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Throughout £ will denote an algebraically closed field of characteristic
zero. If A is a (commutative) k-algebra, we denote by #{4) the ring of all
k-linear differential operators on 4.

If 4 is a domain it is well known and easy to see that Z(A4) is also a
domain. In most studies of 2(A4), see, for example, [8], it is assumed that
A 1s a domain. Here we are mainly concerned with the case where 4 has
zero divisors, and we study annihilator conditions in Z(A). For example,
in Section 2 we prove

THEOREM A. Let A be a finitely generated k-algebra. The following
conditions are equivalent.

(1) 2(A) has a semisimple artinian (classical) quotient ring.
(2) 2(A) has an artinian quotient ring.
(3) 2(A) has the maximum condition on left annihilators.

(4) A has an artinian quotient ring.

In Theorem B we obtain a description of the prime radical N of 2(4) for
A a finitely generated k-algebra. The statement of Theorem B requires the
introduction of some notation so we postpone it until Section 3.1.
However, as an amusing consequence we show that N"*'=0, where » is
the Krull dimension of 4 (Corollary 3.7). We also show that Z(4) is semi-
prime if and only if 4 has an artinian quotient ring (Corollary 3.8).

In Section4 we study an analogue of Nakai’s conjecture for algebras
which are not necessarily domains. We prove that if 9(A4) is generated by
operators of order at most one then A is reduced and we conjecture that
in fact 4 is a direct sum of domains.

Many of the results in this paper are motivated by an interesting exam-
ple of Muhasky [5]. Let A=k[x, y]/(x?% xy). An explicit calculation of
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9D(A) is given in [5, Example 7.27] and this calculation is used to show that
P(A) is right but not left Noetherian.

In a forthcoming paper we shall study 2(A4) for algebras of Krull dimen-
sion at most one in greater detail, extending the main results of [5] and
[87], where it is assumed that A4 is reduced or is a domain, respectively.

1. BACKGROUND RESULTS

1.1. Let A be a commutative k-algebra and M, N A-modules. We denote
by 27 (M, N) the space of k-linear operators from M to N of order <n and
DM, N)=U"_,2%(M,N) as defined, for example, in [8, Sect.1.2].
Write 2,(M)=9,M, M).

1.2. If I and J are subsets of M we define
AL D)= {de B, (M) |d(D)<J}.

We shall drop the subscript 4 in the notation 2,(M, N), 4,1, J), etc.,
whenever no confusion is likely to result.

LemMA. (a) If I (resp. J) is a 2(M)-submodule of M then A,/(1,J) is a
right (resp. left) ideal of Z(M).
(b)Y IfJ<Iare D(M)-submodules of M, there is a ring homomorphism
¢ D(M)— D(1)J) defined by ¢(d)(m + J)=d(m)+ J with Ker ¢ = 4 ,,(1, J).
Proof. Straightforward.

We caution that 4(Z, J) should not be confused with 2(, J) when both
are defined. For example, (I, 0) is always zero whereas A4(Z, 0) may not
be. We note that A(A4, I)=9(A, I) for any ideal I of A. Although we
mainly work with A(Z, J), 2(1, J) is often useful, since it is defined for any
A-modules 7 and J. Also as noted in [8, Sect. 1.3]. 2(4, —) is a left exact
functor from A-modules to right 2(A4)-modules. A similar notational
problem is discussed in [8, Sect. 2.7].

1.3. If I is a right ideal in a ring R, the idealiser of 7 in R is the ring
Ix(l)={reR|rIc1T}.

LEMMA. Let R=k[x,] be a polynomial ring in indeterminates {x;},c 1,
I an ideal of R, and A= R/I. Then

(a) There is a k-algebra ismorphism

under which an operator de Ag(I, I) maps a+ 1€ A to d(a)+ L
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(b) We have Ap(I, I) =1, IZ(R)) and A x(R, I) = ID(R).
Proof. (a) This is [5, Lemma 1.47.

{b) This follows in much the same way as (a}; see also [8, Proposi-
tion 1.6 }.

1.4. If S is a multiplicatively closed subset of 4 and M an 4-module we
denote by S(0) the kernel of the localisation map M — M. Thus S(0)=
{meM|sm=0 some seS}.

LemMa.  S(0) is a @(M)-submodule of M.

