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Chapter 1

Introductory Notes

1.1 Preliminary Remarks

1.1.1 Purpose of the course

The purpose of this course is to introduce basic statistical concepts and develop a working
knowledge of a number of statistical methods currently used for analysis, interpretation and
modeling of weather/climate-related (observed and model-generated) data sets. The pre-
sentation will be based on a balance between mathematical rigor in derivation of various
statistical techniques and the necessity to cover a fairly large (although by no means com-
plete) set of analysis methods. A particular attention will be paid to the question of how
to choose and apply (an) appropriate statistical method(s) depending on the nature of the
phenomenon under consideration. Each topic covered in the lecture presentations will be
complemented by exercises using synthetic and real data sets in practical classes.

1.1.2 Outline of the course

In the remainder of Chapter 1, we will introduce the object of our analysis and define
some important dynamical (e.g., signal and noise), as well as statistical (e.g., probability
distributions) concepts. The statistical techniques we will review further are designed to:
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2 CHAPTER 1. INTRODUCTORY NOTES

• recognize dominant and possibly predictable patterns of natural and forced climate
variability (signals) in the background of unpredictable noise (see Section 1.2.3) and
infer physical mechanisms associated with these signals

• validate numerical climate models by comparing characteristics of observed and simu-
lated data sets

• use the signals identified by descriptive statistics methods (first two items above) for
the purpose of constructing a predictive statistical model to forecast the climate sub-
system’s behavior in the future (inferential statistics)

Climate variability has an inherently nonlinear character. Numerous instabilities and
interactions within the climate system impose natural limits on predictability; in particu-
lar, a common property of climate models (and climate) is sensitive dependence on initial
conditions: small perturbations of the latter result, in the long run, to large changes in the
subsequent climate evolution. Typical time scales on which such discrepancies happen are
related to how fast a certain climate subsystem “forgets” initial conditions. In general, we
will concentrate on detection of large-scale, low-frequency climate signals in the presence of
smaller-scale, higher-frequency noise. Our purpose will thus be to identify the features of
climate evolution that are not entirely unpredictable. In general, we will look for certain sta-
tistically significant relationships between two or more climatic variables (for example, time
correlation). The degree of statistical significance can be evaluated by assuming that the
variables are not related and working out the chances of observing the value of, say, correla-
tion, like the one we have obtained from our data sample. If the chance is not large, we can
reject our null hypothesis of no relationship between the variables and can even hope that
there is indeed some relationship. The problem of hypothesis testing is dealt with in Chapter
2. Various tests of statistical significance described in this chapter are used throughout the
remainder of the course.

Chapter 3 introduces linear statistical models or regression models, which are use-
ful for exploring the relationships between climatic variables and can be used for climate
prediction, as well as for certain types of statistical significance testing. The data analysis
techniques described in this chapter are also a necessary introduction to the matrix methods
discussed in Chapter 4.

One of the applications of matrix methods is data compression, by which the high-
dimensional data set is replaced by a small number of modes (spatial patterns and the
associated time series). Chapters 5 and 6 will deal with the analysis of data sets so re-
duced using two complementary statistical descriptions of low-frequency climatic variability,
namely episodic description, in which one looks for recurrent and/or persistent states and
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transitions between them (Chapter 5) and oscillatory description in frequency domain de-
signed to identify periodicities in the time series under consideration (Chapter 6). The latter
chapter will also discuss some aspects of time series filtering. Finally, Chapter 7 will conclude
the course with a summary and outlook.

1.1.3 Textbooks and online sources of material

These notes rely heavily, in presentation of selected topics, on the work of Von Mises (1964), Press et al. !

(1994), and Prof. D. Hartmann’s lecture notes (see the reference below). Some parts of the present notes are

in fact direct duplication, or minor rewording of the above cited texts. These notes should not, therefore,

be considered as the original presentation; rather, the material from different textbooks has been compiled

here by the author in a specific order, as well as augmented by the author’s comments. In principle, no other

text, beside these notes, is required for the students to fully understand the material and succeed in this

class.

The classical text in probability theory and statistics is Von Mises (1964). Wilks
(1995) and von Storch and Zwiers (1999) discuss in depth applications of various statistical
methods to problems in atmospheric and climate science. A good summary of basic statistics,
linear matrix operations, spectral analysis and regression techniques can also be found in
Numerical Recipes (Press et al. 1994). There also exists a number of online statistical texts
(lecture notes, online courses, statistical manuals). Here are a few examples:

• http://www.statsoft.com/textbook: Online statistics textbook

• http://www.atmos.washington.edu/∼dennis/: Go to ATMS 552 and click on “Class
Notes” to get to Lecture notes of Prof. Dennis Hartmann

Finally, MATLAB’s statistics toolbox contains a brief description and illustration of
its intrinsic functions and analysis methods.

1.1.4 Statistical software

Practical exercises will be done mostly using MATLAB. No prior MATLAB experience is,
however, necessary. When working with very large data sets, MATLAB’s memory limitations
can become a problem. In such cases, some combination of MATLAB and FORTRAN can be
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of help. Press et al. (1994) provide the reader with many useful source codes for performing
various types of statistical analysis and explanations thereof; the codes themselves are avail-
able online (both in FORTRAN and C). Finally, advanced spectral analysis methods will be
illustrated using MTM–SSA toolkit available from “http://www.atmos.ucla.edu/tcd/ssa/.”

1.2 General properties of climatic data sets

1.2.1 Representation of data in the form of two-dimensional ma-
trices

Our analysis will deal, in most cases, with long multivariate time series of climatic fields;
for example, the data set can consist of daily values of a single variable, say geopotential
height, on a regular grid in space, produced from an integration of a numerical climate
model, or, alternatively, of irregularly spaced station values of observed geopotential height.
Space can be either one- (e.g., several latitudinal locations), two- (e.g., longitude–latitude
grid), or three-dimensional (longitude, latitude, height/pressure), but in each case we will
usually string variables to form a big one-dimensional vector. For example, if we have
observations at I longitudes, J latitudes and K height/pressure levels, the resulting data

vector x ≡ {xm}
∣∣∣M
m=1

will have a dimension M = I×J ×K, where M is the total number of

different locations. Suppose we have N observations of this data vector. This data set can
thus be represented as a two-dimensional matrix, which we will call the input data matrix
X ≡ {xn,m}, where 1 ≤ n ≤ N and 1 ≤ m ≤M :

X ≡


x1 1 x1 2 · · · x1M

x2 1 x2 2 · · · x2M

. . . . . . . . . . . . . . . . . . . . .
xN 1 xN 2 · · · xN M

 . (1.1)

Depending on application, one can design the input data matrix in several ways:!

• A space–time array, as in the example above, consists of values of a single variable at M locations
taken at N different times

• A parameter–time array is represented by values of M different variables (geopotential height, sea-
surface temperature, etc.) measured at a single location at N different times

• A parameter–space array will be composed of values of M variables taken at N different locations at
a single time
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In this course, we will restrict ourselves with data sets written in space–time and parameter–time
form, so that the first dimension will always be time dimension. One can also construct, in this case, an
extended input data matrix of two or more space–time or parameter–time arrays by column augmentation.

Example 1.1 Suppose that we want to study the effect of tropical climate variability onto the low-frequency
component of mid-latitude atmospheric flow using 50 years of reanalyzed observations. A possible way to set
up the input data matrix for such an exercise could be as follows. We first take a set of N = 365× 50/10 =
1825 consecutive ten-day averages of (i) 700-mb geopotential height (Z700) anomalies on a regular 5◦×5◦ grid
in the 30◦N– 60◦N belt (M1 = 36× 6 = 216 data points) and (ii) sea-surface temperature (SST) anomalies
on a regular 5◦× 5◦ grid in the 10◦S– 10◦N belt (M2 ∼ O(70) < 36× 4 = 144 data points, since some of the
points are over land). “Anomaly” means that we have removed, at each spatial point and for each variable,
this variable’s time averaged value; each anomaly field has thus a zero time mean; one also says in this case
that each time series has been centered. Since we are considering the relationship between two fields that
have different units (meters and degrees), we also have to form dimensionless fields ( nondimensionalize time
series); for example, we can divide each value in a given time series by some quantity that measures the
amplitude of this field’s variability (see chapter 4 for further discussion). We might also want to remove
seasonal cycle from our time series, since we would like to study the intrinsic dynamics of relationship
between climatic signals in middle latitudes and tropics, rather than detect correlations caused by external
forcing. The two resulting data matrices X(1) (Z700) and X(2) (SST) have thus dimensions N ×M1 and
N ×M2, respectively. One can now form a new, single data matrix X = X(1) tX(2) of dimension N ×M ,
where M = M1 +M2 ∼ O(300), N = 1825, and

X ≡


x
(1)
1 1 x

(1)
1 2 · · · x

(1)
1M1

x
(2)
1 1 x

(2)
1 2 · · · x

(2)
1M2

x
(1)
2 1 x

(1)
2 2 · · · x

(1)
2M1

x
(2)
2 1 x

(2)
2 2 · · · x

(2)
2M2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x
(1)
N 1 x

(1)
N 2 · · · x

(1)
N M1

x
(2)
N 1 x

(2)
N 2 · · · x

(2)
N M2

 . (1.2)

1.2.2 Structure versus sampling

In climate science, one is usually interested in spatial patterns of a given field or relation-
ships between two or more different fields; realizations, or sampling of such space- and/or
parameter-domain structures occur in time domain. One task of the statistical analysis is to
identify robust structures (e.g., recurrent or persistent spatial patterns) that are statistically
significant (reproducible). Statistical significance means that if we were, for example, to con-
duct our analysis using two independent data samples (say, using first half and second half
of available time series), we would get the same structures. In order to obtain such robust
solutions, the number of degrees of freedom in the domain of sampling must be much larger
than that in the domain of structure. One possible measure of whether the analysis is likely
to give statistically significant results is the aspect ratio M/N of the input data matrix; one
would want the aspect ratio to be as small as possible. In Example 1.1, M/N ≈ 1/6.

In reality, however, the aspect ratio is not a very good indicator of robustness, since



6 CHAPTER 1. INTRODUCTORY NOTES

0 100 200 300 400 500 600 700
−3

−2

−1

0

1

2

3

4

5
Standardized ENSO index

Time (months)

Figure 1.1: Standardized Niño-3 index time series. Seasonal cycle removed.

geophysical data sets are typically characterized by strong autocorrelation in both space and
time domain. Returning to Example 1.1, it turns out that one can predict the evolution of
the tropical SST (see Fig. 1.1) up to a couple of months into the future knowing the past two
months’ values, so the effective number of temporal degrees of freedom for a 50-yr-long SST
record is approximately 300. This would indicate that the aspect ratio will be close to one,
and not equal to 1/6 as we have inferred before. On the other hand, one can also show that
only a few patterns dominate low-frequency variability of both SST and Z700 fields, so that
the effective aspect ratio could be in fact rather small, on the order of O(10)/300 ≈ 1/30.

1.2.3 Signal versus noise

Climatic variability is comprised of phenomena with time scales anywhere from days to
millenia and spatial scales ranging from 100 km (e.g., hurricanes, ocean currents and eddies)
to global scale (glacial-to-interglacial climate transitions, global warming). In general, the
processes that operate on larger time scales tend to involve structures with larger spatial
scales as well. If one imagines a hypothetical input data matrix that describes all aspects
of climate variability, this matrix would have a huge number of degrees of freedom and



1.2. GENERAL PROPERTIES OF CLIMATIC DATA SETS 7

would virtually be impossible to analyze. Instead, one always concentrates on a climate
system’s subset, which is governed, presumably, by specific dynamics. The choice of climate
subsystem for a phenomenon of interest is based on a physical intuition about the nature of
this phenomenon.

