Rings of Differential Operators and Zero Divisors

Ian M. Musson
Department of Mathematical Sciences, University of Wisconsin, Milwazkee, Wisconsin 53201
Communicated by A. W. Goldie
Received February 22, 1988

Throughout k will denote an algebraically closed field of characteristic zero. If A is a (commutative) k-algebra, we denote by $\mathscr{D}(A)$ the ring of all k-linear differential operators on A.

If A is a domain it is well known and easy to see that $\mathscr{D}(A)$ is also a domain. In most studies of $\mathscr{D}(A)$, see, for example, [8], it is assumed that A is a domain. Here we are mainly concerned with the case where A has zero divisors, and we study annihilator conditions in $\mathscr{D}(A)$. For example, in Section 2 we prove

Theorem A. Let A be a finitely generated k-algebra. The following conditions are equivalent.
(1) $\mathscr{D}(A)$ has a semisimple artinian (classical) quotient ring.
(2) $\mathscr{D}(A)$ has an artinian quotient ring.
(3) $\mathscr{D}(A)$ has the maximum condition on left annihilators.
(4) A has an artinian quotient ring.

In Theorem B we obtain a description of the prime radical N of $\mathscr{X}(A)$ for A a finitely generated k-algebra. The statement of Theorem B requires the introduction of some notation so we postpone it until Section 3.1. However, as an amusing consequence we show that $N^{n+1}=0$, where n is the Krull dimension of A (Corollary 3.7). We also show that $\mathscr{D}(A)$ is semiprime if and only if A has an artinian quotient ring (Corollary 3.8).

In Section 4 we study an analogue of Nakai's conjecture for algebras which are not necessarily domains. We prove that if $\mathscr{D}(A)$ is generated by operators of order at most one then A is reduced and we conjecture that in fact A is a direct sum of domains.

Many of the results in this paper are motivated by an interesting example of Muhasky [5]. Let $A=k[x, y] /\left(x^{2}, x y\right)$. An explicit calculation of
$\mathscr{D}(A)$ is given in [5, Example 7.2] and this calculation is used to show that $\mathscr{X}(A)$ is right but not left Noetherian.

In a forthcoming paper we shall study $\mathscr{D}(A)$ for algebras of Krull dimension at most one in greater detail, extending the main results of [5] and [8], where it is assumed that A is reduced or is a domain, respectively.

1. Background Results

1.1. Let A be a commutative k-algebra and $M, N A$-modules. We denote by $\mathscr{D}_{A}^{n}(M, N)$ the space of k-linear operators from M to N of order $\leqslant n$ and $\mathscr{D}_{A}(M, N)=\bigcup_{n=0}^{\infty} \mathscr{D}_{A}^{n}(M, N)$ as defined, for example, in [8, Sect. 1.2]. Write $\mathscr{D}_{A}(M)=\mathscr{D}_{A}(M, M)$.
1.2. If I and J are subsets of M we define

$$
\Delta_{M}(I, J)=\left\{d \in \mathscr{D}_{A}(M) \mid d(I) \subseteq J\right\} .
$$

We shall drop the subscript A in the notation $\mathscr{D}_{A}(M, N), \Delta_{A}(I, J)$, etc., whenever no confusion is likely to result.

Lemma. (a) If I (resp. J) is a $\mathscr{D}(M)$-submodule of M then $\Delta_{M}(I, J)$ is a right (resp. left) ideal of $\mathscr{D}(M)$.
(b) If $J \subseteq I$ are $\mathscr{D}(M)$-submodules of M, there is a ring homomorphism $\phi: \mathscr{D}(M) \rightarrow \mathscr{D}(I / J)$ defined by $\phi(d)(m+J)=d(m)+J$ with $\operatorname{Ker} \phi=\Delta_{M}(I, J)$.

Proof. Straightforward.
We caution that $\Delta(I, J)$ should not be confused with $\mathscr{D}(I, J)$ when both are defined. For example, $\mathscr{D}(I, 0)$ is always zero whereas $\Delta(I, 0)$ may not be. We note that $A(A, I)=\mathscr{D}(A, I)$ for any ideal I of A. Although we mainly work with $\Delta(I, J), \mathscr{D}(I, J)$ is often useful, since it is defined for any A-modules I and J. Also as noted in [8, Sect. 1.3]. $\mathscr{D}(A,-)$ is a left exact functor from A-modules to right $\mathscr{D}(A)$-modules. A similar notational problem is discussed in [8, Sect. 2.7].
1.3. If I is a right ideal in a ring R, the idealiser of I in R is the ring $\mathbb{\rrbracket}_{R}(I)=\{r \in R \mid r I \subseteq I\}$.

Lemma. Let $R=k\left[x_{A}\right]$ be a polynomial ring in indeterminates $\left\{x_{\lambda}\right\}_{\lambda \in A}$, I an ideal of R, and $A=R / I$. Then
(a) There is a k-algebra ismorphism

$$
\Delta_{R}(I, I) / \Delta_{R}(R, I) \cong \mathscr{D}(A)
$$

under which an operator $d \in \Lambda_{R}(I, I)$ maps $a+I \in A$ to $d(a)+I$.
(b) We have $\Delta_{R}(I, I)=\square_{\mathscr{Q}(R)}(I \mathscr{D}(R))$ and $\Delta_{R}(R, I)=I \mathscr{D}(R)$.

Proof. (a) This is [5, I emma 1.4].
(b) This follows in much the same way as (a); see also [8, Proposition 1.6].
1.4. If S is a multiplicatively closed subset of A and M an A-module we denote by $S(0)$ the kernel of the localisation map $M \rightarrow M_{S}$. Thus $S(0)=$ $\{m \in M \mid s m=0$ some $s \in S\}$.

