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Abstract
This paper presents a rule to allocate a coalition’s worth for
superadditive games with positive externalities. The alloca-
tion rule awards each member their outside payoff, plus an
equal share of the surplus. The resulting allocation maxi-
mizes coalition stability. Stable coalitions are Strong Nash
equilibria since no subset of members has an incentive to
leave. Similarly, no subset of non-members has an incentive
to join a stable coalition if the game is concave in this re-
gion. The allocation is risk-dominant. All stable coalitions
are robust to the maximum probability of 50% that play-
ers’ deviate from their individual best-responses. The pa-
per compares the allocation to the Shapley value and the
Nash bargaining solution, and illustrates why these tradi-
tional rules result in small coalitions when applied to issues
such as international environmental agreements.

1. Introduction

Coalition games are convex (concave) when the marginal contribution of a
given player increases (decreases) in the size of the coalition they join. For
convex characteristic function form games the core is non-empty, the Shap-
ley value lies in the core, and the grand coalition is a unique equilibrium.
However, for concave games with positive externalities the grand coalition
may not be an equilibrium as some, or all, players would earn a higher payoff
by leaving. Achieving large coalitions becomes more difficult when positive
externalities generate free-rider incentives.
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Many real world situations correspond to superadditive, but concave,
coalition games with positive externalities. Superadditivity implies aggregate
payoff increases as coalitions increase in size. With positive externalities, the
payoff to those outside the coalition increases in coalition size. For example,
international environmental agreements (IEAs), such as the Kyoto Protocol,
specify levels of global public good provision. IEAs typically suffer from the
free-rider problem, since the payoff to those outside the coalition increases
in membership (Barrett 1994). The grand coalition (full participation) is
socially optimal for superadditive, positive externality games (Hafalir 2008),
but generally is not stable (Yi 1997, Maskin 2003). Thus, any allocation of the
coalition’s worth must recognize the payoff outside the coalition, and must
be appropriate in the event that the grand coalition is not an equilibrium.

This paper considers a single coalition game and proposes an allocation
that maximizes stability. Of primary importance is what players would earn if
they were to leave the coalition, not what they add to a coalition when they
join. The approach seeks to minimize the incentive to deviate from a stable
coalition. The set of Nash equilibria is determined using the non-cooperative
approach from the cartel stability analysis of d’Aspremont et al. (1983). The
set of equilibrium coalitions is generally a non-singleton, and the allocation
has the same stability and robustness properties for all players and for all
elements of this set. The allocation results in Strong Nash equilibria, since no
subset of members has an incentive to leave a stable coalition. Similarly, no
subset of non-members has an incentive to collectively join a stable coalition
if the game is concave in this region.

The allocation presented below is robust to the maximum probability of
50% that players deviate from their individual best-response (intended ac-
tion). Under the allocation rule, each coalition member receives their pay-
off outside the coalition plus an equal share of the coalition’s surplus. Thus,
what a player earns outside the coalition increases their payoff, in contrast
to traditional allocations which are increasing in what a player contributes to
the coalition. The Shapley value (1953) is a weighted average of the marginal
contributions across all paths leading to the grand coalition that include that
player. Unlike the rule presented in this paper, the Nash bargaining (1953)
and Shapley (1953) allocations may divide the worth in the wrong direction,
potentially making a stable coalition unstable.

The Myerson (1977) generalization of the Shapley value allows for exter-
nalities and multiple coalitions, but explicitly assumes that the grand coali-
tion will form. More recently, Maskin (2003) has extended the Shapley value
to games with externalities and shows that the grand coalition may not form.
This approach derives an allocation from a randomization across all possi-
ble coalition formation paths. In Maskin’s sequential bidding process each
player’s allocation is determined by their marginal contribution, thus the
allocation reduces to the Shapley value in the absence of externalities. Simi-
larly, Macho-Stadler et al. (2007) consider marginal contributions and derive
an allocation which is an average of the Shapley value, whereas de Clippel
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and Serrano (2008) determine an allocation derived from both the marginal
contributions and the externalities. Their allocation is unique when the ex-
ternalities are symmetric, but results in a set with asymmetry. Again, all of
these papers assume that the grand coalition will form.