Climate variability can be characterized as either intrinsic to a given subset of climate
system, or forced by external sources, whose dynamics is not considered explicitly. An
obvious example of external source of climate variability is solar forcing: seasonal changes in
the amount of incoming solar radiation cause nearly periodic modulations in most climatic
variables. In contrast to these externally forced variations, intrinsic variability arises as a
result of complex interactions between various subcomponents of a given climate subsystem,
and is typically characterized by a large degree of irregularity.

The notion of a signal is closely related to the concept of predictability : if the dynamics
of a certain climate subsystem is well understood, it means, among other things, that one can
assess how much we can say about its future evolution given the knowledge of past evolution;
in particular, how far into the future we can make useful predictions. For example, synoptic
meteorologists study the behavior of individual storms and can produce successful weather
forecasts up to a few days into the future. The behavior of individual storms here is the signal
that is being studied. The signal is typically characterized by a particular spatial and time
scale. The phenomena that have shorter time scales and smaller spatial scales than those of
the signal and are unpredictable on a time scale of a signal are considered as noise. In the
example above, individual clouds within a storm can be thought of as noise. Therefore, the
(subjective) definitions of signal and noise above depend on the dynamics considered and
time scale of interest: “What’s one person’s signal is another person’s noise.”

Due to nonlinear nature of climate system, it is impossible to “decompose” climate
evolution into a set of signals governed by separate dynamics: the climate variability involves
interaction between processes on a wide range of time scales. The climatic data sets are thus
mixtures of signal and noise; furthermore, they are typically characterized by a very low
signal-to-noise ratio. An important task of statistical data analysis is to help identify signals
in geophysical time series and use this information to (i) develop physical understanding
of the phenomena of interest; and (ii) establish predictability limits associated with this
phenomenon.



8 CHAPTER 1. INTRODUCTORY NOTES

1.3 Elementary statistical concepts

Observed climatic quantities are generally not exact and are always subject to measurement
errors (due to instrumental noise). Even if the data set is produced by an integration of a
numerical model and contains no measurement errors per se, the (large-scale, low-frequency)
signal of interest is typically contaminated by noise due to irregular, chaotic character of
higher-frequency variability. Furthermore, the process under consideration can itself have
random features either due to its intrinsic nonlinear dynamics, or due to interactions with
high-frequency transients. Therefore, identification of a climate signal and its prediction,
and often times the most natural description of the signal itself, are best of all formulated
in probabilistic terms.

1.3.1 Probability distributions. Events. Statistical independence

Let’s call a collection, or population {xn}, 1 ≤ n < ∞, an infinite sequence of observations
of some quantity x, which can attain either discrete or continuous set of finite values. In
discrete case of I possible outcomes, we can define an event as an occurrence of a given value
of x = x(i), 1 < i ≤ I. Suppose that among first N elements of the sequence {xn} , the event
x(i) occurs N (i)(N) times. The probability pi of an event x(i) is then given by

pi ≡ lim
N→∞

N (i)(N)

N
, (1.3)

provided the limit in (1.3) exists1. The sum of event probabilities over all events
I∑
i=1

pi = 1.

In other words, the probability of observing each time any one of I possible values of x is
100%. The set (p1, p2, . . . , pI) is called the discrete probability distribution of a collective
{xn}.

In an analogous fashion, continuous distributions are characterized by the probability
density function (PDF) p(x). The probability of observing, in a given experiment, an event

1A more rigorous definition of probability would require, in addition to the existence of limiting frequency
pi, that our infinite sequence also satisfied the condition of randomness (Von Mises 1964), that is pi’s
independence of place selection. An example of place selection would be to take only even or odd elements
of a primary sequence.
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“the value of x belongs to the interval [a, b]” is

P (a ≤ x ≤ b) =

b∫
a

p(x) dx;

∞∫
−∞

p(x) dx = 1. (1.4)

Another useful quantity is the so-called cumulative distribution function (c.d.f) P (ξ),
which is defined as the probability of obtaining the value of x that is smaller than a given
value ξ:

P (ξ) =

ξ∫
−∞

p(x) dx; P (−∞) = 0; P (∞) = 1. (1.5)

The c.d.f. is increasing monotonically from the value of 0 at −∞ to the value of 1 at ∞
(the probability of observing a finite value of x is 100%). The c.d.f. in the case of a discrete
distribution is a step function increasing from zero to one in a number of finite jumps.

Multivariate distributions can be constructed in an analogous way. For example, if we are given two- !

dimensional collective of pairs {xn, yn}, 1 ≤ n <∞, in which x and y take a continuous set of finite values,
the probability of observing an event “x ∈ [a, b], y ∈ [c, d]” is

P (a ≤ x ≤ b; c ≤ y ≤ d) =

b∫
a

d∫
c

p(x, y) dx dy;

∞∫
−∞

∞∫
−∞

p(x, y) dx dy = 1, (1.6)

where p(x, y) is the two-dimensional PDF2.

In the case of observational data, as in (1.1) and (1.2), the sample distributions (that is, distributions !

computed as in (1.4), (1.6), but based on a finite number of data points) are necessarily discontinuous. We

can, however, approximate an observed distribution as a continuous one by, for example, interpolation. The

distribution so obtained can be compared with some other (known) observed or theoretical distribution; this

comparison might point to interesting dynamical features of the phenomenon under consideration. Useful

methods for estimating a sample’s PDF are discussed in Chapter 5.

Conditional probability. Suppose that we are given two events E1 and E2, whose prob-
abilities are P (E1) and P (E2), respectively. Events could be, for example, E1 = “the value

2Note that if we were to “scramble” or repartition two-dimensional data, the (xn, yn) pairs should be
preserved, otherwise the PDF of a new collective will not, in general, be equal to original PDF. In other
words, we cannot reshuffle {xn} and {yn} independently without affecting the two-dimensional PDF, unless
x and y are statistically independent (probability of a certain value of x does not depend on the value of y
and vice versa [see below]).
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P(E2)P(E1)

Figure 1.2: Venn diagram: the area within a rectangle represents the total probability of
one, while the area inside the two ellipses — probabilities of the events E1 and E2.

of some ENSO index in January exceeds a certain threshold (see Fig. 1.1),” and E2 = “the
value of the same index in February exceeds some other threshold.” The probability that E1

[E2] will not occur is 1− P (E1) [1− P (E2)]. Let’s call P (E1) ∩ P (E2) the probability that
both events will occur (intersection of probabilities), and P (E1)∪P (E2) the probability that
at least one of the events (E1 or E2) will occur (union of probabilities). As seen from Fig.
1.2, the union of the two probabilities is

P (E1) ∪ P (E2) = P (E1) + P (E2)− P (E1) ∩ P (E2), (1.7)

since in adding the two events’ areas the intersection gets counted twice and, therefore, must
be subtracted. The intersection of mutually exclusive events is zero.

An important statistical concept is the one of conditional probability P (E2 |E1), that
is the probability that E2 will occur given that E1 has occurred. From Fig. 1.2 , this quantity
equals to the ratio of the intersection’s area to the E1-ellipse area:

P (E2 |E1) =
P (E1) ∩ P (E2)

P (E1)
. (1.8)
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Rearranging (1.8), we have

P (E1) ∩ P (E2) = P (E2 |E1) · P (E1) = P (E1 |E2) · P (E2). (1.9)

The latter formula represents multiplicative law of probability. If the two events are indepen-
dent [P (E2 |E1) = P (E2)], it follows from (1.9) that

P (E1) ∩ P (E2) = P (E1) · P (E2). (1.10)

Example 1.2 If the probability of getting heads (tails) on a coin flip is 0.5 and the flips are
independent of one another, the probability of getting heads (tails) N times in a row is 0.5N ;
the probability thus decreases with N exponentially3. An alternative example of the case in
which the events are likely to be highly dependent is the ENSO index example above: while the
probability of having the index exceed the threshold in February could be low, the conditional
probability of this event’s occurrence given the threshold has been exceeded in January can be
rather high, close to 1.

1.3.2 Fundamental statistical quantities

Mean value. Variance of a distribution

Suppose that we have a sample {xn}, 1 ≤ n ≤ N from a collective with a one-dimensional
discrete distribution, in which x can take values x(1), x(2), . . . , x(K), and that each of x(k)

has occurred Nk times. The average value of x is then given by

1

N

K∑
k=1

Nkx
(k) = x(1)N1

N
+ x(2)N2

N
+ . . .+ x(K)NK

N
. (1.11)

Taking the limit N → ∞ and introducing probabilities pk = p(x(k)) = lim
N→∞

Nk(N)/N , we

obtain the mean value θ of the distribution under consideration:

θ =
K∑
k=1

x(k)pk =
K∑
k=1

x(k)p(x(k)). (1.12a)

3In this example, we have derived from a collective (an infinite number of outcomes of a coin flipping)
with a discrete distribution p1((heads) = 0.5, p2(tails) = 0.5, a different collective, in which we consider
an infinite number of N-flip sequences and define the two possible events to be “all N flips are heads” and
“at least one in N flips is tails.” We then computed the probability distribution in this new collective. The
general task of probability calculus is to compute the probability distribution in derived collectives from the
given distributions in the collectives from which they have been derived.
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In the case of continuos distribution with the probability density function p(x) the mean
value is given by

θ =

∞∫
−∞

xp(x)dx. (1.12b)

The variance σ2 of the distribution, which characterizes the spread of x-values around
their mean, is defined as

σ2 =
K∑
k=1

(x(k) − θ)2p(x(k)) (1.13a)

in the discrete case and as

σ2 =

∞∫
−∞

(x− θ)2p(x)dx. (1.13b)

for the continuous distribution. The quantity σ is called the standard deviation.

Expectation relative to a distribution. Moments of a distribution

Mean value and variance of a distribution are special cases of functionals (that is functions
of functions) that can be derived relative to a given distribution. Let f(x) be a function,
defined for all x(k) of a discrete distribution and for all x of a continuous distribution; in the
latter case we also assume that f(x) is continuous in the domain p(x) > 0. The expectation
E{f} of f relative to the distribution under consideration for a discrete and continuous
distribution are given by

E{f} =
K∑
k=1

f(x(k))p(x(k)) =

∞∫
−∞

f(x)dP (x) (1.14a)

and

E{f} =

∞∫
−∞

f(x)p(x)dx =

∞∫
−∞

f(x)dP (x), (1.14b)

respectively. Here P (x) is the cumulative distribution function (see Section 1.3.1).

Using the definitions above, the mean value and variance of a distribution can be
written as

θ = E{x}, σ2 = E{(x− θ)2} = E{(x− E{x})2}. (1.15)
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To further characterize a distribution, we also introduce moments of a distribution
P (x) about some quantity c. The moment of order r, M

(r)
c , is defined as

M (r)
c =

∞∫
−∞

(x− c)r dP (x). (1.16)

The mean of a distribution is thus θ = M
(1)
0 , and the variance is σ2 = M

(2)
θ .

Higher order moments taken about the mean are usually nondimensionalized by an
appropriate power of the standard deviation. The skewness m3 = M

(3)
θ /σ3 measures the

degree of asymmetry of the distribution about the mean. Positive skewness corresponds to
a distribution with a longer tail on a positive side of the mean and vice versa. The kurtosis
m4 = M

(4)
θ /σ4 is similar to variance in that it measures the spread of a distribution about

the mean.

Median and mode

The median xmed of a probability distribution function p(x) is the value of x for which larger
and smaller values of x are equally probable:

xmed∫
−∞

p(x) dx =

∞∫
xmed

p(x) dx. (1.17)

The median of a distribution can be estimated from a finite sample {xn}, 1 ≤ n ≤ N , with
N being odd, as the value of xi which has equal numbers of values above and below it, or as
the mean of two central values if N is even.

