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Abstract

Let g be the Lie superalgebra gl(m,n). Algorithms for computing the com-
position factors and multiplicities of Kac modules for g were given by the second
author, [Ser96] and by J. Brundan [Bru03].

We give a combinatorial proof of the equivalence between the two algo-
rithms. The proof uses weight and cap diagrams introduced by Brundan and
C. Stroppel, and cancelations between paths in a graph G defined using these
diagrams. Each vertex of G corresponds to a highest weight of a finite dimen-
sional simple module, and each edge is weighted by a nonnegative integer. If E
is the subgraph of G obtained by deleting all edges of positive weight, then E
is the graph that describes non-split extensions between simple highest weight
modules.

We also give a procedure for finding the composition factors of any Kac
module, without cancelation. This procedure leads to a second proof of the
main result.

1 Introduction.

The problem of finding the characters of the finite dimensional simple modules for the
complex Lie superalgebra g = gl(m, n) was first posed by V. Kac in 1977, [Kac77].
Let X+(m, n) denote the set of dominant integral weights for g. In [Kac78] Kac
introduced a certain finite dimensional highest weight module K(λ), now known as
a Kac module, with highest weight λ ∈ X+(m, n), whose character is given by an
analog of the Weyl character formula. Furthermore any composition factor of K(λ)
is a simple module L(µ) with highest weight µ ∈ X+(m, n), and the multiplicities
of the composition factors of Kac modules can be expressed using an upper trian-
gular matrix with diagonal entries equal to 1. Therefore the determination of this
multiplicity matrix leads to a solution of the problem raised by Kac.

Combinatorial formulas for the multiplicity of L(λ) as a composition factor of
K(µ) were given in [Ser96] and [Bru03], using completely different methods. We give
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a combinatorial proof of the equivalence between these two formulas, Theorem A.
Let F be the set of all functions from Z to the set {×, ◦, < , >} such that f(a) = ◦
for all but finitely many a ∈ Z. Let ZF be the free abelian group with basis F . The
idea of the proof is to express the formula from [Ser96] as a signed sum of terms in
ZF . The terms from this sum correspond to paths in a certain graph G . We define
an involution on the paths occurring in this sum such that paths that are paired by
the involution have opposite signs. After these terms are canceled, what remains is
the formula from [Bru03] in a form communicated to the first author by Brundan.
This reformulation of the result from [Bru03] uses diagrams called weight and cap
diagrams that originate in the work of Brundan and Stroppel on Khovanov’s dia-
gram algebra, [BS08a], [BS08b], [BS08c], [BS08d]. We remark that our notation for
these diagrams is different from theirs. We note also that character formulas for the
irreducible representations of the orthosymplectic Lie superalgebras were announced
in [Ser98a]. These results are expressed in terms of weight diagrams and proved in
[GS09].

Since the category of finite dimensional Z2-graded weight modules F is not semisim-
ple, an important problem in representation theory is to determine the non trivial
extensions between simple modules. This problem is related to the graph G as fol-
lows. Each vertex f of G corresponds to a highest weight of a finite dimensional
simple module L(f), and each edge of G is weighted by a nonnegative integer. In
Theorem B we show that if E is the subgraph of G obtained by deleting all edges of
positive weight, then Ext1F (L(f), L(g)) 6= 0 if and only if f −→ g or g −→ f is an
edge of E .

This paper is organized as follows. In the next section we give a formal statement
of the main combinatorial result, Theorem A. Some work is necessary to derive the
equivalence of the character formulae from the combinatorial statement, and this is
done in Section 3. The graph G is introduced and Theorem A is proved in Section 4.
In Section 5 we outline a procedure for finding the composition factors of any Kac
module, without cancelation. This procedure leads to a second proof of the main
result. Theorem B relating extensions to the subgraph E is presented in Section 6.

The authors would like to express their gratitude to Jon Brundan for sharing his
ideas with them.

2 A Combinatorial Formula.

Let F be the set of all functions from Z to the set {×, ◦, < , >} such that f(a) = ◦
for all but finitely many a ∈ Z. For f ∈ F we set #f = |f−1(×)|, and

coreL(f) = f−1(<), coreR(f) = f−1(>).

We call #f the degree of atypicality of f , and define the the core of f to be

core(f) = (coreL(f), coreR(f)).

Let ZF be the free abelian group with basis F . Our main result is an identity for
certain Z-linear operators on ZF . If f ∈ F we define the weight diagram Dwt(f) to
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be a number line with the symbol f(a) drawn at each a ∈ Z. Next let CL and CR

be disjoint finite subsets of Z and consider a number line with symbols < (resp. >)
located at all a ∈ CL (resp. a ∈ CR). A cap C is the upper half of a circle joining
two integers a and b which are not in CL ∪ CR. If b < a we say that C begins at b
and ends at a and we write b(C) = b, and e(C) = a. A finite set of caps, together
with the symbols < , > located as above, is called a cap diagram if no two caps
intersect, and the only integers inside the caps 9which are not ends of some other
caps) are located at points in CL ∪ CR.

If D is a cap diagram there is a unique f ∈ F such that core(f) = (CL, CR), and
for a /∈ CL ∪ CR,

f(a) = × if there is a cap in D beginning at a,

f(a) = ◦ otherwise.

We write D = Dcap(f) in this situation. If D = Dcap(f) or D = Dwt(f) we set
core(D) = core(f).

We say that a weight diagram and a cap diagram match if they have the same
core and, when superimposed on the same number line, each cap connects a × to a
◦. For f ∈ F , set

P (f) = {g ∈ F |Dcap(g) matches Dwt(f)}. (2.1)

Brundan’s formula for the composition factors of a Kac module can be written in
terms of matching cap and weight diagrams. We now turn to the combinatorics
necessary to express the formula from [Ser96]. If f ∈ F and #f = k we set

×(f) = (a1, a2, . . . , ak) (2.2)

if f−1(×) = {a1, a2, . . . , ak} with a1 > a2 > . . . > ak.

Next suppose f satisfies (2.2), and that f(a) = ×, and f(b) = ◦. Informally, we
define fb ∈ F, (resp. fa ∈ F ) by adding b to ×(f) (resp. deleting a from ×(f)).
Precisely fb and fa have the same core as f , and satisfy

×(fb) = (a1, . . . , aj , b, aj+1, . . . , ak),

×(fa) = (a1, . . . , ai−1, ai+1, . . . , ak),

where a = ai, and aj > b > aj+1. Here it is convenient to set a0 = ∞, and
ak+1 = −∞. We also set fa

b = (fb)
a = (fa)b.