Bloch (1996) and Yi (1997) consider coalition stability under fixed al-
location rules and find that the grand coalition may not form. Yi consid-
ers games among (ex ante) symmetric players with an equal division of the
coalition’s worth. Bloch (1996) specifies an ordering where players propose
a coalition, and the coalition forms if unanimously agreed upon. However,
players are bound by their commitments to remain in the coalition, and the
sharing rule is exogenously fixed.

Traditional allocation rules work well for convex characteristic function
games without externalities (Winter 2002). In such games collective ratio-
nality requires that the grand coalition form since the core is non-empty.
The core consists of all imputations (allocations of the grand coalition’s
worth) that remain after eliminating those blocked by all possible subcoali-
tions. However, the Shapley value and the Nash (1953) bargaining solution
fare poorly when applied to single coalition games with positive externalities
(Barrett 1997, Botteon and Carraro 2001). Large coalitions are typically not
stable due to the free-rider problem. The resulting coalition is smaller than
could be obtained with a rule that recognizes this issue.

Recent work (McGinty 2007, Weikard 2009) shows that there exists a set
of allocations that satisfy the internal and external stability requirements of
d’Aspremont et al. (1983). McGinty (2007) chooses a unique allocation from
this set, with an arbitrary allocation based on a benefit–cost ratio for an IEA
model. The allocation involves an abatement requirement under a system
of tradable pollution permits. This new class of rules results in greater IEA
participation than found in Barrett (1997) and Botteon and Carraro (2001),
which implement the Shapley and Nash bargaining allocations. However,
the allocation in McGinty (2007) does not maximize the stability of a stable
coalition, nor is it the most robust when the game is subjected to uncertainty.

The rest of the paper is structured as follows. Section 2 defines coalition
surplus and stability. Section 3 presents the new allocation rule and a simple
example that compares the allocation with the Shapley value and the Nash
bargaining solution. Section 4 shows the rule risk-dominates any other al-
location. Section 5 provides an example with multiple equilibria and shows
how the allocation can be applied to an IEA. The final section concludes.

2. Defining Coalition Stability

Consider a finite set N of players, with cardinality n = |N |. Coalitions are
subsets of N , denoted as S, and contain s = |S| elements. In a single coalition
game there are 2n possible coalitions comprising the powerset of N . A single
coalition game, �(N , S, v) specifies the worth of the coalition, v(S), and the
payoff to the n − s players outside the coalition vi(S), i ∈ N \S. With positive
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externalities, the payoff to those outside the coalition, vi(S), strictly increases
in s . Let S−i denote the resulting coalition when member i leaves (S\{i}), let
S+i denote the resulting coalition when non-member i joins (S ∪ {i}), and
let N −S denote the set of players outside the coalition (N \S). An efficient
allocation rule, x(S), distributes the entire worth among coalition members.
The set of all efficient allocations is X :

X =
{

x ∈ R
s :

∑
i∈S

xi (S) = v(S)

}
. (1)

Nash equilibria of the open-membership game are called stable coali-
tions. In an open-membership game existing coalition members may not
block the accession of new members (Yi 1997). Nash equilibria satisfy
the internal and external stability requirements from the cartel literature
(d’Aspremont et al. 1983). Each member earns at least as much as they could
be leaving: xi(S) ≥ vi(S−i)∀i ∈ S and each outside player would earn less by
joining: xi (S+i ) < vi (S)∀i /∈ S. A coalition is called essential if there is some
non-negative surplus, σ(S), to distribute. The surplus is defined as the worth
of the coalition minus the sum of payoffs from individually leaving the coali-
tion:

σ(S) ≡ v(S) −
∑
i∈S

vi (S−i ). (2)

If a coalition is essential, then the worth is sufficient such that there exists
some efficient allocation rule x ∈ X that satisfies internal stability for all coali-
tion members. Similarly, if an enlarged coalition S+i has a negative surplus
for all i �∈ S, then coalition S is externally stable.

For superadditive games with positive externalities, Weikard (2009)
shows that there must be some stable (non-singleton) coalition. With super-
additivity, at least a two-member coalition must be stable.

LEMMA 1: For positive externality games, the set of stable coalitions is non-empty if
the game �(N , S, v) is superadditive.

Proof: See Weikard (2009).