The mode of a probability distribution function p(x) is the value of x where p(x)
takes the maximum value. If a distribution has two relative maxima, one says that this
distribution is bimodal. Bimodal or multi-modal distributions may arise in nonlinear systems
characterized by the presence of multiple attractors ; for example, multiple steady states
(stable or unstable). Inferring the structure of the observed PDFs may thus provide useful
information about the dynamical properties of (known or unknown) underlying equations
(see Chapter 5).
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1.3.3 Distributions in more than one dimension

We now consider the case of a two-dimensional distribution; the extension to a general case
of I-dimensional distribution is analogous. The mean (θ, φ) of a two-dimensional collective
{xn, yn} is given by

θ =
K∑
k=1

L∑
l=1

x(k)p(x(k), y(l)); φ =
K∑
k=1

L∑
l=1

y(l)p(x(k), y(l)). (1.18a)

Here x and y were assumed to attain a discrete set of values x(1), x(2), . . . , x(K) and y(1), y(2), . . . , y(L),
respectively; p(x(k), y(l)) is probability of the event (xn, yn) = (x(k), y(l)). For a continuous
distribution with the probability density function p(x) the expressions for θ and φ are

θ =

∞∫
−∞

∞∫
−∞

xp(x, y) dx dy; φ =

∞∫
−∞

∞∫
−∞

yp(x, y) dx dy. (1.18b)

The object which is analogous to the variance in I dimensions is a I × I matrix
Ci, j, 1 ≤ i, j ≤ I, called the covariance matrix. The covariance matrix is symmetric,
that is Ci j = Cj i. For our two-dimensional example in discrete and continuous cases, the
components of the covariance matrix are written as

C11 =
K∑
k=1

L∑
l=1

(x(k) − θ)2p(x(k), y(l)); C22 =
K∑
k=1

L∑
l=1

(y(l) − φ)2p(x(k), y(l));

C21 = C12 =
K∑
k=1

L∑
l=1

(x(k) − θ)(y(l) − φ)p(x(k), y(l)), (1.19a)

C11 =

∞∫
−∞

∞∫
−∞

(x− θ)2p(x, y) dx dy; C22 =

∞∫
−∞

∞∫
−∞

(y − φ)2p(x, y) dx dy;

C21 = C12 =

∞∫
−∞

∞∫
−∞

(x− θ)(y − φ)p(x, y) dx dy, (1.19b)

respectively.
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Chapter 2

Statistical Inference and Hypothesis
Testing

In this chapter, we will consider a set of statistical data {xn}, 1 ≤ n ≤ Nx. The data set
can represent, for example, Nx observations of some physical quantity x (e.g., temperature,
amount of daily precipitation), in which case each of xn may take continuous values. In other
cases, only a set of discrete x-values can be realized. The latter situation typically occurs
when we derive a new sample from our original sample of data by counting certain “events”
(e.g., if the amount of daily precipitation for a given day exceeds a certain threshold, we
tabulate this event as “1,” while in the opposite case we assign to that day the number “0”).
We want to infer from our data set some probabilistic information, viz. how well can the set
of {xn} be described in terms of some known statistical distribution? In other cases, we will
consider an additional data sample {yn}, 1 ≤ n ≤ Ny, and seek to establish the “sameness”
or “differentness” of two data sets. For example, we are analyzing output from two different
climate models and would like to know if both of them produce the same time-mean state
or if there are significant differences between the two models’ climates.

2.1 The average and dispersion of a data sample

The average value a and the dispersion s2 of the sample {xn}, 1 ≤ n ≤ N are defined as

a =
1

N

N∑
n=1

xn; s2 =
1

N

N∑
n=1

(xn − a)2 =
1

N

N∑
n=1

x2
n − a2. (2.1)

17
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The quantities a and s2 should not be confused with the corresponding characteristics (that
is, the mean and the variance) of infinite samples (infinite samples are called collectives or
populations; see Sections 1.3.1 and 1.3.2 of Chapter 1).

We assume that each observation xn is randomly taken from a population character-
ized by a cumulative distribution function Pn(x) (probability of obtaining xn-value smaller
or equal to x).

It is often assumed that the c.d.f is the same for all observations (Pn(x) = P (x)), but in some cases it is!

natural to consider more general case of a finite set of c.d.f.’s. For example, monthly Niño-3 index time series

exhibits a strong periodic modulation associated with seasonal forcing; the distributions of this index values

for a given month are thus likely to have different means, and possibly different variances as well.

The mean values and variances of the n-th theoretical distribution are given by

θn =

∞∫
−∞

xdPn(x); σ2
n =

∞∫
−∞

(x− θn)2dPn(x) =

∞∫
−∞

x2dPn(x)− θ2
n. (2.2)

Let us also assume that our observations are independent, so that the probabil-
ity of obtaining a set of values x1, x2, . . . , xN has a distribution function with the ele-
ment dP1(x1), dP2(x2), . . . , dPN(xN). The expectation E of any function of N variables
F (x1, x2, . . . , xN) with respect to this distribution is

E{F (x1, x2, . . . , xN)} =

∫ ∫
. . .

∫
F (x1, x2, . . . , xN) dP1(x1) dP2(x2) . . . dPN(xN),

(2.3)
where the limits of integration are from −∞ to ∞.

If F depends on one variable only, that is F = f(x1), the expectation is found as

E{f(x1)} =

∫
f(x1) dP1(x1)

∫
dP2(x2) . . .

∫
dPN(xN) =

∫
f(x1) dP1(x1), (2.4)

since the integrals
∫
dPn(xn) are all equal to one. Similarly, for a product F = f(x1)g(x2),

the expectation is

E{f(x1)g(x2)} =

∫
f(x1) dP1(x1)

∫
g(x2) dP2(x2). (2.5)

In addition, for any two constants c1 and c2, and any two functions F and G

E{c1F + c2G} = c1E{F}+ c2E{G}. (2.6)
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Let us now compute expectations of the average a and dispersion s2, as defined in
(2.1). First, taking either F = f(xn) = xn or F = x2

n and using (2.4), (2.5), we get

E{xn} =

∫
x dPn = θn;

∫
x2 dPn = σ2

n + θ2
n, (2.7a)

E{xlxk} = θlθk; l 6= k. (2.7b)

Now, due to (2.6), we find

E{a} =
1

N

N∑
n=1

E{xn} =
1

N

N∑
n=1

θn. (2.8)

The expectation of the average of the sample {xn}, 1 ≤ n ≤ N is the average of the mean
values θn of the individual distributions Pn(x). One also says that the average a defined by
(2.1) is an unbiased estimate of the true mean.

In an analogous fashion, we get the following expression for the expectation of dis-
persion:

E{s2} =
1

N

N∑
n=1

E{x2
n} − E{a2} =

1

N

N∑
n=1

(σ2
n + θ2

n)− 1

N2
E


(

N∑
n=1

xn

)2
 .

Since (
N∑
n=1

xn

)2

=
N∑
n=1

x2
n + 2

1 ... N∑
l<k

xlxk,

we get using (2.7a) and (2.7b)

E


(

N∑
n=1

xn

)2
 =

N∑
n=1

(σ2
n + θ2

n) + 2
1 ... N∑
l<k

θlθk =
N∑
n=1

σ2
n +

(
N∑
n=1

θn

)2

.

Substituting this expression into the equation above, we find

E{s2} =

(
1

N
− 1

N2

) N∑
n=1

σ2
n +

1

N

N∑
n=1

θ2
n −

(
1

N

N∑
n=1

θn

)2

.

The sum of the latter two terms is equal to the dispersion of N quantities θn:

1

N

N∑
n=1

θ2
n − θ2 =

1

N

N∑
n=1

(θn − θ)2; θ =
1

N

N∑
n=1

θn.
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The final expression for E{s2} is thus

E{s2} =
N − 1

N

1

N

N∑
n=1

σ2
n +

1

N

N∑
n=1

(θn − θ)2; θ =
1

N

N∑
n=1

θn. (2.9)

The expectation of the dispersion s2 of the sample {xn}, 1 ≤ n ≤ N equals (N − 1)/N times
the average of the variances σ2

n plus the dispersion of the mean values θn of the individual
distributions Pn(x).

In the case in which all Pn(x) are equal or, at least, have the same values of θ and
σ2, (2.8) and (2.9) become

E{a} = θ; E{s2} =
N − 1

N
σ2. (2.10)

We can rewrite the second expression above in the form

σ2 = E

{
N

N − 1
s2

}
= E

{
1

N − 1

N∑
n=1

(xn − a)2

}
. (2.11)

Equation (2.11) thus gives an unbiased estimate of the true variance.

If the probability distributions Pn(x) are known, one can compute the expectations of
a and s2 according to (2.8) and (2.9). If these expectations are not close to the values of a and
s2 derived from an available data sample, one can say that the hypothesis that the probability
distributions Pn(x) are underlying the data has been rejected. However, it is unclear how
close the theoretical and observed values should be for us to reject our hypothesis. An
answer to this question can be obtained by computing not only the expectations, but also
the variances of a and s2.

From (1.15), we have

Var{a} = E{(a− E{a})2} = E{a2} − (E{a})2 . (2.12)

We have already computed in our previous calculations E{a2}, which equals to

E{a2} =
1

N2
E


(

N∑
n=1

xn

)2
 =

1

N2

N∑
n=1

σ2
n +

(
1

N

N∑
n=1

θn

)2

.

The last term in the above equation is simply (E{a})2, and we end up with the following
expression for Var{a}:

Var{a} =
1

N2

N∑
n=1

σ2
n. (2.13)
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In the case of equal Pn(x), (2.13) gives

Var{a} = σ2/N. (2.14)

Let us now also compute, in the case of equal distributions, the variance of s2. Calling
τ 4 the moment of fourth order with respect to the mean

τ 4 =

∞∫
−∞

(x− θ)4 dP (x) (2.15)

and denoting x′n ≡ xn − θ, we get

E{x′n} = 0; E{x′n
2} = σ2; E{x′n

4} = τ 4; E{x′l
2
x′k

2} = σ4, l 6= k. (2.16)

In addition, the expectation vanishes for all products which contain at least one variable in
the first power, e.g. x′1x

′
2, x′1x

′
2

2, etc., due to (2.5) and the first formula (2.16).

By definition

Var{s2} = E{s4} −
(
E{s2}

)2
. (2.17)

The expression for s2 in terms of the x′ variables is

s2 =
1

N

N∑
n=1

x′n
2 − 1

N2

(
N∑
n=1

x′n

)2

=
N − 1

N2

N∑
n=1

x′n
2 − 2

N2

1 ... N∑
l<k

x′lx
′
k.

Note that in forming s4, the product of the last two sums in the last expression only contains
terms with one of the variables in the first power, whose expectations vanish. Also, the
products of the two terms like x′lx

′
k with l 6= k have the expectation zero. Therefore,

E{s4} =
(N − 1)2

N4

[
N∑
n=1

E{x′n
4}+ 2

1 ... N∑
l<k

E{x′l
2
x′k

2}

]
+

4

N4

1 ... N∑
l<k

x′l
2
x′k

2

Substituting the expressions (2.16) into the above formula and noting that the number of
terms with l < k is N(N − 1)/2, we get

E{s4} =
(N − 1)2

N3
τ 4 +

[
N − 1)3

N3
+ 2

N − 1

N3

]
σ4.