Lemma. $\quad S(0)$ is a $\mathscr{D}(M)$-submodule of M.
Proof. Set $N=S(0)$. If $d \in \mathscr{D}(M)$ is an operator of order r we show by induction on r that $d(N) \subseteq N$. This is clear if $r=0$. Let $n \in N$ and suppose $s n=0$ for $s \in S$. Then $-s d(n)=[d, s](n) \in N$ by induction. Hence $s_{1} s d(n)=0$ for some $s_{1} \in S$ and $d(n) \in N$.
1.5. For $d \in \mathscr{D}(M)$ we define $\Phi(d) \in \operatorname{Hom}_{k}\left(M_{S}, M_{S}\right)$ by $\Phi(d)(m / s)=$ $\sum_{p=0}^{\infty}(-1)^{p}[d, s]_{p}(m) / s^{p+1}$ for $m \in M, s \in S$, where $[d, s]_{p}$ is defined inductively by $[d, s]_{0}=d$ and $[d, s]_{p}=\left[[d, s]_{p-1}, s\right]$. It is known that Φ gives a well defined ring homomorphism $\Phi: \mathscr{L}(M) \rightarrow \mathscr{D}\left(M_{S}\right)$. The image of Φ is contained in $\mathscr{D}(M / S(0))$. For $m \in M$ we have $\Phi(d)(m+S(0))=$ $d(m)+S(0)$. Hence by 1.2 , Ker $\Phi=\Delta_{M}(M, S(0))$. Also by [5, Lemma 1.8] we have $\operatorname{Ker} \Phi=\{d \in \mathscr{D}(M) \mid s d=0$ some $s \in S\}$. Finally, note that if d has order n and $s d=0$ for some $s \in S$ then by induction on $n, d s^{n+1}=0$. Thus Ker $\Phi=\{d \in \mathscr{D}(M) \mid d s=0$ for some $s \in S\}$.
1.6. Suppose A, M, S are as above and set $\bar{M}=M / S(0)$.

Lemma. If $c \in A$ and $c S(0)=0$ then $c \mathscr{D}(\bar{M}) \subseteq \operatorname{Im} \Phi$.
Suppose $d \in \mathscr{D}(\bar{M})$ and let $\tilde{d}: M \rightarrow M$ be any k-linear map which lifts d. It suffices to show that $c \widetilde{d} \in \mathscr{D}(M)$ since then clearly $c d=\Phi(c \widetilde{d}) \in \operatorname{Im} \Phi$. We use induction on the order of d. If d has order 0 , then for all $a \in A$ and $m \in M$ we have $d(a m)-a d(m)=0$. Therefore $\tilde{d}(a m)-a \widetilde{d}(m) \in S(0)$. Hence $c \tilde{d}(a m)-a c \tilde{d}(m)=0$ and $c \widetilde{d} \in \operatorname{Hom}_{A}(M, M) \in \mathscr{D}(M)$. For the inductive step note that for $a \in A$, the map $[\tilde{d}, a]$ lifts $[d, a]$. Hence $[c \tilde{d}, a]=c[\widetilde{d}, a] \in$ $\mathscr{D}(M)$ by induction. It follows that $c \widetilde{d} \in \mathscr{D}(M)$.

Remarks. (1) If M is a finitely generated module over a Noetherian ring A, we can find $c \in S$ such that $c S(0)=0$, and the above applies.
(2) If $d \in \mathscr{D}(\bar{M})$ has order n and c is as in the lemma then by induction on $n, d c^{n+1} \in \operatorname{Im} \Phi$.
1.7. Example. We give an example to show that Im Φ may be strictly contained in $\mathscr{D}(\bar{M})$.

Let $A=k[x, y] /(x y)$. Then A is isomorphic to the subring $k(1,1)+$ $(x k[x], y k[y])$ of $k[x] \oplus k[y]$. It is easily seen that $\mathscr{D}(A) \cong k(1,1)+$ $(x \mathscr{D}(k[x]), y \mathscr{D}(k[y]))$. Let $P=(y), S=A-P$, then $S(0)=P$ and $A / S(0) \cong k[x]$. However, the image of $\mathscr{D}(A)$ under the localisation map is $k+x \mathscr{D}(k[x]) \varsubsetneqq \mathscr{D}(k[x])$.
1.8. We need a slight generalization of [5, Proposition 1.14].

Lemma. Let M, N be A-modules such that $\operatorname{Hom}_{A}(M, N)=0$ then $\mathscr{D}(M, N)=0$.

Proof. An easy induction on n shows $\mathscr{D}^{n}(M, N)=0$ for all n.
Corollary. Let $A=A_{1} \oplus \cdots \oplus A_{t}$ and suppose I is an ideal of A. Write $I=I_{1} \oplus \cdots \oplus I_{t}$, where $I_{i}=I \cap A_{i}$.

Then $\mathscr{D}(I) \cong \mathscr{D}\left(I_{1}\right) \oplus \cdots \oplus \mathscr{Z}\left(I_{t}\right)$
Proof. We may assume $t=2$. Since $e_{1}=(1,0), e_{2}=(0,1)$ belong to A, I is a direct sum as above. If say $f \in \operatorname{Hom}_{A}\left(I_{1}, I_{2}\right)$ then for $r \in I_{1}, f(r)=$ $f\left(r e_{1}\right)=f(r) e_{1}=0$ so $f=0$. Hence $\mathscr{D}\left(I_{1}, I_{2}\right)=0$ by the lemma. For $d \in D(I)$, let d_{i} be the restriction of d to I_{i}. It is easily seen that the map $d \rightarrow\left(d_{1}, d_{2}\right)$ is an isomorphism of $\mathscr{D}(I)$ onto $\mathscr{D}\left(I_{1}\right) \oplus \mathscr{D}\left(I_{2}\right)$.

2. Artinian Quotient Rings

2.1. In this section we prove Theorem A. The implications (1) $\Rightarrow(2)$ and $(2) \Rightarrow(3)$ are trivial so it suffices to prove $(3) \Rightarrow(4)$ and $(4) \Rightarrow(1)$. The next result is used in both parts of the proof.

Lemma. Suppose $A=\bar{A} \oplus N$, where N is a nilpotent ideal and \bar{A} a subalgebra of A. If L, M are A-modules, then $\mathscr{D}_{A}(L, M)=\mathscr{D}_{A}(L, M)$.

Proof. Clearly $\mathscr{D}_{A}(L, M) \subseteq \mathscr{D}_{\bar{A}}(L, M)$. If $d \in \mathscr{D}_{\bar{A}}^{n}(L, M)$ and $N^{p}=0$, we show that $d \in \mathscr{D}_{A}^{n+2 p-2}(L, M)$. If S and T are subsets of $\operatorname{Hom}_{k}(L, M)$ and A, respectively, we write $[S, T]_{0}=S$ and for $i \geqslant 0,[S, T]_{i+1}=$ $\left\{[\partial, t] \mid \partial \in[S, T]_{i}, \quad t \in T\right\}$. Since $\quad[d, A]=[d, \bar{A}]+[d, N] \quad$ and $[[d, N], \bar{A}]=[[d, \bar{A}], N]$ we have $[d, A]_{i}=\sum_{j+k=i}\left[[d, \bar{A}]_{j}, N\right]_{k} \subseteq$ $\sum_{t+j+m=i} N^{l}[d, \bar{A}]_{j} N^{m}$. In the last sum all terms are zero unless $l, m \leqslant$ $p-1$ and $j \leqslant n-1$. Hence $[d, A]_{n+2 p-2}=0$ as required.
2.2. Proof of Theorem A. (3) $\Rightarrow(4)$. We actually prove the contrapositive. Suppose $A \cong R / I$, where I is an ideal of $R=k\left[x_{1}, \ldots, x_{n}\right]$, and A does not have an artinian quotient ring. This is equivalent to the assumption that there exist prime ideals P, Q of R belonging to I such that
$P \nsubseteq Q$. By [1, Proposition 7.17], Q / I is an annihilator ideal of R / I. Thus if $J / I=\operatorname{ann}_{R / I} Q / I$, we have $Q / I=\operatorname{ann}_{R / I} J / I$.

