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1. INTRODUCTION

Two recent results relate the existence of injective modules for group algebras which
are 'small' in some sense to the structure of the group.

(1) The trivial &6?-module is injective if and only if G is a locally finite group with no
elements of orders = char A; (9).

(2) If G is a countable group, then every irreducible &(?-module is injective if and
only if G is a locally finite p' group which is abelian-by-finite (9) and (11).

In this paper we investigate several situations in which kG has injective modules
with countable ^-dimension. The main result can be seen as a generalization of (2).

THEOREM 4-8. / / G is a locally finite group and k is afield of characteristic p ^ 0, then
the injective hull of every irreducible kG-module has countable k-dimension if and only if
G is abelian-by-finite and has no infinite p subgroup.

Here if p = 0, we take the last condition as being vacuously satisfied.
However, we begin by studying the centralizer CG(V) of an arbitrary injective

&Cr-module V. This is always a locally finite £>' group (compare (1) above) and further-
more, if W is any &C?-module with CO(W) a locally finite p' subgroup, then W is
&(?-injective if and only if it is injective when viewed as a natural k[G/Co(W)]-
module.

In Section 3 we study injective modules which satisfy the minimum condition on
annihilators of subsets of the ring. It is convenient to introduce some notation at this
point.

If S is a subset of a ring R and V is a right R module we denote by

ArmvS = {ve V\vS = 0}, the annihilator of S in V.

We abbreviate the condition that V satisfies the minimum condition on annihilators
of subsets of R by writing V satisfies min-ann. We denote by l(S), r(S) respectively the
left and right annihilator ideals of S in R. We assume throughout that all rings have
l's and all modules are unital. If Wis a right R module we denote the injective hull of
W by E(W).

Faith (7) shows that an injective module V is S-injective if and only if it satisfies
min-ann. We find the latter condition easier to work with and in Lemma 3-2 (adapted
from an argument due to D. S. Passman), we show that if R is a ^-algebra and V is an
injective i?-module with countable ^-dimension, then V satisfies min-ann.

Suppose now that V is a right i?-module satisfying min-ann. and set i?0 = AnnH V.
Then R/Ro has the maximum condition (max.) on right annihilator ideals (Lemma
3-3, see also (8), corollary 7). If in addition, we suppose that V is irreducible and R is
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locally artinian, then R/Ro is a primitive ring and every non-zero right ideal contains a
non-zero idempotent (Lemma 3-4). This forces R/Ro to be simple artinian and so
R/Ro ^ Mn{E) where E = Endfl V and n = dimE V. In particular V is finite dimen-
sional as a (left) module over its endomorphism ring.

However, we can improve this result by lifting idempotents in locally artinian rings
to show that if R is a locally artinian ring and the injective hull of an irreducible R
module V satisfies min-ann., then again R/Ro ^ Mn(E), where E, R and n are as in
the previous paragraph (Theorem 3-7).

In Section 4 we specialize to the case where R = kG, the group algebra of a locally
finite group has an injective module V satisf3dng min-ann. If Ro = AnnB V and
R = R/Ro, then using the arguments of section 3 we see that S = R/J(R) is semisimple
artinian, where J(R) denotes the Jacobson radical of R, so S ^ © M^k^ for certain
division algebras kt. If char k > 0 or if k contains all roots of 1, we see that all the
division algebras which occur are fields (this follows from Lemma 4-4).

Now there is a natural homomorphism from G/CG(V) to YlGLfo^kj) and from the
assumption that V satisfies min-ann. we can deduce easily that G has no infinite^) sub-
groups. I t follows from a theorem of Brauer and Feit (3) and (12), theorem 1. L. 4, that
the image of G/CG(V) in each summand GL(nt,kt) is abelian-by-finite and hence the
image of G/Ca( V) in UGL(nit k±) is also abelian-by-finite. Also the kernel of this homo-
morphism is a finite2> subgroup and in fact we show that G/CG( V) is abelian-by-finite.
Assembling these results we obtain a characterisation of 2-injective modules over
group algebras of locally finite groups (Theorem 4-5).

However, we do not need the full force of this characterization in order to prove
Theorem 4-8. In fact it follows from Theorem 3-7 that if G is a locally finite group such
that the injective hull of every irreducible Wr-module has countable ^-dimension, then
G is a restricted group, that is every irreducible &(?-moduIe is finite dimensional over its
endomorphism ring, and we show that a restricted locally finite group with no infinite
p subgroups is abelian-by-finite, thus proving the harder part of Theorem 4-8. Without
the assumption that G has no infinite p subgroups, Hartley (xinpublished) has shown
that it G is a locally finite restricted group in char p, then G/Op(G) is abelian-by-finite.

Finally, in Section 5 we apply some of the above techniques to study the injective
hull of the regular module.

2. THE CENTRALIZER OF AN INJECTIVE MODULE

We assemble some well-known results on induction and restriction.