Proof. Set N=S(0). If de 9(M) is an operator of order r we show by
induction on r that d(N)< N. This is clear if r=0. Let ne N and suppose
sn=0 for seS Then —sd(n)=[d,s](r)eN by induction. Hence
§,5d(n)=0 for some s, €S and d(n)eN.

1.5. For de @(M) we define &(d)e Hom, (Mg, M) by ®(d)(m/s)=

=0 (—1)[d, 5], (m)/s?*! for meM, seS, where [d, s], is defined
inductively by [d,s]o=d and [d,s5],=[[d, s],_,,s]. It is known that &
gives a well defined ring homomorphism @: (M) - 9(M). The image of
@ is contained in Z(M/S(0)). For me M we have ®(d)(m+ S(0))=
d(m) + S(0). Hence by 1.2, Ker @ = 4,,(M, S(0)). Also by [5, Lemma 1.8]
we have Ker @ = {de 2(M)|sd=0 some se S}. Finally, note that if & has
order n and sd=0 for some se S then by induction on », ds"* ' =0. Thus
Ker @ = {de 2(M)|ds=0 for some se S}.

1.6. Suppose 4, M, S are as above and set M = M/S(0).

LEMMA. If ce A and cS(0)=0 then ¢Z(M)<=Im .

Suppose de 2(M) and let d: M — M be any k-linear map which lifts 4.
It suffices to show that cd e @(M) since then clearly cd = ®(cd) e Im &. We
use induction on the order of d. If 4 has order 0, then for all ae 4 and
me M we have d(am)— ad(m)=0. Therefore d(am)— ad(m)e S(0). Hence
cd(am) — acd(m)=0 and cde Hom (M, M )€ Z(M). For the inductive step
note that for a€ 4, the map [d, a] lifts [d, a]. Hence [cd, a]=c[d, a]e
%(M) by induction. It follows that cde Z(M).

Remarks. (1) If M is a finitely generated module over a Noetherian
ring 4, we can find ¢ € S such that ¢S(0)=0, and the above applies.

(2) If de 2(M) has order n and c is as in the lemma then by induc-
tion on n, dc"*'elm @.

1.7. Exampie. We give an example to show that Im & may be strictly
contained in 2(M).
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Let A=k[x, ¥1/(xy). Then A is isomorphic to the subring k(1,1)+
(xk[x], yk[y]) of k[x]@k[y] It is easily seen that @(A4)=k(1,1)+
(x2(k[x]), y2(k[y])). Let P=(y), S=A4—P, then S(0)=P and
A/S(0) = k[x]. However, the image of 2(A4) under the localisation map is
k+x2(k[x]) g 2(k[x]).

1.8. We need a slight generalization of [5, Proposition 1.14].

LEMMA. Let M, N be A-modules such that Hom (M, N)=0 then
D (M, N)=0.

Proof. An easy induction on n shows 2"(M, N)=0 for all n.

COROLLARY. Let A=A, @ --- ® A, and suppose I is an ideal of A. Write
I=1,® --- @I, where I,=1nA,.
Then 2(1)=2(1))® --- DZ(I,)

Proof. We may assume ¢ =2. Since e, =(1, 0), e,=(0, 1) belong to A4,
I'is a direct sum as above. If say fe Hom ,(/,, I,) then for rel,, f(r)=
fre)=f(r)e,=0 so f=0. Hence 2(I,,1,)=0 by the lemma. For
de D(I), let d; be the restriction of 4 to I,. It is easily seen that the map
d— (d,, d,) is an isomorphism of Z(I) onto 2(1,)® 2(1,).

2. ARTINIAN QUOTIENT RINGS

2.1. In this section we prove Theorem A. The implications (1)=-(2) and
(2) = (3) are trivial so it suffices to prove (3) = (4) and (4) = (1). The next
result is used in both parts of the proof.

LEMMA. Suppose A=A® N, where N is a nilpotent ideal and A a sub-
algebra of A. If L, M are A-modules, then 2,(L, M)=24(L, M).

Proof. Clearly 2,(L, M) 9:(L, M). If deP"(L, M) and N?=0,
we show that de 27+~ (L, M). If S and T are subsets of Hom,(L, M)
and A, respectively, we write [S, T]o=S and for i=0, [S,T],,1=
{[0,1]110€[S,T];,, teT} Since [d, A]=[d A]+[d, N] and
[[da N],A]=[[d, A]aN] we have [daA]i=zj+k=i[[daZ]er]kg
Z,+j+m=,.N1[d, Z]jN'”. In the last sum all terms are zero unless /, m<
p—1and j<n—1. Hence [d, 4],,,,_,=0 as required.

