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Introduction 
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State-of-the-art global coupled climate models used to simulate 20th 
century climate use similar dynamical cores, but differ in details of 
the forcing and in the parameterizations of  unresolved subgrid-scale 
physical processes (Taylor et al. 2012). We consider 18 independent 
ensembles of these model simulations (Table 1) for  attribution of 
the 20th century climate change. 
 

We concentrate on the behavior of surface temperature averaged over the 
North Atlantic (AMO), North Pacific (PMO) and the entire Northern 
Hemisphere (HMO) region (Steinman et al. 2015). The central issue here 
is attribution of the temperature evolution to a combination of externally 
forced (by variable CO2 or aerosol concentrations, solar forcing etc.) and 
intrinsic climate variability (which can exist under the constant forcing). 
Two ways to isolate the two types of variability in a climate variable x 
are (Kravtsov and Spannagle 2008; Steinman et al. 2015) 
 
 
     

Figure 2: Twentieth-century climate simulations using two different 
climate models. Top: HadGEM2-ES (Booth et al. 2012) simulation of 
the North Atlantic sea-surface temperature (SST ) evolution. Due to its 
treatment of the aerosol indirect effect on clouds this model is able to 
closely mimic the observed time series of the North Atlantic SSTs. 
Bottom: Three simulations (shown is the global temperature time 
series) using slightly different, but plausible cloud parameterizations in 
the GFDL CM3 model (Golaz et al. 2013). Note the pronounced 
differences in both the overall warming trend and multidecadal 
undulations of the global temperatures in the three simulations. “Model 
climate sensitivity can be engineered!” (Golaz and Zhao 2015) 

Figure 3: The results of data-adaptive spatiotemporal filtering of the 
multivariate climate network based on sea-surface temperature and sea-
level pressure indices in the observed (left) and GFDL CM3 simulated 
data (right) [Kravtsov et al. 2014]. Observations are characterized by 
“propagation” of multidecadal “stadium wave” (Wyatt et al. 2012), 
whereas the simulated variability exhibits a synchronous in-phase 
response in all members of the simulated climate network. Furthermore, 
the multidecadal variance in the observed sea-level-pressure based 
indices is much more pronounced than in the model (not shown).!

Finally, we would like to point out that the true simulated multidecadal 
intrinsic variability defined using (1a) applied to individual model 
ensembles is much weaker than in any of the purely empirical or semi-
empirical estimates of the observed intrinsic variability in Figs. 1G–I.  
In particular, the standard deviation of either of the 18 individual semi-
empirical time series there, that of their ensemble mean (heavy red line), 
as well as the standard deviations of the time series obtained by 
removing linear trends (heavy cyan and magenta lines) all exceed the 
95th percentile of the standard deviations based on the 40-yr low-pass 
filtered time series of residual variability from the 116 simulations 
considered (shown as the distance between black dashed lines in Figs. 
1G–I).  On one hand, this discrepancy may reflect the uncertainty in 
modeling the indirect aerosol effect on climate (Booth et al. 2012; Fig. 2 
top), or the models’ sensitivity to cloud parameterizations (Golaz et al. 
2013; Fig. 2 bottom). In this interpretation, the more pronounced 
multidecadal undulations of the observed surface temperatures would be 
due to models’ underestimating the multidecadal component of the true 
forced climate response, while the true intrinsic variability in 
observations would be consistent with the simulated intrinsic variability. 
Alternatively, or in addition, climate models may misrepresent some of 
the dynamical feedbacks hypothesized by the authors of this 
presentation to be responsible for the hemispheric propagation of the 
AMO-type multidecadal signal (Kravtsov et al. 2014; Fig. 3), in which 
case the model–data differences would reflect the lack of multidecadal 
intrinsic dynamics in climate models.  
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Discussion 

Figure 1: Intrinsic variability in the twentieth-century model simulations 
with four and more ensemble members identified using two different 
methods for estimating the forced signal — the multi-model regional 
regression method (method 1), and the classical subtraction of the 
individual-model ensemble mean (method 2). Left column: the spectra 
of intrinsic variability; these spectra plot the variance of the running-
mean low-pass filtered time series of each climate index against the 
averaging window size. The dashed lines filled with color shading (see 
legend) show the 95% spread of the spectra across the total of 116 
simulations considered. Middle column: the correlation measure of 
statistical independence between multiple realizations of the GFDL 
CM3 model. Low correlation measure indicates statistical 
independence. Dashed lines show the 99th percentile of the correlation 
measure based on the 1000 simulations of the corresponding AR-3 
red-noise model. Right column: estimates of the observed 
multidecadal intrinsic variability. The semi-empirical estimates (thin 
black lines) were computed based on the forced signals obtained 
using method 2 for each of the 18 model ensembles considered, with 
heavy red line indicating the average over these individual estimates. 
Additional heavy lines are for results based on linear detrending. The 
distance between the black dashed lines in each plot shows the 95th 
percentile of the standard deviations for multidecadal intrinsic 
variability estimated using method 2 over the 116 simulations 
considered. 