LEMMA 2-1. Let H be a subgroup of a group G and k any field.
(i) / / V is an injective (right) kH-module, then the coinduced module Hom,.n(kG, V) is

an injective kG-module containing a copy of V ® kHkG. Moreover if the index \G:H\ is
finite then V ®kHkG ^ HomkH(kG, V).

(ii) If V is an injective kG-module, then the restriction VH is an injective kH-module.

Proof. We make HomA:H(4Gr, V) into a right &6r-module by defining

(fr) (s) = f(rs) for fe~H.omkH(kG, V) r,sekG.
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It is easily seen that HomkH(kG, ) is a functor from right kH-modules to right kO-
modules. If 0: A ->B is a map between Mf-modules we define

6°: HomkH(kG,A)->'H.omkH{kG, B)

by (0°(/))(*) = 0(/(*))

for fe~KomkH(kG,A), xekG.

The embedding of V ®kH kG into KomkH(kG, V) may be described as follows. If
{si | i e 1} is a right transversal to H in G, then {ŝ 11 i e 1} is a left transversal and for

v = 2 ^ ® si e F ®kH kG and a = HsJ1^ e kG

we define fveHomkH(kG, V) by fv(a) = 2 ^ % .
For further details see (4), p. 866, or (6), lemma 57-7.
(ii) To any diagram of &i/-modules,

0 M >N

there corresponds a diagram of &(?-modules

0 B.omkH(kG, M) > KomkH(kG, N)

I"
HomkH(kG,VH)

Also since V is an injective kG-modu\e and V ^ HomkO(kG, V) < HomtH(W, F), V
is isomorphic to a direct summand of H.omkH(kG, V) and combining 6° with the pro-
jection map gives a &(?-map from H.omkH(kG, M) to F. Then since F is an injective
iCr-module we can extend 6° to a kG map 6°, say from ~H.omkH(kG, N) to F, and
finally restricting 6° to the &.ff-subm.odule JlomkH(kH, N) ~ N gives a &17-map
extending the original map d.

LEMMA 2-2. Let G be any group and k afield of chracteristic p ^ 0. If V is an injective
kG-module, then C = CG(V) is a locally finite p' group.

Proof. The restriction Vc is an injective &C-module and is trivial as a AC-module.
Therefore the 1-dimensional trivial module k is a direct summand of Vc and so is
injective. Thus C is a locally finite p' group by (9), theorem 1.

LEMMA 2-3. / / F is an injective kG-module then V is injective as a k[G/C0( V)]-module.

Proof. A routine calculation which we leave to the reader.

LEMMA 2-4. Suppose H is a normal locally finite p' subgroup of a group G. If V is an
injective k[G/H]-module then V is an injective kG-module when H is allowed to act
trivially.

Proof. Suppose / is a right ideal of kG and 0: / -> V is a kG map. Let o»o H denote
the (two-sided) augmentation ideal of H in kG.
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If r is an element of / n o)a H we can write r = S a ^ - 1) where at e kG and glt..., gn

are finitely many elements of H.
Now kH is von Neumann regular by (15), §24, and hence there is an idempotent

e e kH such that

Since (^ — 1)6 kHe we have

( f t - l ) = (&- l )e for » = 1,...,M.

Therefore r = Sa^g^ — 1) = T.ai(gi — l)e = re and so 0(r) = <fi(r)e = 0, as <j>{r)e V, e is
in the augmentation ideal of kH and H acts trivially on V.

Hence we can extend^ to a map from 7 + coaH to F by setting <j>(ii)GH) = 0 and this
gives a k[G/H~\-m&p

7 + . Q g F

w G #

Since F is injective as a &[Gy.ff]-module <f> extends to k[G/H] and then composition
with the natural map kG^-k[G/H] gives a map kG-> V which extends <f>.

3. MODULES SATISFYING MIN-ANN.

DEFINITION 3-1 (Faith(7)). An injective R-module V is "L-injective if and only if the
following equivalent conditions hold:

(1) Any direct sum of copies of V is injective.
(2) Any countable direct sum of copies of V is injective.
(3) R satisfies max. on annihilators of subsets of V.
(4) F satisfies min-ann.

We shall work mainly with the last condition.

LEMMA 3-2. If R is a k-algebra and V an injective R-module with dimk V countable, then
V satisfies min-ann.

Proof. Suppose Fx > V2 > ... is a strictly descending chain of annihilators where
Vi = AnnySi, say for certain subsets S{ of R.

If we set Ix = Ann^Fj = {r eR\ V^r = 0}, then Fi = Ann^/f and so we may work now
with It in place of S^ Note that /,. is a right ideal and we have a strictly ascending chain
Ix < I2<....

