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Abstract This paper examines the interdependence between imperfect competition and
emissions trading. We particularly analyze the long run equilibrium in a two-sector (‘clean’
and ‘dirty’) model with Cournot competition among firms who face a fixed cost of production.
The clean sector is defined as the sector with the highest long run cost margin on emissions.
We compare the welfare implications of a cap-and-trade scheme with an emissions trading
scheme based on relative intensity standards. It is shown that a firm’s long run equilibrium
output in the clean or dirty sector does not depend on the emissions trading format, but only
depends on the fixed cost of producing in the respective sector. Intensity standards can result
in clean firms selling allowances to dirty firms, or dirty firms selling to clean firms. The
former outcome yields higher welfare. It is demonstrated that cap-and-trade outperforms the
intensity-based trading scheme in terms of long run welfare with free entry and exit. With
intensity standards the size of the clean sector is too large.
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1 Introduction

Governmental authorities increasingly embark upon emissions trading schemes to efficiently
curtail environmental pollution. This paper analyzes and compares the two main market
configurations for organizing trade in emission allowances: cap-and-trade versus intensity
standards. Although tradable pollution markets have been studied extensively in recent years,
a comparison of these pollution market designs in an imperfectly competitive, multi-sector
model is still lacking. The aim of this paper is to fill this gap by focusing on the connec-
tion between emissions trading and market structure. Since polluting industries are often
concentrated in nature, we allow firms to strategically interact in an imperfectly competi-
tive output market and assess the sectoral implications of emissions trading in the long run
equilibrium. Analyzing the interaction between emissions trading and output market effects
is an important dimension in policy assessments, since it is often not optimal to completely
eliminate the pollution-intensive sector, even though reducing pollution is the underlying
policy goal.

Cap-and-trade and intensity-based emissions trading represent schemes that are based on
an absolute cap on emissions and on relative emission intensities, respectively. Whereas
under cap-and-trade a control authority fixes the total supply of emissions, in the case
of intensity-based trading a source-specific level of emissions abatement is set, implying
a fixed average emissions intensity (e.g., Tietenberg 1999). Prime examples of cap-and-
trade schemes in the U.S. are the acid rain programme and the RECLAIM programme
to reduce sulfur dioxide and nitrogen oxide emissions from stationary sources in the Los
Angeles basin. The European counterpart of large scale cap-and-trade currently occurs
within the European Union Emissions Trading System (EU ETS) for carbon dioxide emis-
sions (e.g., Ellerman and Buchner 2007). In the 1980s the U.S. established intensity-
based trading arrangements between refineries as part of the lead phasedown (e.g., Hahn
and Hester 1989; Kerr and Newell 2003). Another more recent intensity-based scheme
is California’s Low Carbon Fuel Standard (Holland et al. 2009). In Canada an intensity-
based trading system was launched in 1996 under the Pilot Emission Reduction Tar-
get. This type of scheme is currently also one of the main design features of Canada’s
climate policy (Environment Canada 2007). Also for developing countries intensity tar-
gets have been suggested (Philibert and Pershing 2001), which has entered the post-
Kyoto emissions trading design debate (e.g., Michaelowa et al. 2005; Jotzo and Pezzey
2007).

Our paper illustrates that entry and exit in the output market is a prime factor in the interplay
between sectoral choice, production and emissions trading. We show that a firm’s equilibrium
level of output in the long run does not depend on the specific design of the pollution market.
Under either a no-policy regime, cap-and-trade or intensity standards, equilibrium output in
the clean or dirty sector only depends on the fixed cost of producing in that sector. Due to
the existence of fixed cost, in our model we illustrate that in the long run equilibrium a firm’s
‘price-cost margin’ is therefore positive, even with free entry and exit. For a given level of
aggregate emissions in the long run, and given the zero-profit output level per firm, we find
that a cap-and-trade scheme generates higher welfare than emissions trading via intensity
standards. Relative to the first-best outcome, the size of the clean (dirty) sector is too large
(small) under the trading regime based on intensity standards.

These results complement and extend the finding by Helfand (1991), Fischer (2001) and
Holland et al. (2009) that intensity standards are generally inefficient, and the more recent
studies by Boom and Dijkstra (2009) and Holland (2012) showing that in the absence of
market power intensity standards cannot attain the first-best outcome whereas an absolute
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emissions trading scheme can.1 Boom and Dijkstra (2009) find that the welfare comparison
between the two schemes under imperfect competition is ambiguous in both the short run
and the long run. By contrast, we find in our specific setting that cap-and-trade yields higher
welfare in the long run.

Our welfare result may seem surprising in light of the literature. Boom and Dijkstra (2009)
and Holland (2012) show that cap-and-trade maximizes welfare under perfect competition
(in the short run and the long run), whilst emissions trading based on an intensity standard
does not. Boom and Dijkstra (2009) find that the welfare comparison is ambiguous under
imperfect competition. On the one hand, if competition is ‘close to’ perfect one would
expect the perfect-competition result of higher welfare under cap-and-trade. On the other
hand, output is higher under emissions trading via intensity standards, which counteracts the
output-reducing tendency of imperfect competition. The difference in results stems from our
assumption that the emission-to-output ratio in each sector is fixed. In Boom and Dijkstra
(2009) this ratio is variable, so that with intensity standards the industry can expand its output
while still implementing the pollution target by reducing its emission intensity. In the present
paper, emissions trading on the basis of intensity standards leads to an output expansion in
the clean sector and a (drastic) output reduction in the dirty sector. This is contrary to the
optimal policy prescription, which is for both sectors to contract according to their relative
emission intensities. The latter is exactly what cap-and-trade achieves.