Table 1. CMIP-5 twentieth century simulations with four or more realizations, ending up 
as 18 independent ensembles with the total of 116 simulations. 

Model 
# 

Model acronym Number of 
realizations 

Aerosol indirect 
effects (cloud 

albedo+lifetime) 
1. CCSM4 6  
2. CNRM-CM5 10  
3. CSIRO-Mk3-6-0 10 Y 
4. CanESM2 5  
5.  GFDL-CM2p1 10  
6.  GFDL-CM3 5 Y 
7. GISS-E2-Hp1 6  
8. GISS-E2-Hp2 5  
9. GISS-E2-Hp3 6  
10. GISS-E2-Rp1 6  
11. GISS-E2-Rp2 6  
12. GISS-E2-Rp3 6  
13. GISS-E2-Rp4 6  
14. HadCM3 10  
15. HadGEM2-ES 5 Y 
16. IPSL-CM5A-LR 6  
17. MIROC5 4 Y 
18. MRI-CGCM3 4 Y 
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This points to a larger forced role in this period. Other processes not
represented by our ensemble-mean response (such as ocean dynamical
changes) may also contribute to this early trend.

In examining why the HadGEM2-ES ensemble reproduces the
observed NASST variability better than previous multimodel studies
have done6,9 (Fig. 1a, b), we can discount the possibility that the
HadGEM2-ES variability is predetermined, because the initial condi-
tions were selected to sample different phases of Atlantic variability26.
Furthermore, an additional HadGEM2-ES ensemble that omits
changes in aerosol emissions neither has the same multidecadal vari-
ability as the all-forcings ensemble nor reproduces the observed
NASSTs (Fig. 2a).

Replication of a large fraction of the observed NASST variability by
HadGEM2-ES allows us to identify forcings and mechanisms, consist-
ent with the observed variability, within the model framework.
Variability of ensemble-mean NASST from historical simulations
including time-varying aerosol emissions is strongly correlated with
variability in simulated net surface shortwave radiation (Fig. 2b),
which in turn has the same temporal structure as variability in aerosol
optical depth changes (Fig. 2c) and periods of volcanic activity (Fig. 2d).
Other terms in the surface heat budget (Supplementary Fig. 2) have a
role in the simulated NASST change. However, it is the surface short-
wave component that produces the dominant multidecadal variations.

Volcanoes and aerosols respectively explain 23 and 66% of the temporal
(10-yr-smoothed) multidecadal variability of the detrended NASST
(Supplementary Fig. 5). Combining both contributions explains 76%
(80% after inclusion of mineral dust aerosols) of the simulated variance.
Inclusion of mineral dust processes may potentially be important
because emissions are known to respond to North-Atlantic-driven
changes in Sahel rainfall, and thus represent an important positive
feedback on NASSTs in the real world12. The lack of a multidecadal
dust signal (Supplementary Information) in HadGEM2-ES simulations
suggests that we are likely to be underestimating the magnitude of the
forced Atlantic response.

The volcanic influence on Atlantic variability has been demon-
strated previously12,22. We focus on the anthropogenic aerosol com-
ponent of the shortwave changes identified here as driving the model’s
multidecadal NASST variability. Aerosol concentration changes influ-
ence the spatial response (Fig. 3) of NASST as well as its temporal
evolution. Prevailing winds advect aerosols emitted in industrial North
America in a band across the North Atlantic that mixes with polluted
air masses over Europe before being transported by trade winds south
and west. The large-scale pattern of shortwave change is explained by
the effect of cloud microphysical response to these changes in aerosol
concentration. The shortwave variability largely occurs where aerosol
changes coincide with large-scale cloud distribution. On a regional
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Figure 1 | Atlantic surface temperatures. Comparison of the area-averaged
North Atlantic SSTs (defined as 7.5–75uW and 0–60uN), relative to the 1901–
1999 average, of an observational estimate (the US National Oceanic and
Atmospheric Administration’s Extended Reconstructed SST27 (ERSST), black)
and two published6,9 CMIP3 model composites (ENS1, blue; ENS2, green;
a); the HadGEM2-ES model (orange; shading represents 1 s.d. of the model
ensemble spread; b); and two recomposites from CMIP3, the first with models