For each integer n choose an element vneVn\Vn+1.
Then vn In+1 =t= 0, so 3 an+l e In+1 such that vn an+1 + 0. I t follows that

Set W = H Fn a A-subspace of V and let T = kn be the A-space of countably infinite
n

sequences (tltt2, •••) of elements tt in k. We aim to construct a 1—1 ^-linear transfor-
mation 0: T -> V/ W. Since dimfc F is countable and dimfc T is uncountable this will give
a contradiction.
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S e t / = u Ii a right ideal in R. If t = {tvt2> ...)eT we define / t : / - > V by

Mr) = £ »n«nr.

If r e / , then c e ^ for some j and hence vn<nr = 0 for all n > j and the above sum is
finite for all r e / .

Now/{ is an R module homomorphism and so extends to an R map/t*: /?-> V, since
V is injective. Suppose that g: /?-> V also extends ft. Then

g(l)r = g(r)=ft*(r)=f*(l)r for all re/ .

Therefore (/t*(l)-gr(l))eAnnJ7/i for all i, and so/t*(l)-gr(l)e JF.
Hence we have a well-defined map <j>: T-> V/W given by

Now if a, b e k and s,teT then /„,+&( = a/, + bft and so a/,* + bft* extends fas+bt and

Therefore 0 is a A-linear transformation.

Now suppose t = (tltt2, ...)eker^. Then/t*(l)e W so

Mr) =f*(l)r = 0 for all r e / .

If t =)= 0 choose j minimal with ^ 4= 0. Then

Hence Vj aj+1 = 0 contradicting the choice of ai+1. Therefore ^ is 1-1 and the lemma
is proved.

LEMMA 3-3. If R is a ring, V a right R module satisfying min-ann. and Ro = Ann^ V,
then R = R/Ro has max. on right annihilator ideals. In particular RR has max. on direct
summands. (Cf. (8), cor. 11.)

Proof. Suppose /x < /2 < ... is a strictly ascending chain of right annihilator ideals in
R. By replacing /„ by r(l(In)), we may assume that In = r(Jn) where Jx > J2 and Jn is the
left annihilator ideal of /„.

Set Wn = VJn, then clearly Wn £ AnnF/n. If jeJn\Jn+1, then since V is a faithful
.R-module 3ve V such that vjln+1 4= 0. Hence Wn 4= AnnF/n + 1 and it follows that
Ann r / n + 1 < Ann r / n for all n contradicting the assumption that V satisfies min-ann.

Since R has a 1 any direct summand of RR has the form eR for some idempotent
eeR and eR = r(jR(l — e)). Therefore RR has max. on direct summands.

LEMMA 3-4. Let Rbea locally artinian semisimple ring. If I is a non-zero right ideal in
R, then I contains a non-zero idempotent.

Proof. Since R is semisimple, / is not nil so there is an element aeR which is not
nilpotent. If S is an artinian subring of R containing a, then / n S is an ideal of S which
is not nil. Hence / n S <£ J(S). I t follows from (l), theorem 2-4 A, that I f\S contains a
non-zero idempotent.
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LEMMA 3-5. Let M be an R-module such that:
(i) M has max. on direct summands.
(ii) Every non-zero submodule of M contains a non-zero direct summand.

Then M is a finite direct sum, of irreducible R-modules.

Proof. Let N be a non-zero submodule of M and choose a direct summand K of M
maximal subject to being contained in M. Suppose that K ®L = M.

If the intersection L n N is non-zero it contains a non-zero direct summand K1 oiM,
where K1@L1 = M say.

But then since Kx<=- L we have

Kx + (L n LJ = L n (Ki+LJ = L

by the modular law and hence (K + Kx) ® (L(\LX) = M, contradicting the maxi-
mality of K. Therefore L n N = 0 and K = N is a direct summand of M.

Hence the lattice of submodules of M is complemented and the result follows from
(13), § 3-3, proposition 2.

We are now in a position to show that if R is a locally artinian ring and V an irreduc-
ible i?-module satisfying min-ann. then F is finite dimensional as a vector space over
its endomorphism ring. First, however we prove a lemma on idempotent lifting which
will give a stronger result.

LEMMA 3-6. Let I be a two-sided ideal in a ring R. Let R = R/I and write xfor the image
ofx in the factor ring R. Suppose that either (i) I is a nil ideal, or (ii) R is locally artinian.

Then we may lift ascending (and descending) chains of principal one-sided ideals
generated by idempotents over I. More precisely, ife1R<e2R< ...is a strictly ascending
chain of ideals in R where et is an idempotent, then there exist idempotents/,• in R such that
ff = et andfxR <f2R < ....

Similarly for the other chains of ideals.

Proof. Note that exR < e2R if and only if R(l — ex) > R(l — ez). Hence by symmetry
it suffices to prove the result for ascending chains of right ideals.

(i) Let 7 be a nil ideal. Suppose first that e is an idempotent in R. Then e2 — eel,
and so (e2 — e)k = 0 for some integer k.

Now, by the Binomial Theorem,
2fc /

= 2 I
r=0 \

= "ft (2k) e2*-'(l - e)' + (2*) e*(l - e)« + £ ( ? ) e2*-'(l -e)'.