2.2. Proof of Theorem A. (3)=>(4). We actually prove the contra-
positive. Suppose 4 =~ R/I, where I is an ideal of R=k[x,, .., x,], and 4
does not have an artinian quotient ring. This is equivalent to the
assumption that there exist prime ideals P, Q of R belonging to I such that
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P< Q. By [1, Proposition 7.17], Q/I is an annihilator ideal of R/I. Thus if
J/I=anng,;Q/I, we have Q/I=ann,J/L

Let Q be the rth symbolic power of @, and L =
[—anng (((Q +1)/I) 2(A)). Since 0" 20"*" we have L, s L, ;. We
show below that for fixed ¢, there exists ¢ € Z(R) such that

(1) apP)=Q,
2) Q") £ 0,
3) ae"*"MHe=o.

Hence by (2) there exists ye Q' such that &(y}¢ Q. By the first
paragraph of the proof we can find x € J such that xé(y)¢ 1. Now by (1),
xd()exd(P)=JQ<I, so by 1.3, x0 induces a differential operator (also
denoted x0) on A. Since x8(Q¥) & I we have xd¢ L,. However, by (3},
x0(QU Ty xQ < I This will show that L, L, , and give an ascending
chain of left annihilators in 2(A4) as required.

Let R=R/Q"*"V and use the overbar to denote images of elements and
ideals of R in R. Suppose we can find ¢, € Z(R) such that

(1) 8(P)=sQ and 2y 8,(0") ¢ Q.
Then by 1.3 there exists de2(R) with Q") QY and
Ar)+ QU Y =0,(r+Q"*Y) for reR. Then & will satisfy (1)-(3), so it
suffices to find 0, satisfying (1)’ and (2)'.

Let M=Q,, S=R5=Ry/M'*", and M=M/M'*'=045. Then Sis a
complete local artinian ring with maximal ideal M. Hence by Cohen’s
theorem [4, 28.J], there exists a subfield K of S with S=K® M.

Suppose that M'=M'/M'*'<(Py+M'*)/M'*' =P, Then M's
Po+M'"', and so

(M‘+PQ)M=M’“+PQ=Mf+PQ‘
PQ PQ PQ

By Nakayama’s lemma this would imply M’< P, but this is impossible
since P, is a prime ideal of R,, strictly contained in M. Therefore M* & P,
and these are K-subspaces of S.

By Lemma 2.1, Hom (S, K) is a K-subspace of 2(S). Hence by vector
space duality we can find 9,€ 9(S) such that 0,(P,)=0, 0,(M)=XK,
and J, is K-linear. In particular there exists re M’ such that &,(r)¢ M.
Now there exist ¢;,c,eR—0Q such that c,reRnM'=0" and
d,=c,0,€Z(R). Write ¢,e RS S in the form ¢, =c¢;+m with c;eKk,
me M. Then ¢;r=cyr+mr and mre M'*'=0. Hence c;re Q' and since
0, is K-linear, ,(c;r) = cyc50,(r) ¢ M. Therefore 6,(Q”) £ Q and ¢,(P) <
¢,0,(Py)=0. Hence we have found d, satisfying (1)’ and (2)' and this
completes the proof.
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2.3. LeMMA. Suppose A=A@® N, where N is a nilpotent ideal and A a
subalgebra of A. If V is an A-module direct summand of A there exists an
idempotent e€ D(A) such that eD(A)e= Dz (V).

Proof. Suppose A=V @ W as A-modules and let e be the projection of
A onto V relative to this decomposition. By Lemma 2.1 with L= M= 4,
ecGi(A)=2(A4)=2. Clearly elements of eZe act as k-linear maps on V.
For acd and de? we have [ede, a]=edea— aede=edae — eade =
e[d,ale. Hence elements of eZe act as differential operators on the
A-module ¥ and we obtain a ring homomorphism ¢: eZe - Z25(V). f de @
and ¢(ede) =0 then since e( W) =0, we obtain ede =0 in eZe so0 ¢ is injec-
tive. For de Z24(V) we extend d to a k-linear map d' on A4 by defining
d'(W)=0. For ae A we have [d’, a] = [d, a]’. It follows that d’ € D5(A) =
D(A). Since ¢(ed’e) =d we have shown that ePe= 24(V).