Let $Q^{(i)}$ be the t th symbolic power of Q, and $L_{t}=$ $l-\operatorname{ann}_{\mathscr{D}(A)}\left(\left(\left(Q^{(t)}+I\right) / I\right) \mathscr{D}(A)\right)$. Since $Q^{(t)} \supseteq Q^{(t+1)}$ we have $L_{t} \subseteq L_{i+1}$. We show below that for fixed t, there exists $\partial \in \mathscr{D}(R)$ such that
(1) $\partial(P) \subseteq Q$,
(2) $\quad \partial\left(Q^{(t)}\right) \nsubseteq Q$,
(3) $\hat{c}\left(Q^{(t+1)}\right) \subseteq Q$.

Hence by (2) there exists $y \in Q^{(t)}$ such that $\partial(y) \notin Q$. By the first paragraph of the proof we can find $x \in J$ such that $x \partial(y) \notin I$. Now by (1), $x \partial(I) \subseteq x \partial(P) \subseteq J Q \subseteq I$, so by $1.3, x \partial$ induces a differential operator (also denoted $x \partial$) on A. Since $x \partial\left(Q^{(t)}\right) \nsubseteq I$ we have $x \partial \notin L_{r}$. However, by (3), $x \partial\left(Q^{(t+1)}\right) \subseteq x Q \subseteq I$. This will show that $L_{i} \subsetneq L_{t+1}$ and give an ascending chain of left annihilators in $\mathscr{D}(A)$ as required.

Let $\bar{R}=R / Q^{(t+1)}$ and use the overbar to denote images of elements and ideals of R in \bar{R}. Suppose we can find $\partial_{1} \in \mathscr{D}(\bar{R})$ such that

$$
(1)^{\prime} \quad \partial_{1}(\bar{P}) \subseteq \bar{Q} \quad \text { and } \quad(2)^{\prime} \quad \partial_{1} \overline{Q^{(t)}} \nsubseteq \bar{Q} .
$$

Then by 1.3 there exists $\partial \in \mathscr{D}(R)$ with $\partial\left(Q^{(t+1)} \subseteq Q^{(t+1)}\right.$ and $\partial(r)+Q^{(t+1)}=\partial_{1}\left(r+Q^{(t+1)}\right)$ for $r \in R$. Then ∂ will satisfy (1)-(3), so it suffices to find ∂_{1} satisfying (1)' and (2)'.

Let $M=Q_{Q}, S=\bar{R}_{\bar{Q}}=R_{Q} / M^{t+1}$, and $\bar{M}=M / M^{t+1}=\bar{Q}_{\bar{Q}}$. Then S is a complete local artinian ring with maximal ideal \bar{M}. Hence by Cohen's theorem [4, 28.J], there exists a subfield K of S with $S=K \oplus \bar{M}$.

Suppose that $\bar{M}^{t}=M^{t} / M^{t+1} \subseteq\left(P_{Q}+M^{t+1}\right) / M^{t+1}=\bar{P}_{Q}$. Then $M^{t} \subseteq$ $P_{Q}+M^{t+1}$, and so

$$
\left(\frac{M^{t}+P_{Q}}{P_{Q}}\right) M=\frac{M^{t+1}+P_{Q}}{P_{Q}}=\frac{M^{t}+P_{Q}}{P_{Q}}
$$

By Nakayama's lemma this would imply $M^{t} \subseteq P_{Q}$, but this is impossible since P_{Q} is a prime ideal of R_{Q} strictly contained in M. Therefore $\bar{M}^{t} \nsubseteq \bar{P}_{Q}$ and these are K-subspaces of S.

By Lemma 2.1, $\operatorname{Hom}_{K}(S, K)$ is a K-subspace of $\mathscr{D}(S)$. Hence by vector space duality we can find $\partial_{2} \in \mathscr{D}(S)$ such that $\partial_{2}\left(\bar{P}_{Q}\right)=0, \partial_{2}\left(\bar{M}^{t}\right)=K$, and ∂_{2} is K-linear. In particular there exists $r \in \bar{M}^{t}$ such that $\partial_{2}(r) \notin \bar{M}$. Now there exist $c_{1}, c_{2} \in \bar{R}-\bar{Q}$ such that $c_{1} r \in \bar{R} \cap \bar{M}^{t}=\bar{Q}^{(t)}$ and $\partial_{1}=c_{2} \partial_{2} \in \mathscr{R}(\bar{R})$. Write $c_{1} \in \bar{R} \subseteq S$ in the form $c_{1}=c_{3}+m$ with $c_{3} \in K$, $m \in \bar{M}$. Then $c_{1} r=c_{3} r+m r$ and $m r \in \bar{M}^{r+1}=0$. Hence $c_{3} r \in \overline{Q^{(1)}}$ and since ∂_{1} is K-linear, $\partial_{1}\left(c_{3} r\right)=c_{2} c_{3} \partial_{2}(r) \notin \bar{M}$. Therefore $\partial_{1}\left(\overline{Q^{(t)}}\right) \nsubseteq \bar{Q}$ and $\partial_{1}(\bar{P}) \subseteq$ $c_{2} \partial_{2}\left(\bar{P}_{Q}\right)=0$. Hence we have found ∂_{1} satisfying (1)' and $(2)^{\prime}$ and this completes the proof.
2.3. Lemma. Suppose $A=\bar{A} \oplus N$, where N is a nilpotent ideal and \bar{A} a subalgebra of A. If V is an \bar{A}-module direct summand of A there exists an idempotent $e \in \mathscr{D}(A)$ such that $e \mathscr{D}(A) e \cong \mathscr{D}_{\bar{A}}(V)$.

