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For a Lie superalgebra 9 we denote the even and odd parts of 9 by go 
and g,, respectively. The simple Lie superalgebra 9 is called classical 
if f0 is reductive. For 9 classical simple we study primitive ideals in the 
enveloping algebra U(g). Our main result is that any graded primitive ideal 
is the annihilator of a graded simple quotient of a Verma module. This is 
an analogue of the well-known theorem of Duflo [D] on primitive ideals 
in the enveloping algebra of a semisimple Lie algebra. The proof is based 
on Duflo’s theorem and some work of E. Letzter [Ll, L2] on primitive 
ideals in finite ring extensions. 

The definition of a Verma module depends on the existence of a 
triangular decomposition in 9. This is dicussed in Section 1. A more precise 
statement of the main theorem is given Section 2. In Section 3 we discuss 
some corollaries, for example we show that if JZ # Q(H) then graded prime 
ideals are prime (Corollary 3.1), and if f # P(n), then any factor ring of 
U(g) has the same left and right Krull dimension (Corollary 3.3). 

Classical simple Lie superalgebras which are not Lie algebras have been 
classified by Kac [Kl, Theorem 2, p. 441 (see also [Sch, Theorem 1, 
p. 1401). In the notation of Kac these algebras are as follows. Scheunert’s 
notation, if different is given in parentheses. 

A(m,n)=sl(m+l,n+l), m#n,m,n~O(spl(m+1,n+1)) 

A(n, n) = son + 1, n + l)/(Zzn+z>, n>O(spl(n+1,n+1)/@rz,+2) 
B(m, n) = osp(2m + I, 2n), m30, n>O 

D(m, n) = osp(2m, 2n), m32,n>O 

C(n) = osp(2,2n - 2), n&2 

G(3), F(4) ( r2, rJ, respectively) 

a2, 1; co aE@\{o, -I> ((Ul, -1 -x, co)) 
P(n) ~32 (b(n+ 1)) 

QW=&WL+z>> n>2 

(4n + 1 Wz2n + 2 3 the f, d algebras of GelllMann, Michel, Radicati). 
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We refer to [Kl, 2.11 or [Sch, Chap. II, Sect. 41 for the construction and 
properties of these Lie superalgebras. 

The superalgebras P(n) and Q(n) are called strange and the others are 
known as basic classical Lie superalgebras. 

Throughout this paper the adjective graded refers to the Z,-grading on 
U(f). If A4 = M,@ M, and N = N, @ N, are graded U(y)-modules, a 
graded homomorphism 4: ,U + N is a module homomorphism such that 
for some jE L,, &M,) 5 N,, ,. In particular this means that M is 
isomorphic to the module M’ defined by reversing the grading, that is, by 
setting (M’), = M, and (M’), = M,. An element of M is homogeneous if it 
is contained in M,, u M,. 

1. TRIANGULAR DECOMPOSITIONS AND VERMA MODULES 

1.1. We need to know that every classical simple Lie superalgebra 9 has 
a triangular decomposition. By this we mean that there is a direct sum 
decomposition 

such that 

(1) II-, I!+, and 4 are graded subalgebras of 9 with )r* nilpotent. 

+ (2) l&)=31; @ko@*lo is a triangular decomposition of y0 in the 
usual sense (see [Dix, 1.10.141). 

(3) 6=A@*1 + is a solvable subalgebra of 9. 

If M is an &,-module and a E k,* we define M” = (.x E M 1 1z.u = a(h)x for 
all h E ROl. Note that, if M is a graded &,-module, then M” is a graded sub- 
space of M. We say M is diagonakahle if M = @ M”. We also require 

(4) x,‘, af, A,. and A, are diagonalizable &,-modules via the adjoint 
action of ho. 

We shall see that every classical simple Lie superalgebra has a triangular 
decomposition. In contrast to the Lie algebra case, triangular decomposi- 
tions are not in general unique up to an automorphism of 8. In applica- 
tions of the main theorem it is convenient to allow different triangular 
decompositions of 8. For example if 9 = A(n, n) we use different triangular 
decompositions of y in Corollary 3.2 and Theorem 3.4. 

Suppose we are given a triangular decomposition 9 = n ~ OR @I H +. As in 
[J, 4.33 we denote by L!” the category of go-modules M with the following 
properties 

h07.YI.M 
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(a) M= OuEl,: W. 
(b) For all VE M, dim U(n,+)u< co. 
(c) M is a finitely generated U(g,,)-module. 

In addition we let 8 denote the category of graded g-modules M which 
belong to Cl when regarded as go-modules by restriction. The morphisms in 
d are graded homomorphisms of p-modules. 

For j.E@, we let @v, be the one dimensional &,-module with n,toj.=O 
and /zv, = A(h)o;. for h E do. We show below that there is a unique finite 
dimensional graded simple &module V, such that R+ V, = 0 and hv = I(h)o 
for all h E R,, o E vj.. Furthermore any finite dimensional graded simple 
d-module is isomorphic to V, for some 1, E ff,*. 

In all cases except 9 = Q(n) we will have d = A, and dim V, = 1. We 
define Verma modules for q,, and 9 by 

Then M(I) has a unique maximal submodule M(A)’ and if L(A) = 
M(L)/M(L)‘, then M(L) has a finite composition series with factors L(p) 
for various p E 4: [Dix, 7.1.11 and 7.6.11. We establish similar properties 
for A?(A): 

PROPOSITION. (a) fi(A) has a compositio~r series offinite length. 