24, LEMMA. Suppose A=A® N, where N is a nilpotent ideal and A a
subalgebra of A, and that N is free of rank n—1 as an A-module. Then
D(A) = Mat,(2(A)) the ring of nxn matrices over B(A).

Proof. Let v, =1 and let v,, ..., v, be a basis for N as an A-module. Let
e, be the A-linear map defined by e,(v,) = d,.v;, where &, is the Kronecker
delta. Then e;eZ(A)=% by Lemmall, e ey, =0dz ey, and 1=
€ +eyn+ - +e,,. Also by the proof of Lemma 23, e, Pe;, = 2(A).
Hence by [6, Lemma 6.1.5], 2(A) = Mat (2(A)).

2.5. Proof of Theorem A. (4)= (1). Assume that 4 has an artinian
quotient ring, and let P,,.., P, be the minimal primes of A4. If
S=4—-);_, P;, then § is the set of non-zero divisors of 4 and A=
A4,® --- DA, where 4;,=A4,. Since Z(A5)=As® 4 D(A) is a localisation
of 2(A) at a set of regular elements it suffices to show that 2(4;) has a
semisimple artinian quotient ring. By [5, Proposition 1.14], 2(A4s)=
D(4,)® --- ©D(4,).

Let M be the maximal ideal of the local artinian k-algebra 4,. By
Cohen’s theorem therc exists a subfield L of 4, with A,=L@® M. If
n=dim, 4; then by Lemma 2.4, 2(4,) =~ Mat,(2(L)). Since L is a finitely
generated field extension of k, Z(L) is a Noetherian domain by [5,
Proposition 2.6 ], for example. Hence 2(L) has a simple artinian quotient
ring Q and Mat,(Q) is the simple artinian quotient ring of 9(4,). It
follows that 2(A4) has a semisimple artinian quotient ring.

2.6. COROLLARY. D(A) has a simple artinian quotient ring if and only if
A has a local artinian quotient ring.

Proof. This is immediate from the proof of 2.5.
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2.7. We denote by Q(R) the quotient ring of R if it exists. In the next
section we shall require the following generalization of 2.5.

LemMma.  If A has an artinian quotient ring and I is an ideal of A, then
D(I) has a semisimple artinian quotient ring. In fact there is an idempotent
ee Q(D(A)) such that Z(I) has quotient ring eQ(Z(A))e.

Proof. Tt is enough to prove the last statement. Let S be the set of
non-zero divisors in 4 and 4g=A4,® --- @A, as in 2.5. We have
Is=1,® --- @1, where I,=I;n A, and Z(I)=2()® --- ®Z(I,} by
Corollary 1.8.

As in 2.5 we have 4,=L® M, where M is the maximal ideal of 4, and
L a subfield. By Lemmas 2.3 and 2.1 there exists an idempotent ¢,€ Z{A;)
such that e,2(4,)e,=2,(I,)=9%,(1,)=2(1,). Hence ¢,0(Z(A4;))e;=
O(2(1;)) by [7, Theorem3]. If e=e;+ --- +e,e Z(4d5) = Q(2(4)), it
follows that Q(2(1)) = eQ(Z(A)) e.

2.8. It is convenient also to have the following description of 2/(f) which
is implicit in the above. For simplicity we assume that [ is an ideal in a
local artinian ring 4 and that 4 =L@ N, where L is a subfield and & the
nilpotent radical of A. Let v, .., v, be a basis for I over L and extend to
a basis v, ..., v, of 4. For each i, let ¢; denote the L-linear map from 4 to
L defined by efv;)=1, e(v;)=0, j#i Under composition of maps
v; Z,(L) e, acts as differential operators from v, L to v, L.

LemMa. With the above notation
v, 2 (L) e;= 2 (v,L, v;L)

and

D=2, (I)= Z DjQL(L)ei'

i< j<r

3. THE PRIME RapicaL

3.1, In this section we describe the prime radical of 2(4), where 4 is a
finitely generated k-algebra. We first establish some notation. Let
0={,c1 K, be an irredundant primary decomposition of 0 in 4, where K,
is P,-primary. Suppose 4 has Krull dimension #. For 0 <i<n we set 4,=
{Aed|rank(P)<i}, I,=N;c1,K;, and S;=A4—);.. P;. Then by [1,
Proposition 4.97, S,(0)=I; and in particular 7, is independent of the chosen
primary decomposition. It is convenient to set /_, = 4. By Lemma 1.4 each
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ideal in the chain A=71 21,21,2 ---21,=0is a 9(A)-submodule of
A. For 0<i<n, set J;=4,I,_,,1;). Then by Lemma 1.2, J; is an ideal
of 2(4) and by construction J,---J;J,=0. Hence if we set N=
JonJin -~ nJ,, then N*T1=0.

