is a right (resp. left) ideal of $\mathcal{D}(M)$.

(b) If $J \subseteq I$ are $\mathscr{D}(M)$ -submodules of M, there is a ring homomorphism $\phi: \mathscr{D}(M) \to \mathscr{D}(I/J)$ defined by $\phi(d)(m+J) = d(m) + J$ with Ker $\phi = \Delta_M(I, J)$.

Proof. Straightforward.

We caution that $\Delta(I, J)$ should not be confused with $\mathcal{D}(I, J)$ when both are defined. For example, $\mathcal{D}(I, 0)$ is always zero whereas $\Delta(I, 0)$ may not be. We note that $\Delta(A, I) = \mathcal{D}(A, I)$ for any ideal I of A. Although we mainly work with $\Delta(I, J)$, $\mathcal{D}(I, J)$ is often useful, since it is defined for any A-modules I and J. Also as noted in [8, Sect. 1.3]. $\mathcal{D}(A, -)$ is a left exact functor from A-modules to right $\mathcal{D}(A)$ -modules. A similar notational problem is discussed in [8, Sect. 2.7].

1.3. If I is a right ideal in a ring R, the idealiser of I in R is the ring $\mathbb{I}_R(I) = \{r \in R \mid rI \subseteq I\}.$

LEMMA. Let $R = k[x_A]$ be a polynomial ring in indeterminates $\{x_{\lambda}\}_{\lambda \in A}$, I an ideal of R, and A = R/I. Then

(a) There is a k-algebra ismorphism

$$\Delta_R(I, I) / \Delta_R(R, I) \cong \mathscr{D}(A)$$

under which an operator $d \in \Delta_R(I, I)$ maps $a + I \in A$ to d(a) + I.

(b) We have $\Delta_R(I, I) = \mathbb{I}_{\mathcal{Q}(R)}(I\mathcal{D}(R))$ and $\Delta_R(R, I) = I\mathcal{D}(R)$.

Proof. (a) This is [5, Lemma 1.4].

(b) This follows in much the same way as (a); see also [8, Proposition 1.6].

1.4. If S is a multiplicatively closed subset of A and M an A-module we denote by S(0) the kernel of the localisation map $M \to M_S$. Thus $S(0) = \{m \in M | sm = 0 \text{ some } s \in S\}$.

LEMMA. S(0) is a $\mathcal{D}(M)$ -submodule of M.

Proof. Set N = S(0). If $d \in \mathcal{D}(M)$ is an operator of order r we show by induction on r that $d(N) \subseteq N$. This is clear if r = 0. Let $n \in N$ and suppose sn = 0 for $s \in S$. Then $-sd(n) = [d, s](n) \in N$ by induction. Hence $s_1 sd(n) = 0$ for some $s_1 \in S$ and $d(n) \in N$.

1.5. For $d \in \mathcal{D}(M)$ we define $\Phi(d) \in \operatorname{Hom}_k(M_S, M_S)$ by $\Phi(d)(m/s) = \sum_{p=0}^{\infty} (-1)^p [d, s]_p (m)/s^{p+1}$ for $m \in M$, $s \in S$, where $[d, s]_p$ is defined inductively by $[d, s]_0 = d$ and $[d, s]_p = [[d, s]_{p-1}, s]$. It is known that Φ gives a well defined ring homomorphism $\Phi : \mathcal{D}(M) \to \mathcal{D}(M_S)$. The image of Φ is contained in $\mathcal{D}(M/S(0))$. For $m \in M$ we have $\Phi(d)(m + S(0)) = d(m) + S(0)$. Hence by 1.2, Ker $\Phi = \Delta_M(M, S(0))$. Also by [5, Lemma 1.8] we have Ker $\Phi = \{d \in \mathcal{D}(M) \mid sd = 0 \text{ some } s \in S\}$. Finally, note that if d has order n and sd = 0 for some $s \in S$ then by induction on n, $ds^{n+1} = 0$. Thus Ker $\Phi = \{d \in \mathcal{D}(M) \mid ds = 0 \text{ for some } s \in S\}$.

1.6. Suppose A, M, S are as above and set $\overline{M} = M/S(0)$.

LEMMA. If $c \in A$ and cS(0) = 0 then $c\mathscr{D}(\overline{M}) \subseteq \operatorname{Im} \Phi$.

Suppose $d \in \mathscr{D}(\overline{M})$ and let $\overline{d}: M \to M$ be any k-linear map which lifts d. It suffices to show that $c\overline{d} \in \mathscr{D}(M)$ since then clearly $cd = \Phi(c\overline{d}) \in \mathrm{Im} \Phi$. We use induction on the order of d. If d has order 0, then for all $a \in A$ and $m \in M$ we have d(am) - ad(m) = 0. Therefore $\overline{d}(am) - a\overline{d}(m) \in S(0)$. Hence $c\overline{d}(am) - ac\overline{d}(m) = 0$ and $c\overline{d} \in \mathrm{Hom}_A(M, M) \in \mathscr{D}(M)$. For the inductive step note that for $a \in A$, the map $[\overline{d}, a]$ lifts [d, a]. Hence $[c\overline{d}, a] = c[\overline{d}, a] \in$ $\mathscr{D}(M)$ by induction. It follows that $c\overline{d} \in \mathscr{D}(M)$.

Remarks. (1) If M is a finitely generated module over a Noetherian ring A, we can find $c \in S$ such that cS(0) = 0, and the above applies.

(2) If $d \in \mathcal{D}(\overline{M})$ has order *n* and *c* is as in the lemma then by induction on *n*, $dc^{n+1} \in \text{Im } \Phi$.