For f ∈ F, and a, b ∈ Z with b < a, let lf (b, a) be the number of occurrences of
the symbol × minus the number of occurrences of ◦ strictly between b and a in the
weight diagram of f . We say that g ∈ F is obtained from f by a legal move if g = fa

b

for some b < a such that f(a) = ×, and lf (b, c) > 0 for all c with b < c < a. We call
a the start, b the end and lf (b, a) the weight of the legal move.
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There is another way to think about legal moves. Suppose that b < a, f(b) = ◦
and f(a) = ×. Keep a tally starting at b with a tally of one, and move to the
right along the number line adding one to the tally every time a × is passed, and
subtracting one every time a ◦ is passed in the weight diagram Dwt(f) . Then fa

b

is obtained from f by a legal move if and only if the tally remains positive at all
integers to the left of a. If this is the case the weight of the legal move is the value
of the tally just before we arrive at a.

Next if 1 ≤ i ≤ k we define operators σi : ZF −→ ZF as follows. If f satisfies
(2.2) and a = ai, then

σi(f) =
∑

b

(−1)lf (b,a)fa
b , (2.3)

where the sum is over all b such that fa
b is obtained from f by a legal move.

Now we can state our first main result.

Theorem A. For f ∈ F with #f = k we have

(1 + σ1) . . . (1 + σk)f =
∑

g∈P (f)

g. (2.4)

Example 2.1. Suppose that core(f) = ({3}, {7}) and

×(f) = (0, 1, 5, 6, 9),

then Dcap(f) is pictured below. Note that k = 5 and ak = 9.

· · · · · ·< >

9

Now f9
b is obtained from f by a legal move if and only if b = −1, 4 or 8. The

weights of these legal moves are 1, 1 and 0 respectively. Thus Equation (2.3) becomes

σ5(f) = f9
8 − f9

4 − f9
−1.

Replacing 9 by −1, 4, 8 in ×(f) we obtain

×(f9
−1) = (−1, 0, 1, 5, 6),

×(f9
4 ) = (0, 1, 4, 5, 6),

×(f9
8 ) = (0, 1, 5, 6, 8).

The cap diagram Dcap(f
9
4 ) is given below.

· · · · · ·< >

9
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Remark 2.2. The real content of Theorem A is the core-free case. Indeed since σif
is a linear combination of terms h ∈ F with the same core as f , and any g ∈ P (f),
has the same core as f , we immediately reduce to this case. The symbols < and
> are important in the application to the Lie superalgebra gl(m, n). When f is
core-free then f is completely determined by ×(f).

Example 2.3. An interesting case arises when ×(f) = (2, 4, 6, . . . , 2k − 2). Let Ak

be the set of cap diagrams with k caps each of which begins and ends at points in the
set {0, 1, 2, . . . , 2k−1}, and let Bk be the set of cap diagrams that match the weight
diagram Dwt(f). Given a diagram in Ak, we obtain a diagram in Bk by deleting the
cap beginning at 0. This gives a bijection from Ak to Bk. The cardinality of Ak

is the kth Catalan number Ck = 1
k+1

(

2k
k

)

see [Sta99] Exercise 6.19 o. In terms

of representation theory this means that if ρ is defined as in (3.4), then the length
of a composition series for the Kac module K(ρ) for gl(k, k) equals Ck. There are
further examples in [Su06] where the number of composition factors of a Kac module
is a Catalan number. We conjecture that if g is core-free and |g−1(×)| = k, then
P (g) ≤ Ck with equality if and only if ×(g) is obtained from ×(f) by adding the
same integer to each entry.

3 Character Formulas.

In this subsection g will be the Lie superalgebra gl(m, n) and h and b the Cartan and
Borel subalgebras, consisting of diagonal and upper triangular matrices respectively.
Let εi, δj be the linear functionals on h whose value on the diagonal matrix

a = diag(a1, . . . , am+n)

is given by
εi(a) = ai, δj(a) = am+j 1 ≤ i ≤ m, 1 ≤ j ≤ n. (3.1)

We define a bilinear form ( , ) on h∗ by

(εi, εj) = δi,j = −(δi, δj). (3.2)

Let X = X(m|n) denote the lattice of integral weights spanned by the εi and δi.
Also set

∆+
0 = {εi − εj ; δi − δj}i<j , ∆+

1 = {εi − δj} and ∆+ = ∆+
0 ∪ ∆+

1 . (3.3)

Then the ∆+ is the set of roots of b. Next let

ρ = mε1 + · · · + 2εm−1 + εm − δ1 − 2δ2 − · · · − nδn. (3.4)

A weight λ ∈ X is regular if (λ + ρ, εi − εj) 6= 0, and (λ + ρ, δi − δj) 6= 0 if i 6= j. Let
Xreg be the subset of X consisting of regular weights, and let Sm be the symmetric
group of degree m. The Weyl group W = Sm × Sn acts on h∗ by permuting the εi
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and δi. The dot action of W is defined by w · λ = w(λ + ρ) − ρ. We will identify
λ ∈ X(m|n) with the m + n tuple of integers

(a1, a2, · · · , am|b1, b2, · · · , bn) (3.5)

where

a1 = (λ+ρ, ε1), · · · , am = (λ+ρ, εm), b1 = (λ+ρ, δ1), · · · , bn = (λ+ρ, δn). (3.6)

Let X+ = X+(m|n) denote the set of λ = (a1, a2, · · · , am|b1, b2, · · · , bn) in X(m|n)
with

a1 > a2 > · · · > am, b1 < b2 < · · · < bn. (3.7)

In this ρ-shifted notation, the dot action of W is represented by permutations of the
entries in λ. If λ ∈ Xreg there is a unique element w of the Weyl group W such that
w · λ ∈ X+.

Given f ∈ F, denote by λ = λ(f) the element of X+ such that when written
in the form (3.5), the entries of on the left (resp. right) side of λ coincide with
coreL(f) ∪×(f) (resp. coreR(f) ∪×(f)) arranged in order as in (3.7). This defines
a bijection λ −→ fλ from X+ to F whose inverse we write as f −→ λ(f). Let F be
the category of finite dimensional g modules which are weight modules for h, and
for λ ∈ X+, let K(λ) (resp. L(λ)) be the Kac module (resp. simple module) with
highest weight λ. The map f −→ L(λ(f)) extends to an isomorphism from ZF to
the Grothendieck group of F , and we often identify these two groups. For λ ∈ X+,
we write Dwt(λ), Dcap(λ), #λ and ×(λ) in place of Dwt(fλ), Dcap(fλ), #(fλ) and
×(fλ) respectively, and set

P(µ) = {λ|Dcap(λ) matches Dwt(µ)}. (3.8)

Then λ −→ fλ defines a bijection from P(µ) to P (fµ). Suppose that λ ∈ X+ and

×(λ) = (ck, . . . , c1)

with ck < . . . < c2 < c1. If #λ = k, this means that there are subsets

{i1 < . . . < ik} ⊆ {1, . . . , m}, {j1 > . . . > jk} ⊆ {1, . . . , n}

such that
(λ + ρ, εip) = (λ + ρ, δjp) = cp,

for 1 ≤ p ≤ k, and we set αp = εip − δjp . Now suppose that the cap in Dcap(λ)
beginning at cp ends at dp = cp + r′p. Next let (r1, . . . , rk) be the lexicographically

smallest tuple of strictly positive integers such that for all θ = (θ1, . . . , θk) ∈ {0, 1}k,

Sθ(λ) = λ +
k

∑

p=1

θprpαp ∈ Xreg,

and let Rθ(λ) denote the unique element of X+(m|n) which is conjugate under the
dot action of W to Sθ(λ).
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Lemma 3.1. We have

(a) rp = r′p for 1 ≤ p ≤ k.