3. The New Allocation Rule

The new allocation rule awards each member their outside payoff, plus an
equal share of the surplus. A simple example then shows that the Shapley
value and Nash bargaining solution may divide the worth in the wrong di-
rection, making a potentially stable coalition unstable. The rule is then com-
pared to the nucleolus, and it is shown that the allocation results in strong
Nash equilibria. Finally, if the game is concave in s beyond an equilibrium,
then stable coalitions are robust to multiple non-members joining.
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The new allocation rule, x∗(S), is:

x∗
i (S) = vi (S−i ) + 1

s

[
v(S) −

∑
i∈S

vi (S−i )

]
∀i ∈ S. (3)

The stability of a coalition is determined by the member with the small-
est payoff advantage to membership. Formally, a coalition S under some
allocation rule r is internally stable up to the payoff difference π r

i (S) ≡
ri (S) − vi (S−i ), where:

Stability(S) = min
i∈S

π r
i (S). (4)

PROPOSITION 1: Coalition S is stable if and only if it is stable with respect to
allocation rule x∗(S).

Proof: Under x∗ the payoff advantage of coalition membership to player i
is: π x∗

i (S) ≡ x∗
i (S) − vi (S−i ) = 1

s [v(S) − ∑
i∈S vi (S−i )] for all i ∈ S. By

definition, the coalition’s surplus is: σ(S) ≡ v(S) − ∑
i∈S vi (S−i ), so the

payoff advantage is: π x∗
i (S) = σ(S)

s ∀i ∈ S. If the surplus is non-negative,
σ(S) ≥ 0, then the coalition is internally stable. External stability ensures
no non-member has an incentive to join S : x∗

i (S+i ) < vi (S)∀i ∈ N−S ,
that is, σ S+i < 0∀i ∈ N −S . �
The allocation x∗(S) awards each member an equal share of the surplus.

The new allocation rule (3) is unique, always exists and maximizes the sta-
bility of an internally stable coalition. Any other efficient allocation is less
stable since the member with a smaller than equal share of the surplus has
a smaller incentive to remain a member. Furthermore, x∗(S) is unique and
exists even if the core is empty or the coalition is non-essential.1

A simple three-player example illustrates differences with traditional al-
locations.

Superadditivity is seen by adding the appropriate elements in the rows
of Table 1 to create an enlarged coalition. In all cases the worth of the en-
larged coalition exceeds the sum of the payoffs for the members in that row.
For example, v{1} + v2{1} < v{1, 2}, since 10 < 28. Positive externalities im-
ply that outside payoff is strictly increasing in coalition size. Table 1 shows
the grand coalition is the unique Nash equilibrium under x∗. The surplus
σ{1,2,3} ≡ v(N ) − ∑

i∈N vi (N−i ) = 15, thus in Table 2 each player receives five
more than their outside payoff under x∗.

1 I thank an anonymous Associate Editor for suggesting the current form of Proposition
1, and an anonymous referee for pointing out that x∗

i (S) could be negative, even in a
game where all worths and outside payoffs are strictly non-negative. This could occur if
a coalition is unstable, vi(S) is small, and the surplus σ S is sufficiently negative such that:
vi (S) <

σS
s

.
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Table 1: Example 1

Coalition worth v(S) Outside payoff vi(S), i �∈ S

v({∅}) = 0 vi = 0 ∀i ∈ N
v({1}) = 4 v2 = 6, v3 = 8
v({2}) = 8 v1 = 10, v3 = 12
v({3}) = 12 v1 = 14, v2 = 16
v({1, 2}) = 28 v3 = 20
v({1, 3}) = 44 v2 = 38
v({2, 3}) = 64 v1 = 27
v({1, 2, 3}) = 100

Table 2: Allocation rules for Example 1

Shapley value Nash bargaining

S x∗
i svi nbi

{1} x1 = 4 sv1 = 4 nb1 = 4
{2} x2 = 8 sv2 = 8 nb2 = 8
{3} x3 = 12 sv3 = 12 nb3 = 12
{1, 2} x1 = 16, x2 = 12 sv1= 12, sv2= 16 nb1= 12, nb2= 16
{1, 3} x1 = 25, x3 = 19 sv1= 18, sv3= 26 nb1= 18, nb3= 26
{2, 3} x2 = 34, x3 = 30 sv2= 30, sv3= 34 nb2= 30, nb3= 34
{1, 2, 3} x1= 32, x2= 43, x3= 25 sv1 = 22, sv2 = 34,

sv3 = 44
nb1 = 29.3, nb2 = 33.3,

nb3 = 37.3

Note. Payoffs for the Nash equilibrium coalition structures are in bold.