Notice that the middle term is zero by choice of k.

k-l/ot\
Set A(e) = 2 )ek-'(l-ey,

\r }
2k /9IA

= 2 ( " e»-(l-er*
r=fc + l \ T /

and cr(e) = efcA(e), -r(e) = (1 -e)k/i(e).
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Then A,fi, cr and T are all polynomials in e,

and <r(e)T(e) = r(e)o-(e) = efc(l - e)k\{e)/i(e) = 0.

Hence <r(e) = a(e){cr(e) + T(ej} = cr(e)2.

Now o-(e) = e2* + ( f )etk~1(l -e) + ...
= e2fe = e modulo/.

Similarly r(e) is an idempotent which is congruent to (1 — e) modulo /. (The above
argument was shown to me by T. K. Carne of Trinity College, Cambridge.)

Now suppose that ex R < e2 R < ... is an ascending chain of ideals in R, with e
idempotents.

Then, clearly, R(l — <y is the left annihilator of ̂ R in R and so R(i — ex) > R(l — e2)
is a descending chain with 1 — et idempotents. We lift 1 — ex to an idempotent fx in R as
above.

Then R(l -ej > R(l-e2) gives (1 -e2) = (1 -e2) (1 - e j = (1 -e^f^ So replacing
1 — e2 by (1 — e^/i we may assume that (1 — e2)eRf1.

Next we lift 1 — e2 to an idempotent/2 e R. Then/2 is a polynomial in 1 — e2 and hence
fzeRfx and so Rf2 < Rfv

Therefore (1 —fx)R < (1 —f2)R and 1 —/, is an idempotent in R which is congruent
to ei modulo /, for i = 1,2.

Repeating this process gives the result when / is a nil ideal.
(ii) Now let / be any ideal in a locally artinian ring R, and e1, e2 idempotents in R

such that \R < e2R. Then e1 and e2 are contained in some artinian subring SofR and
/ n S is an ideal in S.

Therefore in order to lift ex and e2 we may suppose that R = 8, i.e. that R is artinian.
First suppose that / n J(R) = 0.

T h e n // .J+J(R) a n d
I()J(R)= J{R) a n d
I()J(R)= J{R) J(R)

for some ideal if of i?, since R/J(R) is semisimple artinian.
Therefore / + K = .B, and / n l ^ / O J(R) = 0. Hence I ® K = R. Now for

i = 1,2, et = Xj +ft where xt e I and f^K and so e,- = /i.

+ft = li=n= (S* +£)2 = ^ +/y,

Hence /^ —/| = 0, since / n K = 0, and /4 is an idempotent which is congruent to ei

modulo I.
We claim that^i? ^f2R, i.e. that /x = / 2 / r This is certainly true modulo / since

Therefore fx-f2fxe I (\K = 0.
The inclusion is strict since fxR =f2R gives/2 = /x/2 and e2 = /2 = /x/2 = ea e2, and

so ex R = e2 R.
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In general, if / n J(R) 4= 0 we can lift ev e2 to idempotents/^ / 2 in R/I n J(R) such
that fx(R/I fl J(R)) < U(R/I n J(R)) but if R is artinian, / n J(R) is nilpotent and
part (i) allows us to lift/j and/2 to idempotents in R.

THEOREM 3-7. Let Rbea locally artinian ring and W <=• V right R modules such that W
is irreducible and V satisfies min-ann.

Let Ro = AnnB W and E = EndB W. Then W has finite dimension n, say as a (left)
module over Eand R = R/Ro = Mn(E), the ring ofnxnmatrices over E.

In particular this occurs if V is the injective hull of W and is 'L-injective (by 3-1).

Proof. Let Rx = Ann^ V. Then by Lemma 3-3 R/Rx has max. on right ideals gener-
ated by an idempotent.

Now Ro/R1 is an ideal in the locally artinian ring R/R1 and Lemma 3-6 enables to
conclude that R also has max. on right ideals generated by an idempotent.

However, R is a locally artinian, primitive ring and hence by Lemma 3-4 any non-
zero right ideal contains a non-zero idempotent. Lemma 3-5 applied to the right regular
module then shows that R is artinian and hence simple artinian.

Finally W is a faithful irreducible module for R and so R ~ Mn(E), where

E = EndR W and n = dim£ W

by the Jacobson density theorem (6), (26-8), (12), 3-1, proposition 3.
We remark that if R = kG is the group algebra of a locally finite group, and if V is

any S-injective &(?-module then kG/ArmkO( V) is artinian (Theorem 4-5). We have been
unable to decide whether any locally artinian ring with a faithful S-injective module is
actually artinian.

4. GROUP ALGEBRAS OF LOCALLY FINITE GROUPS

The first result of this section is really part of the folklore.