(b) &(I.) has a unique maximal graded submodule &?(A)‘. 

(c) Ifs # Q(n), then fi(L)O ts actually the unique maximal submodule 
of f@(A). 

(d) If M is a nonzero module in d then, for some 1%~ R,*, 
Hom( a(A), M) # 0. 

The proof is given later in this section. 
We set E(A) = A(A)/fi(I.)“. 

COROLLARY. (a) A graded g-module M belongs to d if and only if M 
is diugonalizuble as an A,-module and there is a finite series 0 = MO c 
M,c . . . c M, = M of graded submodules of M such that each M,/M,- , is 
a homomorphic image of some fi(l,,) for 16 i < r. 

(b) The Verma module I@(I) has a finite graded composition series 
with factors isomorphic to z(p) for various p E 4:. 

Proof of the Corollary. (a) We note that the category d is closed under 
taking graded homomorphic images and submodules since 0 is closed 
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under these operations. If ME 8, we can construct a series of the required 
form using (d) of the Proposition and the fact that A4 is a Noetherian 
U&)-module. For the converse it suffices to show that R(i) E 8, but this 
is traightforward (see the remark after Lemma 1.3). 

(b) This now follows easily. 

1.2. Let Y=~~@Y, be any Lie superalgebra. If V is a go-module the 
exterior algebra on k’ is denoted AV. The action of y0 on V extends to a 
homomorphism p0 -+ Der(A I’). Thus we can view A V as a go-module. We 
need the following observation, 

LEMMA. As go-modules via the adjoint action u(,) g Ag, @U,,,,, u(gO). 

The proof is elementary. 

1.3. Let yO=“; @A,,@I~,’ be a triangular decomposition of fO, R, the 
set of roots of yO, and R,: the set of positive roots with respect to this 
decomposition. Write do = Ah@ Y where 4; is a Cartan subalgebra of 
[go. soI and z is the center of yo. The Weyl group W of [go, so] acts 
naturally on (A;)* which we identify with (AEn,* 1 A(Z) =O>. We extend 
this action to an action of W on ht by requiring W to fix the set 
{I. E & 1 A(&,) = 0 ). Define the translated action iv. 1. by 

II’ . j. = w( 2 + po) - po, 

where p,, = 4 C,, R; z. Since 9 is classical simple, 9, is a semisimple 
go-module, by [Sch, Theorem 1, p. 1011. Hence y = A 0 @ Zt R /, where 
R= (CXER~ 1 /#O and a#O) is the set of roots of 9 and A is the 
centralizer of R,. We set Q = ZR, Q0 = ZR,, and Qz = NR,f. The set of 
weights of a yO-module I’ is denoted by Z7( I’). 

Part (a) of Proposition 1.1 follows from the next result which will also 
give more detailed information on the relationship between primitive ideals 
in U(f,,) and primitive ideals in U(f). 

LEMMA. Suppose 9 = PI @ ,4 @ x + is a triangular decomposition, and V 
is a finite dimensional G-module such that M + V= 0 and hv = &h)zl for all 
hEv&,, v E V, where 1 E @. Then the modules fi = U(f) @UC8, V and 
UW@.,,,, M(i) have finite length as U(g,J-modules with composition 
factors qf the form L(v) HIhere 
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ProoJ: It is enough to prove the statement about U(f) Or/,,,,) M(A) 
since ii? is a factor module of N= U(f) @ L,(fiOj V where T/ is a &,-module by 
restriction and N is a direct sum of copies of 

Now as a Qd-module, ~(~)Oucso, WA) E & @u(gol WA) by 
Lemma 1.2, and this has a finite series with factors of the form M(A + p) 
where p E Z7(/ig.,) by [Dix, 7.6.141. Therefore the result follows from [Dix, 
7.6.11. 

Remark. Since the category C” is closed under tensor products with 
finite dimensional modules, it is clear that the modules fi and 
U(P) @ U(goJ M(1) belong to 8. 

1.4. Let 9 be a classical simple Lie superalgebra. We say that the 
elements /I,, . . . . /In of A,* form a basis of simple roots for 9 if 

(1) 81, ..., PH are linearly independent. 
(2) For any root j E R we have either j E Q + or - fl E Q + where 

Q + = C:= 1 NPi. 

When 9 has a basis of simple roots, we set a+ = @EEa+,io) /, n- = 
o- aE g+,(O1 g’, and let R be the centralizer of R, in 9. 

If M is a module in 6, and c’ E Mp then u is a highest weight vector if 
n+2: = 0. In this case p is a highest weight of M. 

LEMMA. Suppose f has a basis of simple roots. Then 

(a) f=+t-@R@a + is a triangular decomposition. 
(b) Any nonzero module in 8 has a highest weight. If M is a simple 

module in 8, then M has a unique highest weight. 
(c) Suppose in addition that ff = k,. For ,J E &$, let I/, = CU, be the 

one dimensional graded If-module with Oj. homogeneous, nful = 0, and 
hu, = %(h)un for all h E A,. Then any finite dimensional graded simple 
G-module is isomorphic to VA for some 2. Furthermore the Verma module 
ma = U(f) @U(4) V, satisfies properties (at(d) of Proposition 1.1. 