(b) Dwt(Rθ(λ)) is obtained from Dwt(λ) by interchanging the × and ◦ located at
cp and dp respectively for all p such that θp = 1, and leaving all other symbols
unchanged.

Proof. Clearly
(Sθ(λ) + ρ, εiq) = (Sθ(λ) + ρ, δiq) = cq + rq. (3.9)

Assume by induction that rq = r′q for 1 ≤ q ≤ p − 1, and set

Yp = {c1, . . . , cp−1, d1, . . . , dp−1} ∪ f−1
λ (<) ∪ f−1

λ (>).

From the definition of the cap diagram Dcap(λ) it follows that

r′p = min{r|r > 0, cp + r /∈ Yp}.

Using this and (3.9) we conclude that rp = r′p. This proves (a), and (b) follows since
when weights are written as in equation (3.5), the dot action of W is implemented
by permuting the entries.

Corollary 3.2. Let Rθ(λ) denote the unique element of X+(m|n) which is conjugate
under the dot action of W to λ +

∑k
p=1 θprpαp ∈ Xreg. Then

(a) {Rθ(λ)|θ ∈ {0, 1}k} = {µ ∈ X+|Dcap(λ) matches the cap diagram Dwt(µ)}.

(b) µ = Rθ(λ) for some θ ∈ {0, 1}k if and only if λ ∈ P(µ).

Proof. This follows at once from the Lemma and equation (3.8).

The following reformulation of the main theorem in [Bru03] was shown to the
first author by Jon Brundan.

Theorem 3.3. In the Grothendieck group of the category F we have

K(µ) =
∑

λ∈P(µ)

L(λ).

Proof. The Main Theorem in [Bru03] states that for each µ ∈ X+(m|n),

[K(µ) : L(λ)] =

{

1 if µ = Rθ(λ) for some θ = (θ1, . . . , θk) ∈ {0, 1}k,
0 otherwise.

The result now follows immediately by Corollary 3.2.

We now state the main result of [Ser96] in terms of diagrams.
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Theorem 3.4. If

(1 + σ1) . . . (1 + σk)fλ =
∑

µ

cλ,µfµ,

then in the Grothendieck group of the category F we have

K(λ) =
∑

µ

cλ,µL(µ).

In the rest of this section we explain how to deduce Theorem 3.4, and some
further results that we will require in Section 6, from results in [Ser96]. An equiva-
lence of categories allows us to focus our attention on the category Fk of all finite
dimensional modules which have the degree of atypicality k, see [Ser98b] or [GS09].
From now on we will make this assumption. Let F k be the set of core-free f ∈ F
such that #f = k. As before we may identify ZF k with the Grothendieck group of
Fk.

Let ∆ be the set of roots of g, and for any α ∈ ∆ denote by gα ⊂ g the corre-
sponding root space. Let γ ∈ h∗ be a weight such that (α, γ) ≥ 0 for all positive
roots α. Set

∆γ = {α ∈ ∆|(α, γ) ≥ 0}.

We say that γ defines the parabolic subalgebra q ⊆ g where

q = h ⊕
⊕

α∈∆γ

gα.

Note that b ⊆ q.
Let l be the ad-h stable Levi subalgebra of q and note that l has a Z-grading

l = l−1 ⊕ l0 ⊕ l1, similar to the Z-grading of g. Every l-module can be made into a
q-module with trivial action of the nilpotent radical of q. In particular, Z-grading
on l allows us to construct a Kac module Kq(λ) for q and we denote the unique
simple factor module of Kq(λ) by Lq(λ). Note that one can write

ch Lq(λ) =
∑

µ≤λ

aq(λ, µ)ch Kq(µ), (3.10)

and we denote the matrix with coefficients aq(λ, µ) by Aq.
Now let q ⊂ p be a pair of parabolic subalgebras, and V be a finite-dimensional

q-module. Let Γp,q(V ) be the maximal finite-dimensional quotient of the induced
module U(p) ⊗U(q) V . Then clearly Γp,q is a functor from the category of finite-
dimensional q-modules to the category of finite-dimensional p-modules and this
functor is exact on the right. In general, the functor Γp,q is not exact, but it was
proven in [Ser96] that Γp,q is exact on q-modules free over U(l−1). It is not hard
to see that any q-module free over U(l−1) has a filtration with quotients isomorphic
to Kac modules Kq(µ). (By definition, Kq(µ) = Kl(µ) with trivial action of the
nilpotent radical of q). Moreover,

Γp,qKq(µ) = Kp(µ). (3.11)
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We construct derived functors Γi
p,q(V ), of Γp,q as follows. Take a resolution a

resolution
· · · → M1 → M0 → 0

of V by q-modules free over U(l−1), and define Γi
p,q(V ) to be the ith cohomology

group of the complex

· · · → Γp,q(M
1) → Γp,q(M

0) → 0.

The result does not depend on a choice of resolution since Γp,q is exact on q-modules
which are free over U(l−1). Clearly, we have a natural homomorphism of p-modules
γ : Γ0

p,q(Lq(λ)) → Lp(λ). Define

U i
p,q(λ) = Γi−1

p,q (Lq(λ))

for i > 1 and
U1

p,q(λ) = Ker γ.

Put
U i

p,q(λ, µ) = [U i
p,q(λ) : Lp(µ)].

Take a resolution M• of Lq(λ) such that M0 = Kq(λ), and for i > 0, M i is free
over U(l−1) and has all weights strictly less than λ. Then we have

U i
p,q(λ, µ) 6= 0 implies λ > µ. (3.12)

Clearly, we have

ch Lq(λ) =
∑

i≥0

(−1)ich M i
λ, (3.13)

and
ch Lp(λ) −

∑

i≥1

(−1)ich U i
p,q(λ) =

∑

i≥0

(−1)ich Γp,q(M
i
λ). (3.14)

Combine (3.10) and (3.13), and then apply Γp,q, using (3.11) to obtain

∑

i≥0

(−1)ich Γp,q(M
i
λ) =

∑

µ≤λ

aq(λ, µ)ch Kp(µ).