1.7. EXAMPLE. We give an example to show that Im Φ may be strictly contained in $\mathcal{D}(\overline{M})$.

Let A = k[x, y]/(xy). Then A is isomorphic to the subring k(1, 1) + (xk[x], yk[y]) of $k[x] \oplus k[y]$. It is easily seen that $\mathcal{D}(A) \cong k(1, 1) + (x\mathcal{D}(k[x]), y\mathcal{D}(k[y]))$. Let P = (y), S = A - P, then S(0) = P and $A/S(0) \cong k[x]$. However, the image of $\mathcal{D}(A)$ under the localisation map is $k + x\mathcal{D}(k[x]) \subsetneq \mathcal{D}(k[x])$.

1.8. We need a slight generalization of [5, Proposition 1.14].

LEMMA. Let M, N be A-modules such that $\operatorname{Hom}_A(M, N) = 0$ then $\mathscr{D}(M, N) = 0$.

Proof. An easy induction on *n* shows $\mathcal{D}^n(M, N) = 0$ for all *n*.

COROLLARY. Let $A = A_1 \oplus \cdots \oplus A_i$ and suppose I is an ideal of A. Write $I = I_1 \oplus \cdots \oplus I_i$, where $I_i = I \cap A_i$. Then $\mathcal{D}(I) \cong \mathcal{D}(I_1) \oplus \cdots \oplus \mathcal{D}(I_i)$

Proof. We may assume t = 2. Since $e_1 = (1, 0)$, $e_2 = (0, 1)$ belong to A, I is a direct sum as above. If say $f \in \text{Hom}_A(I_1, I_2)$ then for $r \in I_1$, $f(r) = f(re_1) = f(r)e_1 = 0$ so f = 0. Hence $\mathcal{D}(I_1, I_2) = 0$ by the lemma. For $d \in D(I)$, let d_i be the restriction of d to I_i . It is easily seen that the map $d \to (d_1, d_2)$ is an isomorphism of $\mathcal{D}(I)$ onto $\mathcal{D}(I_1) \oplus \mathcal{D}(I_2)$.

2. ARTINIAN QUOTIENT RINGS

2.1. In this section we prove Theorem A. The implications $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are trivial so it suffices to prove $(3) \Rightarrow (4)$ and $(4) \Rightarrow (1)$. The next result is used in both parts of the proof.

LEMMA. Suppose $A = \overline{A} \oplus N$, where N is a nilpotent ideal and \overline{A} a subalgebra of A. If L, M are A-modules, then $\mathcal{D}_A(L, M) = \mathcal{D}_{\overline{A}}(L, M)$.

Proof. Clearly $\mathcal{D}_A(L, M) \subseteq \mathcal{D}_{\overline{A}}(L, M)$. If $d \in \mathcal{D}_A^n(L, M)$ and $N^p = 0$, we show that $d \in \mathcal{D}_A^{n+2p-2}(L, M)$. If S and T are subsets of $\operatorname{Hom}_k(L, M)$ and A, respectively, we write $[S, T]_0 = S$ and for $i \ge 0$, $[S, T]_{i+1} = \{[\partial, t] | \partial \in [S, T]_i, t \in T\}$. Since $[d, A] = [d, \overline{A}] + [d, N]$ and $[[d, N], \overline{A}] = [[d, \overline{A}], N]$ we have $[d, A]_i = \sum_{j+k=i} [[d, \overline{A}]_j, N]_k \subseteq \sum_{l+j+m=i} N^l [d, \overline{A}]_j N^m$. In the last sum all terms are zero unless $l, m \le p-1$ and $j \le n-1$. Hence $[d, A]_{n+2p-2} = 0$ as required.

2.2. Proof of Theorem A. $(3) \Rightarrow (4)$. We actually prove the contrapositive. Suppose $A \cong R/I$, where I is an ideal of $R = k[x_1, ..., x_n]$, and A does not have an artinian quotient ring. This is equivalent to the assumption that there exist prime ideals P, Q of R belonging to I such that

 $P \subsetneq Q$. By [1, Proposition 7.17], Q/I is an annihilator ideal of R/I. Thus if $J/I = \operatorname{ann}_{R/I}Q/I$, we have $Q/I = \operatorname{ann}_{R/I}J/I$.

Let $Q^{(t)}$ be the *t*th symbolic power of Q, and $L_t = l - \operatorname{ann}_{\mathcal{D}(A)}(((Q^{(t)} + I)/I) \mathcal{D}(A))$. Since $Q^{(t)} \supseteq Q^{(t+1)}$ we have $L_t \subseteq L_{t+1}$. We show below that for fixed *t*, there exists $\partial \in \mathcal{D}(R)$ such that

- (1) $\partial(P) \subseteq Q$,
- (2) $\partial(Q^{(i)}) \not\subseteq Q$,
- (3) $\partial(Q^{(t+1)}) \subseteq Q.$

Hence by (2) there exists $y \in Q^{(t)}$ such that $\partial(y) \notin Q$. By the first paragraph of the proof we can find $x \in J$ such that $x\partial(y) \notin I$. Now by (1), $x\partial(I) \subseteq x\partial(P) \subseteq JQ \subseteq I$, so by 1.3, $x\partial$ induces a differential operator (also denoted $x\partial$) on A. Since $x\partial(Q^{(t)}) \notin I$ we have $x\partial \notin L_t$. However, by (3), $x\partial(Q^{(t+1)}) \subseteq xQ \subseteq I$. This will show that $L_t \subsetneq L_{t+1}$ and give an ascending chain of left annihilators in $\mathcal{D}(A)$ as required.