Combining this expression, as well as (2.10), with (2.17), we get

Var{s2} =
N − 1

N3

[
(N − 1)τ 4 − (N − 3)σ4

]
≈ 1

N
(τ 4 − σ4), (2.18)
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with the last expression valid in the limit of large N .

In the case of a sample of size N drawn from the population whose distribution has a
mean value θ and variance σ2, the sample’s average a and dispersion s2 are given by

a = θ ± σ√
N

; s2 =
N − 1

N
σ2 ±

√
τ 4 − σ4

N
. (2.19)

Note that the standard deviations of both the average and the dispersion tend to zero as
the sample size increases, but do so very slowly, at the 1/

√
N rate.

Exercise 1. Suppose we are given two samples {xn}, 1 ≤ n ≤ Nx and {yn}, 1 ≤ n ≤ Ny.
Each of {xn} is drawn from a distribution with a known mean θx, n and variance σ2

x, n, while
these quantities for each of {yn} are θy, n and σ2

y, n, respectively. Consider a combined sample
{zn}, 1 ≤ n ≤ Nz of the size Nz = Nx +Ny, in which first Nx elements are the corresponding
values of {xn} multiplied by Nz/Nx, while the remaining Ny elements are the values of {yn}
multiplied by −Nz/Ny. Compute the expectation and the variance of the average of {zn}.
Express these quantities via expectations and variances of the average of original samples
{xn} and {yn}.

2.2 Central limit theorem. Normal distribution

A very important theorem in probability calculus is the Central Limit Theorem, a version
of which due to Liapounoff we will formulate here without proof (see Von Mises 1964):

Theorem 1 Consider a sample of independent chance variables {xn}, 1 ≤ n ≤ N associated
with distributions Pn(x). Let θn, σ2

n be the mean and variance of the n-th distribution,

respectively, and M
(k)
n the absolute moment of order k about the mean. If individual variances

σ2
n are all bounded and

lim
N→∞

N∑
n=1

M
(k)
n(√

N∑
n=1

σ2
n

)k
→ 0, for some k > 2, (2.20)
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then the probability density function p(X; θ, σ) of the sum X ≡
N∑
n=1

xn, tends, for N →∞,

to

p(X; θ, σ) =
1√
2πσ

exp

{
−1

2

[
X − θ
σ

]2
}
, (2.21)

where θ =
N∑
n=1

θn, σ2 =
N∑
n=1

σ2
n.

The two-parameter distribution (2.21) is called Gaussian or normal distribution with mean
θ and variance σ2. Simply put, the central limit theorem states that the distribution of the
sum of independent chance variables drawn from any “sufficiently good” distributions will
tend to normal as the size of a sample increases. Assuming the individual variances have the
same order of magnitude, the sum in the denominator of (2.20) increases as Nk; therefore,
for the individual distributions to be “good,” it is sufficient that one of their moments of
order 3 or higher be bounded.

Implications of the central limit theorem. Returning to climate system or, for that
matter, to any nonlinear system with many degrees of freedom, and given the central limit
theorem, we shouldn’t be surprised to find out that most observables are distributed nor-
mally about their means, or can be transformed in such a way that they become normally
distributed. If X is the climate-state vector, X its time mean, and x = X−X the vector of
anomalies, then the evolution of x is expressed as

ẋ = Lx + N(x). (2.22)

Here the dot denotes time derivative, L is a linear operator, and N represents nonlinear terms;
both L and N may be functions of X. Even if the exact form of Eq. (2.22) were known,
it would contain a very large number of degrees of freedom, so that its direct numerical
integration would not be feasible due to insufficient computer power.

A common approach to solving Eq. (2.22) in practice is based on assuming scale
separation. In this case, the full climate-variable vector x is represented as the sum of a
climate “signal” xS and a “noise” x′N:

x = xS + x′N, (2.23)

where the noise field is typically characterized by smaller scales in both space and time.
Upon substituting the decomposition (2.23) into Eq. (2.22) and omitting the subscripts, the
latter becomes:

ẋ = Lx + N(x) + R(x, x′). (2.24)
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In order to obtain a closed form of the reduced dynamics equation (2.24), one has
to make assumptions about the term R(x, x′). A closure of this Reynolds-stress term is
used in many climate GCMs: one assumes that small-scale, high-frequency transients —
due to instabilities of the large-scale, low-frequency flow — act on the latter as a linear
diffusion that merely flattens, on long time scales, spatial gradients of the large-scale field;
the corresponding eddy diffusivities are estimated from available data by trial-and-error. It is
widely recognized, however, that the underlying assumption in this “eddy-diffusion” closure
does not generally hold.

Another possible assumption is that the residual term R(x, x′) in (2.24) depends
only on the “fast” variables x′: R(x, x′) = R(x′) [this is also not true in general, and used
here for illustrative purposes only]. The equation governing evolution of x′ also has the form
of (2.22); the mathematical structure of linear and nonlinear operators in this equation is
such that the “fast” subsystem is typically characterized by numerous instabilities which
determine, in particular, the “memory” of this subsystem: once again, one measure of the
memory is how fast the system “forgets” initial conditions. If we assume that the memory
is short enough, then the “fast” component will be represented by a set of independent
random fields. The derivation of the effective reduced dynamics equation (2.24) with forcing
R(x, x′) = R(x′) usually involves time averaging on the slow time scale over a large number
(on the order of the ratio of slow and fast time scales) of independent random realizations
of R(x′): according to the central limit theorem, therefore, R(x′) can be modeled as the
normally distributed random noise1.

Note that if the “slow” nonlinear operator N(x) = 0, and noise forcing is normally
distributed, the PDF of the signal will also be normally distributed. Therefore, tracking
deviations from Gaussianity in the distribution of observed large-scale low-frequency fields
can point to a nonlinear origin of the observed variability, which may in turn be associated
with an increased climate predictability. Suppose, for example, that unforced version of
(2.24) has a stable steady state. The system’s trajectory will then tend to pause in the
vicinity of this state and one can use this information to improve predictions (for example,
make a skillful medium-range forecast). Analysis techniques for tracking, interpreting, and
utilizing deviations from Gaussianity in observed data sets will be considered in greater detail
in Chapter 5.

Increased predictability may also be associated with the presence of a preferred period
in the “slow” climate subsystem: such oscillations may be nonlinear (intrinsic variability) or

1For the system with quadratic nonlinearities exhibiting significant time scale separation, one can derive a
rigorous dynamical formulation of a reduced-order model, which involves cubic and quadratic nonlinearities,
as well as additive and multiplicative noise.
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linear. In the latter case, the oscillations are typically damped (do not occur in the absence
of external forcing) and excited at the expense of energy supplied by noise. Detection of
low-frequency oscillations in otherwise noisy time series will be a subject of Chapter 6.

2.3 Comparing means using normal distribution

2.3.1 Standard normal distribution

The cumulative distribution function P (x; θ, σ) associated with the normal distribution
(2.21) is

P (X; θ, σ) =
1√
2πσ

X∫
−∞

exp

{
−1

2

[
ξ − θ
σ

]2
}
dξ, (2.25)

or, for standardized variable

z ≡ X − θ
σ

(2.26)

the standard normal distribution is

P (z; 0, 1) =
1√
2π

z∫
−∞

exp

{
−1

2
ξ2

}
dξ. (2.27)

The probability that a normally distributed variable falls within one standard deviation of
its mean value is given by

P (−1 ≤ z ≤ 1) =
1√
2π

1∫
−1

exp

{
−1

2
ξ2

}
dξ = 68.27%, (2.28)

and similarly for two and three standard deviations

P (−2 ≤ z ≤ 2) =
1√
2π

2∫
−2

exp

{
−1

2
ξ2

}
dξ = 95.45%,

P (−3 ≤ z ≤ 3) =
1√
2π

3∫
−3

exp

{
−1

2
ξ2

}
dξ = 99.73%.
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Thus, there is only 4.55% probability that a normally distributed variable will deviate from
its mean by more than two standard deviations. This probability is the two-tailed probability
(both negative and positive values of the variable are considered). The probability that a
normal variable will exceed its mean by more than two standard deviations is only half of
that, which equals to 2.275% (see also Fig. 2.1).

2.3.2 Mean of a large sample

According the the central limit theorem, the average x̄ ≡
N∑
n=1

xn of a very large sample

{xn}, 1 ≤ n ≤ N ; N → ∞, will be distributed normally; the corresponding distribution
parameters, that is the mean and the variance being given by (2.8), (2.10) and (2.13), (2.14),
respectively2. The standard variable used to compare a sample mean to the true mean

z ≡ x̄− θ
σ/
√
N

(2.29)

has the standard normal distribution (2.27). The formula (2.29) defines the so-called z
statistic.

If our variable is normally distributed, than the probability α of observing the value
of z greater than some specified value zα can be found as the area under the standard normal
PDF (Fig. 2.1). Note that normal distribution is symmetric; therefore, the value of z−α for
which only α-fraction of realizations is expected to have z < z−α is z−α = zα. The quantity
2(1− α)× 100% is the so-called confidence level or significance level. For example, there is
95% probability that sampled z statistic falls in the interval

−z0.025 <
x̄− θ
σ/
√
N
< z0.025. (2.30)

Therefore, the true mean is expected to lie in the interval

x̄− z0.025
σ√
N
< θ < x̄+ z0.025

σ√
N

(2.31)

2Suppose that we are drawing our samples from some population generally characterized by non-Gaussian
PDF. The thought experiment we perform is thus as follows. We first generate a sample of N random
numbers, whose distribution is given, and record the average value of this sample. We then generate another
sample of the same size, and compute its average and so on. The procedure is repeated M times. If we
now plot the PDF of the resulting sample of M average values, it will be normally distributed with the
appropriate values of parameters θ and σ.



2.3. COMPARING MEANS USING NORMAL DISTRIBUTION 27

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Normal (Gaussian) Distribution

z

p
(z

)

Z
α

 

α 

Figure 2.1: Normal PDF and significance testing: the value of z statistic zα corresponds to
the area α of a region bounded by the abscissa, vertical line at zα and the standard normal
PDF curve; this area equals the fraction of observed z values expected to exceed zα. For
example, z0.15865 = 1; here α = (1− 0.6827)/2 = 0.15865 [see (2.28)].

with 95% confidence3 [compare with the first equation (2.19)]. If x̄ is such that at least one
of (2.31) is not satisfied, our null hypothesis that the underlying distribution has mean θ and
variance σ2 is rejected at the 95% confidence level4.

Now, suppose we have two samples of data, of sizes N1 and N2, the corresponding
variances being σ2

1 and σ2
2, and we expect that the difference between sample means ∆x̄ ≡

x̄1− x̄2 is ∆ (often assumed to be zero in practice). We would like to know if our assumptions
about σ’s and ∆x̄ are correct. The standardized variable that provides a significance test

3Note that the sample mean θ is assumed to be known and constant, so that (2.31) in fact provides
estimates on the sample’s x̄: θ − z0.025 σ√

N
< x̄ < θ + z0.025

σ√
N

[(2.31) can be interpreted as an estimator of

a true mean, but only in a special narrow sense — see Sections 2.6.3 and 2.7.5].
4Note that we did not have to assume anything about the PDFs of individual observations in our sample

(for example, we did not have to assume that the data is Gaussian). All we need is for the sample to be
large, then, according to the central limit theorem, the distribution of the sample mean will be normal.
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for the differences between means is (see Exercise 1)

z =
∆x̄−∆√
σ2
1

N1
+

σ2
2

N2

. (2.32)

2.3.3 Small samples: Student’s t distribution

One problem with respect to the results of the preceding section is that both the true mean
and the true variance were assumed to be known a priory. In reality, we are typically given
the sample average a and the sample dispersion s2 based on some sample of finite size N .
If N is very large (in practice larger than 30–50), these estimated values approach the true
values (see Section 2.1), while the distribution of the mean approaches normal distribution
(Section 2.2)5.

