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Abstract This paper applies evolutionary game theory to international environmental
agreements (IEAs). Contrary to stage game models (Barrett in J Theor Politics 11:519–541,
1999, Eur Econ Rev 45:1835–1850, 2001), in an evolutionary equilibrium (EE) no signatory
prefers to be outside the IEA and the EE is robust to trembles. With two populations, there
is a unique interior EE when there is decreasing returns to abatement and small asymmetry
in the externality differences across populations. At the interior EE, transfers from the poor
to the rich can increase payoffs for all nations, but come at the expense of greater payoff
inequality. Transfers can also eliminate the basin of attraction for the payoff inferior EE with
decreasing returns to abatement and large asymmetry. Thus IEAs, such as the Kyoto Treaty,
predicated on the polluter-pays and ability-to-pay principles may result in Pareto inferior
outcomes.

Keywords International environmental agreements · Evolutionary games ·
Externalities · Transfers

JEL Classification C73 · C72 · D62 · D78 · D63

1 Introduction

Two main challenges in designing international environmental agreements (IEAs) are that
participation is voluntary and that any punishment must be a credible threat. The incentive
to join depends on the terms of the agreement, and the participation of others. An IEA can
specify zero-sum transfers to increase participation when nations differ. However, both pay-
ing the transfer and imposing any punishment for defection must be a best-response to be
credible. This paper is the first to address these challenges in an evolutionary game setting.
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252 M. McGinty

The early IEA literature (Barrett 1994; Carraro and Siniscalco 1993) typically finds
a Nash equilibrium with partial participation for a one-shot game. There is a payoff advantage
to IEA participation when participation is low, and a payoff advantage to free-riding when
participation is high. IEA membership is modeled with sequential accession, using internal
and external stability adopted from the cartel literature (d’Aspremont et al. 1983). With this
approach Barrett (1994) shows that with significant gains to cooperation, there is only an
incentive to join an IEA when participation is very low (less than 4). McGinty (2007) relaxes
the assumption of symmetry in Barrett (1994) and finds greater participation when transfers
are implemented in the form of tradable pollution permits. However, simulations are required
to determine stability when non-linear functional forms are used.

Barrett (1999, 2001) considers a linear IEA modeled as a stage-game. In Barrett (1999)
identical nations have either constant or increasing returns to abatement. Barrett (2001) intro-
duces benefit asymmetry (across but not within populations) and considers constant returns
to abatement. Barrett (2001) transforms a Prisoner’s Dilemma with a dominant strategy of
“pollute” into a stage game. In the first stage nations choose to participate or not in an IEA.
In stage 2 signatories collectively choose pollute or abate, and non-signatories individually
choose pollute or abate. The equilibrium is “lynchpin” in the sense that should any signa-
tory defect and pollute, then all other signatories pollute and the agreement collapses. The
punishment for defecting is pollute by all players, the Nash equilibrium of the simultaneous
move game. A key assumption is that signatories choose their actions to maximize collective
payoff, and comply with this decision. This result differs dramatically from that obtained in
Barrett (1994), where one signatory choosing pollute does not result in all other nations play-
ing pollute. The lynchpin equilibrium is found in previous IEAs (Chander and Tulkens 1995),
however, the majority of the literature argues the non-cooperative outcome is not the relevant
threatpoint when partial participation is the Nash equilibrium of the simultaneous move IEA
(Barrett 1994, 1997; McGinty 2007; Weikard 2009). The question remains what types of
IEAs will be obtained in Barrett’s (1999, 2001) simple linear framework if the underlying
game is that of partial participation, the returns to abatement vary, the externalities differ both
within and across populations, and the timing assumptions of the stage game are relaxed.

The equilibrium in Barrett (2001) has two characteristics which this paper seeks to elimi-
nate. First, signatories to the IEA earn a lower payoff than other members of their population
outside the IEA. While the payoff is greater than when there is no IEA participation, each
signatory would prefer to be a non-signatory. Second, the “lynchpin” equilibrium is not robust
to a tremble, intentional or otherwise, by a signatory. If one IEA member chooses pollute
rather than abate, thus earning a higher payoff, the agreement collapses. Clearly, the IEA is
not very robust.

The main point of Barrett (2001) is to show how transfers (side-payments) among signa-
tories can improve the IEA. A remarkable equilibrium of full participation by low benefit
nations and greater participation by high benefit nations can be obtained when “cooperation
is for sale.” High benefit nations “purchase” the cooperation of low benefit nations via the
transfer. With strong asymmetry quite substantial gains can be achieved, however, partici-
pation and compliance issues remain. International cooperation may be for sale, but no one
wants to be the one buying it.

This paper allows for all three types of linear evolutionary games; Prisoner’s Dilemma,
Hawk-Dove and Coordination (Weibull 1995), and allows for increasing, decreasing or con-
stant returns to abatement. All three classes of games maintain the fundamental characteristics
of international public goods provision. Specifically, the aggregate payoff is monotonically
increasing in the number of nations that abate, and there are positive externalities from abate-
ment that accrue to both those who abate and those who pollute. Unlike Barrett (1999, 2001),

123



International Environmental Agreements as Evolutionary Games 253

this paper models the IEA as an evolutionary game, and allows the externalities to differ both
within and across populations.

This paper shows that transfers are not a credible way to increase participation in a single
population evolutionary game. A two population framework is presented to allow for asym-
metry. Nations differ in the externalities their abatement generates, and the cost of abatement.1

Both Hawk-Dove (decreasing returns to abatement) and Coordination (increasing returns
to abatement) games result in an interior Nash equilibrium. However, only when there is
a Hawk-Dove with small asymmetry is the interior Nash an evolutionary equilibrium (EE).
Essentially, an EE is an Nash equilibrium refinement requiring dynamic stability (Friedman
1998). With asymmetry, transfers can be credibly made in the two population model. At the
interior EE the optimal transfer drives the system to a corner solution where all nations are
better off. However, this credible transfer is made from the “poor” to the “rich” increasing
payoff inequality across populations. For a Hawk-Dove game with large asymmetry credi-
ble transfers can eliminate the basin of attraction for the Pareto inferior EE. Both types of
transfers increase each nation’s payoff and can be agreed to with unanimity.