Allowing for the presence of market power in the output sector, our study also adds to
the literature that examines the interdependence between market structure and environmental
policy. Seminal contributions in this domain are Buchanan (1969) and Barnett (1980), which
show that the optimal emission tax for a monopoly falls short of the marginal damage from
pollution.2 Other studies that compare emissions trading on the basis of absolute and relative
targets have ignored the multi-sectoral implications under imperfect competition. Dewees
(2001) makes a welfare comparison between the two emissions trading schemes in a single
perfectly competitive industry, whereas Boom and Dijkstra (2009) make the comparison for
a perfectly as well as an imperfectly competitive sector. Fischer (2003) analyzes emissions
trading between two perfectly competitive sectors, one of them regulated by a cap-and-trade
scheme and the other by a scheme based on intensity standards. Boom and Dijkstra (2009)
analyze the same scenario for two perfectly competitive and two imperfectly competitive
sectors.

The paper proceeds as follows. In the next section we introduce the benchmark model.
Section 3 develops and analyzes the emissions trading regimes, followed by a welfare com-
parison in Sect. 4. Conclusions are given in Sect. 5.

2 Basic Model

Consider an imperfectly competitive market consisting of n ≥ 2 firms that choose output to
maximize profit. Firms can choose to produce output in either one of two sectors i = c, d ,
with i = c referring to the clean sector and i = d denoting the dirty sector. We shall define
‘clean’ and ‘dirty’ at the end of this section. For simplicity, we treat the number of firms in
each sector, ni , as a continuous variable.3

1 Note that Holland (2012) does not consider an absolute emissions trading scheme explicitly as we do but
makes use of an emission tax instead, which is equivalent to an absolute cap on emissions.
2 See Millimet et al. (2009) for a survey on the interaction between environmental policy and market structure.
3 This is a standard assumption in the literature; Boom and Dijkstra (2009) is an exception.
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Firm-level emissions ei > 0 are assumed to vary proportionally with firm-level output
qi > 0 for both goods:

ei = εi qi i = c, d (1)

with εi > 0. Aggregate output produced by firms in the clean and dirty sector is simply
Qi = ni qi , with the two sectors facing the following inverse demand functions:

pi = αi − Qi , i = c, d (2)

where pi is the price of good i .4 A higher αi (relative to α−i ) implies an absolute advantage
in demand (at equal output levels) enjoyed by the firm in sector i . Put differently, αi − α−i

reflects a price premium for sector i . Production in sector i incurs fixed cost Fi > 0 and
constant marginal cost ci > 0. Following Dixit (1979), the cost margin for a firm in sector i
is αi − ci > 0, and a firm in sector i has a margin advantage if αi − ci > α−i − c−i . Further,
let us define a firm’s full marginal cost, ki , as its marginal cost of production, ci , plus its cost
of emissions from the extra output. Without environmental policy, ki = ci . We shall see that
with emissions trading based on an absolute cap and a relative intensity standard, ki is given
by (16) and (25), respectively. Both with and without environmental policy, ki is a constant
to the individual firm.

We can now solve for the profit (πi )-maximizing output level of a firm with full marginal
cost ki and fixed cost Fi . From (2):

max
qi

πi = (
αi − Q̂i − qi − ki

)
qi − Fi i = c, d (3)

with Q̂i the aggregate output of all other firms in sector i . The first-order condition is:

αi − Q̂i − 2qi − ki = 0. (4)

By symmetry, Q̂i = (ni − 1)qi so that the equilibrium quantities are:

qi = αi − ki

ni + 1
i = c, d. (5)

Substituting (5) and Q̂i = (ni − 1)qi back into (3), profits can be written as:

πi =
(

αi − ki − ni (αi − ki )

ni + 1

)
qi − Fi = q2

i − Fi i = c, d. (6)

In the long run firms exit from a sector when they incur losses, whereas profits attract new
firms, until profit is driven to zero. Setting πi = 0 in (6), we find:

Proposition 1 Absent environmental policy, or with emissions trading either in the form of
an absolute cap or on the basis of relative intensity standards, the long run equilibrium output
per firm in sector i is:

qi = fi ≡ √
Fi i = c, d. (7)

Let us now complete the solution for the unconstrained benchmark, i.e., the long run
equilibrium without environmental policy. Substituting ki = ci and (7) into (5) yields:5

n̄i = αi − ci − fi

fi
i = c, d. (8)

4 Note that the slope of both inverse demand functions is normalized to −1. In section “Normalization of the
Slope of a Demand Function” in the Appendix it is demonstrated that this normalization procedure has no
impact on the subsequent analysis.
5 Overbars represent the value of a variable in the unconstrained benchmark.
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An interior equilibrium exists (e.g., n̄i > 0) if and only if:

γi ≡ αi − ci − fi > 0 i = c, d (9)

where γi can be seen as the long run cost margin on production. In the long run, each unit of
output should not only cover its marginal production cost, but also contribute its share fi to
cover the fixed cost, Fi . Equations (7)–(9) then imply:

n̄i q̄i = n̄i fi = γi i = c, d. (10)

The total amount of emissions generated by the firms in the clean and dirty sector in the
unconstrained benchmark is:

Ē = εcn̄cq̄c + εd n̄d q̄d = εcγc + εdγd , (11)

where the second equality follows from (10).
We shall define the clean sector as the sector with the greater long run cost margin on

emissions γi/εi :6

γc

εc
>

γd

εd
, (12)

with γi given by (9) and εi by (1). This definition implies that when total emissions are
below the unconstrained level (11) and the number of clean and dirty firms is equal, clean
production contributes more to welfare than dirty production. Hence, it is optimal to have
more clean firms than dirty firms.7

3 Emissions Trading

This section applies the model developed in the previous section to emissions trading on the
basis of an absolute cap on emissions in the form of a cap-and-trade scheme (Sect. 3.1) and
emissions trading on the basis of a relative intensity standard (Sect. 3.2). We denote these
two emissions trading schemes by A and R, respectively.