LEMMA 4-1. Suppose 6 is a finite p group and k a field of characteristic p. Then the
injective hull of the trivial JcG-module is isomorphic to the regular module.

Proof. kG is a quasi-Frobenius algebra and hence is self-injective by (6), theorem
58-6. Also since 0 and 1 are the only idempotents kG is indecomposable and so contains
a unique minimal submodule which must be the trivial module. It is readily seen that
any element of kG which is invariant under all elements of G must be a scalar multiple
of 3 = SJ/.

geO

LEMMA 4-2. Let Gbea locally finite group and k afield of characteristic p > 0. If kG has
a non-zero injective module V satisfying min-ann. then G has no infinite p subgroups.

Proof. If the result is false then G ha,s a strictly ascending chain Gt < G2< ... of
finite 2> subgroups.

Let u)kGn denote the augmentation ideal of kGn and set

Vn = Annv(ajkGn).

Then clearly Vn+1 < Vn.
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Consider the restriction of V to the finite subgroup Gn+1. Va is a module for the
finite dimensional algebra kGn+1 and so contains a non-zero finitely generated sub-
module.

Hence Vo must contain an irreducible submodule which is the trivial module
k since Gn+1 is a p group.

Now FGji+l is injective by Lemma 2-1 and so contains a copy of the injective hull of
k which is isomorphic to kGn+1 by the previous lemma.

We identify kGn+1 with this submodule of VOn+l.

Gn= S 9 then Gnw(kGn) = 0,
G

but Gn(g-l)*0 for any geGn+1\Gn.

This shows that V± >V2> ...is a strictly descending chain of annihilators and this is a
contradiction. Hence G has no infinite p subgroups.

LEMMA 4-3. Let H be a finite group, k afield of characteristic p > 0. Then kH/J(kH) is
isomorphic to a direct sum of matrix rings over commutative fields.

Proof. Let Fj, denote the prime subfield of k. We have FpH/J(FpH) s ©ifn<(&i)
i

where the kt are commutative fields by Wedderburn's theorem on finite division
rings.

Now k ®Fo J(FpH) is a nilpotent ideal in kH and so

On the other hand, FpH/J(FpH) is a separable FpH algebra by (2), §7, no. 5, and
hence J(kH) < k ®¥pJ(FpH).

Therefore
kH _ FpH®fpk _ FPH

J(kH) J(FpH)®fpk

is a direct sum of matrix algebras over commutative fields.

LEMMA 4-4. Let G be a locally finite group, V an irreducible kG-module which is finite
dimensional as a module over E = EndB V. Suppose that either

(i) k is a splitting field for all finite subgroups of G, or
(ii) characteristic k = p > 0.
Then E is afield.

Proof. Case (i) is proved by Farkas and Snider(9). Case (ii): let R = kG, and

Ro = AnnR V.

If dim V = n, then R = R/Ro ^ Mn(E) by the Jacobson density theorem (6), (26-8).
Therefore there is an idempotent e in R such that eRe ^ E. By Lemma 3-6 we can

lift e to an idempotent e in R.
Let x, ye eRe, x = ere, and y = ese say, and choose a finite subgroup H of G contain-

ing the supports of e, r and s.
9 PSP 84
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Now let e* denote the image of e in kH/J{kH), and set

ekHe _ ekHe+J(lcH) kH
* ^ - ™"™

ekHenJ(kH) J(kH) ^ J(kH)'

Then A £ e*(kH/J(kH))e*, and kH/J(kH) is a direct sum of matrix algebras over
fields by Lemma 4-3. It follows that .4 is also a direct sum of matrix algebras over fields.

Now consider the combined map 6: ekHe ^ekGe^-E, given by the inclusion of H in
G followed by the natural projection of R onto R. Since E has no zero divisors and
ekHe n J{kH) is nilpotent we have 6(ekHe n J(kH)) = 0.

Hence we have a map d:A^-E and by construction the elements x and y lie in the
image of A. However, since A is a direct sum of matrix algebras over fields and E has no
zero divisors, it follows that the image of A under d is a field. In particular, x and y
commute, but x and y were arbitrary elements of E. Hence E is a field as claimed.

We now obtain the characterization of S-injective &(?-modules promised in the
introduction.

THEOREM 4-5. Let G be a locally finite group, k afield of char p ^ 0. If p = 0, we
assume that k contains all roots of 1.

/ / V is any kG-module the following are equivalent:
(1) V is injective and satisfies min-ann.
(2) V is "L-injective.
(3) 3H ^ G, such that H is a p' subgroup of CG( V) and G/H is a finite extension of an

abelian p' group, and finitely many isomorphism types Wlt W2, ..., Ws, of irreducible
k[G/H~\ modules such that V is isomorphic to a direct sum of the injective hulls of the
Wlt W2, ..., Ws. (Notice that by the results of Section 2 it is immaterial whether we form
these injective hulls in the category of kG modules or of k[G/H] modules.)