Evolutionary games have been used to model both international and environmental issues
(Friedman and Fung 1996; Fisher and Kakkar 2004; Dijkstra and de Vries 2006), however,
this paper is the first evolutionary game IEA. Evolutionary games contain dynamic adjust-
ment, but differ from repeated games in important ways. In an evolutionary game players
respond to current payoff differentials, and the strategy selection process ensures that actions
with a payoff advantage increase in prevalence. Evolutionary games are not explicitly forward
looking. By contrast, a repeated game strategy is a complete contingency plan (Mas-Colell
et al. 1995) laid out before play begins. A strategy specifies an action to be taken at each
point in time for all possible realizations of the history of play. Repeated games often rely
on the threat of future punishments (i.e. trigger strategies) to maintain cooperation, where
evolutionary games rely on actual punishment.

Most importantly for the present paper, evolutionary stability requires an equilibrium to
be robust to a tremble by a current player, or to an equilibrium entrant. Players choose actions
that are a best-response to the current distribution of the population. An EE is a simultaneous
best-response by all players, and thus is a Nash equilibrium refinement based on dynamic sta-
bility. This differs from the classic evolutionary game equilibrium concept of an evolutionary
stable strategy (ESS), due to Maynard Smith (1974). An ESS is a simultaneous best-response
given situations where two players are randomly drawn from the population and “pairwise
matched.” Pairwise matching fits well in situations where players interact with a random draw,
however, in many economic applications (i.e., firms in markets) each player interacts with all
other players. An EE differs from an ESS in the scope of the best-response. Each player is
matched against the entire (finite) population in an EE, and all players are best-responding.
The finite population of players gradually adopt strategies with a payoff advantage.

In an evolutionary game model of IEAs, the EE are robust to trembles (i.e., a player
choosing a different action) and all members of a population earn the same payoff. No sig-
natory would prefer to be outside the IEA. Evolutionary stability may eliminate some Nash
equilibria leaving only those that are robust, and do not rely on future punishment phases to
maintain cooperation. The framework allows for a sequential analysis from any given level
of participation.

Transfers are zero-sum and generated only by the underlying payoff functions. Previ-
ous literature (Folmer et al. 1993; Folmer and van Mouche 1994) has shown that transfers

1 An example of an asymmetric IEA is the Kyoto Treaty, where members face different costs of participation
and abatement requirements.

123



254 M. McGinty

generated by linking two issues can dramatically improve the outcome of either game in
isolation. This paper considers two populations, but only one game, thus issue linkage is not
considered. Transfers are only considered credible if the post-transfer payoff does not put
that player at a disadvantage relative to other members of their population.

Finally, the linear model presented in this paper is clearly a restrictive simplifying assump-
tion. The theoretical IEA literature typically assumes decreasing returns, since abatement is
a global public good (Finus 2003). Empirical work is consistent with this notion of declin-
ing marginal benefit and increasing marginal cost of abatement (Nordhaus and Yang 1996).
However, it is possible that the returns vary with the level. Abatement may have increasing
returns at low levels and decreasing returns beyond a threshold.

The remainder of the paper is organized as follows. The single population model is pre-
sented in Sect. 2, detailing the payoff functions, externalities, and the role of transfers.
Section 3 presents the two population model and derives conditions under which an inte-
rior Nash equilibrium is obtained, and when it can be maintained as an EE. Section 4 details
the use of credible transfers to increase global payoff. Section 5 concludes and discusses
policy implications.

2 Model and Classification

Following Barrett (1999, 2001, 2003) the most simple public goods model from the IEA
literature is considered. Barrett (1999, 2001) presents a linear Prisoner’s Dilemma with n
nations and models the IEA as a stage game. The payoff to a nation depends on its own
abatement (qi ) and abatement by other players Q−i = ∑n

j �=i q j . For simplicity, abatement is
a binary choice: qi = {0, 1}, where qi is zero if a nation chooses pollute and one if it chooses
abate. The individual payoffs from choosing pollute (πp) and abate (πa) are:

πp = b(Q−i + qi )

πa = d(Q−i + qi ) − cqi (1)

The parameter c is the cost of abatement. Denote the proportion of nations (n) choosing
abate (a) as s ∈ [0, 1], with the remaining (1 − s)n nations choosing pollute (p).2 With this
notation the payoff functions (1) become:

πp = bsn

πa = −c + dsn (2)

The parameter b is the marginal benefit to a polluter from each nation that abates, d is the
marginal benefit to a nation that abates from their own and others’ abatement. The sum of
the marginal benefits (M B) from abatement is: b(1 − s)n + dsn and the rate of change is:
∂

∑n
i M Bi
∂s = n(d − b). If d > b (d < b) then there are increasing (decreasing) returns to

abatement in s. Barrett (1999) assumes d ≥ b, while d = b in Barrett (2001). The payoff is
normalized to zero if no nation chooses abate. Extending Barrett’s framework to allow for
different returns to abatement (b relative to d) yields three types of evolutionary games.

Three assumptions that are maintained for all three types of games are positive externali-
ties from abatement, the social optimum is when all nations abate and the gains to cooperation
are positive. Positive externalities are insured if b > 0 and d > 0 since ∂πp

∂s = bn > 0 and
∂πa
∂s = dn > 0. In this linear framework, full participation is socially optimal when the

2 Integer problems are ignored for expositional clarity, allowing the results to be expressed in s.
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aggregate payoff � ≡ snπa + (1 − s)nπp is monotonically increasing in s.