The Student’s t statistic is defined by substituting, in (2.29), the expected values of
the mean and variance according to (2.19):

t ≡ x̄− a
ŝ/
√
N

=
x̄− a

s/
√
N − 1

; ŝ = s

√
N

N − 1
. (2.33)

Theorem 2 If we draw a sample of size N from a normally distributed population, the
values of t statistic (2.33) are distributed with the following probability density f(t):

f(t) =
f0(ν)(

1 + t2

ν

) (ν+1)
2

, (2.34)

where ν = N − 1 is the number of degrees of freedom and f0(ν) is a constant that depends
on ν and makes the area under the curve f(t) equal to unity.

The Student’s t distribution is thus merely the probability density you expect to get when you draw a sample!

of finite size from a normally distributed population. If we have a small sample, therefore, drawn from a

population that is not normally distributed, the mean of this sample won’t in general be t-distributed. As

the sample size increases, however, the distribution of the sample mean will tend to Student’s (and normal)

distribution irrespective of distributions of individual data entries.

5The condition of large N is usually fulfilled in climatic data.
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Figure 2.2: Student’s t distribution approaches normal distribution as the sample size (and,
therefore, number of degrees of freedom) increases.

The plots of f(t) for ν = 4 and ν = 7 are shown in Fig. 2.2. Note that the tails of f(t)
are longer than in the corresponding normal distribution. As the sample size n and number
of degrees of freedom ν = N − 1 increases, the Student’s t distribution tends to normal
distribution. Because of the latter property, there is no reason to use the normal
distribution in preference to Student’s t in testing statistical significance.

The relevant statistic for measuring the significance of a difference of means ∆x̄
(relative to some expected value ∆) between two samples of different sizes N1, N2 and
dispersions s2

1, s2
2 is [cf. (2.32)]:

t =
∆x̄−∆√
ŝ21
N1

+
ŝ22
N2

; ŝ1 = s1

√
N1

N1 − 1
; ŝ2 = s2

√
N2

N2 − 1
. (2.35)

The statistic above is distributed approximately as Student’s t (2.34) with the number of
degrees of freedom ν given by

ν ≈

[
ŝ21
N1

+
ŝ22
N2

]2

[ŝ1/N1]2

N1−1
+ [ŝ2/N2]2

N2−1

. (2.36)
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Example 2.1 (Due to D. Hartmann). In a sample of ten winters the mean January tem-
perature is 42◦F and the standard deviation is 5◦F. What are the 95% confidence limits on
the true mean January temperature?

• Desired confidence level is 95%.

• The null hypothesis is that the true mean is between 42±∆T . The alternative is that
it is outside of this region.

• We will use the t statistics.

• The critical region is |t| < t0.025, which for ν = N − 1 = 9 is |t| < 2.26. From (2.33)
we have

T̄ − 2.26
s√

N − 1
< θ < T̄ + 2.26

s√
N − 1

.

• Plugging in the numbers we get 38.23 < θ < 45.77. We have 95% certainty that the
true mean lies between these values. If we had a guess about what the true mean
was, we could say whether the data would allow us to reject this null hypothesis at the
significance level stated.

Exercise 2. What would be the 95.45% confidence limits if we wrongly used z statistic in
the example above?

2.4 Binomial distribution

2.4.1 The problem of repeated trials (Bernoulli)

Before we move further to consider the tests of whether two distributions have significantly
different variances, we will need to discuss a fundamental problem which has numerous
applications in both probability theory and statistical analysis of data.

Bernoulli problem. Suppose we have a set of n independent trials; the outcome of each
trial is either “success” or “failure,” with a probability of a success being p and that of a
failure q = 1− p. What is the probability pn(k) of having exactly k successes?
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Example 2.2 Consider extreme events in the Niño-3 index time series (see Fig. 1.1). To
do so, we can form a new time series, of the size of the original time series according to the
following rule: the value of the new time series at a given time equals 1 (success) if the index
exceeds 1 standard deviation from its average value; otherwise, the new time series takes the
value of 0 (failure). We thus end up with a sequence of zeros and ones, and estimate the
value of p (or q) as ratio of the number of successes (or failures) to the total number of
points in the time series. If all the events are independent, their distribution is given by the
solution of the Bernoulli problem (see also Exercise 5).

Once again, to compute the probability, we consider a population of M n-dimensional
sets of independent trials. We should then count the number of sets Mk(M) in which we
have exactly k successes, and take the limit lim

M→∞
Mk(M)/M . Take, for example, n = 3. The

possible (23 = 8) outcomes of our trials are 000, 001, 010, 100, 011, 101, 110, 111. Since the
events are independent, the probabilities p3(0), p3(1), p3(2), p3(3) of obtaining 0, 1, 2, and
3 successes, respectively, can be found as p3(0) = q3, p3(1) = 3pq2, p3(2) = 3p2q, p3(3) = p3.
Note that p3(0) + p3(1) + p3(2) + p3(3) = (p+ q)3 = 1.

Higher-dimensional cases are considered in an analogous fashion: pn(k) has a general
form of the sum of terms qkpn−k; the coefficients of this sum represent the number of possi-
bilities to place individual objects (ones) on n places. Since these binomial coefficients are
given by (

n

k

)
=

n!

k!(n− k)!
, (2.37)

the solution to Bernoulli problem is

pn(k) =

(
n

k

)
pkqn−k, (2.38)

a binomial distribution (see an example in Fig. 2.3).

2.4.2 Mean value and variance of the binomial distribution

The moments of an arbitrary order for binomial distribution can be found using an identity

(q + pt)n =
∑
k

pn(k)tk. (2.39)

Differentiating this equation with respect to t gives

n(q + pt)n−1p = pn(1) + 2pn(2)t+ 3pn(3)t2 + . . . + npn(n)tn−1, (2.40)
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Figure 2.3: Binomial distribution pn(k) for p = q = 1/2 and n = 10.

which results, for t = 1, in the expression for the mean of the binomial distribution:

an ≡ En(k) ≡
∑
k

kpn(k) = np. (2.41)

[The left-hand side of (2.40) for t = 1 just equals nq, since p + q = 1, while the right-hand
side is

∑
k

kpn(k), which, by definition (1.12a), is the mean of distribution.]

Exercise 3. Show that the variance s2
n of the binomial distribution is given by

s2
n = npq. (2.42)

Hint: differentiate (2.40) with respect to t and set t = 1, then use (1.12a), (1.13a) and an
identity p+ q = 1.
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2.4.3 Normal approximation to binomial

The calculation of probabilities related to binomial distribution becomes tedious as the sam-
ple becomes large. Fortunately, we do not have to do this calculation, since we have the
central limit theorem at our disposal (see Section 2.2). Note that the binomial problem
can be reformulated as follows: find the distribution of the sum k of n independent random
variables taking values 1 and 0 from a discrete distribution p(1) = p, p(0) = q = 1 − p
(since zeros do not contribute to this sum, we are indeed counting the number of ones, or
successes). The expectation and the variance of the individual terms in this sum are equal
to p and pq, respectively6 [cf. (2.41) and (2.42)]. According to the central limit theorem,
therefore, the statistic

k − np√
np(1− p)

has the standard normal distribution (2.27) as n→∞.

Example 2.3 (Due to D. Hartmann) An earthquake forecaster has forecast 200 earthquakes.
How many times in 200 trials must s/he be successful so we can say with 95% certainty that
the forecasts have a nonzero skill?

The null hypothesis H0 is that forecasts have no skill (probability of success and failure
are equal p = q = 1/2) and the confidence level is 0.05, or 95%. The number of forecasts s∗

that we want to find is thus given, according to (2.38), by

P (s > s∗|H0) = 0.05 =
200∑
i=s∗

(
200

s

) (
1

2

)i (
1− 1

2

)200−i

.

Solving this equation for s∗ is extremely tedious. However, we can convert this to the problem

P (s > s∗|H0) = P

(
s− np√
np(1− p)

>
s∗ − np√
np(1− p)

)
= P

(
z >

s∗ − np√
np(1− p)

)
= 0.05,

where z has a standard normal distribution, for which P (z > 1.64) = 0.05. Our solution is,
therefore,

s− np√
np(1− p)

> 1.64; s > 112.

So to pass a no-skill test on a sample of this size, the forecaster must be right 56% of the
time. This level of skill, while significantly different from zero, may not be practically useful.

6Can you show this?
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Exercise 4. Solve the above problem for the case of 20, rather than 200 trials.

Exercise 5. Consider Example 2.2: the total number of observations is 664 (slightly more
than 55 years of monthly observations), the number of extreme events is 100. In the first half
of the record there are 40 events, while there are 60 events in the second half of the record.
Is this increase in the ENSO occurrences during the past 27 years statistically significant at
the 95.54% significance level? Use normal approximation to the binomial distribution. Can
we believe this answer?

Exercise 6. In the above example, we now define extreme events differently by binning
the data using non-overlapping three-month box-car averages. The resulting time series has
220 points; there are now 34 events that exceed one standard deviation: 13 events in the first
half of the time series and 21 events in the second half. Is this difference significant? Hint:
Assume the events in both parts of the record come from the same binomial distribution;
then compute probabilities of getting less than 14 and more than 20 events out of 110.

2.4.4 Non-parametric statistical tests

Binomial distribution can also be used to perform the so called non-parametric statistical
tests, in which we do not to assume that the data’s PDF is known. A good illustration of
this approach is the Signs Test.

Suppose that we have paired data (xi, yi). We want to know if there is a shift in
mean location from set xi to set yi. We know that the data are unlikely to be normally
distributed and we don’t want to assume that they are. We pose the statistical problem in
terms of the two data set’s medians: the null hypothesis is that the medians of the sets are
identical; the alternative is that they are not. These statements can be written in terms of
a probability P (yi > xi) as

H0 : P (yi > xi) = 0.5; H1 : P (yi > xi) 6= 0.5.

We next replace each pair with a signed integer equal to one according to the following rule:

yi > xi −→ + yi < xi −→ −
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If the median of the two data sets are the same, the plus and minus signs should be equally
probable, so that the + and − correspond to binomially distributed “success” and “failure.”
The probability of getting a certain number of + and − signs can thus be calculated using
(2.38) with p = q = 1/2.

Example 2.4 (D. Hartmann) Cloud seeding experiment. Ten pairs of very similar
cumulus clouds were identified. One from each pair was seeded, and the other was not. Then
the precipitation falling from the clouds later was measured with a radar. The data resulted
in the following table:

Table 2.1: Cloud seeding experiment

Cloud Pair Precipitation (untreated) Precipitation (treated) yi > xi?

1 10 12 +
2 6 8 +
3 15 10 −
4 3 7 +
5 5 6 +
6 14 4 −
7 12 14 +
8 2 8 +
9 17 29 +
10 8 10 +

There are thus eight pluses and two minuses. Is this statistically significant at the
95% level, so that we can say that the median values of the two samples are different? The
chances of getting eight successes in ten trials are

P (k ≥ 8) =
10∑
k=8

(
10

k

) (
1

2

)k (
1− 1

2

)10−k

= 0.055,

P (k ≤ 2) =
2∑

k=0

(
10

k

) (
1

2

)k (
1− 1

2

)10−k

= 0.055.

Since our null hypothesis assumes random character in our data sets, it does not distinguish
between positive and negative shifts of the median and we have to add up the two probabilities
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above in the two-sided test. We get P = 0.11, which fails 95% confidence test. The effect (if
any) appears not to be very pronounced; if we still want to investigate whether there is an
effect, however small it is, we would have to perform more of cloud seeding experiments to
make our data sample bigger.

