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Directional influences on global temperature prediction
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[1] There is growing evidence that major climate modes are
involved in determining decadal variability in global mean
temperature. These modes represent major oceanic and
atmospheric signals and on decadal scales their collective
interplay leads to climate shifts manifesting themselves as
regime changes in global temperature trend. Here we inves-
tigate whether the collective role of these modes is extended
within a regime, i.e. to shorter time scales. We apply non-
linear prediction in order to assess directional influences in
the climate system. We show evidence that input from four
major climate modes from the Atlantic and Pacific improves
the prediction of global temperature and thus these modes
Granger cause global temperature. Moreover, we find that
this causality is not a result of a particular mode dominating
but a result of the nonlinear collective behavior in the net-
work of the four modes. Citation: Wang, G., P. Yang, X. Zhou,
K. L. Swanson, and A. A. Tsonis (2012), Directional influences on
global temperature prediction, Geophys. Res. Lett., 39, L13704,
doi:10.1029/2012GL052149.

1. Introduction

[2] The winter of 2011-2012 was a very strange winter
for Northern Hemisphere. The contiguous United States
(especially the Midwest and the east) experienced a very mild
winter while Europe and parts of Asia a record breaking
cold winter. A combination of a La Nina in the tropical
Pacific and a positive phase of the North Atlantic Oscillation
resulted in such an upper flow that kept the cold Arctic air
away from the States and directed it over Europe. While it is
well known that major climate modes/teleconnections can
affect large regions of the planet thereby shaping up global
temperature variability, we have only begun to understand
the collective behavior of these modes and its effect on
climate.

[3] Synchronization and coupling between climate modes
has been lately implicated in the decadal variability of global
temperature and in major climate shifts. In a series of papers
[Tsonis et al., 2007; Swanson and Tsonis, 2009; Wang et al.,
2009; Tsonis and Swanson, 2011] it has been demonstrated
that the collective behavior of the network of four major
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climate modes (namely the Pacific Decadal Oscillation
(PDO), the North Atlantic Oscillation (NAO), the El Nifio/
Southern Oscillation (ENSO), and the North Pacific Index
(NPI)), can account for the decadal climate variability and
all climate shifts observed in the instrumental record. While
climate is in a regime characterized by a certain global
temperature trend, this network may enter a state where the
modes synchronize. It was found that in those cases where
the synchronous state was followed by a steady increase in
the coupling strength between the modes, the synchronous
state was destroyed, and was followed by a climate shift and a
new regime characterized by a reversed global temperature
trend. Evidence for such type of behavior was also found in
three climate simulations of forced (with CO,) and control
state-of-the-art models [Tsonis et al., 2007] as well as in a set
of proxy indices going back several centuries [Tsonis and
Swanson, 2011]. The fact that this mechanism is found in
both forced and control simulation suggests that this is an
intrinsic mechanism of the climate system.

[4] While the above mechanism may explain climate shifts
over decadal time scales, it does not address directional
influences within a given regime. In other words, is the
collective behavior of the modes important only in causing
shifts or is it relevant at shorter time scales, for example
seasonal or yearly time scales, during which there is no
synchronization? An answer to this question will shed more
light into the relationship between co-variability of major
climate modes global temperature and may lead to improved
predictions. This issue is addressed here.

2. Method

[5] One of the paramount issues in climate, as well as
other areas of science, is extracting information flow from
observed time series. This knowledge is pivotal in under-
standing the dynamical behavior of the system which we
ultimately would like to predict accurately. Granger causality
[Granger, 1969] has become one of the most important
statistical approaches for achieving this task. According to
Granger causality, given two simultaneously recorded time
series x; and y;, where i = 1, N denotes sampling times, we
say that y has causal influence on x if the variance of the
prediction error of x given y is less than the variance of the
prediction of x not given y. This means that if prediction of
some output improves with the addition of an input, then
the input Granger causes the output. In its original formu-
lation Granger causality is based on linear prediction of
stochastic time series. Here we consider time series which
represent nonlinear dynamical systems. Because of that we
will assess predictability improvements using nonlinear
prediction methods.