From this and (3.14) we deduce the following important identity

ch Lp(λ) −
∑

ν,i

(−1)iU i
p,q(λ, ν)ch Lp(ν) =

∑

µ≤λ

aq(λ, µ)ch Kp(µ). (3.15)

Set Up,q(λ, µ) =
∑

i≥1(−1)iU i
p,q(λ, µ). Let Up,q be the matrix with coefficients

Up,q(λ, µ). Then using (3.10), the identity (3.15) can be rewritten in the form

(1 − Up,q)Ap = Aq. (3.16)

For 1 ≤ s ≤ k let
γs = sε1 + · · · + εs + sδk + · · · + δk−s+1,
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and let q(s) be the parabolic subalgebra defined by γs. Consider the flag of parabolic
subalgebras

g = q(0) ⊃ q(1) ⊃ · · · ⊃ q(k) = b. (3.17)

Consecutive application of (3.16) to the pairs p = q(i) ⊃ q = q(i+1) and the fact that
Ab = 1 give us

Ag = (1 − Uq(0),q(1))−1 . . . (1 − Uq(k−1),q(k))−1. (3.18)

The matrix C with coefficients cλ,µ as in Theorem 3.4 is the inverse of Ag. Hence
we have

C = (1 − Uq(k−1),q(k)) . . . (1 − Uq(0),q(1)). (3.19)

Note that this equality of operators on the Grothendieck group of the category
Fk. We define analogous linear operators Up,q and C on ZF k defined by first setting

Up,q(f, g) = Up,q(λ(f), λ(g)), c(f, g) = c(λ(f), λ(g)).

and then
Up,q(f) =

∑

g∈F

Up,q(f, g)g, C(f) = c(f, g)g. (3.20)

Then (3.19) can be also be viewed as an equality of linear operators on linear oper-
ators in ZF k.

The equation (3.19) reduces the problem of finding the composition factors of
Kac modules to the problem of calculating U i

q(j),q(j+1)(λ, µ). Concerning the latter

problem, the next result summarizes Theorems 6.15 and 6.22 from [Ser96].

Theorem 3.5.

(a) If λ − α is q(j)-dominant then

U i
q(j),q(j+1)(λ) = U i+1

q(j),q(j+1)(λ − α)

for i > 1, and

U1
q(j),q(j+1)(λ) = Lq(j)(λ − α) ⊕ U2

q(j),q(j+1)(λ − α).

(b) If λ − α is not q(j)-dominant then

[U i
q(j),q(j+1)(λ) : Lq(j)(µ)] = [U i−1

q(j+1),q(j+2)(λ − α) : Lq(j+1)(µ)].

and U1
q(j),q(j+1)(λ) = 0.

(c)
U1

q(k−1),q(k)(λ) = Lq(k−1)(λ − α), U i
q(k−1),q(k)(λ) = 0, if i > 1.
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To prove Theorem 3.4 it remains to interpret the above result in terms of dia-
grams. Below we use an induction argument on k, and for this purpose we define,
by analogy with (3.17), the flag of parabolic subalgebras in gl(k − 1, k − 1)

gl(k − 1, k − 1) = p(0) ⊃ p(1) · · · ⊃ p(k−1) = b′,

where b′ is the Borel subalgebra consisting of upper triangular matrices. Let g(s) be
the subalgebra of g consisting of all matrices with zero entries in rows s, 2k − s + 1,
and zero entries in columns s, 2k − s + 1. We have an obvious isomorphism from
gl(k − 1, k − 1) to g(s), and we denote the image of p(j) under this isomorphism by

p
(j)
(s). If l(p) is the quotient of p by the nilpotent radical, then because we deleted

two diagonal entries from g to get g(s) we have

l(q(j+1)) ' l(p
(j)
(s)) ⊕ C ⊕ C.

Let λ = (a1, . . . , ak|ak, . . . , a1) and

λ′ = (a1, . . . , as−1, as+1, . . . , ak|ak, . . . , as+1, as−1, . . . , a1).

If we regard Lq(j+1)(λ) as a p
(j)
(s)-module, via the above isomorphism, then it remains

irreducible with highest weight λ′. This implies

[U i
q(j+1),q(j+2)(λ) : Lq(j+1)(µ)] = [U i

p(j),p(j+1)(λ
′) : Lp(j)(µ′)]. (3.21)

Lemma 3.6. Let U i
q(j),q(j+1)(f) = U i

q(j),q(j+1)(λ(f)) and Lq(f) = Lq(λ(f)). Next let

f−1(×) = {a1, . . . , ak} (3.22)

with a1 > a2 > · · · > ak and a = aj+1.
Then the relations of Theorem 3.5 can be rewritten in the following way in terms

of weight diagrams

(a) If f(a − 1) = ◦ then

U i
q(j),q(j+1)(f) = U i+1

q(j),q(j+1)(f
a
a−1) (3.23)

for i > 1, and

U1
q(j),q(j+1)(f) = Lq(j)(fa

a−1)) ⊕ U2
q(j),q(j+1)(f

a
a−1). (3.24)

(b) If f(a − 1) = ×

[U i
q(j),q(j+1)(f) : Lq(j)(g)] = [U i−1

p(j),p(j+1)(f
a) : Lq(j)(ga−1)]. (3.25)

In addition, U1
q(j),q(j+1)(f) = 0.

(c)
U1

q(k−1),q(k)(f) = Lq(k−1)(fa
a−1), U i

q(k−1),q(k)(f) = 0, if i > 1.

11



Proof. (a) and (c) follow immediately from the identity λ(fa
a−1) = λ(f) − α. To

prove (b) note that by (3.21) we have

[U i−1
q(j+1),q(j+2)(λ(f) − α) : Lq(j+1)(g)] = [U i−1

p(j),p(j+1)(f
a) : Lp(j)(ga−1)]. (3.26)

By Theorem 3.5 (b) we have

[U i
q(j),q(j+1)(λ(f)) : Lq(j)(λ(g))] = [U i−1

q(j+1),q(j+2)(λ(f) − α) : Lq(j+1)(λ(g))],

and combining this with (3.26) we deduce (3.25).

We introduce two related pieces of notation. Sometimes one is more convenient
than the other. First suppose f ∈ F k with f(a) = ×, set

LMk(f, a, i) = {b ∈ Z|fa
b is obtained from f by a legal move of weight i}.

Next define with the notation of (3.22),

LM(f, p) = {g|g is obtained from f by a legal move of weight 0 f starting at ap}.

Lemma 3.7. Let f ∈ F k, f(a) = ×, then we have

(a) If f(a − 1) = ◦, and i > 0, then LMk(f, a, i) = LMk(f
a
a−1, a − 1, i + 1).

(b) If f(a − 1) = ◦, then LMk(f, a, 0) = LMk(f
a
a−1, a − 1, 1) ∪ {a − 1}.

(c) If f(a − 1) = ×, and h = fa, then LMk(f, a, 0) = ∅ and

LMk(f, a, i) = LMk−1(h, a − 1, i − 1),

for i > 0.