Proof. (a) Note that [&i, A, ] c do which is central in A. Therefore 4 is 
nilpotent. Clearly n + is a nilpotent ideal in 4 = A @ n +, so 8 is solvable. 

Now R, = 4; OX where kb is a Cartan subalgebra of [fO, go] and x is 
the center of go. Let E be the real vector space spanned by pi, . . . . fin and 
E,=(/?~EIfi(x)=0}, E,={~~EEI~(A~)=O}, so that E=E,@E*. For 
,f3 E E!, let tg be the element of I& such that P(h) = K(tg, h) for h E Rb where 
K( , ) is the Killing form, and set (a, /I) = K( t,, to) for ~1, p E E, . We extend 
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( , ) to a nondegenerate symmetric bilinear form on E such that E, and Ez 
are orthogonal. Then there exists 1’ E E such that (fl,, y) > 0 for i= 1, . . . . n. 
Let R,+ = (M E (&,)* 1 c1 is a root of go with (a, y) > O)- and note that R$ is 
precisely the set of roots of >lc. Write ‘/ = 7, + 7, where 11,~ Ej. Since 
R,fsE, we have (c(,y)=(c(,y,)>O for r~Rof. By the proof of [H, 
Theorem 10.11 the set of indecomposable roots in R,+ is a basis of simple 
roots of yO. Hence y. = p/o @ /: @ >lc is a triangular decomposition. The 
rest now follows easily. 

(b) This is the same proof as for semisimple Lie algebras. 
(c) Note that [&,, P,] = [)z,, E,] s n,j+ = [R, /I,‘] c [PO, &]. There- 

fore by [Kl, Proposition 5.2.41 every finite dimensional graded simple 
&-module has dimension one, and so is annihilated by [1’, /;I 2 n+. It 
follows that any such module is isomorphic to Vj, for some /1. As in the 
proof of [Dix, 7.1.111, every proper g-submodule of B(n) is contained in 
hf+ = Opt;.-Q+ fi(l.)p. Note that M+ is a graded subspace of &(j>). It 
follows that fi(/1) has a unique maximal submodule which is graded. The 
rest follows from (b) and Lemma 1.3. 

1.5. Contragredient Lie Superalgebras. Our definition of contragredient 
Lie superalgebras is the same as that given in [vdLl ] (see also [K2]). 

Let A = (a,) be an n x n matrix of rank I with complex entries. A realiza- 
tion of A consists of a complex vector space k together with subsets 
Z7= (CC,. . . . . a,) CJ$* and I7’ = (h,, . . . . h,,j cR such that 

(1) The sets 17 and IZ” are linearly independent. 
(2) (hi, cc,)=a,, (i,j= 1, . . . . n). 

(3) dimR=2n-1. 

By [K2, Proposition 1.11, every n x n matrix has a realization which is 
unique up to isomorphism. 

Given a matrix A, a realization as above, and a subset T of 
I= { 1, 2, . ..) n> we define the Lie superalgebra ;(A, t) to have generators 
e,, fi (i = 1, . . . . n ), and ~6 and defining relations 

Cei. hl = 6,hi i,j=l n , . . . . 

[h, h’] = 0 for h, h’Ek 

Ch, eil = (cri, h > ej 

[h, .fJ = - (a;, h>.L.. 

The Z,-grading on P(A, z) is given by 
deg hi=0 degei=degf,=O for i$z 

degei=deg f,= 1 for iE5. 
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Now there exists a unique maximal ideal L of ;(A, 5) intersecting ff 
trivially. The proof of this statement is the same as for Lie algebras 
[K2, Theorem 1.2e)]. 

Set g(A, T) =;(A, 5)/t. We call f(A, t) the contragredient Lie super- 
algebra associated to (A, t). It should be noted that the contragredient Lie 
superalgebra G(A, t) of [Kl, Sect. 2.51 is isomorphic to the derived algebra 
8’ of g(A, z). The pairs (A, z) for which a(A, z) is finite dimensional and 
s’/C is simple, where C is the center of q’, are classified in [Kl, 
Theorem 31 (see also [vdL2, Sect. 51). The algebras y’/C which arise are 
exactly the basic classical simple Lie superalgebras. We have 
dim g(A, r)/g’ = dim C = n - 1. Also C # 0 if and only if det A = 0 and this 
occurs exactly when g’/Cz A(n, n) (see [Kl, Proposition 2.5.61). Hence- 
forth we assume that det A # 0, so g(A, z) = 9 is classical simple. 

Since det A # 0, CI,, . . . . c(, forms a basis for A*. Moreover if Z+ (resp. M ) 
is the subalgebra of 9 generated by e,, . . . . e,, (resp. f,, . . . . fn) then 
g=H-@d@92+ is a triangular decomposition. Also if Q+ = C:=, Nr, 
then n+ = @zfQ+,\iOi gz and M- = @ pzEQ+ l0i 9’. The proofs of these 
statements are the same as for Kac-Moody Lie algebras (see [K2, 
Sect. 1.31). Hence g has a basis of simple roots and k = A, so we obtain 
Verma modules R(1) satisfying properties (a)-(d) of Proposition 1.1. 