Proof. Suppose $A=V \oplus W$ as \bar{A}-modules and let e be the projection of A onto V relative to this decomposition. By Lemma 2.1 with $L=M=A$, $e \in \mathscr{D}_{A}(A)=\mathscr{D}(A)=\mathscr{D}$. Clearly elements of $e \mathscr{D} e$ act as k-linear maps on V. For $a \in \bar{A}$ and $d \in \mathscr{D}$ we have $[e d e, a]=e d e a-a e d e=e d a e-e a d e=$ $e[d, a] e$. Hence elements of $e \mathscr{D} e$ act as differential operators on the \bar{A}-module V and we obtain a ring homomorphism $\phi: e \mathscr{D} e \rightarrow \mathscr{D}_{A}(V)$. If $d \in \mathscr{D}$ and $\phi(e d e)=0$ then since $e(W)=0$, we obtain $e d e=0$ in $e \mathscr{D} e$ so ϕ is injective. For $d \in \mathscr{D}_{\bar{A}}(V)$ we extend d to a k-linear map d^{\prime} on A by defining $d^{\prime}(W)=0$. For $a \in \bar{A}$ we have $\left[d^{\prime}, a\right]=[d, a]^{\prime}$. It follows that $d^{\prime} \in \mathscr{D}_{\bar{A}}(A)=$ $\mathscr{D}(A)$. Since $\phi\left(e d^{\prime} e\right)=d$ we have shown that $e \mathscr{D} e \cong \mathscr{D}_{\bar{A}}(V)$.
2.4. Lemma. Suppose $A=\bar{A} \oplus N$, where N is a nilpotent ideal and $\bar{A} a$ subalgebra of A, and that N is free of rank $n-1$ as an \bar{A}-module. Then $\mathscr{D}(A) \cong \operatorname{Mat}_{n}(\mathscr{D}(\bar{A}))$ the ring of $n \times n$ matrices over $\mathscr{D}(\bar{A})$.

Proof. Let $v_{1}=1$ and let v_{2}, \ldots, v_{n} be a basis for N as an \bar{A}-module. Let $e_{i j}$ be the \bar{A}-linear map defined by $e_{i j}\left(v_{k}\right)=\delta_{j k} v_{i}$, where $\delta_{i k}$ is the Kronecker delta. Then $e_{i j} \in \mathscr{D}(A)=\mathscr{D}$ by Lemma 2.1, $e_{i j} e_{k l}=\delta_{j k} e_{i l}$, and $1=$ $e_{11}+e_{22}+\cdots+e_{n n}$. Also by the proof of Lemma 2.3, $e_{11} \mathscr{D} e_{11} \cong \mathscr{D}(\bar{A})$. Hence by [6, Lemma 6.1.5], $\mathscr{D}(A) \cong \operatorname{Mat}_{n}(\mathscr{D}(\bar{A}))$.
2.5. Proof of Theorem A. (4) \Rightarrow (1). Assume that A has an artinian quotient ring, and let $P_{1}, \ldots, P_{\text {}}$ be the minimal primes of A. If $S=A-\bigcup_{i=1}^{t} P_{i}$, then S is the set of non-zero divisors of A and $A_{S} \cong$ $A_{1} \oplus \cdots \oplus A_{i}$, where $A_{i}=A_{P_{i}}$. Since $\mathscr{D}\left(A_{S}\right)=A_{S} \otimes_{A} \mathscr{D}(A)$ is a localisation of $\mathscr{D}(A)$ at a set of regular elements it suffices to show that $\mathscr{D}\left(A_{S}\right)$ has a semisimple artinian quotient ring. By [5, Proposition 1.14], $\mathscr{D}\left(A_{S}\right)=$ $\mathscr{D}\left(A_{1}\right) \oplus \cdots \oplus \mathscr{D}\left(A_{t}\right)$.

Let M be the maximal ideal of the local artinian k-algebra A_{i}. By Cohen's theorem there exists a subfield L of A_{i} with $A_{i}=L \oplus M$. If $n=\operatorname{dim}_{L} A_{i}$ then by Lemma 2.4, $\mathscr{D}\left(A_{i}\right) \cong \operatorname{Mat}_{n}(\mathscr{D}(L))$. Since L is a finitely generated field extension of $k, \mathscr{D}(L)$ is a Noetherian domain by [5, Proposition 2.6], for example. Hence $\mathscr{B}(L)$ has a simple artinian quotient ring Q and $\operatorname{Mat}_{n}(Q)$ is the simple artinian quotient ring of $\mathscr{D}\left(A_{i}\right)$. It follows that $\mathscr{D}\left(A_{S}\right)$ has a semisimple artinian quotient ring.
2.6. Corollary. $\mathscr{D}(A)$ has a simple artinian quotient ring if and only if A has a local artinian quotient ring.

Proof. This is immediate from the proof of 2.5 .
2.7. We denote by $Q(R)$ the quotient ring of R if it exists. In the next section we shall require the following generalization of 2.5 .

Lemma. If A has an artinian quotient ring and I is an ideal of A, then $\mathscr{D}(I)$ has a semisimple artinian quotient ring. In fact there is an idempotent $e \in Q(\mathscr{D}(A))$ such that $\mathscr{R}(I)$ has quotient ring $e Q(\mathscr{D}(A)) e$.

Proof. It is enough to prove the last statement. Let S be the set of non-zero divisors in A and $A_{S}=A_{1} \oplus \cdots \oplus A_{t}$ as in 2.5. We have $I_{S}=I_{1} \oplus \cdots \oplus I_{t}$, where $I_{i}=I_{S} \cap A_{i}$ and $\mathscr{D}\left(I_{S}\right) \cong \mathscr{D}\left(I_{1}\right) \oplus \cdots \oplus \mathscr{D}\left(I_{t}\right)$ by Corollary 1.8 .