Moreover, if (1 )-(3) hold then kG induces an artinian ring of transformations on V, that
is kG/Annka V is artinian.

Proof. (1) and (2) are equivalent by 3-1.
(1) => (3). Let H = CG( V). Then H is a normal p' subgroup of G by Lemma 2-2. Also

V is a 2-injective module for k[G/H] and we may assume that H = 1 and then require
to prove that G is a finite extension of an abelian p' group.

If R = kG, Ro = AnnfcO V, R = R/£o, then as in the proof of Theorem 3-7 we see
that S = R/J(R) is semisimple artinian.

If U is an irreducible $ module we can regard U as an irreducible kG module and
since U is finite dimensional over Ends U and Ends U = EndA.o U we conclude by
Lemma 4-4 that Ends U is a field.

Hence, by Wedderburn's theorem S ^ © !/„.(&;) a direct sum of matrix rings over
fields. Let U(R), U(S) denote the groups of units of R and S respectively. Then as
CO(V) = 1, G embeds in U(R) and we have a group homomorphism

Here i/r is obtained from the natural homomorphism of R onto S.
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If char k = p > 0, then G contains no infinite p subgroups by Lemma 4-2, and so it
follows from a theorem of Brauer and Feit(3) and (12), theorem 1. L. 4, that the image
of G in each factor GL(n.i, kj is abelian-by-finite and hence so too is the image of G in
XlGHn^kj). Clearly the kernel of the homomorphism G-^llOHn^ki) is Gnke r^ .
Suppose that a e ker \[r.

Then a = 1 —j, for some j e J(R) and since R is locally artinian J(R) is locally nil-
potent and 3 r such that jr = 0.

Choose s ^ l such that ps ^ r, then j*>' = 0 and so (1 - j ) p ' = 1 -j^ = 1. That is
ap> = 1 and the kernel is a p group P which must be finite.

Let A be a normal subgroup of finite index in G such that A/P is an abeliany' group
and set C = CA(P). Then \G: C\ < oo and C is nilpotent (of class two) and so

C = Op(C)xOp,(C).

Again since G has no infinite p subgroups we have

Set JT = O^(G). \G:OP.(G)\< co and so \G:Op,(G)\ < oo.
Then P n K = 1 and so K = K/P n K £ PisT/P < G/P and if is abelian-by-finite.

Hence G is abelian-by-finite and so is a finite extension of an abelianp' group.
We show next that R is artinian. Since K is a locally finite p' group kK is von

Neumann regular and hence so is
T = kK/kK n Ro ~ kK + R/R0 ^ R/Ro = R.

Now R contains no infinite set of orthogonal idempotents by Lemma 3'3 and so by
Lemma 3-5, T is semisimple artinian, but R is a finitely generated module over T (it
can be generated by the image of a transversal to K in G) and therefore R is artinian.

A result of Cailleau(5) states that any S-injective module is a direct sum of
indecomposable E-injective modules. This is easily seen in the present case where V is a
E-injective module for the artinian ring R, for the socle M of V is a direct sum of
irreducible submodules and since V is injective E{M) < V. If the inclusion were strict
then as E(M) is injective it would have a complement N in V, but then since R is
artinian N would have an irreducible submodule intersecting M trivially. This con-
tradiction shows that V is a direct sum of injective hulls of irreducible R modules.
Again since R is artinian only finitely many isomorphism types Wx> W2, •.., Wa can occur.
Clearly each Wt is an irreducible module for k[G].

(3) => (2). Since H is a normal p' subgroup of G, any injective k[G/H] module is
injective when regarded as a k[G] module with H acting trivially by Lemma 2-4.
Hence we may assume that H = 1.

Therefore G is a finite extension of an abelian^p' group K. Let W be any irreducible
kG module. Then the restriction WK is a direct sum of finitely many irreducible kK-
modules by Clifford's theorem. Now any irreducible &iJT-module has countable dimen-
sion over k (see (10), p. 121) and so dim^ W is also countable. In addition any irreducible
kK module is injective by the proof of (9), theorem 3, and hence WK is injective since it
is the direct sum of finitely many injective modules.

Again, since the index | G: K\ is finite the induced module WK ® kK kG is an injective
module containing W by Lemma 21 and has countable dimension over k. Hence
dimt E( W) is countable and by 3-2 and 3-1, E(W) satisfies min-ann. and so is S-injective.

9-2
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Clearly any direct sum of copies of E(W) is 2-injective, and if Wv W2,..., Ws are
finitely many irreducible kG modules and V is any direct sum of their injective hulls,
then V is 2-injective. This completes the proof of Theorem 4-5.

Notice that if we have uncountably many isomorphic copies {W^ of an irreducible
kG module, then © E(Wi) is a 2-injective module with uncountable dimension over k,
so the converse of Lemma 3-2 fails to hold.

We also record the following result.

COROLLARY 4-6. / / G is a locally finite group and k is a field of ch&rp > O,thenkGhasa
^-injective module if and only if \G: 0p.(G)\ < oo.