[6] Letus assume that we have an observable (output) x(),
t = 1,N from an unknown nonlinear dynamical system. It is
common practice by now to use this time series and its
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Figure 1. The correlation between predicted and actual
values, for each embedding dimension, as a function of the
prediction time step (in months) with (blue lines) and with-
out (black lines) the influence of the inputs. The results using
the non-skill method of persistence are also shown (red line).
The results using all four inputs are superior as the results
without inputs are basically the same as persistence (see text
for more details).

successive time shifts (delays) as coordinates of a vector
time series,

X(t) = {x(®),x(t = 1), ..., x(t = (my — 1)7}

where m, is the dimensionality of the embedding space and
T an appropriate delay, in order to reconstruct the underlying
attractor of the unknown system. Once this is done we can
then estimate the various properties of the attractor (e.g.,
dimensionality, Lyapunov exponents [Packard et al., 1980;
Casdagli et al., 1991]), as well as build a nonlinear predic-
tion model of the form

x(t+T) =fr(x(1) (1)

where f is some appropriate mapping and 7 the prediction
time step [Farmer and Sidorowich, 1987; Casdagli, 1989].
Now suppose that this unknown system is in reality driven by
an input whose influence is imprinted in x. If we don’t have
an idea of what this input is, then the best we can do is the
above reconstruction and prediction method. If, however, we
have an idea of what this input might be (for example,
another time series y(¢)) we can then attempt to model this
input-output system via a delay coordinate reconstruction of
the form

X(t) = {x(@), x(t = 7), ..., x(t — (M — )75
y(@),y(t—=7), ...yt —(my— D)1}, t =1,N

where m, is the embedding dimension of the input (i.e.
the total embedding space is m; + my) and N = n —
(max(my, mp) — 1)7 is the number of the points on the
trajectory. Based on this trajectory, we may then build a
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model similar to (1) to predict the above process. The model
is expressed as the map:

x(t+T) = fr(x();»(t)) )

where f'is again some desired mapping. The above predic-
tion approach (which can be extended to consider more than
one inputs), makes a prediction for one time step into the
future (time step 1), then the predicted value is used to derive
anew map to predict the next time step (i.e. time step 2), and
o on.

3. Data Analysis and Results

[7] The above approach is very successful in improving
prediction when inputs are included in “ideal” stationary
systems such as the Lorenz system, the Henon map etc. (see
auxiliary material) or nonstationary systems [Wang et al.,
2011]." Motivated by this, we examine here whether such
approaches are successful when we only have measurements
from systems whose formulation is unknown. More specif-
ically we consider whether the above mentioned four major
climate modes influence global mean temperature in the
sense of Granger [1969]. These modes [Mantua et al., 1997;
Hurrell, 1995; Philander, 1990; Trenberth and Hurrell,
1994] represent regionally dominant modes of climate vari-
ability, with time scales ranging from months to decades.
NAO and NPI are the leading modes of surface pressure
variability in northern Atlantic and Pacific Oceans, respec-
tively, the PDO is the leading mode of SST variability in the
northern Pacific and ENSO is a major signal in the tropics.
Each of these modes involves different mechanisms over
different geographical regions. Thus, we treat them as low-
order nonlinear sub-systems of the grand climate system
exhibiting complex dynamics. Indeed, some of their dynamics
have been adequately explored and explained by simplified
models, which represent subsets of the complete climate
system and which are governed by their own dynamics.
For example, ENSO has been modeled by a simplified
delayed oscillator in which the slower adjustment time-scales
of the ocean supply the system with the memory essential to
oscillation [Elsner and Tsonis, 1993; Schneider et al., 2002;
Marshall et al., 2001; Suarez and Schopf, 1998]. Monthly-
mean values in the interval 1900-2007 are available for all
modes. Note that major climate modes may be correlated to
some degree as the action of one may (in a nonlinear way)
trigger the action of another. Nevertheless, they represent
different modes of variation. For example, NPI and PDO
represent variability in the Northern Pacific Ocean but they
correspond to variability of different fields, unlike NAO and
AO (Arctic Oscillation), which represent the variability of the
same field (surface pressure) in the North Atlantic Ocean.

[8] We first considered the values of the global temperature
(which represent the output from the “unknown” system) and
embedded it in dimensions 35 using 7 = 1 month. For each
embedding we used the first 103 years (1236 data points) to
build the predictive model developed by [Casdagli, 1989]
where f is assumed to be a polynomial of order two. The
last four years (48 data points) were used for predictions

'Auxiliary materials are available in the HTML. doi:10.1029/
2012GL052149.
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Figure 2. Average correlation coefficient as a function of prediction time step over the three embeddings. The black line is
the average of the black lines in Figure 1 (not any input considered), the red line represent again persistence, and the broken
blue line is the average of the blue lines in Figure 1 (all four inputs are considered). The green line is the average over the
three embeddings and over the four modes acting individually. The bars on the green line indicate the one standard deviation.
Clearly, the blue line stands above all other lines indicating that the improvement in predicting global temperature is the
result of the collective behavior of the modes in the network and not a result of an individual dominant mode (see text

for more details).