Let $\overline{R} = R/Q^{(t+1)}$ and use the overbar to denote images of elements and ideals of R in \overline{R} . Suppose we can find $\partial_1 \in \mathscr{D}(\overline{R})$ such that

(1)' $\partial_1(\overline{P}) \subseteq \overline{Q}$ and (2)' $\partial_1(\overline{Q^{(r)}}) \not\subseteq \overline{Q}$.

Then by 1.3 there exists $\partial \in \mathscr{D}(R)$ with $\partial (Q^{(t+1)}) \subseteq Q^{(t+1)}$ and $\partial (r) + Q^{(t+1)} = \partial_1 (r + Q^{(t+1)})$ for $r \in R$. Then ∂ will satisfy (1)-(3), so it suffices to find ∂_1 satisfying (1)' and (2)'.

Let $M = Q_Q$, $S = \overline{R}_{\overline{Q}} = R_Q/M^{t+1}$, and $\overline{M} = M/M^{t+1} = \overline{Q}_{\overline{Q}}$. Then S is a complete local artinian ring with maximal ideal \overline{M} . Hence by Cohen's theorem [4, 28.J], there exists a subfield K of S with $S = K \oplus \overline{M}$.

Suppose that $\overline{M}^{t} = M^{t}/M^{t+1} \subseteq (P_{Q} + M^{t+1})/M^{t+1} = \overline{P}_{Q}$. Then $M^{t} \subseteq P_{Q} + M^{t+1}$, and so

$$\left(\frac{M^{t}+P_{Q}}{P_{Q}}\right)M = \frac{M^{t+1}+P_{Q}}{P_{Q}} = \frac{M^{t}+P_{Q}}{P_{Q}}$$

By Nakayama's lemma this would imply $M' \subseteq P_Q$, but this is impossible since P_Q is a prime ideal of R_Q strictly contained in M. Therefore $\overline{M}' \not \subseteq \overline{P}_Q$ and these are K-subspaces of S.

By Lemma 2.1, $\operatorname{Hom}_{K}(S, K)$ is a K-subspace of $\mathscr{D}(S)$. Hence by vector space duality we can find $\partial_{2} \in \mathscr{D}(S)$ such that $\partial_{2}(\overline{P}_{Q}) = 0$, $\partial_{2}(\overline{M}') = K$, and ∂_{2} is K-linear. In particular there exists $r \in \overline{M}'$ such that $\partial_{2}(r) \notin \overline{M}$. Now there exist $c_{1}, c_{2} \in \overline{R} - \overline{Q}$ such that $c_{1}r \in \overline{R} \cap \overline{M}' = \overline{Q}^{(r)}$ and $\partial_{1} = c_{2}\partial_{2} \in \mathscr{D}(\overline{R})$. Write $c_{1} \in \overline{R} \subseteq S$ in the form $c_{1} = c_{3} + m$ with $c_{3} \in K$, $m \in \overline{M}$. Then $c_{1}r = c_{3}r + mr$ and $mr \in \overline{M}^{r+1} = 0$. Hence $c_{3}r \in \overline{Q}^{(r)}$ and since ∂_{1} is K-linear, $\partial_{1}(c_{3}r) = c_{2}c_{3}\partial_{2}(r) \notin \overline{M}$. Therefore $\partial_{1}(\overline{Q}^{(r)}) \notin \overline{Q}$ and $\partial_{1}(\overline{P}) \subseteq$ $c_{2}\partial_{2}(\overline{P}_{Q}) = 0$. Hence we have found ∂_{1} satisfying (1)' and (2)' and this completes the proof. 2.3. LEMMA. Suppose $A = \overline{A} \oplus N$, where N is a nilpotent ideal and \overline{A} a subalgebra of A. If V is an \overline{A} -module direct summand of A there exists an idempotent $e \in \mathcal{D}(A)$ such that $e\mathcal{D}(A) e \cong \mathcal{D}_{\overline{A}}(V)$.

Proof. Suppose $A = V \oplus W$ as \overline{A} -modules and let e be the projection of A onto V relative to this decomposition. By Lemma 2.1 with L = M = A, $e \in \mathcal{D}_{\overline{A}}(A) = \mathcal{D}(A) = \mathcal{D}$. Clearly elements of $e\mathcal{D}e$ act as k-linear maps on V. For $a \in \overline{A}$ and $d \in \mathcal{D}$ we have [ede, a] = edea - aede = edae - eade = e[d, a] e. Hence elements of $e\mathcal{D}e$ act as differential operators on the \overline{A} -module V and we obtain a ring homomorphism $\phi: e\mathcal{D}e \to \mathcal{D}_{\overline{A}}(V)$. If $d \in \mathcal{D}$ and $\phi(ede) = 0$ then since e(W) = 0, we obtain ede = 0 in $e\mathcal{D}e$ so ϕ is injective. For $d \in \mathcal{D}_{\overline{A}}(V)$ we extend d to a k-linear map d' on A by defining d'(W) = 0. For $a \in \overline{A}$ we have [d', a] = [d, a]'. It follows that $d' \in \mathcal{D}_{\overline{A}}(A) = \mathcal{D}(A)$. Since $\phi(ed'e) = d$ we have shown that $e\mathcal{D}e \cong \mathcal{D}_{\overline{A}}(V)$.

2.4. LEMMA. Suppose $A = \overline{A} \oplus N$, where N is a nilpotent ideal and \overline{A} a subalgebra of A, and that N is free of rank n-1 as an \overline{A} -module. Then $\mathcal{D}(A) \cong \operatorname{Mat}_n(\mathcal{D}(\overline{A}))$ the ring of $n \times n$ matrices over $\mathcal{D}(\overline{A})$.