We now study the group algebra kG of a locally finite group, which has the property
that the injective hull of every irreducible kG-module has countable dimension over
k. We show that any such group is abelian-by-finite. This provides a generalization of
(11), theorem A. The technique will be to reduce to linear groups.

LEMMA 4-7. (i) Suppose H is a subgroup of G and that there is an irreducible kH-
module such that H/CH(W) is not abelian-by-finite. Then there is an irreducible kG-
module V such that G/CG(V) is not abelian-by-finite.

(ii) Suppose G has a locally finite p' subgroup H of finite index and that G is not abelian-
by-finite. Then there is an irreducible kO-module V such that G/Ca( V) is not abelian-by-
finite.

Proof, (i) By (15), lemma 10-2 (i), there is an irreducible Mr-module V such that W is
a H7-submodule of VH.

Hence CO(V) n H = CH(V) <= CH(W).

Now H/CH{W) is not abelian-by-finite and so neither is

H/Co( V)nH~H.Ca( V)/Co( V).

Therefore G/CO{V) is not abelian-by-finite.
(ii) This follows from part (i) and (u), lemma 2-3.
Let A; be a field of characteristic p ^ 0. Tor brevity we say that a locally finite group

G is restricted over k, if every irreducible fcCr-module is finite dimensional over its
endomorphism ring.

THEOREM 4-8. Let G be a locally finite group, k a field of characteristic p ^ 0. The
injective hull of every irreducible kG-module has countable dimension over k if and only if
G is abelian-by-finite and has no infinite p subgroups.

Proof. We have shown in the proof of Theorem 4-5 that if G is a periodic abelian-by-
finite group with no infinite p subgroups then the injective hull of every irreducible
iG-module has countable dimension over k.

Now suppose that G is a locally finite group such that the injective hull of every
irreducible AG-module has countable dimension over k. Then G is restricted over k by
Theorem 3-7. If char k = 0, the result follows from (11), theorem B. If char k = p > 0,
then by Lemmas 3-2 and 4-2, G has no infinite # subgroups and the result follows from
the following theorem.
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THEOREM 4-9. Suppose char k = p > 0 and that Gisa locally finite restricted group over
k with no infinite p subgroups.

Then G is abelian-by-finite.

Proof. Step l.IfG has ap' subgroup of finite index then G is abelian-by-finite.
Otherwise by Lemma 4-7 (ii) kG has an irreducible module V such that G/Ca(V) is

not abelian-by-finite.
But then if E = EndfeO F and n = dimE V, G/CG( V) embeds in GL(n, E) and E is a

field by Lemma 4-4(ii). This is impossible by the Brauer-Feit theorem.

Step 2. We may suppose that Op[G) = 1.
Notice that G/OP(G) is a restricted group with no infinite p subgroups. Suppose that

we have shown G/Op(G) to be abelian-by-finite and let A/Op(G) be an abelian normal
subgroup with finite index and B/Op(G) = Op,{A/Op{G)).

Then Op(G) is a finite normal maximalp subgroup of B and so C = CB (OP(G)) has
finite index in B. We claim that C has ap' subgroup Q of finite index. Then Q will have
finite index in G and G will be abelian-by-finite by Step 1.

Set P = C n Op(G), then P is a central Sylow p subgroup of any finite subgroup S
such that P < S < C and therefore S = Px Op,(S) for any such S by the Schur-
Zassenhaus theorem. It follows that the p' elements of S form a subgroup and hence
the p' elements of C also form a subgroup.

Therefore C = P x Op-(C) and Op,{C) has finite index in C and so in G.

Step 3. / / G is residudily finite and satisfies the conditions of the theorem, then G is
abelian-by-finite.

Let P be a maximal p subgroup of 0. For each x e P, x 4= 1, we choose a normal
subgroup Nx with finite index in G such that x $NX.

Set N = 0 Nx, then N is a normal subgroup with finite index in G since P is finite
xeP

and P n N = 1 by construction. Therefore since any two maximal p subgroups are
conjugate byjl2), 1.D.12, Nis&p' subgroup of G and Cris abelian-by-finite by Step 1.

Step 4. Completion of the proof.
Let G be any group satisfying the conditions of the theorem and suppose in addition

that Op(G) = 1.
If g- 1 eJ(kG), then (gr- 1)*>B = 0 for some n. Therefore gfn = 1 and so

Gnl+J(kG) ^Op(G) = 1.

Hence there exist irreducible &Cr-modules {^|ie7} such that f) Co(Vj) = 1.
iel

Now each G/Ca(Vj) is a linear group over a field and so is abelian-by-finite as in Step 1.
Let Ji be a normal subgroup with finite index in G such that t̂ -/Co(T )̂ is abelian.
If J = n Ji, then J' ^ n Ca(Vi) = 1, so J is abelian.

i e/ iel

Clearly G/J is residually finite and so abelian-by-finite by Step 3. Hence G is
metabelian-by-finite. Let L be a metabelian subgroup of finite index in G, P a maximal
p subgroup of L and 2 the local system consisting of all finite subgroups 8 of L
containing P.
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If S e Z, P is a Sylow p subgroup of S and, by Hall's theorem, S has a p' complement
with index \P\.