1.6. The advantage of using contragredient Lie superalgebras is that it 
provides a unified way in which the existence of a basis for the simple roots 
can be established. However, it is difficult to examine the structure of the 
algebras g(A, z) directly from the definition. Fortunately it is possible to 
give direct constructions for the basic Lie superalgebras [Kl, Sect. 2.1; Sch, 
Chap. II, Sect. 41 and then show the existence of a basis via a case by case 
examination. A list of possible bases, up to W-equivalence is given in 
[Kl, 2.5.41. Some omissions are corrected in [vdL2, Sect. 51. 

We take this opportunity to correct an error in [Kl, 2.5.41. For the case 
g=A(n,n)=sl(n+l,n+l)/(I,,+z) the set of roots which are claimed to 
be a basis are not in fact linearly independent. However, we have the 
following. 

LEMMA. The Lie superalgebra 9 = A(n, n) has a basis of simple roots. 
Furthermore if 9 = H - @ A @ E + is the corresponding triangular decomposi- 
tion, and x + *x is the antiautomorphism of 9 induced by sending every 
matrix in sl(n + 1, n + 1) to its transpose then 

* ~ ‘H, + =a ) ‘ST+ = *z-, ‘h = h for all h E R. 

Proof. First we introduce some notation. Let V be the space of all 
column vectors with standard basis e,, 1 d id 2n + 2, and e, the matrix 
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with elie, = 6,ke,. For 1 6 id n let hi = err - ej+ , ,+ 1 and for II + 1 6 i < 24 
h,=ei+,,+,-ei+zi+z. We denote the images of the elements hi, e,i in 9 by 
the same symbol. Let k = A0 be the subalgebra of 9 spanned by the hi. Let 
ii, 1 < id 2n, be the dual basis of R* defined by /l;(lz,) = S,,. For 1 < i< n 
set x, = e r.n+ I +r and set xo=e2~,,+,~.,,+,. Let p,= -d, ,+i.,+ 
I -It+,- I -%,+i for 2<i<n, ,u,,=1.,,-j-2,i, and p,=i,-A,,+,. Note that 
.yi E #‘I for 0 < i 6 n. The crucial point of the proof is the observation that 
PO = cr= 1 Pi. 

IfF:O=U,cU,c...cU3,,+?=Uisaflagin Vweset 

n(F)= ix+ (Izntr ) ) x E sl( II + I, n + I 1. .uU, E U, , , 1 d i 6 2~ + 2 }. 

Set v. = e2,, + I b3 oj = e, for 1 < i < n, and I,*, = e,, + , +, for 0 d i < n f 1. Now 
let 

V,= span{v,, ,I’~, vI, . . . . M’, ~, , v,}, 

V,! = span{ I,‘,, , t),r, . . . . M‘,, - , , cl,, - ,) , 

and consider the flags 

F+:Oc V,c W,,c . ..V.c W,c V,+,c ... c W,,= V 

F - : 0 c W; c V; c . . W; c VI’ c W,‘, , c . c V; = V. 

We set n* =u(F’), and R’= {ME&* 1 (~~)‘#0). It is easy to see that 
p=?Z -@A@n + is a triangular decomposition of y. Note that .Y~M’, = dVt: 
and x,v,=O for O<i<n, O<j<n+ 1, so S,EX+. We set )fr=e,+i,i for 
1 di<n. Then J~~v,,=~,,Iv,+,, yi j- M’ - 0, and yi~pV’ for certain V,E R*. Then 
9~ ‘is generated by so, .Y, , . . . . x, and J’, , . . . . y,, and r’l~ is generated by ‘x0, 
?x, ) . ..) fx,, fy, ) . . . . ‘J,~. Hence any 0: E R + (resp. R ~ ) can be expressed as an 
integral linear combination of po, p,, . . . . p,,, v, , . . . . vn with all coefficients 
nonnegative (resp. nonpositive). Since p,, = C:=, p,, 2 can be expressed as 
such a linear combination of ,u,, . . . . p,,, v,, . . . . v,,. It is new easy to show 
that {p , 3 ..., pnr VI 2 “‘1 v,,} is a basis of simple roots of 9 with the required 
property. 

1.7. Suppose now that 9, =f: +f; is a sum of two proper ;p,-sub- 
modules. This applies when f =A(m, n), C(n), or p(n) [Kl, Proposi- 
tion 2.1.23. Of course the choice of which submodule to call 9: is 
arbitrary. By checking each case, or using [Sch, Proposition 3, p. 961 we 
have 8, =g: 0~ I, [f:,s:]= [s;,f,-]=O, and s,+, 9;~ are simple 
go-modules. Let go = tip @ A, @ ~0’ be a triangular decomposition of 
go and set x -=n;@g;, ~I+=~~~@~:, &=do, and /;=R@x+. For 
%EP, let V, = CL), be the one-dimensional graded &module with L:* 
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homogeneous, +l+vj. =O, and hv,= E”(h)v, for hE&. Note that [B,, &,I = 
[f:, 9: ] = 0 so by [Kl, Proposition 5.2.41 any finite dimensional graded 
simple R-module has dimension one and hence is isomorphic to Vj. for 
some 2”. We set I@(A) = U(g)@U,,, V,. 

LEMMA. (a) f=p/- @A@~I •c is u triangular decompsition. 