We shall analyze and compare the trading schemes for a given level L of total emissions:

L = εcncqc + εdndqd = εcnc fc + εdnd fd . (13)

The second equality follows from Proposition 1. Throughout the analysis we assume that
total emissions L exceed a threshold Lmin:

L > Lmin ≡ γcεc = Ē − γdεd , (14)

where the second equality follows from (11). Condition (14) is necessary and sufficient for
interior equilibria (with nc, nd > 0) to exist with emissions trading under the two design
configurations.

In order to ensure that pi > 0 (i = c, d) we shall assume:

αc −
γc +

√
γ 2

c + γ 2
d

2
> 0. (15)

6 Since γi is measured in money per unit of output i and εi is measured in emissions per unit of output i, the
long run cost margin on emissions, γi /εi , is measured in money per unit of emission.
7 This follows formally from Eq. (36) given in section “Proofs” in the Appendix.
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Note that while we consider imperfect competition in the output market, it is assumed that
firms act as price takers in the tradeable pollution market. Although this may seem restrictive,
it is a credible assumption and not in conflict with the imperfectly competitive nature of the
output market. For instance, the EU ETS for carbon emissions allows trade between firms
from different industries such as electric power plants, glass manufacturers, steel producers,
the cement industry as well as firms from the paper industry. The pollution market can
therefore be competitive while competition in the respective output markets is imperfect.

3.1 Cap-and-Trade

The regulator auctions allowances, each valid for one unit of emissions. The allowances in
total sum up to the absolute cap, L , and the allowance price, v, is established on the pollution
market. The profit-maximization problem of firm i, taking the allowance price as given, can
then be written as (3) with:

k A
i = ci + vεi . (16)

Equation (16) shows that the full marginal production costs under cap-and-trade, k A
i , equal

marginal production costs, ci , plus the cost of buying the allowances for the εi emissions
from the extra output. We see that a cap-and-trade policy increases the marginal cost of both
the dirty and the clean firm.

The cap is non-binding if it is greater or equal to the unconstrained level of emissions
given by Eq. (11), i.e., if L ≥ Ē . A non-binding cap on pollution will result in an allowance
price v = 0; a cap L < Ē is binding, implying that the allowance price v > 0. This ensures
that the demand for allowances is equal to its supply shown in (13). Using (5), (7), (13) and
(16), we can now solve for n A

c , n A
d and v for a given level of total emissions L . The long run

equilibrium allowance price under a cap-and-trade regime is:

v = Ē − L

ε2
c + ε2

d

, (17)

where Ē is the unconstrained emission level given by (11).
The long run equilibrium number of firms is:

n A
i = ε−i (ε−iγi − εiγ−i ) + εi L

fi
(
ε2

c + ε2
d

) i = c, d. (18)

Since n A
i is increasing in L < Ē, we have:

n A
i < n̄i i = c, d. (19)

By (12), n A
c in (18) is always positive. However, n A

d > 0 if and only if:

L > L A
min ≡ εc (εdγc − εcγd)

εd
= Ē − γd

(
ε2

c + ε2
d

)

εd
. (20)

The second equality follows from (11). Comparing L A
min in (20) to threshold Lmin in (14), one

directly obtains Lmin − L A
min = γdε2

c
εd

> 0. Condition (14) is therefore a sufficient condition
for (20) to hold, meaning that the cap is sufficiently lax such that both the clean and dirty
sector coexist.
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Let us illustrate our findings with a specific numerical example where:

εc = 1, εd = 2, αc = αd = α = 300, cc = cd = c = 92, fc = fd = f = 8, (21)

so that γc = γd = γ = 200 by (9) and qc = qd = f = 8 by (7). To simplify the graphical
exposition, we assume that the two sectors are identical except for their emissions-to-output
ratios. Figure 1 shows the inverse demand curve for sector i = c, d as pi (Qi ) and the long
run average production costs as c + f . The unconstrained benchmark is at point B with
Qi = 200, pi = 100, ni = 25 and Ē = 600.

Figure 1 illustrates the long run cap-and-trade equilibrium for our numerical example
(21).8 We take as our starting point a certain value of Qd as the equilibrium value of total
dirty good production for a certain exogenous emission cap L (with the value of L yet to be
inferred). We wish to know what would be the equilibrium value of Qc that goes with this
value of Qd . Once we have established the equilibrium combination of Qd and Qc, we can
infer the associated exogenous level of L from (13) and (21):

L = εc Qc + εd Qd = Qc + 2Qd . (22)

Returning to the question of what is the equilibrium value of Qc for a given equilibrium
value of Qd , this follows from (18) and (21) with Qi = ni fi (i = c, d):

Qc = 1

εd
(Qdεc + γcεd − γdεc) = Qd

2
+ 100. (23)

When Qd = 120, for instance, Qc = 160. In order to illustrate this relation between the
equilibrium values of Qc and Qd in Fig. 1, it is useful to define pA

c (Qd) as the long run
equilibrium price of the clean good, given that Qd is the long run equilibrium quantity of the
dirty good with emission trading based on cap-and-trade where the exogenous level of total
emissions is given by (22). From (2), (21) and (23), the expression for pA

c (Qd) in general
and for our numerical example is, respectively:

pA
c (Qd) = αc − 1

εd
(Qdεc + γcεd − γdεc) = 200 − Qd

2
. (24)

Figure 1 shows the pA
c (Qd) curve for our numerical example. We see that when Qd = 120,

then pc = 140 so that Qc = 160. Applying (22), we see that the combination Qd =
120, Qc = 160 is the equilibrium outcome for the exogenous emission cap of L = 400. The
complete characterization of the cap-and-trade equilibrium is then: When L = 400, then
Qd = 120, pd = 180, nd = 15, Qc = 160, pc = 140, nc = 20, and by (17) v = 40. For
any given Qd , the pA

c (Qd) curve given by (24) is halfway between pi (Qi ) and c + f . This
is because by (3) with π = 0 and (16), the vertical distance between pd and c + f equals
vεd , while the vertical distance between pc and c + f equals vεc. The ratio between the two
distances is thus εd/εc, which equals 2 in our numerical example (21).