As in 2.5 we have $A_{i}=L \oplus M$, where M is the maximal ideal of A_{i} and L a subfield. By Lemmas 2.3 and 2.1 there exists an idempotent $e_{l} \in \mathscr{D}\left(A_{i}\right)$ such that $e_{i} \mathscr{D}\left(A_{i}\right) e_{i} \cong \mathscr{D}_{L}\left(I_{i}\right)=\mathscr{\mathscr { D }}_{A}\left(I_{i}\right)=\mathscr{D}\left(I_{i}\right)$. Hence $e_{i} Q\left(\mathscr{D}\left(A_{i}\right)\right) e_{i} \cong$ $Q\left(\mathscr{D}\left(I_{i}\right)\right)$ by [7, Theorem 3]. If $e=e_{1}+\cdots+e_{t} \in \mathscr{D}\left(A_{S}\right) \subseteq Q(\mathscr{D}(A))$, it follows that $Q(\mathscr{D}(I)) \cong e Q(\mathscr{D}(A)) e$.
2.8. It is convenient also to have the following description of $\mathscr{X}(I)$ which is implicit in the above. For simplicity we assume that I is an ideal in a local artinian ring A and that $A=L \oplus N$, where L is a subfield and N the nilpotent radical of A. Let v_{1}, \ldots, v_{r} be a basis for I over L and extend to a basis v_{1}, \ldots, v_{s} of A. For each i, let e_{i} denote the L-linear map from A to L defined by $e_{i}\left(v_{i}\right)=1, e_{i}\left(v_{j}\right)=0, j \neq i$. Under composition of maps $v_{j} \mathscr{D}_{L}(L) e_{i}$ acts as differential operators from $v_{i} L$ to $v_{j} L$.

Lemma. With the above notation

$$
v_{j} \mathscr{D}_{L}(L) e_{i}=\mathscr{D}_{L}\left(v_{i} L, v_{j} L\right)
$$

and

$$
\mathscr{D}_{A}(I)=\mathscr{D}_{L}(I)=\sum_{1 \leqslant i, j \leqslant r} v_{j} \mathscr{\mathscr { R }}_{L}(L) e_{i} .
$$

3. The Prime Radical

3.1. In this section we describe the prime radical of $\mathscr{D}(A)$, where A is a finitely generated k-algebra. We first establish some notation. Let $0=\bigcap_{\lambda \in A} K_{\lambda}$ be an irredundant primary decomposition of 0 in A, where K_{λ} is P_{λ}-primary. Suppose A has Krull dimension n. For $0 \leqslant i \leqslant n$ we set $A_{i}=$ $\left\{\lambda \in A \mid \operatorname{rank}\left(P_{\lambda}\right) \leqslant i\right\}, I_{i}=\bigcap_{\lambda \in A_{t}} K_{\lambda}$, and $S_{i}=A-\bigcup_{i \in A t} P_{i}$. Then by [1, Proposition 4.9], $S_{i}(0)=I_{i}$ and in particular I_{i} is independent of the chosen primary decomposition. It is convenient to set $I_{-1}=A$. By Lemma 1.4 each
ideal in the chain $A=I_{-1} \supseteq I_{0} \supseteq I_{1} \supseteq \cdots \supseteq I_{n}=0$ is a $\mathscr{D}(A)$-submodule of A. For $0 \leqslant i \leqslant n$, set $J_{i}=\Delta_{A}\left(I_{i-1}, I_{i}\right)$. Then by Lemma 1.2, J_{i} is an ideal of $\mathscr{D}(A)$ and by construction $J_{n} \cdots J_{1} J_{0}=0$. Hence if we set $N=$ $J_{0} \cap J_{1} \cap \cdots \cap J_{n}$, then $N^{n+1}=0$.

Theorem B. With the above notation N is the prime radical of $\mathscr{D}(A)$.
Since N is nilpotent it will suffice to show that each J_{i} is a semiprime ideal. We do this by showing that each factor ring $\mathscr{D}(A) / J_{i}$ has a semisimple artinian quotient ring.
3.2. From now on fix i and set $J=J_{i}, I=I_{i-1}$. Let $\Omega=\Lambda_{i}-\Lambda_{i-1}$ and for each $\lambda \in \Omega$ set $I_{\lambda}=I \cap K_{\lambda}$ and $S_{\lambda}=S_{i \ldots 1} \cap\left(A-P_{\lambda}\right)$. By [1, Proposition 4.9], $I_{\lambda}=S_{\lambda}(0)$, so by Lemma $1.4, I_{\lambda}$ is a $\mathscr{D}(A)$-submodule of A. Hence by Lemma $1.2, J_{\lambda}=\Delta_{A}\left(I, I_{\lambda}\right)$ is an ideal of $\mathscr{D}(A)$. Since $\bigcap_{\lambda \in \Omega} I_{\lambda}=I_{i}$ we have $\bigcap_{\lambda \in \Omega} J_{\lambda}=J$. We prove

Theorem. (a) Each factor ring $\mathscr{D}(A) / J_{\lambda}$ has a simple artinian quotient ring Q_{λ}.
(b) The ideals $J_{\lambda} / J, \lambda \in \Omega$, are the minimal primes of $\mathscr{D}(A) / J$.
(c) $\mathscr{D}(A) / J$ is an order in the semisimple artinian ring $\oplus_{\lambda \in \Omega} Q_{\lambda}$.
3.3. Lemma. Let $S=\left\{s+K_{\lambda} \mid s \in S_{\lambda}\right\}$. Then S is precisely the set of nonzero divisors in A / K_{λ}.

Proof. Since $S_{\lambda} \subseteq A-P_{\lambda}$, elements of S are non-zero divisors in A / K_{λ}. Conversely suppose $s+K_{\lambda}$ is a non-zero divisor in A / K_{λ}, then $s \notin P_{\lambda}$. Number the maximal elements of the set $\left\{P_{\mu} \mid \mu \in A_{i-1}\right\}$ as P_{1}, \ldots, P_{m}, P_{m+1}, \ldots, P_{n}, where $s \in P_{j}$ if and only if $1 \leqslant j \leqslant m$. Let $B=$ $P_{m+1} \cap \cdots \cap P_{n} \cap K_{\lambda}$. If $B \subseteq P_{1} \cup \cdots \cup P_{m}$ then by [3, Theorem 81], $B \subseteq P_{j}$ for some j with $1 \leqslant j \leqslant m$. Since P_{j} is prime it follows that $P_{l} \subseteq P_{j}$ for some l with $m+1 \leqslant l \leqslant n$ or $K_{\lambda} \subseteq P_{j}$. The first case is impossible by the incomparability of P_{l}, P_{j} and the second case gives $P_{\lambda} \subseteq P_{j}$, which contradicts the facts that $\operatorname{rank}\left(P_{\lambda}\right)=i, \operatorname{rank}\left(P_{j}\right) \leqslant i-1$. Hence we can find $x \in B$ with $x \notin P_{1}, \ldots, P_{m}$. It then follows that $s+x+K_{\lambda}=s+K_{\lambda}$ and $s+x \in S_{\lambda}$, which proves the lemma.
3.4. Lemma. Let I and K be ideals of the finitely generated algebra A and suppose A / K has a local artinian quotient ring. Let S he the set of nonzero divisors in A / K. Given $d \in \mathscr{D}((I+K) / K)$ there exist $s \in S$ and $d^{\prime} \in \mathscr{D}(A / I \cap K)$ such that for all $a \in I, d^{\prime}(a+(I \cap K))+K=\operatorname{sd}(a+K)$.