(b) Z=,,U(n-)= Us; is a nilpotent ideal qf U( PZ ~ ) with 
U(n-)/Zz U(w,). 

(c) Properties (a)-(d) of Proposition 1.1 holdfor I@(,!) and E(l) is a 
simple U(, )-module. 

Proof: (a) Set f:(O)=0 and define g:(i) inductively by p.:(i)= 
{xE~: I [x, ,I,‘] Sg:(i- 1)) for i> 1. Since 9: is a simple go-module 
and f. is reductive we see that p:(m) = y: for some m. Since ,,,+ is 
nilpotent and [g :, 9: ] = 0, it follows that n + is nilpotent. The rest is easy. 

(b) Let .xE~;, YE”;. Then .x.v= !x+ [x, J,] E U(K )q;. Since 
also [x, SF] = 0, we see that 9; U(n ) = U(n- )glm = Z is an i&al of 
U(+z - ). 

Since [s;,s;]=O we have (s;)“=O in U(C) if m>dimg,, so Zis 
nilpotent. By the PBW theorem I+ U(H;) = U(H ) and Zn U(H;) = 0 so 
the rest follows. 

(c) We have &Z(i)= U(B ~)uj.=(Z@U(n;))v2,. Let Z= -Q,‘\(O). 
We show that if N is any proper submodule (not necessarily graded) 
of k(A) then NcM+ =(I@ @ ptT U(X;)~)V,. Since N= @ N” and 
Np E Mi if p # i, we may assume ti # 0. By Lemma 1.2, U(, ~ ) 2 
/Ig ; @ U(+Z; ) as an d-module and so U(H -)“= @z=B+y (/lg,)Qg U(n(y)‘. 
Therefore T= U(~Z ~ )’ = {.x E U(X ~ ) I [h, X] = 0 for all h E R 3 is a finite 
dimensional subalgebra of U(X ~ ). Now J= T n Z is a nilpotent ideal of T 
and T/J= (T+ Z)/Zc U(, ~ )/Zg U(R; ) so T/Jz C. Therefore T is a local 
ring whose maximal ideal J is maximal as a left ideal. Now N” is a T-sub- 
module of I@(A)’ and A?(,?)‘= TV, = (C + J)v, is a free left T-module. 
Therefore any proper T-submodule of &Z(A)” is contained in Ju, E Mt. It 
follows that N c_ M+, and k?(A) has a unique graded simple quotient &A) 
which is a simple U(g)-module. Finally, if A4 is a nonzero module in fi we 
can find a nonzero homogeneous u E IVY such that R,+U = 0. Let 9: = 
a,? ... 2 a 1 1 a0 = 0 be a series of n,+-submodules of 8: with 
CHIT> “i]Cai_l and aj=n,-, 0 @xi for i = 1, . . . . m. Let di=nof@ni. 
Suppose we can find a nonzero homogeneous u such that Gip, u = 0. Then 
either eiu = 0 or I,U = v #O. In the latter case we have for YE nd, 
yv = xi yu + [ ?: xi]u = 0 since [ y, x,] E ai_, . Since also u iu = 0, we obtain 
eiv = 0. Proceeding in this way we can find a nonzero homogeneous \v E M” 
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for some Ei such that H + ic = 0. It then follows that U(q)w c M and U(y) )t 
is a homomorphic image of a().). 

Remark. Let y = A ( II, n ) and let y = jl~ @ ~5 @ /I+ be a triangular 
decomposition as described in this subsection. We note that there is no 
basis of simple roots corresponding to this decomposition. For suppose 
S= {ash* 1 (gT)“#O)-. A simple calculation shows that JYMtS(=O. 
Therefore if x1, . . . . r, is a set of roots such that every a E S can be expressed 
as an nonnegative integer linear combination of ‘z,, _.., cx,. then x,. . . . . X, are 
linearly dependent. 

1.8. The only classical simple Lie superalgebra which has not been 
treated above is y = Q(n). This is the Lie superalgebra &n)/Z where f?(n) 
consists of matrices (K i) with aEgl(n+ l), h~sl(n+ l), and I=CZzntz. 
Complications arise here because 1$ # A, and there exist finite dimensional 
graded simple U(P)-modules with dimension greater than one. 

Denote by N-, H, N+ the strictly lower triangular, diagonal, and strictly 
lower triangular matrices in sl(w + 1 ), respectively. We define 

PROPOSITION. (a) Q= PI @&ON + is a triangular decomposition of 8. 

(b) For an>’ I.ER$, there exists a unique finite dimensional graded 
simple d-module Vj. such that )di Vj. = 0 and hv = i(h)v for all h E A,. 
Any finite dimensional graded simple P-module is isomorphic to V, for some 
a.Eb(y. 

(c) The Verma module R(l)= U(p)@,:,,, V, satisfies properties (a), 
(b), (d) of Proposition 1.1. 

Proof: (a) Since 9, z a0 as fo-modules it follows that the basis R,+ of 
simple roots with respect to the decomposition go = NO @ ff, @ eof is in fact 
a basis of simple roots for 9. Thus (a) follows from Lemma 1.4. 

