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In this work, we developed a numerical formulation to
approximate the evolution of an individual singular
vortex under beta-plane quasi-geostrophic dynamics
and demonstrated that our numerical scheme provides a
faithful replica of the inviscid continuous equations, as
well as of its modifications in the presence of friction.
Our numerical procedure can be readily generalized to
the case of any number of singular vortices interacting
with one another and with the regular flow. Using this
numerical model, we examined the flow development
at large times, beyond the well-studied linear regime
characterized by the formation of the regular field’s
‘beta-gyres’ dipole, which forces the singular cyclone to
move northwestward. We showed that, as the self-
interactions of the regular field become important, beta
gyres disintegrate and a different, new mechanism of
the singular vortex’s self-propelled motion comes into
play. Furthermore, for large friction, the inertial stage is
followed by the frictional regime culminating in
friction-assisted steady state (cf. Early et al. 2011).

These results lay a foundation for numerical
consideration of systems of multiple singular vortices,
which could provide further insights in our fundamental
understanding of the processes underlying the multi-
scale atmospheric variability.
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Fig. 5: Friction-assisted steady state (large K). Top: evolution of the 
regular  potential vorticity q=Ω(r=r0)+!y0 at the center of the vortex 
(which is a conserved quantity in the inviscid case (Reznik 1992). In 
the friction-assisted steady state, Ω remains constant in the 
reference frame associated with the singular vortex, and q increases 
with time as !y0. Bottom: regular streamfunction (left) and potential 
vorticity Ω+!y (right) in the vicinity of the singular vortex in the 
friction-assisted steady-state regime. Note the singular vortex 
position (black dot) is offset from the streamfunction maximum, 
leading to the system’s northwestward propagation.
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Fig. 2: Singular vortex paths 
(top) and velocities (bottom) 
for the point-vortex case 
Lv=Rd =600 km with very 
small superviscosity K. The
results are shown for the full-
model simulation, the
simulation of a linearized
model in which regular-field’s 
self-advection is neglected, 
and for the exact theoretical 
solution of the linear problem 
(Reznik 1992). Linear 
solution is close to the full 
solution for ~30 days or so.

Fig. 3: The evolution of the 
regular stream-function for 
the case shown in Fig. 2. 
Evident is the development 
of the beta gyres at small 
times, and their subsequent 
disintegration, with the de-
velopment of the ‘dis-
placed vortex’ regime, in 
which the regular 
monopole’s center is offset 
from the singular vortex 
position, leading to their 
joint northwestward 
propagation.

General circulation of the atmosphere is characterized by multi-scale
flows with a vigorous eddy field of intense cyclones and anticyclones
(synoptic eddies) that control the day-to-day weather variations, but
also exhibit a pronounced low-frequency variability. Recent studies
showed that the latter variability can be thought of in terms of the
low-frequency redistribution of the atmospheric storm tracks, which
is insensitive to the detailed spatial structure of the individual
synoptic eddies (Löptien and Ruprecht 2005; Kravtsov and Gulev
2013; Kravtsov et al. 2015). This observation suggests an idea of
tackling the problem of multi-scale mid-latitude atmospheric
variability by considering the systems of interacting singular vortices;
in such systems, the singular eddy field is clearly isolated from the
regular field, thereby allowing unambiguous identification of the
various dynamical components of the eddy–mean-flow interaction
(Obukhov 1949; Morikawa 1960; Gryanik 1986; Reznik 1992). The
same approach is applicable for studying oceanic mesoscale
processes (Early et al. 2011). In this work, we develop a numerical
finite-difference model describing the evolution of a singular
monopole on a beta-plane and show that it provides a reasonable
approximation of the continuous equations.

Introduction Salient features of singular vortex evolution
The equations (1–4) with the ’finite-difference’ singular-vortex analog (5) were solved in an x-periodic domain using parameters typical for
mid-latitude atmosphere for a range of vortex sizes and horizontal superviscosities. For very small friction, the singular-vortex trajectories
for the point-vortex case (Fig. 2) are close to the numerical solution of the linearized problem, which also matches exactly the analytical
solution of this problem (Reznik 1992), for times up to 30 days. In this linear regime, the system’s evolution is due to the development of the
so-called beta-gyres (Fig. 3). At later stages, the system enters inertial regime; here beta-gyres disintegrate and the regular field in the
vicinity of the singular vortex becomes monopolar and offset of the singular-vortex center, resulting in the northwestward propagation.

The singular-vortex trajectories tend to become more zonally-oriented in the large-vortex case "# = 2&' (Fig. 4c.1) and, conversely, become
more meridionally-oriented in the small-vortex case "# = &'/2 (Fig. 4a.1). The small-vortex solutions are characterized by a shorter inertial
stage and are only able to reach relatively small westward velocities (Fig. 4a.2) in the course of the evolution compared to the point-vortex (Fig.
4b.2) and, especially, large-vortex solutions (Fig. 4b.3), whereas the magnitudes of the meridional velocity component seem to depend more on
the superviscosity K than on the size of the singular vortex, as per Figs. 4a.3, 4b.3 and 4c.3.

An interesting and somewhat unexpected property of the singular-vortex evolution is the existence of a ‘post-inertial’ stage of evolution in
which frictional dissipation plays an important role. This stage becomes most apparent in the solutions with large K (and was not observed at all
in the tiny-friction simulations); its onset can be tracked by following the evolution of the regular potential vorticity at the center of the vortex
(Fig 5, top). In the friction-assisted steady state, regular flow is constant in the reference frame attached to the singular vortex (Fig. 5, bottom).
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Fig. 1: Finite-difference approximation (5) to the singular vortex (1), 
which coincides with the Bessel vortex at all grid points except at the 
center of the vortex.
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 Fig. 4: Singular-vortex trajectories and velocities for simulations using 

different vortex sizes (increasing from left to right, with point-vortex case) in 
the middle and different values of horizontal superviscosity (see legends). 
Trajectories become more zonal with decreasing K and increasing Lv.

																																																												"# = −
&
2(

)*(,|. − .*(/)|)																																													(1) 

																					234 + 6(" + "#, 4 + 89) + (,: − ;:)6(" + <*9 − =*>, "#) = −)?@"				(2) 

                           	Ω = ?:" − ;:"; 	<* = >̇* = −2D"E.F.G
;    =* = 9̇* = 2H"|.F.G,														(3)             

																																																																																"|3F* = 0.																																																										(4) 

 

 

																																														∇:"# − ,:"# = &N(> − >*)N(9 − 9*).																																														 
 

          ("#O,PQR
∗ ++"#O,PTR

∗ +"#OQR,P
∗ + "#OTR,P

∗ −(4 + ,:∆:)	"#O,P
∗ )/∆:=&	NO,O*NP,P*/∆:.   (5)              

 