Proof. Write A as a homomorphic image of a polynomial algebra \tilde{A}
and let \tilde{I}, \tilde{K} be the inverse images of I, K, respectively. Since $\tilde{A} / \tilde{K} \cong A / K$, $\tilde{A} / \tilde{I} \cap \tilde{K} \cong A / I \cap K$, and $I+K / K \cong \tilde{I}+\tilde{K} / \tilde{K}$ as A-modules we may replace A by \tilde{A} in proving the lemma, to assume that A is a polynomial algebra.
Since $S^{-1}(A / K)$ is a local artinian ring it contains a copy of its residue field L by Cohen's theorem. We can choose $v_{1}, \ldots, v_{r} \in I$ such that $v_{1}+K, \ldots, v_{r}+K$ form a basis for $S^{-1}(I+K / K)$ as a vector space over L. If e_{1}, \ldots, e_{r} are as in 2.8 we have

$$
\mathscr{D}\left(S^{-1}(I+K / K)\right)=\sum_{i \leqslant i, j \leqslant r}\left(v_{j}+K\right) \mathscr{X}_{L}(L) e_{i} .
$$

Write $d \in \mathscr{D}(I+K / K)$ in the form $d=\sum_{j}\left(v_{j}+K\right) \delta_{j}$, where $\delta_{i} \in \sum_{i} \mathscr{D}_{L}(L) e_{i} \subseteq \mathscr{D}\left(S^{-1}(A / K)\right)$. There exists $s \in S$ such that $s \delta_{j} \in \mathscr{D}(A / K)$ for all j. Therefore by Lemma 1.3, there exists $\delta_{j}^{\prime} \in \mathscr{D}(A)$ such that $\delta_{j}^{\prime}(K) \subseteq K$ and $\delta_{j}^{\prime}(a)+K=s \delta_{j}(a+K)$ for all $a \in A$. Let $d_{1}=\sum v_{j} \delta_{j}^{\prime} \in I \mathscr{X}(A)$. Then $d_{1}(K) \subseteq K$ and

$$
d_{1}(a)+K=s d(a+K) \quad \text { for ail } \quad a \in I .
$$

Also since $d_{1}(A) \subseteq I$, we have $d_{1}(I \cap K) \subseteq I \cap K$. Hence d_{1} induces a differential operator $d^{\prime} \in \mathscr{D}(A / I \cap K)$ such that $d^{\prime}(a+(I \cap K))=d_{1}(a)+$ ($I \cap K$) for all $a \in A$. In particular for $a \in I$ we have

$$
d^{\prime}(a+(I \cap K))+K=s d(a+K) \quad \text { as required. }
$$

3.5. We can now prove part (a) of Theorem 3.2. By Lemma 1.2 we can regard $\mathscr{D}(A) / J_{\lambda}$ as a subring of $\mathscr{D}\left(I / I_{\lambda}\right)$. Since $I / I_{\lambda} \cong I+K_{\lambda} / K_{\lambda}$ as A-modules we have $\mathscr{D}\left(I / I_{\lambda}\right) \cong \mathscr{D}\left(I+K_{\lambda} / K_{2}\right)$. Now $\left(I+K_{2}\right) / K_{2}$ is an ideal in the primary ring A / K_{λ} so $\mathscr{A}\left(I / I_{\lambda}\right)$ has a simple artinian quotient ring Q_{λ} by Corollary 2.6 and Lemma 2.7.

If $s \in S_{\lambda}$, then $s+J_{\lambda}$ is a non-zero divisor in $\mathscr{R}(A) / J_{\lambda}$, and $\mathscr{D}\left(I / I_{\lambda}\right)$ since s acts as a non-zero divisor on the module I / I_{i}. We show that given $d \in \mathscr{D}\left(I / I_{\lambda}\right)$, there exists $c \in S_{\lambda}$ such that $\left(c+J_{i}\right) d \in \mathscr{R}(A) / J_{\lambda}$. If d is an operator of order n then we shall also have $d\left(c^{n+1}+J_{\lambda}\right) \in \mathscr{D}(A) / J_{\lambda}$. It follows from this that Q_{λ} is the simple artinian quotient ring of $\mathscr{Z}(A) / J_{i}$.

Define $d_{1} \in \mathscr{D}\left(I+K_{\lambda} / K_{\lambda}\right)$ by

$$
\begin{equation*}
d_{1}\left(a+K_{\lambda}\right)=d^{\prime}(a)+K_{\lambda} \quad \text { for } \quad a \in I, \tag{1}
\end{equation*}
$$

where $d^{\prime}(a)$ is any element of I such that $d^{\prime}(a)+I_{\lambda}=d\left(a+I_{\lambda}\right)$.
By Lemmas 3.3 and 3.4, there exist $s \in S_{\lambda}$ and $d_{2} \subset \mathscr{D}\left(A / I_{\lambda}\right)$ such that

$$
\begin{equation*}
d_{2}\left(a+I_{\lambda}\right)+K_{\lambda}=\left(s+K_{\lambda}\right) \dot{d}_{1}\left(a+K_{\lambda}\right) \quad \text { for } \quad a \in I . \tag{2}
\end{equation*}
$$

Now consider the localisation map $\Phi: \mathscr{X}(A) \rightarrow \mathscr{D}\left(A / I_{2}\right)$. By Lemma 1.6
there exists $t \in S_{\lambda}$. such that $\left(t+I_{\lambda}\right) \mathscr{D}\left(A / I_{\lambda}\right) \subseteq \operatorname{Im} \Phi$. Hence we can find $d_{3} \in \mathscr{D}(A)$ such that

$$
\begin{equation*}
d_{3}(a)+I_{\lambda}=\left(t+I_{\lambda}\right) d_{2}\left(a+I_{\lambda}\right) \quad \text { for } \quad a \in A \tag{3}
\end{equation*}
$$

Combining Eq. (1)-(3) we have, since $I_{\lambda} \subseteq K_{\lambda}$,

$$
\begin{aligned}
d_{3}(a)+K_{\lambda} & =\left(t+K_{\lambda}\right)\left(d_{2}\left(a+I_{\lambda}\right)+K_{\lambda}\right) \\
& =\left(t s+K_{\lambda}\right) d_{1}\left(a+K_{\lambda}\right) \\
& =\left(t s d^{\prime}(a)+K_{\lambda}\right) \quad \text { for } \quad a \in I .
\end{aligned}
$$