3.2 Intensity Standards

In contrast to a cap-and-trade system, consider now the case where the government sets a
pollution intensity standard δi for sector i = c, d . Under such an intensity-based trading
system, if a firm wants to emit more per unit than the standard allows, it can buy allowances
from firms that emit less per unit than the standard allows. The result is that, on average,

8 In Figs. 1 and 2 parameters and variables are shown in italics, while points (ordered pairs) are shown in
roman type.
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Fig. 1 Long run equilibrium with cap-and-trade and welfare optimum

the economy as a whole complies with the emission standard but the individual firm has the
flexibility to deviate from it. With our specification of the demand function as shown in (2)
we have implicitly defined one unit of good i such that when the price pi increases by one
unit, demand Qi decreases by one unit. However, there is no reason why the regulator should
adopt this definition of a unit and set δi = δ. We therefore allow δc to differ from δd .9

The profit-maximization problem of firm i, taking the allowance price under intensity
standards, w, as given, can then be written as (3) with:

k R
i = ci + w(εi − δi ). (25)

The full marginal production costs under intensity standards, k R
i , are equal to marginal pro-

duction costs, ci , plus the cost of buying the allowances for the extra emissions exceeding the
standard. Each extra unit of output comes with εi extra emissions as well as with permission
for δi extra emissions. If εi > δi , firm i has to buy allowances from other firms; if εi < δi ,

the firm can sell allowances.
Substituting (25) and (7) into (5), we find:

fi = αi − ci + w(δi − εi )

ni + 1
i = c, d. (26)

Using (7), the pollution market clears via the constraint:

nR
d fd(εd − δd) = nR

c fc(δc − εc). (27)

This constraint reveals the key difference in the functioning of the two different allowance
market configurations. Whereas the supply of allowances, L , is fixed under a cap-and-trade
regime, the supply of allowances under intensity standards—reflected by the right-hand side
of (27)—varies with aggregate clean output Q R

c = nR
c fc.

We now have four conditions for the long run equilibrium: (13) for the total level L of
emissions, (26) for each sector i, and (27). However, we have five variables: δc, δd , nc, nd

9 Note that the definition of a unit of production does not affect our definition of the clean and dirty sector
as given by (12), because the latter definition is in terms of the long run cost margin on emissions (see also
footnote 6).
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and w. This implies that the solution is not uniquely determined in the long run equilibrium.
In order to reduce the number of variables to four, let us define:

hi ≡ w(δi − εi ) (28)

as the revenue per unit of output that a firm in sector i receives from selling allowances.
In equilibrium, if hc is positive, hd must be negative and vice versa, as is clear from (27).
Substituting (28) into (26) and (27), respectively yields:

ni fi = γi + hi i = c, d, (29)

nc fchc = −nd fd hd . (30)

We now have a system of four equations: (29) for each sector i = c, d, (30) and (13). This
system can then be solved for the four unknown variables: nc, nd , hc and hd . Thus, while
the allowance price w as well as the sector-specific standards δc and δd are not uniquely
determined in equilibrium, the amount that each firm receives from selling (or spends on
buying) allowances per unit of output is determined.

We shall see that this system of four equations has two solutions, which can be compared on
welfare. Since both solutions have the same level of emissions (L) in the long run equilibrium,
they feature the same level of environmental damage. This implies that we can abstract from
the environmental damage component in the welfare function explicitly.

Under both emissions trading schemes, output per firm is given by (7). From (2), (7) and
(13), welfare for a given level L of total emissions, with qi = fi in both sectors is given by:

W =
∑

i=c,d

[
αi ni fi − 1

2
(ni fi )

2 − ci ni fi − ni Fi

]
− λ

⎛

⎝
∑

i=c,d

εi ni fi − L

⎞

⎠ . (31)

The first two terms between square brackets on the right-hand side denote the consumption
utility from the good (the area below the inverse demand curve); the third term denotes
aggregate variable cost, and the fourth term aggregate fixed cost. The second term on the
right-hand side of (31) is the emissions constraint (13) with qi = fi (i = c, d). The only
difference between the two solutions consists of the number ni of firms in either sector, since
output per firm is fixed.

We can now state:

Proposition 2 The long run equilibrium with emissions trading based on a pollution intensity
standard is given by Eqs. (13), (29) for each sector i = c, d, and (30). This system can be
solved for nc, nd , hc and hd , with ni denoting the number of firms in sector i and hi the
revenue per unit of output that a firm in sector i receives from selling allowances.

1. There are two solutions: r and ρ. Solution r features nr
c > n̄c, nr

d < n̄d (with the number
n̄i of firms in sector i in the unconstrained equilibrium given by (8)), and clean firms
selling allowances to dirty firms. Solution ρ features nρ

c < n̄c, nρ
d > n̄d , and dirty firms

selling allowances to clean firms.
2. Solution r leads to higher welfare than solution ρ.
3. Solution r exists if and only if both inequalities (14) and (15) hold.

Proof See section “Proofs” in the Appendix. ��
Figure 2 illustrates Proposition 2 for our numerical example (21). Analogous to pA

c (Qd)

in Fig. 1, pr
c(Qd) gives the equilibrium clean output price for a given equilibrium level of
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Fig. 2 Long run equilibrium with intensity standards

Qd in solution r and pρ
c (Qd) does the same for solution ρ, with the exogenous level L of

emissions given by (22).10

In solution r, clean firms sell allowances to dirty firms. For instance, when Qd = 120,

Fig. 2 shows that pr
c = 60 so that Qr

c = 240, implying that this is solution r for the exogenous
emission level L = 480. Figure 2 illustrates Eq. (30) for solution r : The amount Qchc that
clean firms receive from selling allowances equals the amount −Qd hd that dirty firms pay
for allowances. In Fig. 2, Qr

chr
c is given by the area Zmr tr jr = 240 × 40 = 9600, while

−Qr
d hr

d is given by Z Jr T r Mr = 120 × 80 = 9600. The full solution r for L = 480 is thus:
Qr

d = 120, pr
d = 180, nr

d = 15, hr
d = −80 and Qr

c = 240, pr
c = 60, nr

c = 30, hr
c = 40.