Proof. Let $v_1 = 1$ and let $v_2, ..., v_n$ be a basis for N as an \overline{A} -module. Let e_{ij} be the \overline{A} -linear map defined by $e_{ij}(v_k) = \delta_{jk}v_i$, where δ_{ik} is the Kronecker delta. Then $e_{ij} \in \mathcal{D}(A) = \mathcal{D}$ by Lemma 2.1, $e_{ij}e_{kl} = \delta_{jk}e_{il}$, and $1 = e_{11} + e_{22} + \cdots + e_{nn}$. Also by the proof of Lemma 2.3, $e_{11}\mathcal{D}e_{11} \cong \mathcal{D}(\overline{A})$. Hence by [6, Lemma 6.1.5], $\mathcal{D}(A) \cong \operatorname{Mat}_n(\mathcal{D}(\overline{A}))$.

2.5. Proof of Theorem A. $(4) \Rightarrow (1)$. Assume that A has an artinian quotient ring, and let $P_1, ..., P_i$ be the minimal primes of A. If $S = A - \bigcup_{i=1}^{t} P_i$, then S is the set of non-zero divisors of A and $A_S \cong A_1 \oplus \cdots \oplus A_t$, where $A_i = A_{P_i}$. Since $\mathscr{D}(A_S) = A_S \otimes_A \mathscr{D}(A)$ is a localisation of $\mathscr{D}(A)$ at a set of regular elements it suffices to show that $\mathscr{D}(A_S)$ has a semisimple artinian quotient ring. By [5, Proposition 1.14], $\mathscr{D}(A_S) = \mathscr{D}(A_1) \oplus \cdots \oplus \mathscr{D}(A_t)$.

Let M be the maximal ideal of the local artinian k-algebra A_i . By Cohen's theorem there exists a subfield L of A_i with $A_i = L \oplus M$. If $n = \dim_L A_i$ then by Lemma 2.4, $\mathscr{D}(A_i) \cong \operatorname{Mat}_n(\mathscr{D}(L))$. Since L is a finitely generated field extension of k, $\mathscr{D}(L)$ is a Noetherian domain by [5, Proposition 2.6], for example. Hence $\mathscr{D}(L)$ has a simple artinian quotient ring Q and $\operatorname{Mat}_n(Q)$ is the simple artinian quotient ring of $\mathscr{D}(A_i)$. It follows that $\mathscr{D}(A_S)$ has a semisimple artinian quotient ring.

2.6. COROLLARY. $\mathcal{D}(A)$ has a simple artinian quotient ring if and only if A has a local artinian quotient ring.

Proof. This is immediate from the proof of 2.5.

2.7. We denote by Q(R) the quotient ring of R if it exists. In the next section we shall require the following generalization of 2.5.

LEMMA. If A has an artinian quotient ring and I is an ideal of A, then $\mathcal{D}(I)$ has a semisimple artinian quotient ring. In fact there is an idempotent $e \in Q(\mathcal{D}(A))$ such that $\mathcal{D}(I)$ has quotient ring $eQ(\mathcal{D}(A))$ e.

Proof. It is enough to prove the last statement. Let S be the set of non-zero divisors in A and $A_S = A_1 \oplus \cdots \oplus A_t$ as in 2.5. We have $I_S = I_1 \oplus \cdots \oplus I_t$, where $I_i = I_S \cap A_i$ and $\mathscr{D}(I_S) \cong \mathscr{D}(I_1) \oplus \cdots \oplus \mathscr{D}(I_t)$ by Corollary 1.8.

As in 2.5 we have $A_i = L \oplus M$, where M is the maximal ideal of A_i and L a subfield. By Lemmas 2.3 and 2.1 there exists an idempotent $e_i \in \mathcal{D}(A_i)$ such that $e_i \mathcal{D}(A_i) e_i \cong \mathcal{D}_L(I_i) = \mathcal{D}_A(I_i) = \mathcal{D}(I_i)$. Hence $e_i Q(\mathcal{D}(A_i)) e_i \cong Q(\mathcal{D}(I_i))$ by [7, Theorem 3]. If $e = e_1 + \cdots + e_i \in \mathcal{D}(A_s) \subseteq Q(\mathcal{D}(A))$, it follows that $Q(\mathcal{D}(I)) \cong eQ(\mathcal{D}(A)) e_i$.

2.8. It is convenient also to have the following description of $\mathscr{D}(I)$ which is implicit in the above. For simplicity we assume that I is an ideal in a local artinian ring A and that $A = L \oplus N$, where L is a subfield and N the nilpotent radical of A. Let $v_1, ..., v_r$ be a basis for I over L and extend to a basis $v_1, ..., v_s$ of A. For each i, let e_i denote the L-linear map from A to L defined by $e_i(v_i) = 1$, $e_i(v_j) = 0$, $j \neq i$. Under composition of maps $v_j \mathscr{D}_L(L) e_i$ acts as differential operators from $v_i L$ to $v_j L$.