Hence \S: OV,(S)\ ^ \P\! for all Se~E, and an inverse limit argument such as (12),
l . K . 2, shows that |L:0p,(Z/)| < \P\\.

Therefore G has &p' subgroup of finite index and is abelian-by-finite by Step 1.

Remark. The above proof is substantially due to B. Hartley. Without the assump-
tion that G has no infinite p subgroups he has shown that if G is a locally finite restricted
group over a field of characteristic p > 0, then G/Op(G) is abelian-by -finite.

We also have the following variant of theorem 4-8.

THEOREM 4-10. Let Gbe a countable locally finite group and k afield of characteristic
p ^ 0. The injective hull of every irreducible kG-module has finite composition length if
and only if G is abelian-by-finite and has no infinite p subgroups.

Proof. G is a countable group and so any irreducible kG-module has countable dimen-
sion, since it is a difference module of kG. Hence any kG-module with a finite (or even
countable) composition series has countable dimension over k. The result follows from
Theorem 4-5 with minor modifications.

5. THE INJECTIVE HULL OF THE REGULAR MODULE

In this section we depart from our previous notation by writing E(G) for the injec-
tive hull of the right regular module kGkO.

We apply the techniques of Section 3 to obtain a short proof of Lawrence's result (14),
that a countable dimensional self-injective ring is quasi-Frobenius, and to show that
if G is locally finite and dimfc E(G) is countable then G is finite.

For non-locally finite groups the situation may be rather complex - we have the
following result.

PROPOSITION 5-1. Let C^ = < x\—> denote the infinite cyclic group. Then
dinifc E(CX) is countable if and only if k is a countable field.

E(Cm) is always H-injective.

Proof. Notice that kCm is an Ore domain whose quotient ring Q may be identified
with the ring of rational functions k{x) in the variables x and xr1. Hence Q ~ E(CW)
by (13), §4-6, proposition 2, and §4-3, proposition 3 and E(CX) is S-injective by (7),
corollary 8-4.

Now if A; is a countable field the kCM and Q are countable rings and so dimfc E{CX) is
countable.

On the other hand, if k is uncountable it is easily checked that the elements 1 /{x + a)
as a ranges over k, are linearly independent.

THEOREM 5-2. If Ris a k algebra with a countable dimensional, faithful injective right
module V, then R has the maximum condition on right annihilator ideals.
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Proof. By Lemma 3-2, V satisfies min-ann. and so by Lemma 3-3, R satisfies max. on
right annihilator ideals.

By a result of Faith (7), theorem 5-2, a right self-injective ring satisfying max. on
right annihilator ideals is quasi-Frobenius. Hence we have the following corollary.

COROLLARY 5-3 (Lawrence (14)). A countable dimensional right self-injective ring is
quasi-Frobenius.

For group algebras we have a slightly stronger result.

THEOREM 5-4. Suppose kG has a faithful, injective module with countable dimension
over k. Then G has no infinite locally finite subgroups.

Proof. By Lemmas 3-2 and 3-3 kG has max. on right ideals generated by an idem-
potent.

If G has an infinite locally finite subgroup then by (12), corollary 2-5, G has an infinite
locally finite abelian subgroup A. Since by Lemma 4-2, G has no infinite locally finite
p subgroups, it follows that H = Op-(A) is an infinite locally finite#' subgroup of G.

Therefore H has a strictly ascending chain Hx < H2 < ... of finite p' subgroups of G.
Write

£ < = S h, et = ^< / | f i ( | .
he Ht

Then (1— e^kG < (1 — e2)kG < ... is a strictly ascending chain of right ideals gen-
erated by idempotents. This contradiction establishes the result.

COROLLARY 5-5 (Renault(i7)). If kG is self-injective, then G is finite.

Proof. G is easily seen to be locally finite as in (16), lemmas 3.2.5 and 3.2.7.
If kG is self-injective then so ia kH whenever H is a subgroup of G, since kGkH is

injective and free as a kH module, and so kHkH is a direct summand of an injective
module and hence injective.

Therefore by Corollary 5-3 or Theorem 5-4 every countable subgroup of G is finite.
If G is not finite, let S be a countably infinite subset G, then <<S) is a countable subgroup
of G and so finite. This is a contradiction. Hence G is finite.

The result of this paper will form part of the author's Ph.D. thesis. I would like to
thank all those who have helped and encouraged me in this work, in particular Don
Passman, Kenny Brown and my supervisor, Prof. Brian Hartley; thanks are also due
to the Science Research Council for their financial support.
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