In solution ρ, dirty firms sell allowances to clean firms. For instance, when Qd = 224,
Fig. 2 shows that pρ

c = 268 so that Qρ
c = 32 which implies that this is solution ρ for the

exogenous emission level L = 480. Figure 2 illustrates Eq. (30) for solution ρ: The amount
Qd hd that dirty firms receive from selling allowances equals the amount −Qchc that clean
firms pay for allowances. In Fig. 2, Qρ

d hρ
d is given by the area Z MρT ρ Jρ = 224×24 = 5376,

while −Qρ
c hρ

c is given by Z jρ tρmρ = 32 × 168 = 5376. The full solution ρ for L = 480 is
thus: Qρ

d = 224, pρ
d = 76, nρ

d = 28, hρ
d = 24 and Qρ

c = 32, pρ
c = 268, nρ

c = 4, hρ
c =

168.
Next, let us compare welfare in both solutions r and ρ for the numerical example (21)

with L = 480. In Fig. 2, welfare in sector i with output Qi is given by the area between the
demand curve pi (Qi ) and the long run average cost curve c + f . In solution r, welfare in
the clean and dirty sector together is:

W r = (ZG B − Bmr tr ) + (ZG B − B Mr T r )

= (2002 − 402) + (2002 − 802)

2
= 36000.

This exceeds welfare in solution ρ, which can be calculated in the same way as:

W ρ = (ZG B − Bmρ tρ) + (ZG B − B MρT ρ)

= (2002 − 1682) + (2002 − 242)

2
= 25600.

10 The expressions for pr
c (Qd ) and pρ

c (Qd ) are derived in section “Derivation of pr
c (Qd ) and pρ

c (Qd )

Curves” in the Appendix.
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The intuition is as follows. Emissions trading via intensity standards inevitably leads to the
subsidization and expansion of one sector (relative to the unconstrained benchmark), and
the taxation and contraction of the other sector. It is better for the clean sector to expand,
because this leads to a relatively small increase in emissions so that the dirty sector does not
have to contract a lot in order to reach the desired emission level. By contrast, expansion
of the dirty sector leads to a large emission increase, so that the clean sector has to contract
significantly.

Since solution r yields higher welfare than solution ρ, we shall assume from now on
that the regulator will implement solution r where clean firms sell allowances to dirty
firms. Thus, nR

i = nr
i and h R

i = hr
i , with nr

i and hr
i (i = c, d) given by Eqs. (32a)

through (32d) in section “Proofs” in the Appendix. Solution r can be implemented with
a range of sector-specific intensity standard combinations (δc, δd). It follows from (28)
that:

hr
c

−hr
d

= δc − εc

εd − δd
.

In the above example with εc = 1 and εδ = 2, where L = 480 implies hr
c = 40 and

hr
d = −80, this becomes:

1

2
= δc − 1

2 − δd
.

Thus we have δc ∈ (1, 2] and δd ∈ [0, 2). Note that the range of solutions includes the uniform
standard δc = δd = 4

3 . By (28), the allowance price w decreases as δc and δd move further
away from εc and εd , respectively, ultimately dropping to w = 40 for (δc, δd) = (2, 0).

4 Welfare Comparison

In this section we compare welfare under the two emissions trading policies. Since we
are comparing cap-and-trade and intensity-based emissions trading for a given equal level
of emissions, we can abstract from the environmental damage component in the welfare
function explicitly. Welfare for a given level L of total emissions, with long run output per
firm qi = fi in both sectors, is given by (31) as explained in Sect. 3.2.11 We find that:

Proposition 3 Emissions trading via an absolute cap-and-trade scheme maximizes welfare
for a given level of total emissions under the constraint that qi = fi (i = c, d). Emissions
trading via intensity standards results in too many clean firms and too few dirty firms.

Proof See section “Proofs” in the Appendix. ��

Figure 1 illustrates the optimality of cap-and-trade given that qi = fi . We know from Sect. 3.1
that the long run cap-and-trade equilibrium for our numerical example (21) with L = 400 is
Qd = 120 and Qc = 160. In Fig. 1, welfare in sector i with output Qi is given by the area
between the demand curve pi (Qi ) and the long run average cost curve c + f . The sum of
welfare in the dirty and clean sector, respectively is then:

11 Without the zero-profit result that qi = fi (or any other constraints on qi ), the welfare optimum would
feature nc and nd arbitrarily small (ignoring the integer constraint) or nc = nd = 1 (taking the integer
constraint into account) in order to minimize aggregate fixed costs.
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W A = (ZG B − Md Td B) + (ZG B − McTc B)

=
(
2002 − 802

) + (2002 − 402)

2
= 36000.

How would welfare change if we slightly decreased production of the dirty good and increased
production of the clean good, so that total emissions remain at 400? Since εd = 2εc we
can increase clean output by twice the dirty output reduction. A marginal reduction in
dirty output reduces welfare in Fig. 1 by Md Td = 80. A double marginal increase in the
production of the clean good raises welfare by 2McTc = 80. Total welfare thus remains
unchanged, which means that the long run cap-and-trade equilibrium must be the welfare
optimum.

Emissions trading on the basis of intensity standards cannot implement the welfare opti-
mum. As we know from Sect. 3.2, the clean sector is subsidized and the dirty sector is
taxed under such a system. Thus clean output is higher than in the unconstrained bench-
mark, and dirty output is lower. It is easily seen with the aid of Fig. 1 that the optimal
response to emissions reduction is output reduction in both sectors.12 This leads to higher
welfare than output reduction in one sector only, which in turn is better than output reduc-
tion in one sector and output expansion in the other sector. Under a regime of intensity
standards the dirty sector is inefficiently small to compensate for the growth in the clean
sector.