LEMMA. With the above notation

$$v_i \mathscr{D}_L(L) e_i = \mathscr{D}_L(v_i L, v_i L)$$

and

$$\mathscr{D}_{A}(I) = \mathscr{D}_{L}(I) = \sum_{1 \leq i, j \leq r} v_{j} \mathscr{D}_{L}(L) e_{i}.$$

3. THE PRIME RADICAL

3.1. In this section we describe the prime radical of $\mathscr{D}(A)$, where A is a finitely generated k-algebra. We first establish some notation. Let $0 = \bigcap_{\lambda \in A} K_{\lambda}$ be an irredundant primary decomposition of 0 in A, where K_{λ} is P_{λ} -primary. Suppose A has Krull dimension n. For $0 \le i \le n$ we set $A_i = \{\lambda \in A \mid \operatorname{rank}(P_{\lambda}) \le i\}$, $I_i = \bigcap_{\lambda \in A_i} K_{\lambda}$, and $S_i = A - \bigcup_{\lambda \in A_i} P_{\lambda}$. Then by [1, Proposition 4.9], $S_i(0) = I_i$ and in particular I_i is independent of the chosen primary decomposition. It is convenient to set $I_{-1} = A$. By Lemma 1.4 each

ideal in the chain $A = I_{-1} \supseteq I_0 \supseteq I_1 \supseteq \cdots \supseteq I_n = 0$ is a $\mathscr{D}(A)$ -submodule of *A*. For $0 \le i \le n$, set $J_i = \mathcal{A}_A(I_{i-1}, I_i)$. Then by Lemma 1.2, J_i is an ideal of $\mathscr{D}(A)$ and by construction $J_n \cdots J_1 J_0 = 0$. Hence if we set $N = J_0 \cap J_1 \cap \cdots \cap J_n$, then $N^{n+1} = 0$.

THEOREM B. With the above notation N is the prime radical of $\mathcal{D}(A)$.

Since N is nilpotent it will suffice to show that each J_i is a semiprime ideal. We do this by showing that each factor ring $\mathcal{D}(A)/J_i$ has a semi-simple artinian quotient ring.

3.2. From now on fix *i* and set $J = J_i$, $I = I_{i-1}$. Let $\Omega = A_i - A_{i-1}$ and for each $\lambda \in \Omega$ set $I_{\lambda} = I \cap K_{\lambda}$ and $S_{\lambda} = S_{i-1} \cap (A - P_{\lambda})$. By [1, Proposition 4.9], $I_{\lambda} = S_{\lambda}(0)$, so by Lemma 1.4, I_{λ} is a $\mathcal{D}(A)$ -submodule of A. Hence by Lemma 1.2, $J_{\lambda} = \Delta_A(I, I_{\lambda})$ is an ideal of $\mathcal{D}(A)$. Since $\bigcap_{\lambda \in \Omega} I_{\lambda} = I_i$ we have $\bigcap_{\lambda \in \Omega} J_{\lambda} = J$. We prove

THEOREM. (a) Each factor ring $\mathcal{D}(A)/J_{\lambda}$ has a simple artinian quotient ring Q_{λ} .

- (b) The ideals J_{λ}/J , $\lambda \in \Omega$, are the minimal primes of $\mathcal{D}(A)/J$.
- (c) $\mathcal{D}(A)/J$ is an order in the semisimple artinian ring $\bigoplus_{\lambda \in \Omega} Q_{\lambda}$.

3.3. LEMMA. Let $S = \{s + K_{\lambda} | s \in S_{\lambda}\}$. Then S is precisely the set of nonzero divisors in A/K_{λ} .

Proof. Since $S_{\lambda} \subseteq A - P_{\lambda}$, elements of S are non-zero divisors in A/K_{λ} . Conversely suppose $s + K_{\lambda}$ is a non-zero divisor in A/K_{λ} , then $s \notin P_{\lambda}$. Number the maximal elements of the set $\{P_{\mu} | \mu \in A_{i-1}\}$ as $P_1, ..., P_m$, $P_{m+1}, ..., P_n$, where $s \in P_j$ if and only if $1 \leq j \leq m$. Let $B = P_{m+1} \cap \cdots \cap P_n \cap K_{\lambda}$. If $B \subseteq P_1 \cup \cdots \cup P_m$ then by [3, Theorem 81], $B \subseteq P_j$ for some j with $1 \leq j \leq m$. Since P_j is prime it follows that $P_i \subseteq P_j$ for some l with $m+1 \leq l \leq n$ or $K_{\lambda} \subseteq P_j$. The first case is impossible by the incomparability of P_i, P_j and the second case gives $P_{\lambda} \subseteq P_j$, which contradicts the facts that $\operatorname{rank}(P_{\lambda}) = i$, $\operatorname{rank}(P_j) \leq i-1$. Hence we can find $x \in B$ with $x \notin P_1, ..., P_m$. It then follows that $s + x + K_{\lambda} = s + K_{\lambda}$ and $s + x \in S_{\lambda}$, which proves the lemma.

3.4. LEMMA. Let I and K be ideals of the finitely generated algebra A and suppose A/K has a local artinian quotient ring. Let S be the set of nonzero divisors in A/K. Given $d \in \mathcal{D}((I+K)/K)$ there exist $s \in S$ and $d' \in \mathcal{D}(A/I \cap K)$ such that for all $a \in I$, $d'(a + (I \cap K)) + K = sd(a + K)$.

Proof. Write A as a homomorphic image of a polynomial algebra \tilde{A}

and let \tilde{I} , \tilde{K} be the inverse images of I, K, respectively. Since $\tilde{A}/\tilde{K} \cong A/K$, $\tilde{A}/\tilde{I} \cap \tilde{K} \cong A/I \cap K$, and $I + K/K \cong \tilde{I} + \tilde{K}/\tilde{K}$ as A-modules we may replace A by \tilde{A} in proving the lemma, to assume that A is a polynomial algebra.