� = ds2n2 − csn + bs(1 − s)n2

∂�

∂s
= 2sn2(d − b) − cn + bn2 (3)

The condition ∂�
∂s > 0 for all s ∈ [0, 1], is c < 2sn(d − b) + bn. Given the linear struc-

ture, the endpoints are sufficient to truncate the allowable ranges of the parameters. ∂�
∂s | s=0

implies c < bn and ∂�
∂s | s=1 implies c < n(2d − b). Finally, the aggregate gains from full

participation G(s) are required to be positive:

G(s) ≡ n
[
πa(1) − πp(0)

] = n [−c + dn] (4)

The gains are positive when the cost of abatement per nation is less than the global benefit
of that abatement: c < dn. Together, these three criteria require:

c

n
<

⎧
⎨

⎩

2d − b
b > 0
d > 0

(5)

The sign of the parameter c, and the returns to abatement (relative magnitudes of b and d)
determine the classification of the three types of games. A Prisoner’s Dilemma may have any
type of returns to abatement and still retain pollute as a dominant strategy Nash equilibrium.
The Coordination game has increasing returns d > b, and a Hawk-Dove has decreasing
returns b > d . Both Coordination and Hawk-Dove generate a mixed strategy Nash equilib-
rium. Define the payoff advantage to abate as:

γ (s) ≡ πa − πp = −c + sn(d − b) (6)

Solving γ (s) = 0 yields the interior Nash equilibrium s∗, if one exists.

s∗ = c

n(d − b)
(7)

The dynamics of the state variable s are given by standard evolutionary game theory.
Actions with a payoff advantage become more prevalent, as nations adjust their actions to
increase their payoffs. This adjustment reflects “survival of the fittest” strategy, with some
inertia. The dynamics follow a continuous time deterministic framework, ṡ ≡ ds/dt =
H(s, x), where H is a dynamic written as a function of the state s and a vector x of the
remaining parameters (b, c, d, n). The dynamics are compatible (Friedman 1991) since abate
displaces pollute when abate yields a higher payoff: ṡ ≶ 0 ⇐⇒ γ (s) ≶ 0. The Nash equi-
librium occurs when γ (s) = 0, or when s = {0, 1} if γ (s) �= 0.

An EE is a stable Nash equilibrium. Stability may be broadly interpreted as robustness
to an equilibrium entrant, a mutation, or trembling-hand perfection. Stability of the inte-
rior Nash equilibrium s∗ is determined by the slope of γ (s). The slope, ∂γ (s)

∂s = n(d − b),
is positive if there are increasing returns to abatement d > b (Coordination game) and
negative if there are decreasing returns d < b (Hawk-Dove). The Prisoner’s Dilemma
may have any slope, but requires γ (s) < 0 ∀s ∈ [0, 1]. Evaluating the endpoints,
γ (0) = −c and γ (1) = −c + n(d − b), allows a classification of the three types of games
(Table 1).

The types of IEAs that can be sustained as evolutionary equilibria are as follows.
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Table 1 Single population classification

Type γ (0) = −c γ (1) = −c + n(d − b)
∂γ (s)

∂s

(1) Prisoner’s dilemma γ (0) < 0 ⇒ c > 0 γ (1) < 0 ⇒ c
n > d − b ∂γ (s)

∂s � 0 ⇒ d � b

(2) Coordination γ (0) < 0 ⇒ c > 0 γ (1) > 0 ⇒ c
n < d − b ∂γ (s)

∂s > 0 ⇒ d > b

(3) Hawk-Dove γ (0) > 0 ⇒ c < 0 γ (1) < 0 ⇒ c
n > d − b ∂γ (s)

∂s < 0 ⇒ d < b

Proposition 1 The IEA evolutionary equilibria are: (i) no participation for a Prisoners
Dilemma, (ii) both full and no participation for Coordination game with basins of attraction
separated by s∗ and (iii) partial participation given by s∗ for a Hawk-Dove game.

Proof (i) For a Prisoner’s Dilemma γ (s) < 0 ∀s ∈ [0, 1], thus any initial condition s0 ∈
(0, 1] will converge to s = 0 by compatibility of the dynamic H , i.e., ṡ ≶ 0 ⇐⇒ γ (s) ≶ 0.
(ii) There are three Nash equilibria for a Coordination game, two of which are evolutionary
equilibria: s = 0, and s = 1. The interior Nash equilibrium s∗ is unstable. At s∗ consider
a tremble by a nation intending to abate but choosing pollute. Then s = s∗ − ε, where
ε ≡ 1

n , and ∂γ (s)
∂s > 0 implies the EE is s = 0. Similarly, a tremble by a nation intending to

pollute implies s = s∗ + ε and ∂γ (s)
∂s > 0 results in the EE s = 1. (iii) The unique EE for

a Hawk-Dove game is s∗. Any initial condition s0 ∈ [0, 1] will converge to s∗ by compati-
bility of the dynamic H given ∂γ (s)

∂s < 0. 	

A Prisoner’s Dilemma may have any type of returns (d � b), and retain pollute as a

dominant strategy. The EE s = 0 in Fig. 1b is labeled with a solid circle.
A Coordination game occurs when γ (0) < 0 and γ (1) > 0. This implies the restrictions:

c > 0 and c < n(d − b), or increasing returns to abatement. The interior (mixed) strategy
Nash equilibrium is not stable, leaving the two pure strategy Nash as EE. By monotonicity,
full participation is the payoff dominant equilibrium. In Fig. 2a the risk-dominant equilibrium
(s = 0) has a larger basin of attraction. In this case there needs to be a large “threshold” level
of cooperation for the IEA to obtain full participation. One example of a threshold IEA is
the Kyoto Treaty which specified a minimum level of participation before the treaty entered
into force.

With a Hawk-Dove game there are gains to IEA participation when participation is low
but, with decreasing returns to abatement, the gains quickly turn negative. The vast majority
of the IEA literature fits this situation. For example, the seminal work of Barrett (1994) finds
the IEA consists of three out of 100 nations when the gains to cooperation are large (Fig. 3).

Next, we turn to the issue of credible transfers in a single population game.

Proposition 2 Transfers cannot increase IEA abatement in a single population evolutionary
equilibrium.