The grand coalition has a positive surplus, but is not stable under the
Shapley value or the Nash bargaining solution. Under both the Shapley value
and Nash bargaining solution, the set of Nash equilibria consists of all the
two-member coalitions in Table 2. For Shapley, both players 1 and 2 have an
incentive to leave the grand coalition, while under Nash bargaining player 2
has an incentive to leave. Player 3 has the highest marginal contributions in
Table 1, but the lowest payoff outside the grand coalition. Thus, the Shapley
value awards the most to player 3 and that player has no incentive to leave
the grand coalition.

The allocation x∗ bears resemblance to the nucleolus (Schmeidler
1969). The nucleolus is an efficient division of the grand coalitions worth
(imputation) which minimizes the largest deficit d(x) across all coalitions.
The deficits are the difference between the allocation of the grand coali-
tion’s worth and the worths of all possible coalitions, i.e., for any coalition S
and imputation x, d(x) = v(S) − ∑

i∈S xi(N ). The nucleolus seeks to mini-
mize the dissatisfaction of any subset of players by choosing the imputation
that minimizes the largest deficit. By contrast, the allocation x∗ minimizes
the dissatisfaction relative to a player’s outside payoff vi(S), not the worth
of coalitions containing player i . Furthermore, x∗ is coalition specific, i.e.,
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x∗ for player i changes in S, while the nucleolus is determined by the grand
coalition. When the grand coalition is a Nash equilibrium, x∗ only considers
the worth of the grand coalition, v(N ), and the outside payoffs, vi(N −i), not
the worth of any other coalition, v(S).

A further refinement is that of a strong Nash equilibrium (SNE). An SNE
is robust to deviations by multiple members.

PROPOSITION 2: Stable coalitions under allocation x∗ are strong Nash equilibria
in a superadditive single coalition game with positive externalities.

Proof: Internally stable coalitions S satisfy: x∗
i (S) ≥ vi (S−i )∀i ∈ S. Suppose a

proper subset of coalition members, R ⊂ S, with cardinality r = |R| ≥ 2,
leaves the coalition and earns payoff vi(S−R)∀i ∈ R . With positive exter-
nalities, vi(S) is strictly increasing in s . Thus, vi (S−R) < vi (S−i ) < x∗

i (S)
and no subset of S has an incentive to collectively leave the coalition.
Therefore, under x∗, all stable coalitions are strong Nash equilibria. �
A similar argument shows that multiple non-members have no incen-

tive to join a stable coalition S if the game is concave for coalitions larger
than S.

PROPOSITION 3: Suppose the game is concave for coalitions larger than S. Then
no subset of noncoalition members R ⊆ N −S has an incentive to join S.

Proof: Positive externalities imply outside payoff strictly increases in coali-
tion size, vi (S+ j−i ) > vi (S−i )∀i ∈ S, j ∈ N −S . That is, all coalition mem-
bers have a greater outside payoff once non-member j joins. Concav-
ity over this range implies that an outside player contributes less to the
worth, the larger the coalition: v(S+i+ j ) − v(S+i ) < v(S+ j ) − v(S). The
proof of Proposition 1 shows coalition S is internally stable when σ S

> 0 and externally stable when x∗
i (S+i ) < vi (S)∀i ∈ N−S , that is, σ S+i

< 0∀i ∈ N −S . Therefore, when S is stable, σ S+i − σ S < 0. Thus, σ S+i

− σ S < 0 implies σS+i+ j − σS+i < σS+i − σS < 0, since σS+i+ j − σS+i =
v(S+i+ j ) − ∑

k∈S+ j+i
vk(S+ j+i−k) − v(S+i ) + ∑

j∈S+i
v j (S+i− j ). By concav-

ity, v(S+i+ j ) − v(S+i ) < v(S+i ) − v(S), and by positive externalities∑
k∈S+ j+i

vk(S+ j+i−k) >
∑

j∈S+i
v j (S+i− j ), thus σS+i+ j − σS+i < σS+i − σS .