5 Conclusions

The design of markets for tradeable emission allowances can generally take two forms: orga-
nizing trade on the basis of an absolute cap or on the basis of relative pollution intensity
standards. The design has implications for the functioning of these markets, particularly in
relation to their interaction with output markets and the impact on entry and exit. This paper
analyzes these interactions and assesses the corresponding long run welfare performance of
these emissions trading schemes in a two-sector (‘clean’ and ‘dirty’) model with imperfectly
competitive output markets, where we define the clean sector as the sector with the highest
‘value’ per unit of emission.

With intensity standards we allow the maximum allowed level of emissions per unit of
output to differ between the two sectors. This means that the standard does not depend on
the definition of a unit of output. We find that intensity standards could result in clean firms
selling allowances to dirty firms, or in dirty firms selling to clean firms. Since the former
outcome always yields higher welfare, we assumed that the regulator will set the standards
so as to implement this outcome.

With free entry and exit driving profits to zero, output per firm in either of the two sectors
does not depend on how emissions trading is organized but only depends on the fixed cost
of producing in a sector. This is because a firm faces constant full marginal cost, comprising
both the production and pollution cost. It is shown that an absolute cap-and-trade regime
always generates the first-best outcome in the long run, given the zero-profit output level
per firm with free entry and exit in the output market. Emissions trading on the basis of
relative intensity standards leads to too many clean firms in the long run equilibrium, i.e.,
the size of the clean sector is too large compared to the size of the clean sector under
cap-and-trade.

12 See Holland et al. (2009) for a similar assessment of Low Carbon Fuel Standards.
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Appendix A

Proofs

Proposition 2

Proposition 2.1 There are two solutions to Eq. (29) for each sector i = c, d, (13) and (30)
which we shall denote by r and ρ. Solution r is:

hr
c =

−εd (γcεd − γdεc)−2εc(Ē − L)+εd

√
(γcεd − γdεc)

2 + 4L
(
Ē − L

)

2
(
ε2

c + ε2
d

) (32a)

hr
d =

εc (γcεd − γdεc) − 2εd(Ē − L) − εc

√
(γcεd − γdεc)

2 + 4L
(
Ē − L

)

2
(
ε2

c + ε2
d

) (32b)

nr
c =

2Lεc + εd

(
γcεd − γdεc +

√
(γcεd − γdεc)

2 + 4L
(
Ē − L

)
)

2 fc
(
ε2

c + ε2
d

) (32c)

nr
d =

2Lεd + εc

(
γdεc − γcεd −

√
(γcεd − γdεc)

2 + 4L
(
Ē − L

))

2 fd
(
ε2

c + ε2
d

) (32d)

with Ē > L being the unconstrained emissions given by (11) and γi by (9). We see that hr
d

in (32b) is negative, i.e., dirty firms are buying allowances so that nr
d < n̄d by (10) and (29).

Market clearing with nr
c, nr

d > 0 then requires by (30) that hr
c > 0: clean firms are selling

allowances, and nr
c > n̄c by (10) and (29).

Solution ρ is:

hρ
c = −εd (γcεd − γdεc) − 2εc

(
Ē − L

)−εd

√
(γcεd − γdεc)

2+4L(Ē − L)

2
(
ε2

c + ε2
d

) (33a)

hρ
d = εc (γcεd − γdεc) − 2εd

(
Ē − L

) + εc

√
(γcεd − γdεc)

2 + 4L(Ē − L)

2
(
ε2

c + ε2
d

) (33b)

nρ
c =

2Lεc + εd

(
γcεd − γdεc −

√
(γcεd − γdεc)

2 + 4L
(
Ē − L

))

2 fc
(
ε2

c + ε2
d

) (33c)

nρ
d =

2Lεd + εc

(
γdεc − γcεd +

√
(γcεd − γdεc)

2 + 4L
(
Ē − L

))

2 fd
(
ε2

c + ε2
d

) . (33d)

We see that hρ
c in (33a) is negative, i.e., clean firms are buying allowances so that nρ

c < n̄c

by (10) and (29). Market clearing with nc, nd > 0 then requires by (30) that hρ
d > 0: dirty

firms are selling allowances so that nρ
d > n̄d by (10) and (29). ��

Proposition 2.2 Substituting (29) and (30) into (31) gives welfare W R under intensity stan-
dards:

W R =
∑

i (ni fi )
2

2
. (34)
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Substituting (32c) and (32d) into (34) yields:

W r =
(γcεd − γdεc)

2 + 2L
(
2L − Ē

) + (γcεd − γdεc)

√
(γcεd − γdεc)

2 + 4L
(
Ē − L

)

2
(
ε2

c + ε2
d

) .

Substituting (33c) and (33d) into (34) yields:

W ρ =
(γcεd − γdεc)

2 + 2L
(
2L − Ē

) − (γcεd − γdεc)

√
(γcεd − γdεc)

2 + 4L
(
Ē − L

)

2
(
ε2

c + ε2
d

) .

By definition (12), W r > W ρ . ��
Proposition 2.3 Since nr

d < n̄d and nr
c > n̄c, we have to ensure that nr

d > 0 and Pc(Qr
c) > 0.

From (32d), nr
d > 0 if and only if (14) holds. Maximizing nr

c in (32c) with respect to L
yields:

L =
Ē + εc

√
γ 2

c + γ 2
d

2
. (35)

Substituting (35) into (32c) yields, using Proposition 1:

Qmax
c = nmax

c fc =
γc +

√
γ 2

c + γ 2
d

2
.