Proof (i) A Prisoner’s Dilemma is defined as: γ (s) < 0 ∀s ∈ [0, 1], with EE s∗ = 0. Playing
a and accepting the transfer τ is a best-response if γ (s)+τ ≥ 0. Thus, the minimum transfer
is: τmin(s) = −γ (s) = c + sn(b − d) > 0 ∀s ∈ [0, 1]. τmin(s) is a credible transfer by

the sn − 1 other signatories when γ (s) − tmin(s)
(sn−1)

≥ 0. Therefore, the transfer is not credible

since γ (s) − tmin(s)
(sn−1)

< 0 ∀s ∈ [0, 1]. (ii) Both Coordination and Hawk-Dove games have

an interior Nash equilibrium s∗ = c
n(d−b)

with payoffs: πa(s∗) = πp(s∗) = bc
d−b . With an

additional signatory the state becomes s∗ + ε, where ε = 1
n and the payoff advantage to
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Fig. 1 a Prisoner’s dilemma payoffs; b Prisoner’s dilemma payoff difference

participation is: γ (s∗ + ε) = d − b. In a Coordination game d − b > 0 and no transfer is
needed to increase participation. Any s < s∗ is in the s = 0 EE basin of attraction. With
unanimity the Pareto dominant EE s = 1 can be agreed upon without transfers. However,

there is no credible transfer in the s = 0 EE basin since γ (s + ε) − τmin(s)
sn < 0 ∀s < s∗.

(iii) If the game is Hawk-Dove then d − b < 0 and the minimum transfer such that IEA
participation is individually rational is: τmin(s∗) = −γ (s∗ +ε) = b−d > 0. For the transfer

to be credible: γ (s∗ + ε) − τmin(s∗)
s∗n = d − b + (b−d)2

c > 0. However, this is clearly negative
since b > d , and c < 0. 	


The difference with the transformed Prisoner’s Dilemma game in Barrett (1999, 2001) is
that in the evolutionary equilibrium all nations earn the same payoff, making a transfer a non-
credible commitment. In Barrett’s stage game the signatories to an IEA move first and choose
their actions to maximize their collective payoff. Even so, in equilibrium non-signatories earn
a higher payoff than signatories.

3 Two Population Model

The two population model considers externalities that differ both within and across popula-
tions. Both the externalities generated by participation, and the cost, depend on which type of
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Fig. 2 a Coordination game payoffs; b coordination game payoff difference

nation joins the IEA, thus d1 �= d2 and c1 �= c2. The outside payoff also varies by population,
hence b1 �= b2. Defining abatement by population i as Qi , Eq. (1) becomes:3

π
p

i = bi (Q1 + Q2), i = 1, 2

πa
i = d1 Q1 + d2 Q2 − ci qi , i = 1, 2 (8)

Under the Kyoto Treaty only the developed nations (Annex I) are subject to binding abatement
requirements. Therefore, their participation generates a greater externality than a non-Annex
I nations. Denote the Annex I nations as population 1 with the proportion choosing abate as s1.
Non-Annex I nations are population 2 with proportion s2 choosing abate. Let φ be the propor-
tion of nations in population 1, and n the total number of nations, so n1 ≡ φn, n2 ≡ (1−φ)n.
Abatement is again a binary choice qi = {0, 1}, so the two-population payoffs are:

π
p

i (s1, s2) = bi (s1n1 + s2n2) , i = 1, 2

πa
i (s1, s2) = d1s1n1 + d2s2n2 − ci , i = 1, 2 (9)

3 This is the most simple specification that allows for the relevant asymmetry across populations. The alterna-
tive specification: π p

i = b1 Q1+b2 Q2, i = 1, 2, does not allow the pollute payoff to differ across populations.
Similarly, the specification πa

i = di (Q1 + Q2) , i = 1, 2 does not allow the externality generated by partic-
ipation to differ across population. In either case, the γi functions (10) are linearly dependent, so the payoff
advantages to abate are identical up to a scalar.

123



International Environmental Agreements as Evolutionary Games 259

Fig. 3 a Hawk-Dove payoffs; b Hawk-Dove payoff difference

The sum of the marginal benefits from abate is: b1(1−s1)n1+b2(1−s2)n2+d1s1n1+d2s2n2

and returns to cooperation are: ∂
∑n

i M Bi
∂s1

= n1(d1 − b1) and ∂
∑n

i M Bi
∂s2

= n2(d2 − b2).
Four possible externality orders are considered, but the returns to cooperation are main-
tained across populations. With increasing returns to cooperation a Prisoner’s Dilemma or
a Coordination game results. Increasing returns and small asymmetry across populations
yields: b2 < b1 < d2 < d1, and with large asymmetry b1 < b2 < d2 < d1. If there are
decreasing returns to abatement then a Prisoner’s Dilemma or Hawk-Dove game with small
d2 < d1 < b2 < b1 or large asymmetry d1 < d2 < b2 < b1 is obtained.

Parameter restrictions ensure that the fundamental aspects of IEAs remain intact. There
are positive externalities, global payoff is strictly increasing in participation, and the gains to
cooperation are positive. These conditions are a straightforward generalization of the single
population case and are given in the Appendix. The two population payoff advantage to abate
functions γi ≡ πa

i (s1, s2) − π
p

i (s1, s2) are:

γi = s1n1(d1 − bi ) + s2n2(d2 − bi ) − ci (10)

Solving for the γi = 0 loci we get s2 as an implicit function of s1:

γi = 0 ⇒ s2(s1) = s1n1 (d1 − bi ) − ci

n2 (bi − d2)
(11)
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The γi = 0 loci have slope: ∂s2(s1)
∂s1

= n1(d1−bi )
n2(bi −d2)

, vertical intercept: s2(0) = −ci
n2(bi −d2)

and

horizontal intercept s1(0) = −ci
n1(bi −d1)

. Both loci have a negative slope in Hawk-Dove and
Coordination games when the returns to abatement is preserved across, as well as within,
populations.