Similarly, σS+R − σS+i < σS+i − σS . Thus, if coalition S is stable, then S+R

is unstable for all R ⊆ N −S . �
However, as example 2 in Section 5 will illustrate, when there are multi-

ple Nash equilibria, stable coalitions can be obtained when a member leaves
and a non-member joins. That is, multiple deviations from one Nash may
result in coalitions that are also Nash equilibria. Section 4 shows that the al-
location risk-dominates any other efficient allocation, since it is robust to the
largest possible deviation probability. It considers all possible deviations, and
the robustness of stable coalitions under x∗.
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4. Risk Dominance

Proposition 1 showed that the allocation x∗ maximizes stability, compared to
all other efficient allocation rules. Next, the risk properties of the allocation
rule are considered. Given uncertainty about the actions of other players,
it is shown that the allocation rule risk dominates all other efficient alloca-
tions (Harsanyi and Selton 1988).2 An allocation risk dominates if member-
ship remains a best-response for the greatest degree of uncertainty regarding
other players membership decisions. From the game in the previous sections
�(N , S, v) we add the (independent) probability ε ∈ (0, 1) that each player
chooses a different action, given a stable coalition S. Thus, there is an ε prob-
ability that each member leaves and an ε probability that each non-member
joins.3 Note that these decisions are individually irrational since, by defini-
tion, coalition S is stable. However, multiple deviations may lead to stable
coalitions, that is, both S and S−i+j may be stable.

Define the set of players that deviate as T , where T ⊆ N and |T | = t . The
probability of a given number of deviations t is determined by a binomial dis-
tribution. The resulting coalition depends on which players tremble, not just
the number. Previously, the payoff advantage to coalition membership under
x∗ was πi (S) ≡ x∗

i (S) − vi (S−i ). With deviations, the game is then G(N , S, v,
ε, T) and the payoff advantage becomes an expected value: π i(S, T , ε). It
is assumed that the deviations are independent across players (Mas-Colell
et al. 1995) and that players intend to play their best-response from the ac-
tion set A = {in, out} . A stable coalition S, under allocation rule r , is robust
to a deviation rate ε∗(S) where:

ε∗(S) = min
εi ∈S

max
εi ∈(0,1)

π r
i (S, T, ε) ≥ 0. (5)

Proposition 1 showed that if a coalition is stable for one member under the
allocation rule x∗(S), then it is stable for all members.

With deviation rate ε, all 2n coalitions are obtained with probability given
by a binomial distribution. Under x∗(S) the expected payoff advantage for
member i is

π x∗
i (S, T, ε) =

n∑
t=0

n!
t!(n − t)!

εt (1 − ε)n−t [
x∗

i (S, T) − vi (S−i , T)
]
.

2 Harsanyi and Selton (1988) define risk-dominance as a relationship between two Nash
equilibria. In this paper, risk-dominance is used to compare allocations at a given Nash
equilibrium. It is shown that x∗(S) risk-dominates all other allocations, at all Nash equilib-
ria.
3 This notion of stability is similar to trembling-hand perfection. Robustness of a coalition
is the minimum tremble rate such that there is a payoff advantage to remaining in a stable
coalition. In this context, there is probability ε ∈ (0, 1) that each player trembles and
chooses a different action.
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PROPOSITION 4: Under allocation rule x∗(S), the payoff advantage to coalition
membership π x∗

i (S, T, ε) in the game with uncertainty is an expected value of the
surplus shares containing player i .

Proof: Using the definitions of σ S and x∗ in Equations (2) and (3), and ex-
panding the binomial distribution, each surplus containing player i is re-
alized twice. Each surplus, σ S , has two terms, with the following relation-
ship between coefficients: (i) ε j(1 − ε)n−t and (ii) εk(1 − ε)n−k , where
| j − k| = 1. �

For the example in Tables 1 and 2, the expected payoff to player 1 from
remaining a member of the stable grand coalition is

n∑
t=0

n!
t!(n − t)!

εt (1 − ε)n−t [
x∗

1 ({1, 2, 3}, T)
]

= (1 − ε)3
[
x∗

1 ({1, 2, 3})]
+ ε(1 − ε)2

[
x∗

1 ({1, 2}) + x∗
1({1, 3}) + v1({2, 3})]

+ ε2(1 − ε)
[
x∗

1 ({1}) + v1({2}) + v1({3})] + ε3 [v1(∅)] . (6)

Note that all eight coalitions are reached with a positive probability, with the
stable grand coalition most likely, and the empty coalition least likely. The
expected payoff to player 1 from leaving the grand coalition is

n∑
t=0

n!
t!(n − t)!