Since $S^{-1}(A/K)$ is a local artinian ring it contains a copy of its residue field L by Cohen's theorem. We can choose $v_1, ..., v_r \in I$ such that $v_1 + K, ..., v_r + K$ form a basis for $S^{-1}(I + K/K)$ as a vector space over L. If $e_1, ..., e_r$ are as in 2.8 we have

$$\mathscr{D}(S^{-1}(I+K/K)) = \sum_{i \leq i, j \leq r} (v_j + K) \mathscr{D}_L(L) e_i.$$

Write $d \in \mathcal{D}(I + K/K)$ in the form $d = \sum_j (v_j + K) \delta_j$, where $\delta_j \in \sum_i \mathcal{D}_L(L) e_i \subseteq \mathcal{D}(S^{-1}(A/K))$. There exists $s \in S$ such that $s\delta_j \in \mathcal{D}(A/K)$ for all *j*. Therefore by Lemma 1.3, there exists $\delta'_j \in \mathcal{D}(A)$ such that $\delta'_j(K) \subseteq K$ and $\delta'_j(a) + K = s\delta_j(a + K)$ for all $a \in A$. Let $d_1 = \sum v_j \delta'_j \in I\mathcal{D}(A)$. Then $d_1(K) \subseteq K$ and

$$d_1(a) + K = sd(a + K)$$
 for all $a \in I$.

Also since $d_1(A) \subseteq I$, we have $d_1(I \cap K) \subseteq I \cap K$. Hence d_1 induces a differential operator $d' \in \mathcal{D}(A/I \cap K)$ such that $d'(a + (I \cap K)) = d_1(a) + (I \cap K)$ for all $a \in A$. In particular for $a \in I$ we have

$$d'(a + (I \cap K)) + K = sd(a + K)$$
 as required.

3.5. We can now prove part (a) of Theorem 3.2. By Lemma 1.2 we can regard $\mathscr{D}(A)/J_{\lambda}$ as a subring of $\mathscr{D}(I/I_{\lambda})$. Since $I/I_{\lambda} \cong I + K_{\lambda}/K_{\lambda}$ as A-modules we have $\mathscr{D}(I/I_{\lambda}) \cong \mathscr{D}(I + K_{\lambda}/K_{\lambda})$. Now $(I + K_{\lambda})/K_{\lambda}$ is an ideal in the primary ring A/K_{λ} so $\mathscr{D}(I/I_{\lambda})$ has a simple artinian quotient ring Q_{λ} by Corollary 2.6 and Lemma 2.7.

If $s \in S_{\lambda}$, then $s + J_{\lambda}$ is a non-zero divisor in $\mathscr{D}(A)/J_{\lambda}$ and $\mathscr{D}(I/I_{\lambda})$ since s acts as a non-zero divisor on the module I/I_{λ} . We show that given $d \in \mathscr{D}(I/I_{\lambda})$, there exists $c \in S_{\lambda}$ such that $(c + J_{\lambda}) d \in \mathscr{D}(A)/J_{\lambda}$. If d is an operator of order n then we shall also have $d(c^{n+1} + J_{\lambda}) \in \mathscr{D}(A)/J_{\lambda}$. It follows from this that Q_{λ} is the simple artinian quotient ring of $\mathscr{D}(A)/J_{\lambda}$.

Define $d_1 \in \mathcal{D}(I + K_{\lambda}/K_{\lambda})$ by

$$d_1(a+K_{\lambda}) = d'(a) + K_{\lambda} \quad \text{for} \quad a \in I, \tag{1}$$

where d'(a) is any element of I such that $d'(a) + I_{\lambda} = d(a + I_{\lambda})$.

By Lemmas 3.3 and 3.4, there exist $s \in S_{\lambda}$ and $d_2 \in \mathscr{D}(A/I_{\lambda})$ such that

$$d_2(a+I_{\lambda}) + K_{\lambda} = (s+K_{\lambda}) d_1(a+K_{\lambda}) \quad \text{for} \quad a \in I.$$
(2)

Now consider the localisation map $\Phi: \mathscr{D}(A) \to \mathscr{D}(A/I_{2})$. By Lemma 1.6

there exists $t \in S_{\lambda}$ such that $(t+I_{\lambda}) \mathscr{D}(A/I_{\lambda}) \subseteq \operatorname{Im} \Phi$. Hence we can find $d_3 \in \mathscr{D}(A)$ such that

$$d_3(a) + I_{\lambda} = (t + I_{\lambda}) d_2(a + I_{\lambda}) \quad \text{for} \quad a \in A,$$
(3)

Combining Eq. (1)–(3) we have, since $I_{\lambda} \subseteq K_{\lambda}$,

$$d_3(a) + K_{\lambda} = (t + K_{\lambda})(d_2(a + I_{\lambda}) + K_{\lambda})$$
$$= (ts + K_{\lambda}) d_1(a + K_{\lambda})$$
$$= (tsd'(a) + K_{\lambda}) \quad \text{for} \quad a \in I.$$

Hence $d_3(a) - tsd'(a) \in K_{\lambda}$. However, $d_3(I) \subseteq I$, since I is a $\mathscr{D}(A)$ -submodule of A, and $d'(a) \in I$, so $d_3(a) - tsd'(a) \in I \cap K_{\lambda} = I_{\lambda}$. Therefore

$$d_3(a) + I_{\lambda} = tsd'(a) + I_{\lambda}$$

= $tsd(a + I_{\lambda})$ for all $a \in I$.

It follows that $d_3 + J_{\lambda} = (c + J_{\lambda}) d$ with $c = ts \in S_{\lambda}$ as claimed.