3.1 Interior Nash Equilibrium

An interior equilibrium occurs when there is partial participation in both populations. All
other situations result in corner equilibria. The simultaneous solution to the γi = 0 loci, valid
at an interior Nash equilibrium is:

s∗
1 = c1 (d2 − b2) + c2 (b1 − d2)

n1 (b1 − b2) (d1 − d2)

s∗
2 = c1 (b2 − d1) + c2 (d1 − b1)

n2 (b1 − b2) (d1 − d2)
(12)

The payoffs at the interior Nash equilibrium are:

πa
1

(
s∗

1 , s∗
2

) = π
p
1

(
s∗

1 , s∗
2

) = b1(−c1 + c2)

b1 − b2

πa
2

(
s∗

1 , s∗
2

) = π
p
2

(
s∗

1 , s∗
2

) = b2(−c1 + c2)

b1 − b2
(13)

This leads directly to Proposition 3.

Proposition 3 The interior Nash equilibrium payoffs are increasing in the difference in
abatement costs and decreasing in the difference in the pollute externality. The population
with the larger pollute externality receives a higher payoff.

Proof Equation (13) and Table 3 in the Appendix. 	


Proposition 3 indicates that it is the pollute externality that determines payoff, not the exter-
nality generated by choosing abate. This is due to payoffs being equalized across actions (a or
p) in the EE. Table 3 details the parameter restrictions necessary for an interior equilibrium.

Proposition 4 There exists a unique interior Nash equilibrium when the ratio of abatement
costs (c1/c2) is contained in the ratio of the externality differences, and each population is
sufficiently large.

Proof Table 3 details the parameter restrictions required for an interior Nash Equilibrium.
The table shows the restrictions such that both s1 and s2 are positive fractions. 	


The global payoff at an interior equilibrium is:

�
(
s∗

1 , s∗
2

) = (n1b1 + n2b2)(−c1 + c2)

b1 − b2
(14)

The two-population dynamics are a straightforward generalization of the single population
case. The adjustment dynamics are ṡi ≡ dsi/dt = H(s1, s2, x), where H is function of the
state and x is a vector of parameters (b1, b2, c1, c2, d1, d2, φ, n). Compatibility of H in terms
of the payoffs requires: ṡi ≶ 0 ⇐⇒ γi (s) ≶ 0.
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Table 2 Evolutionary stability

Coordination: bi < d j , i, j = 1, 2 Hawk-Dove: bi > d j , i, j = 1, 2

(i) Small asym (ii) Large asym (i) Small asym (ii) Large asym

b2 < b1 < d2 < d1 b1 < b2 < d2 < d1 d2 < d1 < b2 < b1 d1 < d2 < b2 < b1

Trace J + + − −
Determinant J + − + −
Eigenvalues +, + +, − −, − −, +

The eigenvalues determine evolutionary stability of an interior Nash. The first-order par-
tials of γi form the Jacobian (J ):

J =
[

∂γ1
∂s1

∂γ1
∂s2

∂γ2
∂s1

∂γ2
∂s2

]

=
[

n1(d1 − b1) n2 (d2 − b1)

n1 (d1 − b2) n2(d2 − b2)

]

(15)

The trace is the sum of the eigenvalues: Trace J =n1(d1 − b1) + n2(d2 − b2), and the
determinant is their product: Determinant J =n1n2(b1 − b2)(d1 − d2). The trace is positive
(negative) for increasing (decreasing) returns to abatement, and the determinant is positive
(negative) for small (large) asymmetry. The system is dynamically stable for the Hawk-Dove
game with small asymmetry and the interior Nash equilibrium is an EE. Otherwise, the EE
occurs along an edge of the unit-simplex. Table 2 summarizes these results.

The stability of the unique interior Nash equilibrium is characterized as follows:

Proposition 5 The Evolutionary Equilibrium is partial participation in both populations for
a Hawk-Dove game (decreasing returns to abatement) with small asymmetry. A Hawk-Dove
game with large asymmetry or a Coordination game (increasing returns to abatement) result
in an EE along an edge of the unit-simplex.

Proof The Nash equilibrium (12) is a global attractor when both eigenvalues are negative
making it the unique EE. The Nash equilibrium (12) is a source otherwise, resulting in a EE
along an edge of the unit-simplex. 	

To illustrate evolutionary stability consider an example similar to the Kyoto Treaty satisfy-
ing the parameter restrictions in the Appendix. The example is an interior Nash equilibrium
with decreasing returns to abatement for both small and large asymmetry. Let n = 100
nations and φ = 0.4 since there are approximately 40 Annex I nations subject to abate-
ment requirements. For small asymmetry the parameters are: −c1 = 160,−c2 = 100,

d2 = 1, d1 = 2, b2 = 3, b1 = 4. The EE is: s∗
1 = 0.50, s∗

2 = 0.67, with payoffs πa
1 (s∗

1 , s∗
2 ) =

π1
p(s

∗
1 , s∗

2 ) = 240, πa
2 (s∗

1 , s∗
2 ) = π

p
2 (s∗

1 , s∗
2 ) = 180. Global payoff is: 20,400, or 77% of the

full participation payoff of 26,400 from πa
1 (1, 1) = 300, πa

2 (1, 1) = 240. There are potential
gains of 60 to all players from achieving full participation from the EE. Fig. 4 shows the
unique, interior EE.

However, if we reverse the values of d1 and d2 and increase −c1 = 170 (at −c1 = 160
the EE is not interior) asymmetry is large, changing the sign of the determinant. The interior
Nash equilibrium is unstable, resulting in two EE: {0.42,1} and {1,0.33}. Figure 5 illustrates
the large asymmetry case.