THEOREM B. With the above notation N is the prime radical of 9(A).

Since N is nilpotent it will suffice to show that each J; is a semiprime
ideal. We do this by showing that each factor ring 2(4)/J; has a semi-
simple artinian quotient ring.

3.2. From now on fix i and set J=J,, I=1,_ . Let Q=A4,—A4,_, and
for each Ae set I,=1nK, and S,=S,_,n(4—P,). By [1, Proposi-
tion 4.9], I, = S,(0), so by Lemma 1.4, I, is a 2(A4)-submodule of 4. Hence
by Lemma 1.2, J,=4,(1,1;) is an ideal of %(A4). Since N, oI, =1I; we
have ();c0 J,=J. We prove

THEOREM. (a) Each factor ring 2(A)/J; has a sirhple artinian quotient
ring Q;.
(b) The ideals J,;/J, A€ Q, are the minimal primes of G(A)/J.

(c) D(A)/J is an order in the semisimple artinian ring @ ;.0 Q.

33. LemMA. Let S={s+K;|s€S,}. Then S is precisely the set of non-
zero divisors in A/K;.

Proof. Since S; < A— P,, elements of S are non-zero divisors in 4/K;.
Conversely suppose s+ K, is a non-zero divisor in A4/K;, then s¢ P,.
Number the maximal elements of the set {P,|ucAd, ,} as P,,..P,,
P,i1, P,, where seP; if and only if 1<j<m Let B=
P,,in--nP,nK, If B€P,u---UP, then by [3, Theorem 81],
Bc P, for some j with 1 < j<m. Since P; is prime it follows that P,< P; for
some / with m+1<I/<n or K, < P;. The first case is impossible by the
incomparability of P,, P; and the second case gives P, = P;, which con-
tradicts the facts that rank(P;)=1i, rank(P;)<i—1. Hence we can find
xeB with x¢ Py, .., P,. It then follows that s+x+ K,=s+ K, and
s+ xe€S;, which proves the lemma.

34. LemMA. Let I and K be ideals of the finitely generated algebra A
and suppose A/K has a local artinian quotient ring. Let S be the set of non-
zero divisors in A/K. Given de D((I+ K)/K) there exist s€S and
d' e 9(A/In K) such that for all ael, d'(a+ (I K))+ K=sd(a+ K).

Proof. Write 4 as a homomorphic image of a polynomial algebra A
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and let T, K be the inverse images of I, K, respectively. Since 4/K= A/K,
A/InK=A4/I~K, and I+ K/K=T+ K/K as A-modules we may replace 4
by 4 in proving the lemma, to assume that 4 is a polynomial algebra.

Since S™'(4/K) is a local artinian ring it contains a copy of its residue
field L by Cohen’s theorem. We can choose v, .. v,el such that
v, + K, ..., v,+ K form a basis for S7'(/+ K/K) as a vector space over L. If
ey, .., e, are as in 2.8 we have

(S 'U+K/K)= Y (,+K)Z(L)e;.

iI<i,j<r

Write deZ2(I+K/K) in the form d=3,(v;+K)d,, where
0,€X,;2,(L)e;= 2(S '(4/K)). There exists s S such that s0,€ D(A/K)
for all j. Therefore by Lemma 1.3, there exists ;e Z(A4) such that §{K) = K
and d)a)+K=sé(a+K) for all aed. Let d, =3 v;6/eI2(A4). Then
d{K)= K and

d(a)+ K=sd(a+ K) for ail ael

Also since dy(4)=1I, we have d,(InK)SInK Hence d, induces a
differential operator d’'e 2(A4/In K) such that d'(a+ (InK)y=d,(a) +
(InK) for all ae A. In particular for ae I we have

d(a+(InK)+K=sda+K) as required.