(b) This follows from [Kl, Theorem 71. However, we can give a 
more elementary proof as follows. For A E R,* define a symmetric bilinear 
form .fj, on R, by fj(x, y)=l.([x, y]). Let A:= {.xE&‘, 1 fi(x,d,)=O} be 
the radical of this form, and JZ~ = Ker % @A:. Then ai is an ideal in R and 
we set c,. = ~+‘/a j.. If i. # 0 we can find z E (rJ, such that i(z) = 1. The factor 
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algebra A, = U(C,)/(Z- 1) of U(R) depends only on L. Let q be the 
nonsingular quadratic form on (cJ, defined by 

Then q is nonsingular, and A, is isomorphic to the Clifford algebra of q. 
By [Lam, Chap. V, Sect. 21, this Clifford algebra is graded simple, so it has 
a unique graded simple module c/,. Clearly we can regard V, as a U(8)- 
module, and it has the required properties. If /1= 0, then ui, = A, and we let 
V0 be the trivial U(d)-module, and A,= U(k)/RU(b). 

Now let V be any finite dimensional graded simple &module and 
4 : G -+ g1( I’) the representation afforded by V. We claim that if .Y E PZ+ then 
d(x) is nilpotent. It suffices to show this for .YE n,+ since if y E PZ: then 
[y, y] E 9~: and d(y)’ = l/24( [ .1; y]). Now V is a finite dimensional 
&,-module and by Lie’s theorem every /;,-composition factor of V is 
annihilated by z,+ so the claim follows. By Engel’s theorem for Lie super- 
algebras [Sch, p. 2361, we have I/’ # 0 where I” = iti E V 1 H + v = O}. Since 
PZ + is an ideal of t”, P” is a graded submodule of I’, so V’ = I’, and V may 
be regarded as a h = L/i? +- module. Since A, is central in 4, there exists 
1” E 4: such that ho = i(h) u for all h E I%,,, 1: E V by Schur’s Lemma for Lie 
superalgebras [Kl, p. 181. Therefore V is a &/Ker I-module. If 4’: is 
defined as in the first part of the proof then the image of 4: in .&/Ker 1. is 
supercentral, so 4: acts as zero on V, since P’ is graded simple. It follows 
easily that Y is a graded simple A ,-module and P’s I’;.. 

(c) As we noted in the proof of (a) the basis of simple roots R,f with 
respect to the decomposition go = ~2; 0 A, @ IZ + is in fact a basis of simple 
roots of 8. Let Q+ = NR,f be the subsemigroup of l%$ generated by Rz. 
We have ?$A) = @,, j.Pe+ i2(i)p. Let ti(i”)+ = @J,zj. iii(J)“. If U is 
any graded submodule of n(n) not contained in D(n) + we have 
u” = c(1)” n U #O, but i@(l)” = Vi and this is a graded-simple U(a)- 
module. Hence U” = V, and Us U(g) V; = ff(%). It follows that R(d) has 
a unique maximal graded submodule. 

Finally if M is a nonzero module in r?, then by Lemma 1.4, M has a 
highest weight i. If v E M” is homogeneous, then ~1 +a = 0 so U(&)G is a 
finite dimensional graded A,-module, so it contains a copy of V,. Hence 
U(f) Vj, c M is a homomorphic image of &?(A). 

Remark. From the proof we see that the graded simple U(g)-module 
J?(A) is simple if and only if V, is a simple U(8)-module and this is 
equivalent to the condition that rank .f;. is even. When 9 = Q(3) a simple 
calculation shows that the possibilities are rank ,fA = 0, 1, or 2. 
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2. THE CLASSIFICATION THEOREM 

2.1. Let 9 be a Lie superalgebra and (r the automorphism of 9 with 
o(x+y)=x-J’ for .xE~~, J E 9,. Then c extends to an automorphism of 
U(y) = U. We denote the set of prime, primitive, graded prime, and graded 
primitive ideals of U by Spec U, Prim U, Gr Spec U and Gr Prim U, 
respectively. Because of the following lemma the primitive ideals of U are 
easily described in terms of the graded primitive ideals. 

LEMMA. (a) If P E Spec U, then P n a(P) E Gr Spec U. 
(b) [f p E Gr Spec U, then p = P n o(P) tishere P E Spec U is minimal 

over p. 

(c) if p and P are as in (a), (b) then p E Gr Prim U lf and only [f 
P E Prim U. 

Proof: (a) is obvious. For (b) see [CM, Theorem 6.3 
Theorem 3.11. 

2.2. Let ,q be classical simple and set 

] and for (c) CL19 

z(A) = ann,T,gOj L(i), J(jL)= ann(+, L(E.). 

We use the following result of Duflo [D] (see also [J, 7.41). 

THEOREM. The map A+ I(%) from z$$ to Prim U(qO) is surjective. 

This result is usually only stated for 9,, semisimple, but the extension to 
the reductive case is routine. 

Our main result is an analogue for classical simple Lie superalgebras. 

MAIN THEOREM. The map 3.+J(l.) from 4: to Gr Prim U(,) is surjec- 
tive. 

2.3. Assume that R is a Noetherian subring of S such that S is finitely 
generated as both a left and right R-module. In addition we require R and 
S to be algebras of finite GK-dimension over a field. 

DEFINITIONS. Let Q be a prime ideal of R and T, the submodule of ,S, 
such that SQ E T,, and T,lSQ is the torsion submodule of S/SQ as a right 
R/Q-module. Let J be the left annihilator in S of S/T,, and X, the set of 
prime ideals of S minimal over J. We need the following results of Letzter: 
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THEOREM. ( 1) Spec S = u o E spec R X,. 