Then Pc(Qmax
c ) > 0 if and only if (15) holds. ��

Proposition 3

Maximizing welfare (31) with respect to ni (i = c, d) yields:

(αi − ci − fi ) fi − ni f 2
i − λεi fi = 0. (36)

This is the same condition as the first-order condition under the cap-and-trade regime, sub-
stituting (7) and (16) into (4). The shadow price λ of emissions in (36) therefore equals the
allowance price v in (17), and ni in (36) equals n A

i in (18). This means that a cap-and-trade
scheme implements the welfare optimum for a given level of total emissions with qi = fi .
Combining (19) and Proposition 2.1, we find n A

c < n̄c < nr
c = nR

c . Combining n A
c < nR

c
with (13) yields n A

d > nR
d . ��

Normalization of the Slope of a Demand Function

The slope of the demand function for a good, when using conventional units for measuring
the good as well as for money, is usually different from −1. In this appendix we show
how to normalize the slopes of the demand functions for two goods (gasoline and coal)
to −1 by changing the unit of measurement of the respective goods. We leave the money
measurement intact, so that consumer surplus from the two goods can still be added together
after normalization.

Suppose the inverse demand function for gasoline (gas) is:

Pgas = A − BYgas

with the quantity of gasoline Ygas measured in gallons and its price Pgas in dollars per gallon.
Thus the units on A and B are “$/gallon” and “$/(gallon)2”, respectively. Total revenue is
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PgasYgas and units for total revenue are dollars. To normalize the demand function, we first
divide both sides by b ≡ √

B “1/b-gallons” per gallon (or equivalently, we multiply by 1/b
gallons per “1/b -gallon”). The demand function then becomes:

pgas = αgas − bYgas

with pgas ≡ Pgas/b and αgas ≡ A/b. Now pgas and αgas are measured in “$ per 1/b -gallon”
and b = B/b in “$/(gallon ×1/b-gallon)”. Finally, we introduce the quantity measure Qgas

which is expressed in “1/b -gallon” so that Qgas = bYgas . This turns the demand function
into:

pgas = αgas − βgas Qgas,

with βgas = $1/(1/b-gallon)2. The slope of the demand function is now −1.
As a specific example, let us set A = $500/gallon and B = $100/(gallon)2 in Pgas =

A − BYgas . This means the vertical intercept is $500 per gallon and the horizontal intercept
is 5 gallons. Writing the unit of measurement below each parameter and variable, we have:

Pgas = 500 − (100 × Ygas).
$

gallon
$

gallon
$

(gallon)2 gallon

Multiplying the left-hand side and the right-hand side by 0.1 gallon/decigallon yields:

(Pgas × 0.1) = (500 × 0.1) − (100 × 0.1 × Ygas).
$

gallon
gallon

decigallon
$

gallon
gallon

decigallon
$

(gallon)2
gallon

decigallon gallon

Simplifying and noting that Ygas = 0.1Qgas yields:

pgas = 50 − (100 × 0.1 × 0.1 × Qgas).
$

decigallon
$

decigallon
$

(gallon)2
gallon

decigallon
gallon

decigallon decigallon

Simplifying this gives:

pgas = 50 − (1 × Qgas).
$

decigallon
$

decigallon
$

(decigallon)2 decigallon

After normalization, the vertical intercept is $50 per decigallon and the horizontal intercept
is 50 decigallons.

In the same way, let the inverse demand function for coal be Pcoal = C − DYcoal with the
quantity of coal measured in tons and its price in dollars per ton. We normalize this demand
function to pcoal = αcoal − Qcoal with pcoal ≡ Pcoal/d, αcoal ≡ C/d and Qcoal ≡ dYk

where d ≡ √
D. Now the quantity of coal is measured in “1/d -tons” and its price in

dollars per 1/d-ton. As a specific example, let us set C = $100 per ton and D = $4/(ton)2.
This means the vertical intercept is $100 per ton and the horizontal intercept is 25 tons.
We normalize this demand function by expressing the quantity of coal Qcoal in “half tons,”
with its price pcoal expressed in dollar per half ton. After normalization the demand curve is
pcoal = 50 − Qcoal . The vertical intercept is $50 per half ton and the horizontal intercept is
50 half tons.
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Derivation of pr
c(Qd) and pρ

c (Qd) Curves

Solving (29) and (30) for Qc yields two solutions:

Qc = Q+
c (Qd) ≡ γc + √

γ 2
c + 4Qd(γd − Qd)

2
, (37)

Qc = Q−
c (Qd) ≡ γc − √

γ 2
c + 4Qd(γd − Qd)

2
. (38)

The highest possible value of Qd in (37) and (38) is where the term under the square root is
zero:13

Qmax
d =

γd +
√

γ 2
c + γ 2

d

2
> γd . (39)

The Q+
c solution (37) includes the unconstrained benchmark, since Q+

c (γd) = γc. Substi-
tuting (37) into (13), we find that total emissions are:

L+(Qd) = εd + εc

(
γc

2
+

√
γ 2

c + 4Qd(γd − Qd)

)
. (40)

The first and second derivatives are:

L+′(Qd) = εd − εc (2Qd − γd)
√

γ 2
c + 4Qd(γd − Qd)

, L+′′(Qd) = −2εc
(
γ 2

c + γ 2
d

)

(
γ 2

c + 4Qd(γd − Qd)
) 3

2

< 0.

(41)

From (39) and (41) we find:

L+′(γd) = εdγc − εcγd

γc
> 0, lim

Qd→Qmax
d

L+′(Qd) = −∞. (42)

The inequality follows from (12). Equation (42) together with L+′′(Qd) < 0 from (41)
implies that L+(Qd) has a unique stationary point, which is a maximum, between γd and
Qmax

d . Thus L+′(Qd) > 0 for Qd ∈ [0, γd ]. From (37) it follows that Q+
c (Qd) ≥ γc = n̄c fc

for Qd < γd = n̄d fd . Thus, Q+
c (Qd) implements solution r for Qd < γd . Substituting (37)

into (2), the expression for pr
c(Qd) is then:

pr
c(Qd) = αc − γc + √

γ 2
c + 4Qd(γd − Qd)

2
for Qd ∈ [0, γd ].