3.6. The proof of Theorem 3.2 is now easy to complete. For each $\lambda \in \Omega$, I/I_{λ} is isomorphic to an ideal of A/K_{λ} . Hence $K_{\lambda} \subseteq \operatorname{ann}_{A}(I/I_{\lambda}) \subseteq P_{\lambda}$. If $\bigcap_{\mu \neq \lambda} K_{\mu} \subseteq P_{\lambda}$ then $K_{\mu} \subseteq P_{\lambda}$ for some $\mu \neq \lambda$ since P_{λ} is prime and so $P_{\mu} \subseteq P_{\lambda}$, which is impossible. Hence for each $\lambda \in \Omega$ we can choose $c_{\lambda} \in \bigcap_{\mu \neq \lambda} K_{\mu}$, $c_{\lambda} \notin P_{\lambda}$. In particular, it follows that $c_{\lambda} \in J_{\mu} = \Delta_{A}(I, I_{\mu})$ for $\mu \neq \lambda$ and $c_{\lambda} \notin J_{\lambda}$. Hence the ideals $\{J_{\lambda} | \lambda \in \Omega\}$ are incomparable. Since these ideals are prime by part (a) of the theorem and $\bigcap J_{\lambda} = J$, part (b) follows.

Also we have an embedding

$$\mathscr{D}(A)/J \subseteq \bigoplus_{\lambda \in \Omega} \mathscr{D}(A)/J_{\lambda} = R \subseteq \bigoplus_{\lambda \in \Omega} Q_{\lambda} = Q.$$

An element of Q will be written (q_{λ}) , where q_{λ} is the component in Q_{λ} for all λ . To show that $\mathcal{D}(A)/J$ is an order in Q it will suffice in view of part (a) to show that if $d = (d_{\lambda} + J_{\lambda}) \in R$, with $d_{\lambda} \in \mathcal{D}(A)$, there exists a non-zero divisor $c \in R$ such that $cd \in \mathcal{D}(A)/J$. If d has order n we will also have $dc^{n+1} \in \mathcal{D}(A)/J$.

Since $c_{\lambda} \notin P_{\lambda}$, $c_{\lambda} + J_{\lambda}$ is a non-zero divisor in $\mathscr{D}(A)/J_{\lambda}$. Hence $c = (c_{\lambda} + J_{\lambda})$ is a non-zero divisor in R. Set $\delta = \sum c_{\mu}d_{\mu} \in \mathscr{D}(A)$. Since $c_{\mu} \in J_{\lambda}$ for $\mu \neq \lambda$ we have $\delta = c_{\lambda}d_{\lambda} \mod J_{\lambda}$. Therefore δ maps to $(c_{\lambda}d_{\lambda} + J_{\lambda}) = (c_{\lambda} + J_{\lambda})(d_{\lambda} + J_{\lambda}) = cd$. Hence $\delta + J = cd$ as required.

3.7. An immediate consequence of Theorem B is the following.

498

COROLLARY. If A is a finitely generated k-algebra of Krull dimension n, and N is the prime radical of $\mathcal{D}(A)$, then $N^{n+1} = 0$.

This is perhaps surprising since clearly we cannot bound the index of nilpotence of the nilradical of A in terms of any function of n.

It is easy to construct examples where the bound in the corollary is achieved. For example, let $B = k[x_0, x_1, ..., x_n]$ and for $0 \le i \le n$, $P_i = x_0B + \cdots + x_iB$, $K_i = P_i^{i+1}$, $K = K_0 \cap K_1 \cap \cdots \cap K_n$, and A = B/K. Then A has Krull dimension n and K_i is P_i -primary ideal. In the notation of 3.1 we have $I_i = (K_0 \cap \cdots \cap K_i)/K$. Let $x = x_0 + K$. Then $xI_i \subseteq I_{i+1}$ for $-1 \le i < n$. Therefore $x \in \bigcap J_i = N$ and $x^n \ne 0$. Hence $N^n \ne 0$.

3.8. COROLLARY. If A is a finitely generated k-algebra then $\mathscr{D}(A)$ is semiprime (resp. prime) if and only if A has an artinian (resp. local artinian) quotient ring.

Proof. The sufficiency of the conditions follows from 2.5 and 2.6. Conversely if $\mathscr{D}(A)$ is semiprime we need to show that $I_0 = 0$ (in the notation of 3.1). It is easily seen that I_0 is a nilpotent ideal of A. If $I_0 \neq 0$ suppose that $I_0^l \neq 0$ but $I_0^{l+1} = 0$ for some integer $l \ge 1$. Then we have $I_0^l \cdot A \subseteq I_0$ and $I_0^l \cdot I_0 = 0$. This gives $I_0^l \subseteq N$, which contradicts $\mathscr{D}(A)$ semiprime. If in addition $\mathscr{D}(A)$ is prime then by the proof of 2.5, the artinian quotient ring of A is local.

4. AN ANALOGUE OF NAKAI'S CONJECTURE

4.1. If A is a finitely generated k-algebra, we can ask for conditions under which $\mathscr{D}(A)$ is generated by $\mathscr{D}^1(A)$. If A is a domain then Nakai's conjecture asserts that this is equivalent to A being the coordinate ring of a non-singular variety. In general we show A must be reduced. It seems likely that A must in fact be a direct sum of domains.

LEMMA. If S is a multiplicatively closed subset of A and $\mathcal{D}(A)$ is generated by $\mathcal{D}^1(A)$, then $\mathcal{D}(A_S)$ is generated by $\mathcal{D}^1(A_S)$.

Proof. This follows easily from the fact that $\mathscr{D}(A_S) \cong A_S \otimes_A \mathscr{D}(A)$.