(d) If f(a − 1) = ◦, and h = fa
a−1, or f(a − 1) = ×, and h = fa, then fa

b = ha−1
b

for all b ∈ LMk(f, a, i).

Proof. Straightforward.

Corollary 3.8. Let U i+1
q(j),q(j+1)(f) =

∑

g∈F U i+1
q(j),q(j+1)(λ(f), λ(g))g. Then

U i+1
q(j),q(j+1)(f) =

∑

b∈LMk(f,a,i)

fa
b

Proof. It is sufficient to prove the statement for j = 0, since none of the terms in
U i+1

q(j),q(j+1)(f) depends on the j rightmost ×-s in Dwt(f).

The proof goes by induction on k, and for k fixed a second induction on the distance
between the leftmost × and the rightmost × of Dwt(f). The case k = 1 immediately
follows from Lemma 3.6(c). Let a = a1 be the position of the rightmost × of Dwt(f).

12



First, assume that f(a − 1) = ◦. Let h = fa
a−1. Then if i > 0, we have using

parts (a), (d) of Lemma 3.7, the second induction hypothesis applied to h, and then
(3.23) we have

∑

b∈LMk(f,a,i)

fa
b =

∑

b∈LMk(h,a−1,i+1)

ha−1
b

=
∑

g

U i+2
q(j),q(j+1)(h, g)g

=
∑

g

U i+1
q(j),q(j+1)(f, g)g.

If i = 0, the result follows similarly, using part (b) of the Lemma and (3.24). Finally
if f(a − 1) = ×, let h = fa. Then using parts (c) , (d) of the Lemma, induction on
k and (3.25) we have

∑

b∈LMk(f,a,i)

fa
b =

∑

b∈LMk−1(h,a−1,i−1)

ha−1
b

= U i
p(j),p(j+1)(h) = U i+1

q(j),q(j+1)(f).

Corollary 3.9. We have
σj+1 = −Uq(j),q(j+1) . (3.27)

Proof. The result follows from the previous Corollary since

Uq(j),q(j+1) =
∑

i

Uq(j),q(j+1) .

Together Equations (??) and (3.27) yield Theorem 3.4. Combining Theorem A,
Theorem 3.3 and Theorem 3.4, we obtain a combinatorial proof of the equivalence
of the algorithms from [Bru03] and [Ser96].
We remark that by Corollary 6.25 from [Ser96], the modules U i

q(j),q(j+1)(λ) are

semisimple. Thus Corollary 3.8 determines their decompositions into simple mod-
ules. In particular this gives us the first part of the next result. The second part
will be used in Section 6 of this paper.

Corollary 3.10. For f be as in (2.2) we have

(a)

U1
q(p−1),q(p)(λ(f)) =

⊕

g∈LM(f,p)

Lq(p−1)(λ(g)).

(b) Γq(p−1),q(p)(Lq(p)(λ(f))) is generated by a highest weight vector of weight λ and
its structure can be described by the exact sequence

0 →
⊕

g∈LM(f,p)

Lq(p−1)(λ(g)) → Γq(p−1),q(p)(Lq(p)(λ(f))) → Lq(p−1)(λ(f)) → 0.

13



Proof. By what we said above, it is enough to note that (b) follows from (a) and
Lemma 4.11 in [Ser96].

4 The Graph G and the Involution on Irregular Paths.

From now on we consider only elements of F that are core-free. Define G to be the
oriented graph whose vertices are elements of F , and we join f and g by an edge
f −→ g if g is obtained from f by a legal move. We put the label [s, t] on this edge
if the corresponding legal move has start s and end t, in other words, g = fs

t (always
s > t). The weight of an edge is the weight of the corresponding legal move, and if
g = fs

t as above we set l([t, s]) = lf (t, s)

It is easy to check that G does not have oriented loops. A path in G is a sequence
[s1, t1], . . . , [sq, tq] where for 1 ≤ i ≤ q, [si, ti] is a legal move from fi−1 to fi. We
say that the path is increasing if s1 < . . . < sq. (It follows immediately from the
definition that in any path si 6= si+1.) Often we refer to a path by listing only the
legal moves. The weight l(P ) of a path P is the sum of weights of all edges in P .

Lemma 4.1. Let Pf,g(G) denote the set of all increasing paths in G leading from f
to g, and let

(1 + σ1) . . . (1 + σk)f =
∑

g

cf,gg.

Then
cf,g =

∑

P∈Pf,g(G)

(−1)l(P ). (4.1)

Proof. Write

(1 + σ1) . . . (1 + σk)f =
∑

i1<...<ir

σi1 . . . σir(f).

Using (2.3) we see that each increasing path P with edges [air , bir ], . . . , [ai1 , bi1 ] which
leads from f to g gives the term (−1)l(P )g in σi1 . . . σir(f).

We call an increasing path from f to g in G irregular if one of the following
conditions hold

(a) The path contains an edge with positive weight

(b) There are repetitions among the labels on the path, in other words there are
edges with label [c, d] and [b, c] in the path.

An edge [c, d] of an irregular path is called irregular if it has a positive weight or
there is an edge with label [b, c] later in the path. A path which is not irregular is
regular.

Lemma 4.2. Suppose an increasing path has edges [b, c] and [a, s] with c < s < b <
a. Then the edge [b, c] has positive weight.
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Proof. If the result is false, then with b, c fixed choose a counterexample with s
as large as possible. Suppose that the edge [b, c] connects vertex f to f ′ and that
D = Dwt(f

′) has P ×′s and p ◦′s in the interval (c, s). Similarly suppose that
the edge [a, s] connects vertex g′ to g and that Dwt(g

′) has Q ×′s and q ◦′s in the
interval (s, b). We claim that D also has Q ×′s and q ◦′s in the interval (s, b).
Indeed, consider the part of the path between the edges [b, c] and [a, s]. Since the
path is increasing no × in the interval (s, b) can be moved. Also by the choice of the
counterexample, there can be no edge with label [d, e] where d > b and s < e < b.
The claim follows from this. We deduce that P ≥ p and Q ≥ q, since [b, c] and [a, s]
are legal moves. Now D has p + q + 1 ◦′s in the interval (c, b) since, in addition to
those counted before there is also a ◦ at s. Because [b, c] has weight zero, and D has
P + Q ×′s in the interval (c, b), we have P + Q = p + q + 1. This implies that either
P = p, in which case the cap in Dcap(f

′) beginning at c would end at s, or Q = q, in
which case the cap in Dcap(g

′) beginning at s would end at b. Either way we reach
a contradiction.

Lemma 4.3. Let Rf,g(G) denote the set of all increasing regular paths in G leading
from f to g. Then

∑

P∈Pf,g(G)

(−1)l(P ) = |Rf,g(G)|. (4.2)

Proof. Define an involution ∗ on the set of all increasing irregular paths by the fol-
lowing procedure. Let P be an irregular increasing path. Consider the irregular
edge [s, t] of P with maximal possible end t. There are exactly two possibilities:
either P contains a regular edge [a, s], or s is not the end of any edge in P .