Exercise 7 (Bootstrap method). Another important nonparametric statistical tech-
nique is the bootstrap method. It belongs to the family of Monte Carlo methods (see Section
2.7.1 and Chapter 3), which involve generating a large number of synthetic realizations of
a given data set using a statistical predictive model (this model is in turn derived from the
data set under consideration). Constructing such a model relies on some assumptions about
the data set. The model can be distribution-based (in this case, the PDF of the data set
is estimated from the data, then sets of random numbers are drawn from this probability
distribution) or trajectory-based (given past evolution of our variable and an estimate of the
noise uncertainty, we predict the value of this variable at the next time); see, once again, Sec-
tion 2.7.1 and Chapter 3 for further detail. If one does not know enough about the physical
process underlying a given data set and/or nature/ditribution of errors (either measurement
errors or those associated with the dynamical noise), one uses the bootstrap method, which
actually belongs to the class of the distribution-based methods: it views the actual data set
as a discrete probability distribution consisting of the delta functions at measured values.

Return to the cloud-seeding experiment Example 2.4. We have ten observations of the
rainfall amount from treated and untreated clouds. Let us consider, for example, the results
from the treated-cloud experiments and generate synthetic data sets of ten figures by the
following procedure. Using a random-number generator producing a uniform random deviate
that lies in the interval [0, 9] (take the one that produces deviates in the interval [0, 1] and
multiply the numbers it produces by 9), rounding off to the nearest integer and adding 1
to the result, get a random integer number in the interval [1, 10]. Take the observation of
precipitation from the corresponding experiment. If our random number is 3, for example,
the first entry of our synthetic data set would be 48 (see Table 2.1). Repeating these drawing
10 times, we get a synthetic sample, whose average will in general be different from the
original sample average since some of the data points will be duplicated (for instance, label
“3” may occur more than once), while others not included. If we continue this procedure
1000 times, we will get 1000 estimates of the mean precipitation that fell out of the untreated
clouds. After sorting the estimates in the ascending order, we can say that, for example,
95% of the precipitation data lies within the values associated with the 25-th and 975-th
estimates. We can now do the same procedure with the rainfall data collected from seeded
clouds and see if the 95% confidence intervals for the two tests overlap or not. Alternatively,
we can sort the differences between the synthetic estimates and see directly if the observed
difference in precipitation averages exceeds “synthetic” 95% level. Do this estimation and
see if the conclusion will be consistent with that of the Signs Test.
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There is a variety of distribution-free tests; examples include the “Wilcoxon signed
rank test” and the “Wilcoxon–Mann–Whitney test”; see, for example, Mendenhall (1990) or
class notes by Profs. D. B. Stephenson and R. E. Benestad
(http://www.gfi.uib.no/∼nilsg/kurs/notes/node54.html).

2.5 Poisson distribution

2.5.1 Rare events

Consider the Liapounoff condition (2.20) under which the result (2.21) of the central limit
theorem 1 is valid. The denominator of (2.20) is the sum of the individual variances. In
order for this condition to be fulfilled, therefore, we need this sum to increase fast enough
as the size of the sample increases. In the case of the Bernoulli problem (see Section 2.4.1),
the denominator of (2.20) is given by (2.42):

s2
n = npq.

Suppose that p is very small: p → 0, q → 1; then, as n → ∞, the sum of the variances
will increase with n very slowly, and the normal approximation to the binomial distribution
(2.38)

pn(k) ≡
(
n

k

)
pkqn−k ≈ 1√

2πnpq
exp

{
−(x− np)2

2npq

}
will only hold if n is truly large so that np → ∞. Small value of p means that the corre-
sponding events can be characterized as rare events. A better-than-normal (that is, valid for
smaller n) approximation to the binomial distribution for the case of rare events has been
obtained by Poisson (1837).

2.5.2 Derivation of the Poisson law

Let us introduce, in the Bernoulli formula, the mean value a ≡ np and rewrite this formula
in the following form:

pn(k) =
n(n− 1) . . . (n− k + 1)

k!

(
1− a

n

)n−k (a
n

)k
=

ak

k!

(
1− a

n

)n 1
(
1− 1

n

) (
1− 2

n

)
. . .
(
1− k−1

n

)(
1− a

n

)k . (2.43)
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If n increases, while a (NB! p → 0) and k are kept constant, the latter fraction in (2.43)
tends to unity, while

lim
n→∞

(
1− a

n

)n
= e−a.

The approximation to the Bernoulli formula (2.38) valid for large n and constant a = pn
and k is

p∞(k) = lim
n→∞

k=const, a≡np=const

pn(k) =
ake−a

k!
. (2.44)

The formula (2.44) gives a distribution p∞(k), which is known as Poisson distribution. It is
easily seen that

∞∑
k=0

p∞(k) = e−a
∞∑
k=0

ak

k!
= e−a · ea = 1. (2.45)

The expectation of the Poisson-distributed variable is

E{k} =
∞∑
k=0

k p∞(k) = ae−a
∞∑
k=1

ak−1

(k − 1)!
= ae−a

∞∑
k=0

ak

k!
= ae−a · ea = a. (2.46)

Exercise 8. Show that the variance Var{k} of a Poisson-distributed variable k is given by

Var{k} ≡ E{k2} − (E{k})2 = a. (2.47)

Hint: Compute first E{k(k − 1)}.

Both the expectation and the variance of the Poisson-distributed variable equal to the
distribution parameter a. The sum of independent Poisson random variables is also Poisson
distributed with the parameter equal to the sum of the individual parameters7. According to
the central limit theorem, on the other hand, the distribution of this sum tends to Gaussian
distribution. The latter two facts combined mean that the Poisson distribution tends to
Gaussian as a → ∞ (in practice, it is essentially Gaussian at a ≈ 100). An example of
Poisson distribution is shown in Fig. 2.4.

7We are counting a large number of a small-probability events. If we have two independent sequences of
events, with the sizes and individual event probabilities n(1), n(2) and p(1), p(2), respectively, we can form
a new sequence of events with n = n(1)+ n(2) and p = [p(1)n(1) + p(2)n(2)]/n. The mean value associated
with the new sample will then be a = np = a(1) + a(2), where a(1) = n(1)p(1) and a(2) = n(2)p(2) are these
values for the two samples under consideration. The total number of events in the new sample will thus be
Poisson-distributed with a parameter a.
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Figure 2.4: Poisson distribution p∞(k) with a = 5.

2.5.3 Discussion and examples

Poisson vs. Gauss. We have seen that the Poisson distribution converges towards Gaus-
sian as the number of rare events becomes large. However, this convergence is not uniform
when measured in terms of fractional accuracy (ratio of the Poisson PDF to the Gaussian
PDF with the same mean and standard deviation): the farther k is from its expected value,
the poorer the fractional accuracy is. The Gaussian distribution always predicts that “tail”
events are much less likely than they actually (by Poisson) are. It means that if we are in-
terested in the extreme events that have a large magnitude, we have to have a larger sample
size than in the case of, say, intermediate-amplitude events to achieve the same fractional
accuracy of a Gaussian fit. In relatively short observational records, the normal distribution
is, therefore, often rather poorly realized (for example, the events that exceed 3 standard
deviations happen much more frequently than 0.27% of the time, as in the Gaussian case).
Such cases are considered in the field of robust statistics, which we will briefly discuss in
Chapter 3.

Brownian motion. A classical example of Poisson distribution in a physical system is the
motion of small suspended particles (dust etc.) in liquid or gas. In order to check random
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nature of this phenomenon, one may count the number of particles that are present at a
certain instant of time in some small portion of space occupied by the liquid, repeating
these observations many times. The results are then plotted in terms of the number of
occasions at which a certain number of particles was observed, divided by the total number
of observations.

The number n of particles present in the fluid is very large. Since the space in which
the observations are conducted is small compared to the total volume of fluid, the individual
probability p for a particle to be found in this space is very small (this can be estimated as
a ratio of the controlled volume to the total volume of fluid), but the expected number np
of particles observed at a given time remains moderate. Thus the conditions under which
Poisson formula solves approximately Bernoulli problem are fulfilled.

In order to apply the theory, one has first to estimate the value of np = a, the expected
number of particles in the volume of observation. If the number of observations m is large,
the expected number of particles in the control volume is approximately equal to the total
number of particles M observed in all experiments divided by the number of experiments.
The probability to find k particles in an experiment is then given by p∞(k) = e−aak/k!,
while mp∞(k) is the expected number of those cases in which k particles were counted.
These expectations are the quantities to be compared with the observed frequencies. If,
for example, in m = 500 observations a total of 1500 particles have been counted, then
500e−333/2! = 112 would be an expected number of observations with k = 2.

Persistent climatic states. Another example of the application of the Poisson distribu-
tion is the description of anomalously persistent climatic states. In this case, the events are
defined as the occurrences in which the location of the tip of climate-state vector belongs to
a certain (small) portion of the systems phase space (Fig. 2.5).

This control area is usually chosen to correspond to the phase-space region charac-
terized by an enhanced PDF (see Chapter 5); such regions are presumably associated with
recurrent and/or persistent events, whose knowledge may be useful for climate prediction.
Analysis of the recurrent/persistent states may also point to the dynamical mechanisms
which lead to enhanced climate predictability. It is therefore important to have an objective
criterion that would allow one to decide whether a region of the phase space really stands
out compared to other regions, either in terms of anomalous slow-down of the state-vector
trajectory there (persistent states), or in terms of the frequency with which the control region
is visited by the state vector (recurrent states).
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Figure 2.5: Schematic diagram of the climate-state vector evolution: the climate state is
represented by a position of the tip of the vector in the system’s phase space; climatological
state is placed at the origin.

A possible strategy to accomplish the latter goal is the following. Once again, we
first assume that the events are independent and estimate the probability p of a single event
as a fraction of time the system spends in the region of interest. For a daily time series of
length n, for example, we count the number of days in which the climate state was within our
controlled volume in the phase space, and divide it by the total number of days in the time
series. Provided the probability is small, but there is a lot of points in the time series, we
might expect that the events are Poisson-distributed. This means that if we have divided our
long time series into m shorter intervals (which should still be long enough to accommodate
a large number of events for the Poisson asymptotic to be valid) and counted the total
number of events within each interval, we expect that Mk = me−pn/m(pn/m)k/k! intervals
will contain k events, since the Poisson distribution parameter is a = pn/m (probability p
of a single event times the length N = n/m of an interval).

The quantity Mk should be compared with the actual number Mk, 1 of intervals con-
taining k events. The confidence limits on Mk [the range of Mk within which a majority
(say 95%) of Mk values based on samples of finite (but large) size N , drawn from popula-
tion with discrete distribution p(1) = p; p(0) = 1 − p (p is small), is expected to lie] can
in principle be estimated analytically (for example, if the total number n of observations is
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large, mathematically speaking infinite, the observed and expected distributions of Mk can
be compared using the so-called χ2 test ; see Section 2.6). In practice, however, the confidence
limits are very easily determined numerically using Monte Carlo procedure (see Exercise 7)
by generating many (typically 1000) surrogate sets (of size n) of random sequences of zeros

and ones (probability of “one” equals p)8, and computing their actual M
(s)
k just as for the

data set under consideration; 1000 estimates of this quantity so obtained are sorted in the
ascending order. The upper/lower 95% confidence limits are then the 50-th/950-th values

of M
(s)
k . Further discussion and examples of Monte Carlo significance tests can be found in

Section 2.7.1, as well as in Chapters 3, 5 and 6.