that represent only direct aerosol (mean of five contributing models, red) and
the second with models representing both indirect effects interactively (three
models, blue) (c). In all panels, trends between 1950–1975 (K per decade) are
shown. The error estimates are based on the s.d. of the 25 trends between a 5-yr
period (1948–1952) at the start of this interval and a 5-yr period (1973–1977) at
the end. All data have been latitude-weighted when calculating area averages.
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an ensemble of five historical members (1860–2005) start-
ing every 50 years from the control simulations. The control
simulations are each run for 500 years. All forcings for the
control and historical simulations are identical to the CMIP5
CM3 integrations. The set of CM3w and CM3c simulations
represent a total of nearly 2500 years.

[14] A summary of the present-day (1981–2000) global
mean climatology performance is presented in Figure 2

in the form of target diagrams. The left panel measures
the performance of the three model configurations against
observations. For each metric, models tend to be clustered
together. The right panel measures the difference between
alternate configurations CM3c, CM3w, and the reference
CM3. Comparing the two panels, it is clear that the distance
between models is much smaller than the distance between
models and observations. In other words, the overall impact

Figure 2. Target diagrams [Jolliff et al., 2009] illustrating present-day coupled model performance. Model results are
annual mean ensemble averages for the period 1981–2000. Vertical axes represent normalized biases (B*), and horizontal
axes normalized unbiased root mean square difference multiplied by the sign of the model and reference standard deviation
difference (RMSD*0). The left panel compares model with observations, and the right one alternate configurations (CM3c,
CM3w) with CM3. Fields shown are sea-level pressure (SLP), 500 hPa geopotential height (z500), 200 and 850 hPa
zonal wind (U200, U850), sea surface temperature (SST), land air surface temperature (TAS), precipitation (Precip), and
shortwave and longwave cloud forcing (SWCF, LWCF). Respective data sources are ERA40, HadISST, CRU, and CERES-
EBAF [Uppala et al., 2005; Rayner et al., 2003; Brohan et al., 2006; Loeb et al., 2009].

Figure 3. Time evolution of global mean surface air temperature anomalies. Color lines represent the CMIP5 GFDL CM3
model (green) and the two alternate configurations, CM3w (red) and CM3c (blue). Each line is a five-member ensemble
average. Anomalies are computed with respect to 1881–1920. Model drift is removed by subtracting from each ensemble
member the linear trend of the corresponding period in the control simulation. Also shown are observations from NOAA
NCDC [Vose et al., 2012], NASA GISS [Hansen et al., 2010], and HadCRUT3 [Brohan et al., 2006]. A 5 year run-
ning mean is applied to model results and observations. Letters above the horizontal axis mark major volcanic eruptions:
Krakatoa (K), Santa María (M), Agung (A), El Chichón (C), and Pinatubo (P).
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Table 1: CMIP-5 twentieth century simulations with four or more 
realizations (18 ensembles with the total of 116 simulations).  

In summary, the current generation of comprehensive climate 
models is characterized by overwhelming model uncertainty, 
extreme sensitivity to aerosol and cloud parameterizations and a 
possible lack of multidecadal intrinsic variability, which impedes 
clear attribution of the twentieth century climate change. 
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where the square brakets indicate ensemble averaging over K realizations 
of climate evolution obtained by various models from different initial 
conditions and n is the time index. Steinman et al. (2015) argued that (1b) 
based on the multi-model ensemble mean over the 116 simulations results 
in the independent realizations of intrinsic variability ε. However, we 
show here (Fig. 1) using the unbiased estimate (1a) based on independent 
ensembles of individual model simulations (Table 1) that the “intrinsic 
variability” as defined by these authors is in fact dominated by the 
differences in the actual forced response of individual models, leading to 
an inflated spectrum  (Figs. 1A–C) and correlated “intrinsic” samples in a 
given model’s ensemble (Figs. 1D–F). Furthermore, using independent 
estimates of the forced signal from the 18 model ensembles considered to 
isolate the observed intrinsic variability demonstrates large uncertainties 
in the attribution of the observed climate change (Figs. 1G–I). 
     