Hence $\quad d_{3}(a)-t s d^{\prime}(a) \in K_{\lambda} . \quad$ However, $\quad d_{3}(I) \subseteq I, \quad$ since I is a $\mathscr{D}(A)$ submodule of A, and $d^{\prime}(a) \in I$, so $d_{3}(a)-t s d^{\prime}(a) \in I \cap K_{\lambda}=I_{\lambda}$. Therefore

$$
\begin{aligned}
d_{3}(a)+I_{\lambda} & =t s d^{\prime}(a)+I_{\lambda} \\
& =t s d\left(a+I_{\lambda}\right) \quad \text { for all } \quad a \in I .
\end{aligned}
$$

It follows that $d_{3}+J_{\lambda}=\left(c+J_{\lambda}\right) d$ with $c=t s \in S_{\lambda}$ as claimed.
3.6. The proof of Theorem 3.2 is now easy to complete. For each $\lambda \in \Omega$, I / I_{λ} is isomorphic to an ideal of A / K_{λ}. Hence $K_{\lambda} \subseteq \operatorname{ann}_{A}\left(I / I_{\lambda}\right) \subseteq P_{\lambda}$. If $\bigcap_{\mu \neq \lambda} K_{\mu} \subseteq P_{\lambda}$ then $K_{\mu} \subseteq P_{\lambda}$ for some $\mu \neq \lambda$ since P_{λ} is prime and so $P_{\mu} \subseteq P_{\lambda}$, which is impossible. Hence for each $\lambda \in \Omega$ we can choose $c_{\lambda} \in \bigcap_{\mu \neq \lambda} K_{\mu}, c_{\lambda} \neq P_{\lambda}$. In particular, it follows that $c_{\lambda} \in J_{\mu}=\Delta_{A}\left(I, I_{\mu}\right)$ for $\mu \neq \lambda$ and $c_{\lambda} \notin J_{\lambda}$. Hence the ideals $\left\{J_{\lambda} \mid \lambda \in \Omega\right\}$ arc incomparable. Since these ideals are prime by part (a) of the theorem and $\cap J_{\lambda}=J$, part (b) follows.

Also we have an embedding

$$
\mathscr{D}(A) / J \subseteq \bigoplus_{\lambda \in \Omega} \mathscr{D}(A) / J_{\lambda}=R \subseteq \bigoplus_{\lambda \in \Omega} Q_{\lambda}=Q
$$

An element of Q will be written $\left(q_{\lambda}\right)$, where q_{λ} is the component in Q_{λ} for all λ. To show that $\mathscr{D}(A) / J$ is an order in Q it will suffice in view of part (a) to show that if $d=\left(d_{\lambda}+J_{\lambda}\right) \in R$, with $d_{\lambda} \in \mathscr{D}(A)$, there exists a non-zero divisor $c \in R$ such that $c d \in \mathscr{D}(A) / J$. If d has order n we will also have $d c^{n+1} \in \mathscr{D}(A) / J$.

Since $c_{\lambda} \notin P_{\lambda}, \quad c_{\lambda}+J_{\lambda}$ is a non-zero divisor in $\mathscr{D}(A) / J_{\lambda}$. Hence $c=\left(c_{\lambda}+J_{\lambda}\right)$ is a non-zero divisor in R. Set $\delta=\sum c_{\mu} d_{\mu} \in \mathscr{D}(A)$. Since $c_{\mu} \in J_{\lambda}$ for $\mu \neq \lambda$ we have $\delta=c_{\lambda} d_{\lambda} \bmod J_{\lambda}$. Therefore $\delta \operatorname{maps}$ to $\left(c_{\lambda} d_{\lambda}+J_{\lambda}\right)=$ $\left(c_{\lambda}+J_{\lambda}\right)\left(d_{\lambda}+J_{\lambda}\right)=c d$. Hence $\delta+J=c d$ as required.
3.7. An immediate consequence of Theorem B is the following.

Corollary. If A is a finitely generated k-algebra of Krull dimension n, and N is the prime radical of $\mathscr{D}(A)$, then $N^{n+i}=0$.

This is perhaps surprising since clearly we cannot bound the index of nilpotence of the nilradical of A in terms of any function of n.

It is easy to construct examples where the bound in the corollary is achieved. For example, let $B=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ and for $0 \leqslant i \leqslant n, P_{i}=$ $x_{0} B+\cdots+x_{i} B, K_{i}=P_{i}^{i+1}, K=K_{0} \cap K_{1} \cap \cdots \cap K_{n}$, and $A=B / K$. Then A has Krull dimension n and K_{i} is P_{i}-primary ideal. In the notation of 3.1 we have $I_{i}=\left(K_{0} \cap \cdots \cap K_{i}\right) / K$. Let $x=x_{0}+K$. Then $x I_{i} \subseteq I_{i+1}$ for $-1 \leqslant i<n$. Therefore $x \in \cap J_{i}=N$ and $x^{n} \neq 0$. Hence $N^{n} \neq 0$.
3.8. Corollary. If A is a finitely generated k-algebra then $\mathscr{Z}(A)$ is semiprime (resp. prime) if and only if A has an artinian (resp. local artinian) quotient ring.

Proof. The sufficiency of the conditions follows from 2.5 and 2.6. Conversely if $\mathscr{L}(A)$ is semiprime we need to show that $I_{0}=0$ (in the notation of 3.1). It is easily seen that I_{0} is a nilpotent ideal of A. If $I_{0} \neq 0$ suppose that $I_{0}^{l} \neq 0$ but $I_{0}^{l+1}=0$ for some integer $l \geqslant 1$. Then we have $I_{0}^{l} \cdot A \subseteq I_{0}$ and $I_{0}^{l} \cdot I_{0}=0$. This gives $I_{0}^{l} \subseteq N$, which contradicts $\mathscr{D}(A)$ semiprime. If in addition $\mathscr{B}(A)$ is prime then by the proof of 2.5 , the artinian quotient ring of A is local.

4. An Analogue of Nakai's Conjecture

4.1. If A is a finitely generated k-algebra, we can ask for conditions under which $\mathscr{Z}(A)$ is generated by $\mathscr{I}^{1}(A)$. If A is a domain then Nakai's conjecture asserts that this is equivalent to A being the coordinate ring of a non-singular variety. In general we show A must be reduced. It seems likely that A must in fact be a direct sum of domains.