The differences between our observed and theoretical distributions can exceed 95%
confidence limits in some region of k-values. For example, the tail of the observed distribution
can be significantly longer than that associated with Poisson distribution. This might mean
that the events are probably not completely random and are most likely characterized by
anomalously large persistence or recurrence [to distinguish between these two possibilities
one has to analyze distribution of the length of “runs” (sequences of consecutive “ones”)].

Now, let us choose another region of the phase space that contains the same number of
events (observations) and repeat this procedure to find Mk, 2. We can now study differences
between Mk, 1 and Mk, 2 and estimate the statistical significance of these differences using
confidence limits based on a null hypothesis that both sets of observations came from the
same Poisson distribution9.

2.5.4 Exponential and Gamma distributions

The Poisson distribution is intimately connected with the exponential distribution. Let us
change notation pn −→ λt, and consider Poisson distribution in which the average number
of event occurrences per unit time (λ) is constant (in the formula above t stands for time).
What is the distribution of the amount of time between events?

Let T be the amount of time until the first occurrence. The probability of no events
in the time interval [0, t] is p∞(0) = e−λt [see (2.44)]. By definition of T this also means
that P (T > t) = e−λt. The answer to our problem is thus given by P (T ≤ t) = 1 − P (T >
t) = 1 − e−λt. This is a cumulative distribution function of the amount of time between

8A way to do so is to generate a set of random variables uniformly distributed in the interval [0, 1]
and then assign to each individual entry a value of “one” if the random variable is less than p and “zero”
otherwise.

9The tests of persistence will be considered in greater detail in Chapter 5.
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events. The associated probability density function is just the derivative of this expression
with respect to t:

f(t) = λe−λt, (2.48)

the exponential distribution. The expectation value of the time between two events is thus
∞∫
0

λe−λtt dt = 1/λ (the integral is calculated using integration by parts), and the variance is

1/λ2 (Can you show this?).

The exponential distribution is a special case of a two-parameter Gamma distribution,
whose PDF is given by

f(x| a, b) =
1

baΓ(a)
xa−1e−

x
b , (2.49)

where

Γ(a) =

∞∫
0

ta−1e−t dt

is the gamma function. It can be shown that when a is large, the gamma distribution closely
approximates a normal distribution.

The gamma distribution has density only for positive real numbers. It can thus be
used for a description of data which are not symmetrically distributed with respect to their
values; for example rainfall data. Another special case of gamma distribution is the χ2

distribution (see also Section 2.5.3) which gets special attention because of its importance
in normal sampling theory.

2.6 χ2 distribution

2.6.1 Checking a known distribution: χ2 test

Suppose we are given binned data; for example, we have a temperature time series and
group the events into K specified ranges of temperature (see Example 2.2). Let us call nk
the number of events which belong to k-th bin. We would like to check whether the observed
probabilities of events nk/n; n =

∑
k nk are consistent with some specified distribution pk;

see discussion in Section 2.5.3. The natural approach to this problem is to consider a test
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function of the form

F (n1, n2, . . . , nk−1) =
K∑
k=1

λk

(nk
n
− pk

)2

, (2.50)

where λk are some positive weights. The function F depends on k − 1 variables only,
since one of the variables can be expressed in terms of the others (

∑
k

nk = n). We thus

proceed by computing the expectation and variance of F under the assumption (and also
a null hypothesis) that observations are drawn from a known population with probabilities
p1, p2, . . . , pK , and then compare E{F} ±

√
Var{F} with the observed value of F . The

large observed value of F would indicate that the null hypothesis is rather unlikely.

The expectation E{F} is the sum of expectations of individual terms in the sum
(2.50). Consider the events in k-th bin only: the probability of occurrence of such an event
is pk, while the probability of non-occurrence is obviously 1 − pk. The expectation of nk is
thus nqk [see (2.41)], while the variance of nk [that is, expectation of (nk−npk)2] is npk(1−pk)
[see (2.42)]. Plugging the latter expression into (2.50), we get

E{F} =
1

n

K∑
k=1

λkpk(1− pk). (2.51)

If we choose
λk =

n

pk
, (2.52)

then the function F is denoted by χ2 and called Chi-square:

χ2 =
1

n

K∑
k=1

(nk − npk)2

pk
=

1

n

K∑
k=1

n2
k

pk
− n. (2.53)

Substituting λk from (2.52) into (2.51), we find that

E{χ2} =
1

n

K∑
k=1

n(1− pk) =
K∑
k=1

(1− pk) = k − 1. (2.54)

The expectation of the χ2 is independent of the specific values of the probabilities p1, p2, . . . , pK
and equal to the number of degrees of freedom; the latter equals the number of bins minus
one. The simplicity of (2.54) and its independence of the underlying probability distribu-
tion indicate that the choice of λk according to (2.52) is a good one. This choice gives to
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the deviation squares (nk − npk)
2 the weights that are inversely proportional to the k-th

event’s expected frequency pk. Therefore, deviations in the central portion and tails of the
distribution are estimated with comparable fractional accuracy.

The variance of χ2 can be computed in a similar fashion, as E{(χ2)2}−(E{χ2})2, and
our program for checking whether observations are likely to come from a given distribution
can be fulfilled. In practice, however, we usually deal with the situation in which the total
number of observations n is large. In such cases, it turns out to be possible to find the
distribution of Chi-square, that is the function that describes the probability of a ≤ χ2 ≤ b,
for an arbitrary interval [a, b].

2.6.2 Derivation of the χ2 distribution for an infinite sample

In order to compute the distribution of χ2, we first need to find the probability P (n1, n2, . . . , nK−1)
of observing a set of numbers n1, n2, . . . , nK (corresponding to events with probabilities

p1, p2, . . . , pK) out of n =
K∑
k=1

nk trials. The quantity P (n1, n2, . . . , nK−1) is given by the

product of the probability of any individual arrangement of results including n1 observations
that fall in bin 1, n2 observations that fall in bin 2 etc., and the number of such arrangements.
The former term in this product is thus

pn1
1 pn2

2 . . . pnKK ,

while the number of arrangements indicates how many possible ways there are to select, out
of n places, n1 as belonging to one group

(
n
n1

)
, then out of the remaining n − n1 places n2

for the second group
(
n−n1

n2

)
and so forth. This number is thus equal to

n!

n1!n2! . . . nK !
.

The probability P (n1, n2, . . . , nK−1) is therefore given by

P (n1, n2, . . . , nK−1) =
n!

n1!n2! . . . nK !
pn1

1 pn2
2 . . . pnKK . (2.55)

The probability distribution (2.55) is known as the polynomial distribution; it reduces to
binomial formula (2.38) in a special case of K = 2.

It can be shown that as n → ∞, the polynomial distribution (2.55) asymptotes the
expression

P (n1, n2, . . . , nK−1) ≈ e−χ
2/2√

(2πn)K−1p1 p2 . . . pK
, (2.56)
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with χ2 given by (2.53). In order to derive (2.56), one should use the asymptotic expression
(n → ∞) for the factorial n! = nne−n

√
2πn and substitute it in place of all factorials

appearing in (2.55). Computing then logP , taking the limit n→∞, and using the definition
of χ2 (2.53) leads to (2.56).

The result (2.56) means that the polynomial distribution becomes normal as n in-
creases indefinitely; the probability has a constant value for all sets n1, n2, . . . , nK to which
one and the same value of χ2 belongs. Using this result, we can now compute the probability
P (a ≤ χ2 ≤ b). For this, let us introduce, in place of nk, normalized variables

uk =
nk − npk√

npk
, or nk = npk

(
1 +

uk√
npk

)
. (2.57)

The expression (2.53) for the χ2 now becomes

χ2 = u2
1 + u2

2 + . . . + u2
K . (2.58)

Consider first a special case of K = 3. Here

χ2 = u2
1 + u2

2 +

(
u1
√
p1 + u2

√
p2√

p3

)2

.

u
2
 

u
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Figure 2.6: Schematic of constant χ2 curves for K = 3.
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In a (u1, u2) coordinate system, the locus of the points χ2 = const = c2 is an ellipse
(Fig. 2.6). The ellipses for different values of c all have the same orientation, while the size
of their axes is proportional to c. The probability of χ2 lying in the interval c2 to (c+ dc)2 is
given by the sum of all P -values that correspond to points with coordinates (u1, u2) within
the annular arcs shown in Fig. 2.6. All these P are equal (except for infinitesimal differences)
since they belong to essentially the same χ2 value [see (2.56)] χ2 = c2, while the number
of points within the annular arcs tends to the area between the two arcs as n → ∞. The
latter area is equal to the length of the arc (this length is in turn proportional to c) and the
distance dc. We thus have, for a three-dimensional case,

P{c2 ≤ χ2 ≤ (c+ dc)2} = const · e−c2/2cdc (K = 3). (2.59)

If we consider the case with K = 4, the surfaces of constant χ2 in three dimensions
will be ellipsoids, whose surface area will replace the length of the curve in the analysis
above. Since the surface increases with the second power of linear dimensions, we would
have to replace the factor c in (2.59) by c2, and, in general case of K dimensions, by cK−2.
The expression (2.59) is replaced, in the latter case, by

P{c2 ≤ χ2 ≤ (c+ dc)2} = const · e−c2/2cK−2dc. (2.60)

Changing the variable c2 → x, we have (c + dc)2 = c2 + 2c dc = x + dx and cK−2dc =
1
2
cK−3dx = 1

2

√
x
K−3

dx, so that

P{x ≤ χ2 ≤ x+ dx} = const · e−x/2x(K−3)/2dx. (2.61)

The probability density of χ2 is, therefore,

fk(x) = const · e−x/2x(K−3)/2, (2.62)

where the constant is found so that
∞∫
0

fk(x) dx = 1.

We arrive at the following result: The probability density of χ2 for infinite n is inde-
pendent of the original probabilities p1, p2, . . . , pK and is given by

fK(x) =
e−x/2

2Γ(K−1
2

)

(x
2

)(K−3)/2

, (2.63)

where

Γ(a) =

∞∫
0

ta−1e−t dt
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Figure 2.7: χ2 PDF fK(x) for different values of K.

is the gamma function. The distribution (2.63) is known as the Chi-square distribution with
(K − 1) degrees of freedom. Examples of fK(x) for different K are presented in Fig. 2.7.

It can easily be shown that the expectation and variance of χ2 are equal to (K − 1)
and 2(K − 1), respectively:

χ2 = K − 1±
√

2K − 2. (2.64)

Note that (K−1) is the expectation of χ2 for whatever n [see (2.54)], while the variance is equal to 2(K−1)!

only for infinite n; the complete expression for variance (not shown) includes the term which is inversely

proportional to n.

2.6.3 Normal sampling theory: Tests of variance

Just as for the Poisson-distributed random variables (see footnote at the end of Section
2.5.2), the probability of the sum of two independent χ2-distributed random variables is also
χ2-distributed, the number of degrees of freedom of the resulting distribution being equal to
the sum of these numbers for two original distributions. This immediately follows from the
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definition of χ2 function (2.53): since the two sets of events are assumed to be independent,
we can combine them and re-scale individual probabilities to accommodate a larger sample
size and more bins (total number of possible events will be the sum of these numbers for the
two original distributions). We can then take the limit of n → ∞, as in the section 2.6.2,
and arrive at the χ2 distribution based on the new sample, which will have an appropriate
number of degrees of freedom, as stated above10.

Consider now random variable z having the standard normal distribution. What will
be the distribution of z2?

P (a < z2 < b) = 2P (
√
a < z <

√
b) =

2√
2π

√
b∫

√
a

e−
z2

2 dz =

2√
2π

b∫
a

e−
x
2

2
√
x
dx =

b∫
a

1

2
√
π

e−
x
2

(x
2

)− 1
2
dx.