(2) PrimS=UQ.PrimRXg. 
Proof. See [L2, Proposition 4.21. 

2.4. We need a graded version of Theorem 2.3. Let R = U(g,,) and 
S= U(q). For Q a prime ideal of R, SjSQ is a free right R/Q-module, so 
T, = SQ. We let Gr X, be the set of graded prime ideals of S which are 
minimal over J = 1 anns(S/SQ). Using Lemma 2.1 we have Gr X, = 
(P n a(P) 1 P E A’,}. Then from Theorem 2.3 we obtain 

COROLLARY. (1) GrSpecS=U~.s,,,,GrX, 
(2) GrPrimS=Ug.,,,,.GrXp. 

2.5. LEMMA. Let R be a subring of S such that S is a free right R-module. 
If M is a left R-module with annR M= Q, therl ann,(S@, M) = 

anns(S/SQ). 
Proof See the proof of [BGR, Lemma 10.4a]. 

2.6. For AER,* we set x(A)= lJ{w.(n+p)n (%+p-QeO+) 1 p~h’(/ly~), 
)t’ E IV}. Note this is a finite set depending only on i,. If P E Gr Prim U(f) 
then by Corollary 2.4 and Duflo’s theorem we have P E Gr X,,,, for some 
AEA$. Hence the main theorem follows from the following result. 

THEOREM. We have Gr X,,,, c {J(v) / v E x(A)}. 

Proof: Let R = U(gO) and S = U(g). If P E Gr A’,,,,, then by Lemma 2.5 
P is minimal over ann,(S@, L(%)). By Lemma 1.3, SOR M(%) has a finite 
graded composition series. Therefore since SaR L(i) is a factor module of 
S6JR M(A), P is the annihilator of some graded composition factor of 
SoR M(2). Now 

and u(4 0 ucdoj Cu, has a finite graded composition series with factors I’,, 
for various p E A,*. Hence SOR M(%) has a finite series with factors 
UC,) @L/,4) V,= a(p). By Corollary 1.1, ff(,u) has a finite composition 
series with factors l(v) for various v E R,*. Hence P = J(v) for some v. We 
have z(v) = U(f)u where ?z: u=O and hu=v(h)u for all he&$. Therefore 
U(pO)v is a U(gO)-subfactor of SOR M(I) and L(v) is an image of U(gO)u. 
It follows that L(v) is a U(p,)-composition factor of U(f)@Li(,, M(A). By 
Lemma 1.3 we have VEX(A) and this proves the result. 
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3. CONSEQUENCES AND FURTHER REMARKS 

3.1. COROLLARY. Let 9 be a classical simple Lie superaiebra, 9 # Q(n). 
If I is a semiprime ideal of U(g), then I is graded. Furthermore Spec U(p) = 
Gr Spec U(,p) und Prim U(y) = Gr Prim U(q). 

Proof. First let P be a primitive ideal of U(y). Then P n o(P) is graded 
primitive, so Pn o(P) = ann E(E,) for some E.. However by Proposition 1.1 
L(A) is irreducible if y # Q(n), so ann z(A) is primitive. Therefore 
P= a(P) = ann E(A). Since U(u) is a Jacobson ring by [Ll, Lemma 2.51 or 
[CS, Theorem 11 any semiprime ideal I is an intersection of primitive 
ideals. Hence g(Z) = I. The last statements follows easily. 

3.2. For 9 classical simple, y # P(n), we have seen in Section 1 that there 
is a basis of simple roots and a corresponding triangular decomposition 
g=,z- @a@H+. We next show that there is an antiautomorphism x + ‘.Y 
of 8 such that 

I>/ + =a ) ‘H + =>I-, ‘h = h for all h E k. 

If 9 = A(n, n) this is done in Lemma 1.6. If 9 = g(A, t) is a contragredient 
Lie superalgebra, with det A # 0, we define a map s + ‘x on the Lie super- 
algebra ;(A, T) by the rules 

e, -+.f,, .f, --f e, 1 <i<n 

h + h for 11~4. 

If 4 is the unique maximal ideal of S( A, ?) intersecting R trivially then ‘t = I 
by the same proof as for the Cartan involution of [Kl, Sect. 1.33. Hence, 
we obtain an antiautomorphism on g(A, r) also denoted x + lx. 

Finally if 9 = Q(n) the map .Y -+ ‘.Y is induced from a similar map on 
o(n) sending a matrix to its transpose. 

Note that if 9 = P(n) with the triangular decomposition given in 1.7, no 
such map x + ‘x as above can exist since dim n # dim n ‘. 

We extend the map x + ‘x to an antiautomorphism of U(g). If ME 8, we 
let ‘M be the dual of the U(g,)-module in the category I’? as defined in 
[J, 4.101. Then ‘M is a submodule of the dual space M* and ‘M can be 
regarded as a U(g)-module via the action 

(x4)(m) = & ‘XF?l) for .xEU(~),~~E’M,~EM. 