εt (1 − ε)n−t [v1({2, 3}, T)]

= (1 − ε)3v1({2, 3}) + ε(1 − ε)2
[
x∗

1 ({1, 2, 3}) + v1({2}) + v1({3})]
+ ε2(1 − ε)

[
x∗

1 ({1, 2}) + x∗
1 ({1, 3}) + v1(∅)

] + ε3
[
x∗

1 ({1})] . (7)

Thus, the expected payoff advantage to coalition membership, the differ-
ence between (6) and (7), is

π x∗
1 (S, T, ε) = (1 − ε)3

[
x∗

1 ({1, 2, 3}) − v1({2, 3})]
+ ε(1 − ε)2

[
x∗

1 ({1, 2}) − v1({2}) + x∗
1({1, 3}) − v1({3})

+ v1({2, 3}) − x∗
1 ({1, 2, 3})]

+ ε2(1 − ε)
[
x∗

1 ({1}) − v1(∅)

+ v1({2}) − x∗
1 ({1, 2}) + v1({3}) − x∗

1 ({1, 3})]
+ ε3

[
v1(∅) − x∗

1 ({1})] . (8)
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Using the definitions of the allocation x∗ and the surplus σ S in Equations
(3) and (2), the expected payoff advantage reduces to

π x∗
1 (S, T, ε) = (1 − ε)3

[σ{1,2,3}
3

]
+ ε(1 − ε)2

[
σ{1,2}

2
+ σ{1,3}

2
− σ{1,2,3}

3

]

+ ε2(1 − ε)
[
σ{1} − σ{1,2}

2
− σ{1,3}

2

]
+ ε3

[−σ{1}
]
. (9)

Note that under x∗ each surplus containing player 1 appears twice, once with
a positive and once with a negative coefficient. Furthermore, each surplus
differs by one power of ε. Analogous expressions can be obtained for players
2 and 3, containing all four surpluses that each player contributes to. This
leads directly to the robustness of allocation rule x∗.

PROPOSITION 5: The allocation rule x∗ is risk-dominant. It is robust to a devia-
tion rate of 0.5, larger than any other allocation.

Proof: The expected payoff difference π x∗
i (S, T, ε) is:∑n

t=0
n!

t!(n−t)!ε
t (1 − ε)n−t [x∗

i (S, T) − vi (S−i , T)]. Thus, π x∗
i (S, T, ε) = 0

for ε = 0.5. This is true for all i ∈ S, and for all stable coalitions
S. Consequently, the coalition is stable up to the maximum deviation
rate 0.5. Consider the set X (S) of all efficient allocations that are not
x∗(S). X (S) = {∑i∈S xi (S) = v(S) : xi (S) �= x∗

i (S) for some i ∈ S}. By ef-
ficiency,

∑
i∈S xi (S) = ∑

i∈S x∗
i (S) = v(S) and xi (S) �= x∗

i (S) for some i
∈ S. Then there exists some i ∈ S, such that xi (S) < x∗

i (S). Thus, for all
efficient rules x(S) that are not x∗(S), π x

i (S, T, ε) = 0 for ε < 0.5. �

5. An Illustration and Comparison with Alternative
Allocation Rules

Example 2 in Table 3 considers a four-player (i = 1, 2, 3, 4) superadditive
game with positive externalities, generating multiple stable coalitions under
x∗. The grand coalition is not stable under any allocation since σ {1,2,3,4} < 0.

To show risk-dominance, consider the stable coalition {1, 2, 3} and prob-
ability ε that each player deviates. The payoff advantage for player 1 remain-
ing in stable coalition {1, 2, 3} is

π x∗
1 ({1, 2, 3}, T, ε)

= (1 − ε)4
[σ{1,2,3}

3

]
+ ε(1−ε)3

[
σ{1,2,3,4}

4
+ σ{1,2}

2
+ σ{1,3}

2
−σ{1,2,3}

3

]

+ ε2(1 − ε)2
[
σ1+σ{1,2,4}

3
+σ{1,3,4}

3
−σ{1,2,3,4}

4
− σ{1,2}

2
−σ{1,3}

2

]