Payoffs at {0.42,1} are: π
p
1 = πa

1 = 306.7, πa
2 = 236.7, and at {1,0.33} payoffs are:

π
p
1 = 250, πa

2 = π
p
2 = 180. Clearly, all players prefer {0.42,1}. Global payoff is: 26,467 at
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Fig. 4 Hawk-Dove small asymmetry

Fig. 5 Hawk-Dove large asymmetry

{0.42,1} and 20,800 at {1,0.33}, compared to the full participation payoff {1,1} of 28,800
with πa

1 = 330, πa
2 = 260. A Hawk-Dove game has become fundamentally the same as a

Coordination game. With unanimity all nations can agree that {0.42,1}, obtaining 92% of
the full participation payoff, is superior to {1,0.33} and 72% of the full participation payoff.
No transfers are needed for this coordination, however, as the next section shows, transfers
can ensure the payoff dominant EE is obtained by eliminating the basin of attraction for the
inferior EE.
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Fig. 6 Coordination game

3.2 Corner Solutions

For all other permissible parameter constellations the EE is along an edge of the unit-sim-
plex. Parameters that satisfy the fundamental characteristics of positive externalities, aggre-
gate payoff monotonically increasing in participation and gains to cooperation, but do not
have an interior Nash equilibrium will result in EE along an edge. As an example, consider
the Coordination game in Fig. 6: c1 = 60, c2 = 100, b2 = 1, b1 = 2, d2 = 3, d1 = 4. The
interior Nash equilibrium {0.5,0.33} is unstable. There are two EE at: {0,0} and {1,1}. The
full participation IEA can be sustained without transfers as long as the threshold level of
participation is above the lower locus.

4 Transfers

Previous work has shown that transfers among signatories have the potential to dramati-
cally increase IEA participation (Barrett 2001, 2003). At an interior EE a transfer to a non-
signatory within population is not credible since they have equal payoffs. No signatory could
credibly give a transfer to a free-rider since the signatory would earn less post-transfer than
a non-signatory. However, transfers may be credible across populations. Credible transfers
may decrease participation in one population, increase participation in the other population
and increase all nations’ payoff. The optimal transfer is that which generates the highest
global payoff from the set of post-transfer EE. Optimal transfers eliminate the interior EE
when it exists, and eliminate the basin of attraction for the Pareto inferior EE.

4.1 Interior EE

An interior EE is obtained only in a Hawk-Dove game with small asymmetry. Proposition
5 states payoffs are only equated within, not across, populations. This raises the question
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if a zero-sum system of transfers among signatories can increase participation and global
welfare. With small asymmetry (d1 > d2) a type 1 signatory adds more to the global payoff,
but they are harder to get to join since they have a greater free-rider incentive to overcome
b1 > b2.

The γ τ
i function is the post-transfer payoff advantage to cooperating: γ τ

i ≡ γi + τi .

γ τ
i = d1s1n1 + d2s2n2 − bi [s1n1 + s2n2] − ci + τi , i = 1, 2 (16)

The γ τ
i = 0 loci, again solved for s2 (s1) are:

s2(s1) = s1n1 (d1 − bi ) − ci + τi

n2 (bi − d2)
(17)

So a positive (negative) transfer shifts up (down) the locus, but does not change the slope
of the loci, or effect the stability properties of the EE (sign of the eigenvalues). The interior
EE is:

s∗τ
1 = (c1 − τ1) (d2 − b2) + (c2 − τ2) (b1 − d2)

n1 (b1 − b2) (d1 − d2)

s∗τ
2 = (c1 − τ1) (b2 − d1) + (c2 − τ2) (d1 − b1)

n2 (b1 − b2) (d1 − d2)
(18)

Payoffs at an interior EE, post-transfer are:

πa
1

(
s∗τ

1 , s∗τ
2

) = π
p
1

(
s∗τ

1 , s∗τ
2

) = b1(−c1 + τ1 + c2 − τ2)

b1 − b2

πa
2

(
s∗τ

1 , s∗τ
2

) = π
p
2 (s∗τ

1 , s∗τ
2 ) = b2 (−c1 + τ1 + c2 − τ2)

b1 − b2
(19)

Of course, the transfers are zero-sum and satisfy:

s∗τ
1 n1τ1 + s∗τ

2 n2τ2 = 0 (20)

The optimal transfer results in the highest global payoff that can be sustained as an EE.

Proposition 6 With an interior EE (Hawk-Dove, small asymmetry) the optimal transfer
shifts the loci so their intersection is an EE at the edge of the unit-simplex, exacerbating
inequality to achieve a higher payoff for all nations.

Proof A Hawk-Dove game with small asymmetry is defined as: c1 < 0, c2 < 0, d2 < d1 <

b2 < b1 and the interior Nash equilibrium restriction in Table 3 requires |c1| > |c2|. At an inte-
rior EE global payoff is: �(s∗τ

1 , s∗τ
2 ) = (n1b1+n2b2)(−c1+τ1+c2−τ2)

b1−b2
. Given b2 < b1,

d�
dτ1

> 0

and d�
dτ2

< 0, thus global payoff is increased by a transfer from population 2 to population 1:
τ1 > 0, τ2 < 0. Payoff inequality without and with transfers is: π1(s∗

1 , s∗
2 ) − π2(s∗

1 , s∗
2 ) =

−c1 + c2, and π1(s∗τ
1 , s∗τ

2 ) − π2(s∗τ
1 , s∗τ

2 ) = −c1 + τ1 + c2 − τ2, respectively. Clearly,
τ1 > 0, τ2 < 0 increases inequality. 	


Consider the Hawk-Dove small asymmetry example in Fig. 4: −c1 = 160,−c2 =
100, d2 = 1, d1 = 2, b2 = 3, b1 = 4. The NE is: s∗

1 = 0.50, s∗
2 = 0.67. The payoffs

at the EE are: πa
1

(
s∗

1 , s∗
2

) = π
p
1 (s∗

1 , s∗
2 ) = 240, πa

2

(
s∗

1 , s∗
2

) = π
p
2

(
s∗

1 , s∗
2

) = 180. So, it
would seem that a transfer from population 1 (the rich) to population 2 (the poor) would be
in order since population 1 has a higher payoff. However, each type 1 that joins the IEA adds
more to the agreement since −c1 > −c2 and d1 > d2. So, we are in the difficult situation
where the lower payoff group makes a positive transfer. Given the linearity of the payoff
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functions, the optimal transfers are such that the loci are shifted until they just intersect at
the s1 = 1 edge of the unit-simplex in Fig. 4.