Hence ‘ME fi and it is immediate that 

‘arm c~cyj M=ann,.,y, ‘M. 
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By [J, 4.101 the modules M, ‘M have the same composition length and 
the same character. In particular ‘z(E,) is a simple object in d, and since 9 
has a basis of simple roots this module has a unique highest weight 1. 
Therefore ‘L(n) E L(i), so ‘J(1) = J(i) for all 1 E R,*. We can now prove an 
analogue of [J, Cor. 7.51. 

COROLLARY. If 9 # P(n) is classical simple then for any graded semi- 
prime ideal I of U(g) we have ‘I = I. 

ProoJ By [Ll, Lemma 2.51 U(S) is a Jacobson ring. It follows easily 
that for any graded semiprime ideal I we have I= n {P, 1 P, graded 
primitive, s( E A } for some index set A. Since each P, has the form J(%), 
LEA:, we obtain the result. 

3.3. The preceding corollary implies a symmetry of many right and left 
properties of factor rings of U(g). We record one application here. 

COROLLARY. If 9 # P(n) is classical simple and R any .factor ring of 
U(g), then the left and right Krull dimensions of R coincide. 

Proof. Using [MR, Corollary 6.3.81 and Lemma 2.1 we can reduce to 
the case R = U(g)/1 where I is a graded prime ideal of U(g). In this case 
the map x + I+ ‘x + I is an antiautomorphism of the ring R. 

Remark. A similar argument using Duflo’s theorem shows that if 9 is a 
semisimple Lie algebra and R a factor ring of U(g) then the left and right 
Krull dimensions of R coincide. This has been noted by Levasseur [Lev, 
p. 1741. 

3.4. We return to the situation discussed in 1.7 where 8, = 9: @ 8; is a 
direct sum of two g,-submodules. In this case we can make an improvement 
to the main theorem. Note that b = 8: @ p0 is a subalgebra of U(f), 
and that gTU(b) = U(#)fT = J is a nilpotent ideal of U(b) with 
U(p)/Jr U(gO). For 1~ /z$ we can regard the U(gO) modules M(I) and 
L(1,) as U(b)-modules with J acting as zero. Note that as U(h)-modules 
M(n)= U(~o)@urdo, Cu,= U(P)@.,,, @V; where G=e,,@,:, and Cu, is 
the &module with ~~uI=~zO+v~=O and hv,=A(h)u, for hER. Hence 
@(A) = U(g) 0 u(fij M(A). Since J is nilpotent, it follows from Duflo’s 
theorem that the primitive ideals of U@) have the form i(i) = annc/cr, L(E,). 
For IER* let li(n)=U{w.(n+~)~(~+~-QQg+)I~~E(/ig;)}. As a 
go-module we have &?(A) = /1 9; 0, M(I), which has a composition series 
with factors L(v), v E j(n). We can apply Corollary 2.4 to the ring extension 
R = U(b) 2 S= U(g). Repeating the earlier arguments we obtain 

THEOREM. For 2~4;~ XiCij~ {J(v) 1 v~i(jl)}. 
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The advantage of this result over Theorem 2.6 is that the set j(E.) is much 
smaller than x(A), and so we have better control over Prim U(g). In [M] 
we apply this result to obtain a detailed description of Prim U(q) in the 
case 9 = s/(2, 1 ). 

3.5. It is an interesting problem to find necessary and sufficient condi- 
tions for the modules z(J) to be finite dimensional. This of course depends 
on the triangular decomposition y = ,( @ A 0 N +. We briefly summarize 
what is known about this problem. 

(a) If L”(i) is finite dimensional then so is L(A). This follows since 
Hom.,y,j(MjL), (ff(j-)))#O. 

(b) IfY,=qT@qr and,$=gT@g,,asin 1.7and3.4, thenL(A)can 
be regarded as a U(b) module with y: acting as zero. Then ,?(j>) is a 
homomorphic image of U(y) 0 [,, ,,, LO.) and hence z(i) is finite dimen- 
sional if L(1) is finite dimensional. 

(cl If q= Q(n) with the triangular decomposition of 1.8, then 
necessary and sufficient conditions for L(A) to be finite dimensional are 
given in [Kl, Theorem 8b)]. We note that it is possible for L(A) to be 
finite dimensional and ,?( L ) infinite dimensional. 

(d) If y is a basic Lie superalgebra, and is realized as a con- 
tragredient Lie superalgebra with a matrix corresponding to the Dynkin 
diagram of [Kl, Table VI], then necessary and sufficient conditions for 
L(i) to be finite dimensional are given in [Kl, Theorem 8c)]. It is not 
hard to show that L(A) is finite dimensional if and only if conditions (1) 
and (2) of [Kl, Theorem 8c)] hold. However, these conditions are not suf- 
ficient for z(i) to be finite dimensional. We remark that Kac has given an 
alternative construction of the finite dimensional simple modules for a basic 
classical simple Lie superalgebra in [K3, Proposition 2.41. 

Note added in proqf If 9 = osp( 1. 2 ), a classification of primitive ideals in U( v) has been 
obtained by G. Pinczon, The enveloping algebra of the Lie superalgebra osp( 1,2). J. Algebra 
132 (1990), 219-242. In addition. a result similar to Proposition 1.8(b) has been proved by 
I. A. Skornyakov. His result appears as Proposition 1 in I. B. Penkov, Characters of typical 
irreducible finite-dimensional q(n)-modules, Funcf. .4nul. Appl. 20 (1986). 3&-37. 
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