+ ε3(1 − ε)
[
σ{1,4}

2
− σ{1,2,4}

3
− σ{1,3,4}

3
− σ{1}

]
+ ε4

[
−σ{1,4}

2

]
. (10)
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Table 3: Example 2

Coalition
and worth Outside payoff Surplus Allocation

v(S) vi(S), i �∈S σ(S) x∗
i (S)

v({∅}) = 0 vi = 0∀i ∈ N
v({1}) = 30 vi = 10∀i �= 1 σ {1} = 30 x1 = 30
v({2}) = 40 vi = 20∀i �= 2 σ {2} = 40 x2 = 40
v({3}) = 50 vi = 30∀i �= 3 σ {3} = 50 x3 = 50
v({4}) = 60 vi = 40∀i �= 4 σ {4} = 60 x4 = 60
v({1, 2}) = 110 v3 = 40, v4 = 50 σ {1,2} = 80 x1 = 60, x2 = 50
v({1, 3}) = 130 v2 = 60, v4 = 80 σ {1,3} = 90 x1 = 75, x3 = 55
v({1, 4}) = 150 v2 = 80, v3 = 90 σ {1,4} = 100 x1 = 90, x4 = 60
v({2, 3}) = 180 v1 = 50, v4 = 60 σ {2,3} = 130 x2 = 95, x3 = 85
v({2, 4}) = 210 v1 = 60, v3 = 90 σ {2,4} = 150 x2 = 115, x4 = 95
v({3, 4}) = 240 v1 = 70, v2 = 80 σ {3,4} = 170 x3 = 125, x4 = 115
v({1, 2, 3}) = 270 v4 = 160 σ {1,2,3} = 120 x1= 90, x2= 100, x3= 80
v({1, 2, 4}) = 310 v3 = 150 σ {1,2,4} = 120 x1= 100, x2= 120, x4= 90
v({1, 3, 4}) = 330 v2 = 130 σ {1,3,4} = 90 x1= 100, x3= 120, x4= 110
v({2, 3, 4}) = 350 v1 = 140 σ {2,3,4} = 120 x2= 120, x3= 130, x4= 100
v({1, 2, 3, 4}) = 500 σ {1,2,3,4} = −80 x1 = 120, x2 = 110,

x3 = 130, x4 = 140

Note. Stable coalitions are in bold.

Each σ that contains player 1 appears twice, with one positive and one nega-
tive coefficient. Hence, it is straightforward to show that the payoff difference
is zero when ε = 0.5, for all possible values of the σ s. Using the example in
Table 3, (10) simplifies to

π x∗
1 ({1, 2, 3}, T, ε = 40(1 − ε))4 + 25ε(1 − ε)3

+ 35ε2(1 − ε)2 − 50ε3(1 − ε) − 50ε4, (11)

where π x∗
1 ({1, 2, 3}, T, ε) = 0 for ε = 0.5, and is positive for all ε ∈ (0, 0.5).

The partial derivative of π x∗
1 ({1, 2, 3}, T, ε) with respect to any σ results in an

expression of the form ∂π x∗
1 ({1,2,3},T,ε)

∂σ{1,2,3}
= (1−ε)4

3 − ε(1−ε)3

3 , which will equal zero

only for ε = 0.5. Similarly, for all other players π x∗
i yields a payoff difference

in ε and all σ s that contain player i . Again, the critical value is ε = 0.5 for
all i ∈ N , as shown formally in the previous section. Using the definition of
dominance in Equation (5) the coalition is robust up to the maximum value
of ε∗ = 0.5.

5.1. Comparison with Alternative Allocation Rules

Table 4 compares the allocations under x∗, the Shapley value and the Nash
bargaining solution for Example 2.
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The ordinal ranking of payoffs differs across rules. For example, coali-
tion {1, 2, 3} shows that under x∗ the highest payoff, of 100, is for player 2.
By contrast, player 3 has the highest payoff under the Shapley and Nash
bargaining allocations. Player 3 receives the highest payoff under Shapley
and Nash, but the lowest payoff under x∗. Except for the singletons, Exam-
ple 2 shows this result is obtained systematically. This opposite ordinal rank-
ing is due to the different threatpoints. For the Nash bargaining rule the
relevant threatpoints are the singletons. The Shapley value is composed of
the marginal contribution across all possible subcoalitions. For instance, this
means that player 1 gets a greater share of the worth of {1, 2} under x∗ than
player 2, even though v{1} = 30 and v{2} = 40. Unlike the Shapley value,
one’s contribution to subcoalitions is not what increases one’s share of the
allocation. This result occurs because the game is open-membership. While
player 2 would prefer to join a coalition with 4 instead, it cannot stop 1 from
joining. Open membership describes most international agreements where
the decision is from {in, out} and one cannot dictate in with one player rather
than another. This also highlights why the Shapley value has fared so poorly
in IEA applications (e.g., Barrett 1997, Botteon and Carraro 2001). Note that
the relevant question is not “what would you bring if you were to join,” but
rather “what would I get if I were to leave.” A final example shows how the
allocation can be implemented to generate abatement requirements in an
environmental agreement.