In the former case, define P ∗ to be the path obtained from P by removing [s, t] and
[a, s] and inserting the edge [a, t]. If there were an edge [b, c] in P with s < b < a and
t < c < s, then [b, c] would be irregular by Lemma 4.2, contradicting the choice of
s. Since the edge [a, s] is regular, it has zero weight. Therefore l([a, t]) = l([s, t]) + 1
and l(P ∗) = l(P ) + 1. Note also that P ∗ is again irregular and the edge [a, t] is the
irregular edge with maximal possible end.

In the latter case, let f ′ → g′ be the edge with label [s, t]. Then g′(s) = ◦, and
the symbol × occurs more often than ◦ in the part of the weight diagram Dwt(g

′)
strictly between t and s. In other words we can find a cap in Dcap(g

′) beginning
at b > t and ending at s. Then we define P ∗ to be the path obtained from P by
removing the edge [s, t] and inserting the edges [b, t] and [s, b]. Note that [s, b] is
regular, [b, t] is irregular and l([b, t]) = l([s, t]) − 1. Hence l(P ∗) = l(P ) − 1. It is
clear that P ∗ is irregular and [b, t] is the irregular edge with maximal possible end.

It is obvious that ∗ is an involution and since (−1)l(P ) = −(−1)l(P ∗), all irregular
paths in the left hand side of (4.2) cancel. Hence we have

∑

P∈Pf,g(G)

(−1)l(P ) =
∑

P∈Rf,g(G)

(−1)l(P ).

Now the statement follows since l(P ) = 0 for any regular path P .

15



We have two immediate consequences of the above work, namely

cf,g = |Rf,g(G)|, (4.3)

and
(1 + σ1) . . . (1 + σk)f =

∑

g

|Rf,g(G)|g. (4.4)

Lemma 4.4. Suppose f, g ∈ F.

(a) If g ∈ P (f), then |Rf,g(G)| = 1.

(b) If g /∈ P (f) then Rf,g(G) is empty.

Proof. Suppose g ∈ P (f), and that ×(f) = (a1, a2, . . . , ak). Then let

I = {i ∈ {1, . . . , k}|Dcap(g) has a cap ending at ai},

and for i ∈ I, suppose that ending at ai begins at bi. Then there is a regular path

from f to g given by
−→
∏

i∈I [ai, bi] where the arrow means that we take the product
in the order that gives an increasing path. It follows easily from the definitions that
this is the only way to get a regular increasing path from f to g.

The main theorem immediately follows from (4.4) and the previous Lemma.

Example 4.5. Let k = 2. For a < b ∈ Z define f(a,b) ∈ F so that ×(f(a,b)) = (a, b).
Below we give the part of the graph G used to show that

(1 + σ1)(1 + σ2)f(2,3) = f(2,3) + f(1,3) + f(0,1). (4.5)

Legal moves are represented by arrows together with their labels. All edges have
weight zero except the edge with label [3, 1] which has weight 1.

f(2,3)

f(1,2)

f(1,3) f(0,1)
q

1

-

6
[3,1]

[2,1]

[3,2]

[3,0]

There are two irregular paths starting from f(2,3), both ending at f(1,2). These paths
are interchanged by the involution *. Summing over the remaining paths and using
(4.4) gives (4.5).
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5 Composition factors of Kac modules.

We describe a procedure for determining the composition factors of any Kac module,
without cancelation. By Brundan’s Theorem we need a procedure for finding the set
in P (f) in Equation (2.1). This is a problem in enumerative combinatorics, similar
to the problem of describing the set Bn in Example 2.3. We give a solution based
on the Lemma below. By Remark 2.2 we can restrict our attention to the core-free
case.

Suppose f ∈ F with ×(f) as in Equation (2.2) and set a = a1. Let f ′ ∈ F be
given by ×(f ′) = (a2, . . . , ak), and set

Pk−1(f
′) = { g′ ∈ F | Dcap(g

′) matches Dwt(f
′)},

Q(f) = { g ∈ P (f) | Dcap(g) has a cap joining a to a + 1}.

Lemma 5.1. There is a bijection Pk−1(f
′) −→ Q(f) such that g′ ∈ Pk−1(f

′) maps
to g where ×(g) = (a, b1, . . . , bk−1) if ×(g′) = (b1, . . . , bk−1).

Proof. Straightforward.

Given f as above, we can assume by induction that we have found Pk−1(f
′) and

hence Q(f). Now suppose g ∈ P (f)\Q(f). Then Dcap(g) has a cap joining b to a for
some b < a. Replacing this cap with a cap beginning at a, we obtain a cap diagram
Dcap(h) for some h ∈ Q(f) such that g = ha

b . Moreover we can determine the set
P (f)\Q(f) as follows. For each h ∈ Q(f) list the cap diagrams Dcap(h

a
b ) that match

Dwt(f). Then it is easy to see, for example by Proposition 5.4 below, that every cap
diagram Dcap(g) with g ∈ P (f)\Q(f) will have been listed exactly once.

The above procedure suggests another proof of Theorem A. By induction we may
assume that

(1 + σ1) . . . (1 + σk−1)f
′ =

∑

h∈Pk−1(f ′)

h.

Since σ2, . . . , σk do not move the rightmost × in Dwt(f), it follows that

(1 + σ2) . . . (1 + σk)f =
∑

h∈Q(f)

h.

Now set σ = σ1. It remains to show that

σ
∑

h∈Q(f)

h =
∑

g∈P (f)\Q(f)

g, (5.1)

but this follows at once from the Proposition below. Note that g ∈ P (f)\Q(f)
implies that

×(g) = (b1, . . . , bk) (5.2)

with b1 < a. For m ∈ ZF , write m =
∑

f∈F |m : f |f , with |m : f | ∈ Z. Suppose
that g ∈ F, a ∈ Z, and set

Y(g, a) = {b ∈ Z|g = fa
b is obtained from f by a legal move}.

Next suppose f satisfies (2.2), and that f(a) = ×, and f(b) = ◦.
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Lemma 5.2. Suppose g ∈ F , and ×(g) = (b1, . . . , bk) with b1 < a.

{h ∈ F |h(a) = × and |σh : g| 6= 0} = {gb
a|b ∈ Y(g, a)}.

Proof. This follows by considering legal moves that end at g.

Next we compare the caps in Dcap(h) and Dcap(h
a
b ).

Lemma 5.3. Suppose that g = ha
b , where b ∈ Y(g, a).

(a) If Dcap(h) has a cap C joining b′ to b, for some b′ < b, then in place of C and
the cap in Dcap(h) beginning at a, Dcap(g) has caps C1, C2 with b(C1) = b′,
b(C2) = b, and e(C1) > e(C2) ≥ a.