The optimal transfer pair for this example is: τ1 = 3.16, τ2 = −4.56, generating an
EE of: s1 = 1, s∗

2 = 0.46. The optimal transfer pair shifts the γ τ
1 locus up and the γ τ

2
locus down in Fig. 4 until the loci intersect at the s1 = 1 edge of the unit-simplex. Any
increase in the transfer from this point will only reduce participation in population 2, and
is therefore not optimal. With the transfers payoffs are: πa

1 = 271, πa
2 = π

p
2 = 203, so all

nations are better off, but transfers have increased the difference in payoffs across popula-
tions. Greater efficiency requires greater inequality in this case. The transfers are effective in
closing the potential payoff gap. Global payoff is 23,025, or 47% of the difference between the
no-transfer EE and the full participation payoff level. There are now 40+27.6 = 67.6 nations
cooperating compared to 20 + 40.2 = 60.2 without transfers.

4.2 Corner EE

Transfers may also serve a purpose when there are two EE as in the Hawk-Dove large asym-
metry in Fig. 5. The payoff dominant EE is along the s2 = 1 edge since d2 > d1. The optimal
transfer pair can eliminate the basin of attraction for the inferior EE (at the s1 = 1 edge) by
shifting the γ τ

1 = 0 locus down and the γ τ
2 = 0 locus up, until the loci intersect at the s1 = 1

edge of the unit-simplex. The reduced form solution for this transfer pair involves solving
a system of three Eqs. (17) and (20), evaluated at s1 = 1. The three endogenous variables are
s2, τ1 and τ2. For example, using the γ τ

1 = 0 locus and the zero-sum constraint to eliminate
τ1 results in an equation in s2 and τ2. Then using the γ τ

2 = 0 locus to eliminate s2 results in
the reduced form transfer τ2.

τ2 = 1

2

[
n1 (b2 − b1 + d2 − d1) + c2 + √

ρ
]

> 0 (21)

where ρ ≡ n2
1[(b1 − b2)

2 + (d1 − d2)
2 + 2(b1 − b2)(d2 − d1)] + 2n1[−2c1(b2 − d2)

−c2(b1 + b2 − d1 − d2)] + c2
2. Substituting (21) into the γ τ

2 = 0 locus results in the reduced
form s2, and τ1 follows from the zero-sum constraint.

Proposition 7 For a Hawk-Dove game with large asymmetry the basin of attraction for the
Pareto inferior EE can be eliminated by a transfer that reduces inequality. The transfer is
credible since all players earn a higher payoff.

Proof The Jacobian formed by (16) shows the stability properties are independent of the
transfers. The reduced form transfers follow from direct substitution of Eq. (21) into the
γ τ

i = 0 loci (17) and the zero-sum constraint ( 20). As in Proposition 6, the payoff difference
across populations post-transfer is π1(s∗τ

1 , s∗τ
2 ) − π2(s∗τ

1 , s∗τ
2 ) = −c1 + τ1 + c2 − τ2 and

τ1 < 0, τ2 > 0 decreases inequality. 	

Consider the Fig. 5 Hawk-Dove large asymmetry example with two EE: {0.42,1} and

{1,0.33}. Transfers from population 1 to population 2 can eliminate the basin of attraction
of the inferior EE {1,0.33}. At {1,0.33} the optimal transfer is such that the loci intersect
at the s = 1 edge of the unit-simplex. The transfer pair that accomplishes this is: τ1 = −2.30,

τ2 = 3.85. However, the key difference is that the transfer need only be specified at the Pareto
inferior EE to eliminate the basin of attraction. Once the basin of attraction is eliminated then
the Pareto superior EE is obtained and no transfers are required to maintain the EE {0.42,1}.
For a Hawk-Dove with large asymmetry the IEA only specifies a transfer in the event an
inferior EE is obtained. Here the transfer serves as a coordination device and again it can be
agreed on with unanimity.
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5 Conclusion

Evolutionary game theory provides a natural framework to analyze IEAs. Governments are
more likely to respond to the current relative payoffs from their action, with some inertia,
than to lay out a complete contingency plan to be followed by subsequent administrations.
Furthermore, it is difficult to justify being in an IEA when a nation can earn a higher payoff
outside the IEA. This issue associated with a stage game analysis from previous work is
eliminated in an evolutionary model.

This paper investigates IEAs as evolutionary games and shows that transfers can-
not increase abatement in a single population framework. With two populations there is
a unique interior EE in a Hawk-Dove game (decreasing returns to abatement) with small
asymmetry in the externalities across populations. The population with the greater free-rider
externality earns a higher payoff at an interior EE. For a Hawk-Dove with large asymmetry
or a Coordination game the EE is along an edge of the unit-simplex.

Transfers can increase payoffs for all nations from an interior EE, but come at the expense
of lower participation in one of the populations. Transfers can also eliminate the Pareto infe-
rior EE in a Hawk-Dove with large asymmetry. Transfers have a limited role in Coordination
games and can not be credibly made in a Prisoner’s Dilemma. If there are decreasing returns
to abatement (Hawk-Dove) then the post-transfer EE may have substantially more abatement
than a single population model. This is a potential rationale for requiring only a subset of
nations (Annex I) to abate in the Kyoto Treaty, effectively creating a two-population model.

A surprising policy implication emerges from the model. Both the “polluter-pays” and
“ability-to-pay” principles dictate that rich nations are required to abate. This is one of the
central forces behind the Kyoto Treaty where reducing global inequality is clearly a goal. If
Annex I nations were allowed to meet their abatement requirements by purchasing tradable
pollution permits from the non-Annex I nations, then actual abatement relative to the require-
ments under the treaty would implicitly define a transfer from the rich to the poor. However,
with decreasing returns to abatement and small asymmetry all nations may be better off if
the poor make a transfer to the rich. The rich bring more to the agreement, but have a greater
incentive to remain outside. Overcoming their greater free-rider incentive is the reason that
the rich nations receive a positive transfer. An effective IEA may be Pareto improving and
increase global inequality. One possible way to overcome this increase in inequality is issue-
linkage, discussed in the introduction. A multi-issue agreement has the potential to increase
all payoffs and reduce inequality.