5.2. International Environmental Agreements

The allocation x∗(S) has many practical applications, including the design of
IEAs such as the Kyoto Protocol. Greenhouse gas abatement is a global pub-
lic good, generating positive externalities to nations outside the agreement
(free-riders). The Kyoto Protocol is an open-membership single-coalition
game where existing coalition members may not prevent a nation from join-
ing. Signatories are coalition members who choose an aggregate abatement
level and then allocate this among members via an abatement requirement.
Pollution permit trading among members allows the aggregate abatement
level to be reached at the lowest cost, thus maximizing the coalition’s worth.
The individual abatement requirements then define an allocation of the
coalition’s worth given actual abatement and permit revenue.

The seminal IEA paper is Barrett’s (1994) model with declining marginal
benefit and increasing marginal cost. McGinty (2007) extends the model
to allow for asymmetric benefit shares and marginal abatement cost slopes.
Global benefit is a concave function of aggregate abatement: B(Q) =
b(aQ − Q 2

2 ), where
∑

i∈N qi = Q , a > 0, and b > 0. Nation i receives ben-

efit share αi , thus Bi (Q) = bαi (aQ − Q 2

2 ), where
∑

i∈N αi = 1. Abatement

costs are asymmetric Ci (qi ) = ci q 2
i

2 , and marginal abatement costs are rays
from the origin with slope c i . Net benefit to nation i is Bi(Q) − Ci(qi). The
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IEA is a coalition of signatories that choose a coalition level of abatement

Q(S) = ∑
i∈Sqi to maximize the worth: v(S) = ∑

i∈S[bαi (aQ − Q 2

2 ) − ci q 2
i

2 ].
All non-signatories choose qi to maximize individual payoff: Bi(Q) − Ci(qi).
Coalition worth is maximized by choosing the least cost allocation of abate-
ment level Q(S). This occurs where the marginal abatement cost of the last
unit is equated across members: c iqi = p (S)∀i ∈ S.

The allocation rule x∗(S) can be implemented by a system of tradable
pollution permits with price p (S). The coalition specifies an abatement
requirement q r

i for each member, such that the sum of requirements is
optimal for that coalition, Q(S) = ∑

i∈S q r
i (S) . Therefore, nation i earns

permit revenue equal to: p (S)[qi (S) − q r
i (S)]. Note that the permit rev-

enue is a zero-sum system of transfers. In this context, allocation rules
differ by their abatement requirements. The payoff from leaving the coali-
tion is: vi(S−i) = Bi(Q) − Ci(qi) and the surplus of any coalition is: σ(S) =
v(S) − ∑

i∈Svi(S−i). The outside payoff is Bi(Q) − Ci(qi), where abate-
ment is obtained for coalition structure S−i and

∑
i∈S x∗

i (S) = v(S). The al-
location x∗(S) then results in abatement requirements that solve: x∗

i (S) =
vi (S−i ) + σ(S)

s .

6. Conclusion

This paper presents a new allocation rule that maximizes coalition stability
in the presence of positive externalities. The rule awards each player their
payoff if they were to individually leave the coalition, plus an equal share of
the coalition’s surplus. Contrary to classical rules like the Shapley value, the
relevant consideration is not what a player adds to a coalition, but rather
what a player would get if they were to leave the coalition. The rule is unique,
always exists, and is robust up to the maximum degree of uncertainty regard-
ing players’ decisions. Under the allocation, coalitions are robust to multiple
defections and, when the game is concave, to multiple non-members joining.

The rule has practical application such as, but not limited to, the pro-
vision of global public goods. Provision generates positive externalities to
non-members and hence the free-rider problem implies the socially optimal
grand coalition is not an equilibrium. Under the actual Kyoto treaty the in-
dividual abatement requirements are ad hoc. They do not address coalition
stability, nor do they consider robustness if a nation chooses an action that
is not a best-response. Clearly, the proper abatement requirements can im-
prove both participation and stability of the agreement. The more robust the
allocation, the more participation remains a best-response given uncertainty
about others’ actions.
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