(b) If Dcap(h) has no cap ending at b, then in place of the cap in Dcap(h) beginning
at a, Dcap(g) has a cap C with b(C) = b and e(C) ≥ a.

(c) Apart from the different endpoints of the caps resulting from (a) and (b), the
caps in Dcap(h) have the same left endpoints as Dcap(g). They also have the
same right endpoints except that if a cap in Dcap(h) ends at c > a, then in
Dcap(g) the corresponding cap ends at c − 2.

The relevant parts of the cap diagrams in case (a) are shown below. In case (b) the
diagrams are the same except that there are no caps beginning at b′.

Dcap(h) · · · · · ·
ab′ b

Dcap(h
a
b )

b′ b
· · · · · ·

a − 1

Proposition 5.4. Suppose g satisfies Equation (5.2), and ck < a. Set

Rf,g = {h ∈ Q(f)|h(a) = × and |σh : g| 6= 0}

Then one of the following holds

(a) g ∈ P (f)\Q(f). In this case Rf,g = {h} is a singleton and |σh : g| = 1.

(b) g 6∈ P (f). In this case either Rf,g is empty or Rf,g = {h(1), h(2)} consists of
two elements and

|σh(1) : g| + |σh(2) : g| = 0.
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Proof. Assume that h ∈ Rf,g. Then by Lemma 5.2, g = ha
b , (equivalently h = gb

a)
for some b ∈ Y(g, a). We use the comparison between in Dcap(h) and Dcap(g). given
in Lemma 5.3. Suppose that Y(g, a) = {c1 < c2 < . . . < cr}, and that b = ci with
1 ≤ i ≤ r.

(a) If g ∈ P (f), then since g(a) 6= ×, there must be a cap C in Dcap(g) ending
at a. By Lemma 5.3 this can only happen if C begins at b = cr. Thus b and hence
h are uniquely determined by the pair f, g. Since b = cr, there are no caps C in
Dcap(g) with b(C) > b and e(C) ≥ a, so |σh : g| = 1.

(b) We claim that one of the following two cases holds

(i) f(ci−1) = ◦ and f(cj) = × if j 6= i − 1,

(ii) f(ci) = ◦ and f(cj) = × if j 6= i.

Suppose first that f(b) = ×. Then since h(b) = ◦, there is no cap in Dcap(h) begin-
ning at b, so as Dcap(h) matches Dwt(f), there is a cap C in Dcap(h) ending at b.
This implies that i > 1, and C begins at ci−1. Because Dcap(h) matches Dwt(f), we
have f(ci−1) = ◦. Now if j 6= i − 1, i then cj ∈ Y(h, a) , so the cap C in Dcap(g)
with b(C) = cj has e(C) ≥ a. Again since Dcap(h) matches Dwt(f), it follows that
f(cj) = ×, so (i) holds.

Now suppose that f(b) = ◦. Since g = ha
b , and Dcap(g) does not match Dwt(f),

the cap C in Dcap(g) with b(C) = b has e(C) > a. It follows that i < r, and
h′′ = g

ci+1
a ∈ Rf,g. Since Dcap(h) has a cap joining ci and ci+1, we have f(ci+1) = ×.

Thus replacing h by h′′ and i by i + 1 in the case already considered we see that (ii)
holds. This proves the claim.

The argument of the preceding paragraph shows that there is no loss in assum-
ing that (i) holds. Then b and hence h are again uniquely determined by the pair
f, g. The conclusion in (b) therefore follows with h(1) = g

ci−1
a and h(2) = gci

a .

Lemma 5.5.

(a) Given g ∈ F and a ∈ Z there is at most one f ∈ F such that there is legal
move with weight zero from f to g starting at a.

(b) For each g ∈ P (f) there is a unique regular path from f to g.

Proof. (a) If there is a cap C in Dcap(g) with e(C) = a, then the unique f in the
statement is gb

a where b(C) = b.
(b) follows at once from (a).

It is easy to see how the above proof is related to our first proof of Theorem A.
Indeed let * be the involution of the set of all increasing paths in G leading from f
to g defined in the proof of Lemma 4.3. Then * preserves the set S of paths with
last label of the form [a, t] all of whose edges are regular except possibly the last.
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Suppose the set Rf,g is defined as in the proof of Proposition 5.4 is nonempty. If
g ∈ P (f)\Q(f) and Rf,g = {h}, then on the unique regular path from f to g, h is
the vertex before g and g is obtained from h by a legal move with start a. On the
other hand if g ∈ P (f), then Rf,g = {h(1), h(2)} and S consists of two paths which
are interchanged by *. The vertices before the last in these paths are h(1) and h(2).

6 The Subgraph E and Extensions.

The goal if this section is to prove

Theorem B. We have

(a)
dim Ext1(L(λ(f)), L(λ(g))) ≤ 1.

(b) Ext1(L(λ(f)), L(λ(g))) 6= 0 if and only if f −→ g or g −→ f is an edge of E .

Let τ be the automorphism of g defined by τ(X) = −Xst, where Xst is the super-
transpose of X, and for any g-module M, let M τ denote the twist by τ . Thus as a
set M τ = {mτ |m ∈ M} and the module structure is given by

xmτ = (τ(x)m)τ

for x ∈ g and m ∈ M. The superHopf algebra structure of U(g) allows us to make
the dual N∗ of any Z2-graded module N in F into a module in F , and we set
M̌ = (M∗)τ . Then M → M̌ is a contravariant exact functor on F which maps a
simple finite-dimensional module to itself. Hence we have

Ext1(L(λ), L(µ)) = Ext1(Ľ(µ), Ľ(λ)) = Ext1(L(µ), L(λ)). (6.1)

Remark 6.1. Equation (6.1) reflects a more general phenomenon. Indeed there is
well developed theory of links between prime ideals in a Noetherian ring R, see for
example, [GW04]. The graph of links is the directed graph whose vertices are the
prime ideals of R, with arrows between linked prime ideals. It is shown in [Mus93]
that if g is a classical simple Lie superalgebra and g 6= P (n), then for prime ideals
P, Q of U(g) there is a link from P to Q if and only if there is a link from Q to
P . Equation (6.1) follows from this fact by taking P and Q to be coartinian. In
the case where g = sl(2, 1) graph of links between primitive ideals is described in
[Mus93].

Define an order on the set X(m, n) by putting µ ≤ λ if λ−µ is a sum of positive
roots.

Lemma 6.2. Let Ext1(L(λ), L(µ)) 6= 0, then either λ ≤ µ or µ ≤ λ.

Proof. Assume that λ and µ are not compatible. Consider an exact sequence

0 → L(λ) → M → L(µ) → 0.