3.5. We can now prove part (a) of Theorem 3.2. By Lemma 1.2 we can
regard 2(A)/J, as a subring of @(I/I,). Since I[,=I+K,/K, as
A-modules we have 2(I/I)) = 2(I+ K,/K;). Now (I + K,}/K, is an ideal in
the primary ring 4/K; so 2(1/1,) has a simple artinian quotient ring O, by
Corollary 2.6 and Lemma 2.7.

If s€§,, then s+J, is a non-zero divisor in %(4)/J, and 2(I/I,) since
s acts as a non-zero divisor on the module I/I;. We show that given
de Z(1/1,), there exists ce S, such that (c+J,)deZ(A4)/J,. If d is an
operator of order n then we shall also have d{c**'+J,)e @(4)/J,. Ti
follows from this that Q, is the simple artinian quotient ring of 2(A4)/J,.

Define d, € 2(I+ K,/K;) by

di(a+K))=d'(a)+ K, for ael, (1)

where d'(a) is any element of I such that d’(a)+ I, =d(a+I,).
By Lemmas 3.3 and 3.4, there exist s€ S, and d,e @(4/I,) such that

d{a+ 1)+ K, =(s+K,)d(a+K}) for ael 2y

Now consider the localisation map &: 2(A)— P(A4/I,). By Lemma 1.6
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there exists te S, such that (t+1,) 2(A/I;)<Im ®. Hence we can find
d; € Z(A) such that

di(a)+ L,=(t+1)dy(a+ 1)) for acd, 3)
Combining Eq. (1)-(3) we have, since I, = K,

dy(a) + K; = (1 + K )(dy(a+ 1) + K;)
=(ts+K,)d(a+K,)
=(tsd'(a)+K;) for ael

Hence di(a)—1tsd'(a)e K,. However, dy(I)c=1, since I is a 92(A)-
submodule of 4, and d'(a)e 1, so d3{(a) —tsd’(a)e In K, =I,. Therefore

di(a)+ I, =tsd'(a)+ 1,
=tsdla+1,) forall ael

It follows that d;+J,=(c+J,)d with c=ts€ S, as claimed.

3.6. The proof of Theorem 3.2 is now easy to complete. For each 1eQ,
I/I; is isomorphic to an ideal of A4/K;. Hence K,<ann (I/I,)<P,. If
Nuz1 K, &P, then K, P; for some u#J since P, is prime and so
P,= P;, which is impossible. Hence for each ieQ we can choose
C1€Nuns Ky c1¢ P;. In particular, it follows that c,eJ, =4 (I, 1,) for
p#4 and c;¢J,. Hence the ideals {J;|1eQ} are incomparable. Since
these ideals are prime by part (a) of the theorem and () J;=.J, part (b)
follows.

Also we have an embedding

DA s ® 2(4)J,=Rs © Q,=0.

AeQ LeQ

An element of @ will be written (q,), where ¢, is the component in Q; for
all 1. To show that 2(A4)/J is an order in Q it will suffice in view of part (a)
to show that if d=(d,+J,)e R, with d, e 2(A), there exists a non-zero
divisor ce R such that cde 2(4)/J. If d has order n we will also have
de" e 2(A)/J. ,

Since c,;¢P,, c,+J, is a non-zero divisor in 2(4)/J,. Hence
c=(c,+J,) is a non-zero divisor in R. Set 6 =3 c,d, € D(A). Since c,€J,
for u#4 we have d=c,d, mod J,. Therefore § maps to (c,d;,+J;)=
(c;+J)d,+J;)=cd Hence é +J=cd as required.

3.7. An immediate consequence of Theorem B is the following.
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CoROLLARY. If A is a finitely generated k-algebra of Krull dimension n,
and N is the prime radical of 2(A), then N**'=0.

This is perhaps surprising since clearly we cannot bound the index of
nilpotence of the nilradical of A in terms of any function of .

It is easy to conmstruct examples where the bound in the corollary i
achieved. For example, let B=k[xg, x;, .. x,] and for 0<i<n, P;=
XoB+ -+ +x,B, K,;=P*', K=Koyn K, --- nK,, and A= B/K. Then A
has Krull dimension # and K is P-primary ideal. In the notation of 3.1 we
have I,= (Ko --- nK;)/K Let x=x3+ K. Then x[;< I, for —1<i<n
Therefore xe ) J;=N and x"#0. Hence N" #0.

1£2

3.8. CorROLLARY. If A is a finitely generated k-algebra then Z(A) is
semiprime (resp. prime) if and only if A has an artinian (resp. local artinian)
quotient ring.