and to estimate the correlation coefficient between actual
and predicted values, r(t), as a function of prediction time
step, r(t). The embedding dimension of the inputs is set to
either O (i.e. equation (1) is used; the inputs are not taken into
account in the predictive model), or 3-5 (i.e., equation (2) is
used; the influence of the inputs is considered in the model).
Figure 1 shows, for each embedding dimension, the pre-
diction skill with and without the influence of the inputs.
The results using the non-skill method of persistence (future
values are the same as the terminal value in the recon-
struction) are also shown. Note that for 5 variables and for a
range of M possible embeddings for each variable, there
exist M°> combinations. Thus, to keep things simple, the
embedding dimensions were set for all variables to either 3,
or 4, or 5. Clearly, when the input of the four major modes
is included prediction is dramatically improved. In fact,
without the input, the predictive model is only as accurate
as persistence. The average correlation over the prediction
time step range 1-9 months is improved 125% —150% when
the inputs are included. The improvement is also observed at
embeddings 6 and 7, but due to sample limitations is not as
good. In order to address possible effects of nonstationarities
in the data we repeated the analysis with detrended data.
The conclusions do not change significantly. These results
establish for the first time Granger causality between major
climate modes and global temperature variability over sea-
sonal time scales.

[v] We then repeated the above analysis but now we used
each mode alone as an input. Figure 2 shows the average
correlation coefficient as a function of prediction time step
over the three embeddings. The solid black line is the average
of the black lines in Figure 1 (not any input considered),
the red line represent again persistence, and the broken blue
line is the average of the blue lines in Figure 1 (all four
inputs are considered). The green line is the average over
the three embeddings and over the four modes acting
individually. The vertical green bars indicate the one stan-
dard deviation. While any individual input improves predic-
tion compared to no input or to persistence, the blue line
stands above all other lines indicating that the improvement
in predicting global temperature is the result of the collective
behavior of the modes in the network and not a result of an
individual dominant mode. Note that ENSO was not partic-
ularly active for the forecast time period here; it is expected
that predictability in global temperature arising from the
linear ENSO signature will augment that shown here
[Trenberth et al., 2002].

[10] Nonlinear prediction has been very successful in
identifying chaos and nonlinearity in data because, unlike
other methods which exploit only a subset of the available
points in the attractor, it uses all available points [Sugihara
and May, 1990]. The fall-off in the correlation in nonlinear
prediction, for short time steps (before r(t) — 0), is often
used to differentiate between nonlinear dynamics (chaos)
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Figure 3. Logarithm of 1 — r(?) versus ¢ for embedding dimension four and for 7 = 1,6 months (data from Figure 1). When
the inputs are included (open squares) the fit is nearly linear unlike when the inputs are off (full circles). According to the
Tsonis-Elsner test [Tsonis and Elsner, 1992], this indicates nonlinear dynamics (see text for more details).

and processes with red noise spectra and long range corre-
lations such as fractional Brownian motions, which may
“fool” algorithms for estimating dimensions or performing
nonlinear prediction. According to the Tsonis-Elsner test
[Tsonis and Elsner, 1992], a scaling 1 — r(t) ~ €' (a straight
line in a semi-log plot) indicates chaos, whereas a scaling
1 — r(®) ~ ¢ (a curve in a semi-log plot) indicates random
fractal sequences. Figure 3 shows (data from Figure 1) the
logarithm of 1 — r(?) versus ¢ for embedding dimension four
and for £ = 1,6 months. When the inputs are included (open
squares) the fit is nearly linear unlike when the inputs are
off (full circles). This provides additional evidence for our
working hypothesis that the modes are low-order nonlinear
subsystems of the grand climate system whose collective
behavior strongly impacts global climate variability.

4. Conclusions

[11] Recent studies support the view that over time scales
ranging from months to decades climate collapses into dis-
tinct subsystems and provide clues as to what these sub-
systems might be [Tsonis et al., 2011]. To a large extend
these subsystems identify with major oceanic and atmo-
spheric signals and evidence is accumulating that the inter-
action between these subsystems may be largely responsible
for the observed climate variability over decadal time scales
[Tsonis et al., 2007; Swanson and Tsonis, 2009; Wang et al.,
2009; Tsonis and Swanson, 2011; Wyatt et al., 2011]. Here
we show that inclusion of the NAO, PDO, ENSO, and NPI
variability into a nonlinear prediction method largely improves
the predictability of global temperature over seasonal time
scales. Together with previous studies this result establishes
causal directional influences between the co-variability of

major oceanic and atmospheric modes and global tempera-
ture variability, suggesting a significant role of the major
climate modes in shaping up global temperature not only
over decadal time scales but over shorter time scales. Our
results suggest that prediction schemes which incorporate
modes as inputs may improve short (seasonal) predictions.
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