Since µ has multiplicity one as a weight of M , a non-zero vector of weight µ generates
a proper submodule in M . Hence the exact sequence splits.
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Lemma 6.3. Let p ⊂ q be a pair of parabolic subalgebras, and suppose γ ∈ h∗

defines p. If µ ≤ λ and Ext1q(Lq(λ), Lq(µ)) 6= 0, then one of the following holds

(a) (µ, γ) = (λ, γ) and Ext1p(Lp(λ), Lp(µ)) 6= 0

(b) (µ, γ) < (λ, γ) and Lq(µ) is a subquotient in Γq,p(Lp(λ)).

Proof. The condition µ ≤ λ implies that (µ, γ) ≤ (λ, γ). Consider a non-split exact
sequence

0 → Lq(µ) → M → Lq(λ) → 0.

Let z ∈ h be the element such that β(z) = (β, γ) for every β ∈ h∗. For every
q-module N let

N ′ = {x ∈ N |zx = (λ, γ)x}.

If (µ, γ) = (λ, γ) we have Lq(λ)′ = Lp(λ), Lq(µ)′ = Lp(µ) and an exact sequence
of p-modules

0 → Lp(µ) → M ′ → Lp(λ) → 0.

We claim that this exact sequence does not split. Indeed, M is a quotient of
U(q) ⊗U(p) M ′. If M ′ = Lp(λ) ⊕ Lp(µ), then we have an exact sequence

U(q) ⊗U(p) Lp(λ) ⊕ U(q) ⊗U(p) Lp(µ) → M → 0,

hence M = Lq(λ) ⊕ Lq(µ), a contradiction.
If (µ, γ) < (λ, γ), then Lq(λ)′ = Lp(λ) and Lq(µ)′ = 0. Therefore M ′ = Lp(λ).

The homomorphism M ′ → M of p-modules induces a homomorphism U(q) ⊗U(p)

M ′ → M , which is surjective because U(q)M ′ = M . Thus, M is a quotient of
U(q) ⊗U(p) Lp(λ), hence of Γq,p(Lp(λ)).

Lemma 6.3, (6.1) and Corollary 3.10 imply the following two corollaries.

Corollary 6.4. If Ext1(L(λ(f)), L(λ(g))) 6= 0 and λ(f) < λ(g), then there is a legal
move of weight zero from f to g.

Proof. We have Ext1(Lq(k)(λ(f)), Lq(k)(λ(g))) = 0. So if p is chosen minimal with

Ext1(Lq(p)(λ(f)), Lq(p)(λ(g))) = 0,

then by Lemma 6.3 with q = q(p−1) and p = q(p), Lq(λ(g)) is a subquotient of
Γq,p(Lp(λ(f)). Hence the result follows from Corollary 3.10.

Corollary 6.5. dim Ext1(L(λ(f)), L(λ(g))) ≤ 1.

Proof. There is at most one legal move joining f and g. Indeed, if g is obtained
from f by a legal move,then g = fa

b , and we have

g(a) = ◦, f(a) = ×, g(b) = ×, f(b) = ◦,

and f(s) = g(s) if s 6= a, b. In other words, f and g are different exactly in two
positions which define the start and the end of a legal move.
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Lemma 6.6. Let g be obtained from f by a legal move of weight zero with start sp.
Then

Ext1
q(p−1)(Lq(p−1)(λ(g)), Lq(p−1)(λ(f))) 6= 0.

Proof. To simplify notation we set

Γ(p) = Γq(p−1),q(p) .

To construct a non-trivial extension consider the exact sequence from Lemmma 3.10
(b), and set

M :=
Γ(p)(Lq(p)(λ(f)))

⊕

h∈LM(f,p),

h6=g

Lq(p−1)(λ(h))
.

Then M is indecomposable and can be included as the middle term in the exact
sequence

0 → Lq(p−1)(λ(g)) → M → Lq(p−1)(λ(f)) → 0.

For f as in (2.2), define |f | = a1 + · · · + ak.

Lemma 6.7. Let g ∈ LM(f, p), h ∈ LM(f, r) and p < r.

(a) |f | − |g| ≡ 1 mod 2.

(b) g and h are not connected by a legal move of weight zero.

Proof. (a) follows immediately from the definition of a legal move. For (b), assume
the opposite. Since h(sp) = × and g(sp) = ◦ the only possibility is g ∈ LM(h, p),
but this cannot happen by (a).

Lemma 6.8. Let g be obtained from f by a legal move of weight zero. Then

Ext1(L(λ(g)), L(λ(f))) 6= 0.

Proof. Let the legal move have start sp. By Lemma 6.6 we have

Ext1
q(p−1)(Lq(p−1)(λ(g)), Lq(p−1)(λ(f))) 6= 0.

We will prove
Ext1

q(i)(Lq(i)(λ(g)), Lq(i)(λ(f))) 6= 0

for all i ≤ p − 1 by reverse induction in i. So we assume that the statement is true
for i and prove it for i − 1. Consider a non-split exact sequence

0 → Lq(i)(λ(g)) → V → Lq(i)(λ(f)) → 0.

Apply Γ(i) to the sequence to obtain

0 → Γ(i)(Lq(i)(λ(g)))
φ
→ Γ(i)(V ) → Γ(i)(Lq(i)(λ(f))) → 0.
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This sequence is not exact, but Γ(i) is exact on the right. Moreover, Γ(i)(V )/ Im φ is a
quotient of U(q(i−1))⊗U(q(i)) Lq(i)(λ(f)), since by construction it is generated by the

q(i)-submodule Lq(i)(λ(f)). Since Γ(i)(Lq(i)(λ(f))) is the maximal finite-dimensional
quotient of the parabolically induced module, we have an isomorphism

Γ(i)(V )/ Im φ ' Γ(i)(Lq(i)(λ(f))).

Thus, the above sequence is exact at the two right-most non-zero terms.

Now let M and N be the proper maximal submodules in Γ(i)(Lq(i)(λ(g))) and

Γ(i)(Lq(i)(λ(f))) respectively. Let X = Γ(i)(V )/φ(M). We have an exact sequence

0 → Lq(i−1)(λ(g)) → X
π
→ Γ(i)(Lq(i)(λ(f))) → 0.

From Theorem 3.10 we have that

N =
⊕

h∈LM(f,i)

Lq(i−1)(λ(h)).

By Lemma 6.7 and Corollary 6.4

Ext1
q(i−1)(N, Lq(i−1)(λ(g))) = 0.

Therefore
π−1(N) = Lq(i−1)(λ(g)) ⊕

⊕

h∈LM(f,i)

Lq(i−1)(λ(h)).

So X/(
⊕

h∈LM(f,i) Lq(i−1)(λ(h))) gives a non-trivial extension between Lq(i−1)(λ(g))
and Lq(i−1)(λ(f)). The case i = 0 implies the statement.

Corollary 6.4, Corollary 6.5, Lemma 6.8 and (6.1) imply Theorem B.
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