4.2. THEOREM. If A is a finitely generated k-algebra such that $\mathscr{D}(A)$ is generated by $\mathscr{D}^1(A)$ then A is reduced.

Proof. If we filter $\mathscr{D}(A)$ by the order of the differential operators, then the associated graded ring gr $\mathscr{D}(A)$ is generated by A and the image of der(A). Since der(A) is a finitely generated A-module, it follows that gr $\mathscr{D}(A)$ is a finitely generated commutative A-algebra and hence Noetherian. Therefore $\mathscr{D}(A)$ is left Noetherian. It follows from Theorem A that A has an artinian quotient ring.

Now let N be the nilradical of A and S the set of non-zero divisors of A. If $N \neq 0$, then $N_S \neq 0$ and N_S is the nilradical of A_S . By Lemma 4.1, $\mathscr{D}(A_S)$ is generated by A_S and der (A_S) . Now $A_S \cong A_1 \oplus \cdots \oplus A_i$, where each A_i is a local artinian ring. Since $\mathscr{D}(A_S) \cong \mathscr{D}(A_1) \oplus \cdots \oplus \mathscr{D}(A_i)$, each $\mathscr{D}(A_i)$ is generated by A_i and der (A_i) . If M is the maximal ideal of A_i , then any derivation of A_i preserves M by [2, 4.1]. By Cohen's theorem, there exists a subfield K of A_i such that $A_i = K \oplus M$. By Lemma 2.1 any K-linear endomorphism of A_i is a differential operator. It follows that M = 0, and each A_i is a field, but this contradicts the assumption that $N_S \neq 0$.

For the case where $A = k[x_1, ..., x_n]/(f)$ is a factor algebra of a polynomial algebra by a principal ideal, the above result has been proved by D. P. Patil and B. Singh; see [9, Note Added in Proof]. It was their result which inspired Theorem 4.2.

4.3. LEMMA. Suppose A is reduced with minimal primes $P_1, ..., P_n$. If $\mathcal{D}(A)$ is generated by $\mathcal{D}^1(A)$, and each A/P_i is the coordinate ring of a nonsingular variety, then $A \cong A/P_1 \oplus \cdots \oplus A/P_n$.

Proof. Set $A_i = A/P_i$. Since $P_1 \cap \cdots \cap P_n = 0$ we can identify A with a subalgebra of $A_1 \oplus \cdots \oplus A_n$. Suppose that

$$A \cap (A_1, 0, ..., 0) \subsetneq (A_1, 0, ..., 0),$$

that is, $P_1 + (P_2 \cap \cdots \cap P_n) \neq A$. Let M be a maximal ideal of A containing $P_1 + (P_2 \cap \cdots \cap P_n)$. By replacing A with A_M we can assume that A is local. If $S_i = A - P_i$, then $P_i = S_i(0)$ and thus $\mathcal{D}(A)$ may be identified with a subalgebra of $\mathcal{D}(A_1) \oplus \cdots \oplus \mathcal{D}(A_n)$. Let $I = P_1 + (P_2 \cap \cdots \cap P_n)$. Since each P_i is invariant under every derivation of A by [2, 4.1] so also is $P_1 + I^m$ for all $m \ge 1$. Therefore if $\mathcal{D}(A)$ is generated by A and der(A), $P_1 + I^m$ is a $\mathcal{D}(A)$ -submodule of A. If $x \in P_2 \cap \cdots \cap P_n$, $x \ne 0$, then by Lemma 1.6, $((x + P_1) \mathcal{D}(A_1), 0, ..., 0) \subseteq \mathcal{D}(A)$. We can choose m such that $x \notin P_1 + I^m$. Since $P_1 + I^m$ is a non-zero ideal in the regular local ring A_1 , there exists $\partial \in \mathcal{D}(A_1)$ such that $\partial (P_1 + I^m)$ contains a unit of A_1 . Thus $(x + P_1) \partial (P_1 + I^m) \notin P_1 + I^m$. This contradicts the fact that $P_1 + I^m$ is a $\mathcal{D}(A)$ -submodule. It follows that $(A_1, 0, ..., 0) \subseteq A$ and similarly $(0, ..., A_i, ..., 0) \subseteq A$ for all i. Hence $A = A_1 \oplus \cdots \oplus A_n$.

References

 M. F. ATIYAH AND I. G. MACDONALD, Introduction to Commutative Algebra," Addison– Wesley, Reading, MA, 1969.

- W. BORHO, P. GABRIEL, AND R. RENTSCHLER, "Primideale in Einhüllenden auflösbarer Lie-Algebren," Lecture Notes in Mathematics, Vol. 357, Springer-Verlag, New York/Berlin, 1973.
- 3. I. KAPLANSKY, "Commutative Rings," Univ. of Chicago Press, Chicago, 1974.
- 4. H. MATSUMURA, "Commutative Algebra," Benjamin/Cummings, New York, 1980.
- 5. J. L. MUHASKY, The differential operator ring of an affine curve, Trans. Amer. Math. Soc. 307 (1988), 705-723.
- 6. D. S. PASSMAN, "The Algebraic Structure of Group Rings," Wiley-Interscience, New York, 1977.
- 7. L. W. SMALL, Orders in Artinian rings, II, J. Algebra 9 (1968), 266-273.
- S. P. SMITH AND J. T. STAFFORD, Differential operators on an affine curve, Proc. London Math. Soc. 56 (1988), 229-259.
- 9. B. SINGH, Differential operators on a hypersurface, Nagoya Math. J. 103 (1986), 67-84.