In our numerical example (21), this becomes:

pr
c(Qd) = 200 − √

10000 + Qd(200 − Qd) for Qd ∈ [0, 200].
By (42), L+(Qd) > L+(γd) = Ē for Qd just above γd . The other solution to L+(Qd) = Ē
is:

Qd = Q̃d ≡ εd (εdγd + εcγc)

ε2
c + ε2

d

. (43)

Since L+(Qd) has a unique stationary point, which is a maximum, between γd and
Qmax

d , L+′(Qd) < 0 for Qd ∈ [Q̃d , Qmax
d ] and L+(Qd) < Ē for Qd ∈ (Q̃d , Qmax

d ].

13 The other solution Qmin
d = γd −

√
γ 2

c +γ 2
d

2 < 0 is irrelevant.
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With Qd ∈ (Q̃d , Qmax
d ], Qd exceeds γd and L+(Qd) < Ē, so that Qc must be below γc,

which means this is part of solution ρ.
The other part of solution ρ is found on Q−

c (Qd) in (38) with Q−
c (Qmax

d ) = γc/2 by
(39), and Qd = 0 and Qd = γd the only solutions to Q−

c (Qd) = 0. Thus Qd ∈ [γd , Qmax
d ].

Substituting (38) into (13), total emissions are:

L−(Qd) = εd + εc

(
γc

2
−

√
γ 2

c + 4Qd(γd − Qd)

)

with

L−′(Qd) =
2εc(2Qd − γd) + εd

√
γ 2

c − 4Q2
d + 4γd Qd

√
γ 2

c − 4Q2
d + 4γd Qd

> 0.

The inequality follows from Qd ≥ γd . The correspondence pρ
c (Qd) is therefore given by:

pρ
c (Qd) =

⎧
⎪⎪⎨

⎪⎪⎩

αc − γc+
√

γ 2
c +4Qd (γd−Qd )

2 forQd ∈ [Q̃d , Qmax
d ]

αc − γc−
√

γ 2
c +4Qd (γd−Qd )

2 forQd ∈ [ γc
2 , Qmax

d ]
In our numerical example (21), this becomes:

pρ
c (Qd) =

⎧
⎪⎪⎨

⎪⎪⎩

200 −
√

10000 + 200Qd − Q2
d for Qd ∈ [240; 241.42]

200 +
√

10000 + 200Qd − Q2
d for Qd ∈ [200; 241.42]

References

Barnett AH (1980) The Pigouvian tax rule under monopoly. Am Econ Rev 70:1037–1041
Boom JT, Dijkstra BR (2009) Permit trading and credit trading: a comparison of cap-based and rate-based

emissions trading under perfect and imperfect competition. Environ Resour Econ 44:107–136
Buchanan JM (1969) External diseconomies, corrective taxes and market structure. Am Econ Rev 59:174–177
Dewees DN (2001) Emissions trading: ERCs or allowances? Land Econ 77:513–526
Dixit AK (1979) A model of duopoly suggesting a theory of entry barriers. Bell J Econ 10:20–32
Ellerman DA, Buchner BK (2007) The European Union emissions trading scheme: origins, allocation, and

early results. Rev Environ Econ Policy 1:66–87
Environment Canada (2007) Action on climate change and air pollution. Technical report, Environment Canada
Fischer C (2001) Rebating environmental policy revenues: output-based allocations and tradable performance

standards. RFF Discussion Paper 01-22, Resources for the Future, Washington, DC
Fischer C (2003) Combining rate-based and cap-and-trade emissions policies. Clim Policy 3S2:S89–S103
Hahn RW, Hester GL (1989) Marketable permits: lessons for theory and practice. Ecol Law Q 16:361–406
Helfand GE (1991) Standards versus standards: the effects of different pollution restrictions. Am Econ Rev

81:622–634
Holland SP (2012) Emissions taxes versus intensity standards: second-best environmental policies with incom-

plete regulation. J Environ Econ Manag 63:375–387
Holland SP, Hughes JE, Knittel CR (2009) Greenhouse gas reductions under low carbon fuel standards? Am

Econ J Econ Policy 1:106–146
Jotzo F, Pezzey JCV (2007) Optimal intensity targets for greenhouse gas emissions trading under uncertainty.

Environ Resour Econ 38:259–284
Kerr S, Newell RG (2003) Policy-induced technology adoption: evidence from the U.S. lead phasedown.

J Ind Econ 51:317–343
Michaelowa A, Tangen K, Hasselknippe H (2005) Issues and options for the post-2012 climate architecture—

an overview. Int Environ Agreem 5:5–24

123



682 F. P. de Vries et al.

Millimet DL, Roy S, Sengupta A (2009) Environmental regulations and economic activity: influence on market
structure. Annu Rev Resour Econ 1:99–118

Philibert C, Pershing J (2001) Considering the options: climate targets for all countries. Clim Policy 1:211–227
Tietenberg T (1999) Lessons from using transferable permits to control air pollution in the United States. In:

van den Bergh JCJM (ed) Handbook of environmental and resource economics. Edward Elgar, Cheltenham,
pp 275–292

123


	On Emissions Trading and Market Structure: Cap-and-Trade versus Intensity Standards
	Abstract
	1 Introduction
	2 Basic Model
	3 Emissions Trading
	3.1 Cap-and-Trade
	3.2 Intensity Standards

	4 Welfare Comparison
	5 Conclusions
	Appendix A
	Appendix A
	Proofs
	Proofs
	Proposition 2
	Proposition 2
	Proposition 3
	Proposition 3

	Normalization of the Slope of a Demand Function
	Normalization of the Slope of a Demand Function
	Derivation of pcr(Qd) and pcρ(Qd) Curves

	Derivation of p c r(Q d) and p c protect rho (Q d) Curves
	References