Appendix: Parameter Restrictions

Positive externalities requires:
∂π

p
i

∂s1
= bi n1 > 0,

∂π
p
i

∂s2
= bi n2 > 0 ,

∂πa
i

∂s1
= d1n1 > 0 and

∂πa
i

∂s2
= d2n2 > 0. Thus, bi > 0 and di > 0 for i = 1, 2. Global payoff is:

�(s1, s2) ≡ s1n1π
a
1 + s2n2π

a
2 + (1 − s1)n1π

p
1 + (1 − s2)n2π

p
2 (22)

The derivatives are:

∂�(s1, s2)

∂s1
= n1 [−c1 + 2s1n1(d1 − b1)+ s2n2(d1 + d2 − b1 − b2)+ n1b1 + n2b2]

∂�(s1, s2)

∂s2
= n2 [−c2 + s1n1(d1 + d2 − b1 − b2)+ 2s2n2(d2 − b2)+ n1b1 + n2b2] (23)
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The derivatives in (23) are required to be positive for all points in the unit-simplex. (i) For
a Prisoner’s Dilemma or Coordination game (di ≥ bi ) the minimum value of the partials
occurs at s1 = s2 = 0.

ci < n1b1 + n2b2 for i = 1, 2 (24)

(ii) For a Hawk-Dove (or a Prisoner’s Dilemma) with decreasing returns (di < bi ) the
minimum value occurs at s1 = s2 = 1.

ci < ni (2di − b j ) + n j (d1 + d2 − bi ) for i �= j = 1, 2 (25)

The global payoff with no cooperation is: �(s1 = 0, s2 = 0)= 0, and with full cooperation is:

�(s1 = 1, s2 = 1) = −n1c1 − n2c2 + d1 (n1)
2 + d2 (n2)

2 + n1n2(d1 + d2) (26)

The parameter restriction for a positive global payoff difference is: n1c1 +n2c2 < n1n2(d1 +
d2) + d1(n1)

2 + d2(n2)
2.

The second set of restrictions is given by the levels of γi at the diagonal corners
(s1 = 0, s2 = 0) and (s1 = 1, s2 = 1). A Prisoner’s Dilemma requires γi (si , s j ) for
all si ∈ [0, 1]. With decreasing returns all three terms in γi are negative so γi (si , s j ) <

0 ∀si , s j ∈ [0, 1] and there is no additional restriction required. With increasing returns the
maximum value occurs at γi (1, 1), yielding the restriction:

ci > n1(d1 − bi ) + n2(d2 − bi ) (27)

Together with (24), the increasing returns Prisoner’s Dilemma restriction is:

n1(d1 − bi ) + n2(d2 − bi ) < ci < n1b1 + n2b2 (28)

The Coordination game has increasing returns and requires γi (0, 0) < 0 (or c > 0) and
γi (1, 1) > 0. The latter requires:

ci < n1(d1 − bi ) + n2(d2 − bi ) for i = 1, 2 (29)

Together with (24) the restriction is:

ci < n1(d1 − bi ) + n2(d2 − bi ) and ci < n1b1 + n2b2 for i = 1, 2 (30)

The Hawk-Dove has decreasing returns and requires γi (0, 0) > 0, or ci < 0 and γi (1, 1) > 0.
The latter requires:

− ci < n1(bi − d1) + n2(bi − d2) (31)

The Hawk-Dove restriction is:

ni (bi − 2di ) + n j (bi − d1 − d2) < −ci < n1(bi − d1) + n2(bi − d2) (32)

An interior Nash equilibrium occurs when both s∗
1 and s∗

2 are contained in (0, 1). If
c1 = c2 = c then the EE values become: s∗

1 = c
n1(d1−d2)

and s∗
2 = c

n2(d2−d1)
, which indicates

that there is no participation in at least one population (either s∗
1 = 0, s∗

2 = 0). If c1 = c2 = c
and d2 > d1 then s∗

1 = 0, and if d1 > d2 then s∗
2 = 0. If b1 = b2, or d1 = d2 then the

EE values in (12) are undefined. Asymmetry across populations is needed to generate an
interior Nash equilibrium. There is an interior Nash equilibrium for the following parameter
restrictions (Table 3).
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Table 3 Interior Nash equilibrium parameter restrictions

s∗
1 ∈ (0, 1) s∗

2 ∈ (0, 1) s∗
1 , s∗

2 ∈ (0, 1)

(1) Coordination small asymmetry

b2 < b1 < d2 < d1 iff c1
c2

>
d2−b1
d2−b2

iff c1
c2

<
d1−b1
d1−b2

iff d2−b1
d2−b2

<
c1
c2

<
d1−b1
d1−b2

(2) Coordination large asymmetry

b1 < b2 < d2 < d1 iff c1
c2

<
d2−b1
d2−b2

iff c1
c2

>
d1−b1
d1−b2

iff d1−b1
d1−b2

<
c1
c2

<
d2−b1
d2−b2

(3) Hawk-Dove small asymmetry

d2 < d1 < b2 < b1 iff c1
c2

>
d2−b1
d2−b2

iff c1
c2

<
d1−b1
d1−b2

iff d2−b1
d2−b2

<
c1
c2

<
d1−b1
d1−b2

(4) Hawk-Dove large asymmetry

d1 < d2 < b2 < b1 iff c1
c2

<
d2−b1
d2−b2

iff c1
c2

>
d1−b1
d1−b2

iff d1−b1
d1−b2

<
c1
c2

<
d2−b1
d2−b2

The two populations must also be of sufficient size for an interior equilibrium to exist: n1 >
c1(d2−b2)+c2(b1−d2)

(b1−b2)(d1−d2)
and n2 >

c1(d1−b2)+c2(b1−d1)
(b1−b2)(d2−d1)
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