Lemma. If S is a multiplicatively closed subset of A and $\mathscr{D}(A)$ is generated by $\mathscr{L}^{1}(A)$, then $\mathscr{D}\left(A_{S}\right)$ is generated by $\mathscr{D}^{1}\left(A_{S}\right)$.

Proof. This follows easily from the fact that $\mathscr{D}\left(A_{S}\right) \cong A_{S} \otimes_{A} \mathscr{P}(A)$.
4.2. Theorem. If A is a finitely generated k-algebra such that $\mathscr{L}(A)$ is generated by $\mathscr{L}^{1}(A)$ then A is reduced.

Proof. If we filter $\mathscr{D}(A)$ by the order of the differential operators, then the associated graded ring $\operatorname{gr} \mathscr{D}(A)$ is generated by A and the image of $\operatorname{der}(A)$. Since $\operatorname{der}(A)$ is a finitely generated A-module, it follows that $\operatorname{gr} \mathscr{L}(A)$ is a finitely generated commutative A-algebra and hence

Noetherian. Therefore $\mathscr{D}(A)$ is left Noetherian. It follows from Theorem A that A has an artinian quotient ring.

Now let N be the nilradical of A and S the set of non-zero divisors of A. If $N \neq 0$, then $N_{S} \neq 0$ and N_{S} is the nilradical of A_{S}. By Lemma 4.1, $\mathscr{D}\left(A_{S}\right)$ is generated by A_{S} and $\operatorname{der}\left(A_{S}\right)$. Now $A_{S} \cong A_{1} \oplus \cdots \oplus A_{t}$, where each A_{i} is a local artinian ring. Since $\mathscr{D}\left(A_{S}\right) \cong \mathscr{D}\left(A_{1}\right) \oplus \cdots \oplus \mathscr{D}\left(A_{t}\right)$, each $\mathscr{D}\left(A_{i}\right)$ is generated by A_{i} and $\operatorname{der}\left(A_{i}\right)$. If M is the maximal ideal of A_{i}, then any derivation of A_{i} preserves M by [2,4.1]. By Cohen's theorem, there exists a subfield K of A_{i} such that $A_{i}=K \oplus M$. By Lemma 2.1 any K-linear endomorphism of A_{i} is a differential operator. It follows that $M=0$, and each A_{i} is a field, but this contradicts the assumption that $N_{S} \neq 0$.

For the case where $A=k\left[x_{1}, \ldots, x_{n}\right] /(f)$ is a factor algebra of a polynomial algebra by a principal ideal, the above result has been proved by D. P. Patil and B. Singh; see [9, Note Added in Proof]. It was their result which inspired Theorem 4.2.
4.3. Lemma. Suppose A is reduced with minimal primes P_{1}, \ldots, P_{n}. If $\mathscr{D}(A)$ is generated by $\mathscr{D}^{1}(A)$, and each A / P_{i} is the coordinate ring of a nonsingular variety, then $A \cong A / P_{1} \oplus \cdots \oplus A / P_{n}$.

Proof. Set $A_{i}=A / P_{i}$. Since $P_{1} \cap \cdots \cap P_{n}=0$ we can identify A with a subalgebra of $A_{1} \oplus \cdots \oplus A_{n}$. Suppose that

$$
A \cap\left(A_{1}, 0, \ldots, 0\right) \varsubsetneqq\left(A_{1}, 0, \ldots, 0\right)
$$

that is, $P_{1}+\left(P_{2} \cap \cdots \cap P_{n}\right) \neq A$. Let M be a maximal ideal of A containing $P_{1}+\left(P_{2} \cap \cdots \cap P_{n}\right)$. By replacing A with A_{M} we can assume that A is local. If $S_{i}=A-P_{i}$, then $P_{i}=S_{i}(0)$ and thus $\mathscr{D}(A)$ may be identified with a subalgebra of $\mathscr{D}\left(A_{1}\right) \oplus \cdots \oplus \mathscr{D}\left(A_{n}\right)$. Let $I=P_{1}+\left(P_{2} \cap \cdots \cap P_{n}\right)$. Since each P_{i} is invariant under every derivation of A by $[2,4.1]$ so also is $P_{1}+I^{m}$ for all $m \geqslant 1$. Therefore if $\mathscr{D}(A)$ is generated by A and $\operatorname{der}(A)$, $P_{1}+I^{m}$ is a $\mathscr{D}(A)$-submodule of A. If $x \in P_{2} \cap \cdots \cap P_{n}, x \neq 0$, then by Lemma 1.6, $\left(\left(x+P_{1}\right) \mathscr{D}\left(A_{1}\right), 0, \ldots, 0\right) \subseteq \mathscr{D}(A)$. We can choose m such that $x \notin P_{1}+I^{m}$. Since $P_{1}+I^{m}$ is a non-zero ideal in the regular local ring A_{1}, there exists $\partial \in \mathscr{D}\left(A_{1}\right)$ such that $\partial\left(P_{1}+I^{m}\right)$ contains a unit of A_{1}. Thus $\left(x+P_{1}\right) \partial\left(P_{1}+I^{m}\right) \nsubseteq P_{1}+I^{m}$. This contradicts the fact that $P_{1}+I^{m}$ is a $\mathscr{D}(A)$-submodule. It follows that $\left(A_{1}, 0, \ldots, 0\right) \subseteq A$ and similarly $(0, \ldots$, $\left.A_{i}, \ldots, 0\right) \subseteq A$ for all i. Hence $A=A_{1} \oplus \cdots \oplus A_{n}$.

References

[^0]2. W. Borho, P. Gabrifl, and R. Rentschler, "Primideale in Einhüllenden auflösbarer LieAlgebren," Lecture Notes in Mathematics, Vol. 357, Springer-Verlag, New York/Berlin, 1973.
3. I. Kaplansky, "Commutative Rings," Univ. of Chicago Press, Chicago, 1974.
4. H. Matsumura, "Commutative Algebra," Benjamin/Cummings, New York, 1980.
5. J. L. Muhasky, The differential operator ring of an affine curve, Trans. Amer. Math. Soc. 307 (1988), 705-723.
6. D. S. Passman, "The Algebraic Structure of Group Rings," Wiley-Interscience, New York, 1977.
7. L. W. Small, Orders in Artinian rings, II, J. Algebra 9 (1968), 266-273.
8. S. P. Smith and J. T. Stafford, Differential operators on an affine curve, Proc. London Math. Soc. 56 (1988), 229-259.
9. R. Singh, Differential operators on a hypersurface, Nagoya Math. J. 103 (1986), 67-84.

[^0]: 1. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra," AddisonWesley, Reading, MA, 1969.