Proof. The sufficiency of the conditions follows from 2.5 and 2.6. Con-
versely if 2(4) is semiprime we need to show that 7, =0 (in the notation
of 3.1). It is easily seen that I, is a nilpotent ideal of 4. If I, # 0 suppose
that I, # 0 but /,*' =0 for some integer /> 1. Then we have ;- A <1, and
I, -1,=0. This gives I; = N, which contradicts Z{4) semiprime. If in addi-
tion Z(A) is prime then by the proof of 2.5, the artinian quotient ring of
A is local.

4. AN ANALOGUE OF NAKAI'S CONJECTURE

4.1. If A is a finitely generated k-algebra, we can ask for conditions
under which Z(A4) is generated by Z'(4). If 4 is a domain then Nakai’s
conjecture asserts that this is equivalent to A being the coordinate ring of
a non-singular variety. In general we show 4 must be reduced. It seems
likely that 4 must in fact be a direct sum of domains.

LemMa. If' S is a multiplicatively closed subset of A and (A} is
generated by Z(A), then D(A) is generated by Z'(Ag).

Proof. This follows easily from the fact that 2(A)= A ® , Z(4).

4.2. THEOREM. If A is a finitely generated k-algebra such that Z(A4) is
generated by ZA) then A is reduced.

Proof. If we filter Z(A) by the order of the differential operators, then
the associated graded ring gr Z(A4) is generated by 4 and the image of
der(A4). Since der(4) is a finitely generated A-module, it follows that
grZ(A) is a finitely generated commutative 4-algebra and hence
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Noetherian. Therefore Z(A4) is left Noetherian. It follows from Theorem A
that 4 has an artinian quotient ring.

Now let N be the nilradical of 4 and S the set of non-zero divisors of
A. If N#0, then Ng#0 and N; is the nilradical of A;. By Lemma 4.1,
9(Ag) is generated by Ag and der(Ag). Now Ag= A, @ --- @ A,, where
each A; is a local artinian ring. Since Z(A5) = P(A4,)®D --- D D(A,), each
9(A,) is generated by 4, and der(4;). If M is the maximal ideal of 4,, then
any derivation of A, preserves M by [2, 4.1]. By Cohen’s theorem, there
exists a subfield K of 4, such that 4,= K® M, By Lemma 2.1 any K-linear
endomorphism of A; is a differential operator. It follows that M =0, and
each A, is a field, but this contradicts the assumption that N +#0.

For the case where A =k[x,, ..., x,1/(f) is a factor algebra of a polyno-
mial algebra by a principal ideal, the above result has been proved by
D. P. Patil and B. Singh; see [9, Note Added in Proof]. It was their result
which inspired Theorem 4.2.

4.3. LeMMA. Suppose A is reduced with minimal primes P, .., P,. If
D(A) is generated by D'(A), and each A/P, is the coordinate ring of a non-
singular variety, then A= A/P,® --- ® A/P,,.

Proof. Set A;=A/P,. Since P, --- n P,=0 we can identify 4 with a
subalgebra of 4,® --- @ A4,,. Suppose that

AN(4,,0,.,0)5(4,,0,..,0),

that is, P, + (P, --- nP,)# A. Let M be a maximal ideal of 4 contain-
ing P,+ (P, --- n P,). By replacing 4 with 4,, we can assume that 4 is
local. If S;,=4 — P;, then P,=S,(0) and thus 2(A4) may be identified with
a subalgebra of 2(4,)® --- ®ZD(A4,). Let I=P,+ (P, --- n P,). Since
each P, is invariant under every derivation of 4 by [2,4.1] so also is
P, + 1" for all m>=1. Therefore if (A4) is generated by A and der(A4),
P, +T1" is a @(A)submodule of 4. If xeP,n --- nP,, x#0, then by
Lemma 1.6, ((x+ P,) 2(4,).0,..,0)=2(4). We can choose m such that
x¢ P, 4 I". Since P, + I is a non-zero ideal in the regular local ring 4,
there exists de Z(A4,) such that ¢(P, + I'") contains a unit of 4,. Thus
(x+P,)0(P,+I") & P,+ I"". This contradicts the fact that P, + 1" is a
9(A)-submodule. Tt follows that (A4,,0,..,0)= 4 and similarly (O, ...,
A, 0)sdforalli. Hence A=4,® --- D A4,,.
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