Noting that Γ(1
2
) =

√
π and comparing the above expression with (2.63) for K = 2, we

find that the square of a random variable having the standard normal distribution has a χ2

distribution with one degree of freedom.

Now, using the latter property in combination with the summation property of the χ2-
distributed variables, we arrive at the following result: The sum of squares of ν independent
random normal variables of zero mean and unit variance has a χ2 distribution with ν degrees
of freedom.

Testing for significance using χ2. Suppose we want to know whether sample variances
are truly different. One way to do so will be to consider a null hypothesis that both samples
come from a normal distribution with zero mean and the same variance σ (we thus first
subtract from each sample its respective average value). If we are given a set of N such

10From this property and the central limit theorem, it immediately follows that the χ2 distribution tends
to normal as the number of degrees of freedom tends to infinity, viz. if x is χ2-distributed with K−1 degrees
of freedom and K →∞, then the variable

z =
x− (K − 1)√

2(K − 1)

has a standard normal distribution (2.27) [the normal distribution with zero mean and unit variance].
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observations, and s is the sample standard deviation, then the statistic

χ2 = (N − 1)
s2

σ2
(2.65)

is χ2 distributed with ν = N − 1 degrees of freedom11.

The χ2 distribution is not symmetric, so that, for example, the 95% confidence limits
on the true variance will be

(N − 1)s2

χ2
0.975

< σ2 <
(N − 1)s2

χ2
0.025

. (2.66)

The expression above means that if we had very many samples of size N drawn from a normal
population with zero mean and variance σ, we would only expect 2.5% of the samples to have
variances s2 > s2

0.975 = σ2χ2
0.975/(N − 1) and another 2.5% to have variances s2 < s2

0.025 =
σ2χ2

0.025/(N − 1).

Note, however, that the inverse statement of the type “if a sample of size N has the dispersion s2, then the!

true variance of the underlying probability distribution lies within limits given by (2.66) with a probability

of 95%” is a false one (this also refers to other tests using confidence limits methodology; see (2.31) and

Example 2.1)12. The pitfall is that if we are looking at multiple observations of sequences of size N , each

of these sequences is characterized by its own value of s2, which may lead to very different limits for σ2 in

(2.66). Our statements about σ lying within these limits (not the limits characterizing this particular sample,

but the limits that are changing from one realization to the other! ) will be true in 95% of the cases.

Suppose that we have two samples of sizes N1 and N2, with sample variances s2
1 and

s2
2. If now s2

1, 0.025 > s2
2, 0.975 or s2

2, 0.025 > s2
1, 0.975 then we can say that the null hypothesis

about the samples coming from the same normally distributed population with zero mean
can be rejected at the 95% confidence level. Note that the unknown value of σ2 conveniently
drops out of the above inequalities. We consider next the test that allows one to make
statements about whether two samples’ variances are different (given, once again, the null
hypothesis that both samples are drawn from the same normally distributed population) by
studying the ratio of sample variances.

F -test for significantly different variances. The F distribution is naturally related to
the χ2 distribution. If s2

1 and s2
2 are sample variances of two independent random samples of

11The number of degrees of freedom is the number of independent samples N minus the number of
parameters in the statistic which must be estimated. For example, in the t statistic, true mean must be
estimated based on N independent samples of data, so that the number of degrees of freedom ν = N − 1.
Similarly, for the χ2 statistic, we need to estimate true variance and, once again, ν = N − 1.

12See also discussion in Section 2.7.5.
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size N1 and N2, drawn from the same normal population with zero mean, then the statistic

F (ν1, ν2) =
s2

1

s2
2

=
χ2

1/ν1

χ2
2/ν2

(2.67)

is F -distributed; ν1 = N1 − 1 and ν2 = N2 − 1 are the numerator and denominator degrees
of freedom, respectively. We won’t list here the formula for the F distribution’s PDF; an
example of F distribution is however shown in Fig. 2.8. The values of F statistic that are
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Figure 2.8: F-PDF f(x) for ν1 = 5 and ν2 = 3.

much larger or much smaller than one indicate significant differences in terms of two samples’
variances, and the confidence levels can be assigned in a usual fashion using F -distribution
c.d.f.

The F statistic is very useful in analysis of regression (see Chapter 3) and in testing
the significance of spectral peaks (see Chapter 6).
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2.7 Statistical inference

2.7.1 Hypothesis testing procedure. Monte Carlo testing

The analysis of statistical data as outlined in preceding sections has proceeded as follows:

(i) from n observations x1, x2, . . . , xn the value of a function (statistic) F (x1, x2, . . . , xn)
was derived (for example, t or χ2); then

(ii) the distribution of F was computed subject to some assumptions (null hypoth-
esis) about the observations (e.g., in Student’s t-test, all observations are assumed to be
independent and to come from a normally distributed population with known mean θ and
unknown variance); and, finally,

(iii) the observed and theoretically computed F-values were compared with the pur-
pose of falsifying (rejecting) the null hypothesis.

Note that if a statistic falls in a reasonable part of the distribution, it does not mean that the hypothesis!

has been “verified” or “proved.” The hypothesis can, however, be substantiated by ruling out, statistically,

a whole set of competing hypotheses.

Statistical significance testing thus consists of five steps which should be followed in
order (D. Hartmann; see Example 2.1):

• State the significance level

• State the null hypothesis H0 and its alternative H1

• State the statistic used

• State the critical region

• Evaluate the statistic and state the conclusion

Significance level. The acceptable level of uncertainty people usually choose is 95%, in
which case there is a 5% chance of accepting the null hypothesis wrongly – a type II error
(type I error is when the correct null hypothesis is rejected).
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Null hypothesis. Construction of the null hypothesis and its alternative is critical to
the meaning of statistical significance testing — one must ensure that the null hypothesis is
reasonable and that its rejection leads uniquely to its alternative. Usually the null hypothesis
is a rigorous statement of conventional wisdom or a zero information conclusion, while its
alternative is an “interesting” conclusion that follows directly and uniquely from the rejection
of the null hypothesis. Typical examples of H0 and H1 hypotheses follow13:

(1) H0: The means of two samples are equal (Chapter 2)
H1: The means of two samples are different

(2) H0: The correlation coefficient between two samples is zero (see Chapter 3)
H1: There is a nonzero correlation between the two samples

(3) H0: The variance associated with the leading EOF is less than or equal to that
associated with the second EOF (see Chapter 4)

H1: The variance of the leading EOF exceeds that of the second EOF

(4) H0: The estimated probability density at a certain point of the phase space is
less than or equal to that associated with a linear stochastic process (see
Chapter 5)

H1: The PDF at this point exceeds the “linear” PDF

(5) H0: The variance at a certain period is less than or equal to that of the red-noise
background spectrum (see Chapter 6)

H1: The variance at this period exceeds the red-noise background

Parameter estimation and Monte Carlo tests. Note that we are always comparing
statistical characteristics of a given data set with those of a hypothetical data set which is
assumed to be drawn from a population with some known properties. In fact, it is only very
rarely that one has knowledge of the parameters of underlying distributions, so we always
have to estimate required parameters14. For example, we divide a long time series (say, a set
of daily values of temperature at a certain location) into shorter intervals and ask whether
one of these intervals is characterized by truly larger values of temperature compared to
other parts of the time series. In this case, it might be appropriate to assume that the data

13In all cases it is assumed, in addition, that the sample(s) consist(s) of a number of statistically independent
realizations (see Section 2.7.2); if the sample(s) is(are) small, one may also want to use normality assumption
or revert to nonparametric tests — these additional items implicitly enter every statistical significance test.

14The goal of the most general inference problem is to make quantitative probabilistic statements about
the distribution of a random variable given an observed finite sample; see Section 2.7.4.
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set is drawn from a normally-distributed population and estimate the expected mean and
variance of this normal distribution from the entire (long) sample’s average and dispersion.

The latter estimates turn out to also be the maximum likelihood estimates (MLE)
for the true mean and true variance given a finite sample of normally distributed data.
To obtain MLE we seek, given an assumed distribution (Gaussian in our present case), to
maximize the likelihood function. The likelihood function has the same form as the normal
probability density function (2.21), but the roles of the variables are reversed. For the PDF,
the parameters θ and σ are known constants and the variable is X. For the likelihood
function, the sample values (the X’s) are already observed. So they are the fixed constants,
while the unknown parameters play the role of the variables. MLE involves calculating the
values of the parameters that are associated with the highest likelihood given the particular
set of data (see Section 2.7.5 and Chapter 3 for further detail).

In our latter example the assumption of Gaussian distribution might have been a
reasonable one. What if instead of a temperature data set, we consider a rainfall data
set? Since the latter set has, by definition, only positive values which, in addition, are not
distributed symmetrically about their mean, Gaussian distribution may not be a proper one
to use for the description of this data set. One can use instead the Gamma distribution
(2.49) of Section 2.5.4, and compute MLE estimates of its parameters a and b.

In other cases, it is easier to compactly represent the data not in terms of the proba-
bility distribution function, but rather in terms of a model that predicts the system’s future
evolution given the knowledge of the system’s history and an estimate of the intrinsic noise.
For example, we have a gridded multidimensional data set, for which PDF estimation is not
feasible (even if we new what type of PDF to use). A possible solution is to reduce the
dimension of the data set by Empirical Orthogonal Function (EOF) analysis [also referred
to as Principle Component Analysis (PCA)] (Chapter 4) and then apply a multiple linear
regression (MLR) to connect the reduced-state vector’s time derivative with the state itself
and compute the parameters of this model’s stochastic forcing (Chapter 3).

As soon as we have associated our data set with some distribution or with some model,
we can in fact estimate statistical significance using Monte Carlo methods (see discussion
in Exercise 7 of this chapter, as well as Chapter 3). For the present example, in which
we would like to establish if the mean of a particular subsample is different from the full
sample’s mean, we would generate many (typically 1000) surrogate data sets of the size of our
original subsample by either drawing these surrogate subsamples from the population with
our estimated PDF or performing multiple integrations of our stochastic model; the mean
of each surrogate subsample would then be computed and stored. The 1000 surrogate mean
values so obtained should be sorted in the ascending order; we then assign 95% probability
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to the event that the mean of our actual subsample should be confined by the values of 25-th
and 975-th sorted surrogate means, provided the actual subsample is indeed drawn from the
distribution we have modeled; otherwise, our null hypothesis gets rejected.

In Monte Carlo significance testing, step (ii) of the hypothesis testing procedure is per-
formed numerically, rather than analytically, while steps (i) and (iii) remain the same. Equiv-
alently, the null hypothesis now involves construction of a distribution-based or trajectory-
based model and subsequent multiple integrations of this model to determine the boundaries
of the critical region.

2.7.2 Degrees of freedom

We have already discussed the issue of degrees of freedom (see Sections 1.2.2, 2.3.3, and 2.6).
This number is formally the number of independent measurements of the quantity or event
of interest that is included in the sample. It is sometimes difficult to assess the number of
independent realizations that we have in our sample, since the answer may depend on the
time and space scale of the phenomenon of interest: in other words, geophysical data sets
are typically characterized by a large spatial and temporal correlation (see Chapters 3 and
4). An example is given in Section 1.2.2.

There is a number of techniques to estimate the number of degrees of freedom in
a sample of spatiotemporal data (Leith 1973; Bretherton et al. 1999). We will discuss
these methods after reviewing some background material in regression (Chapter 3), matrix
methods (Chapter 4) and time series analysis (Chapter 6).

As a side note, it can be mentioned that the issue of degrees of freedom is safely avoided in many cases !

that use trajectory-based Monte-Carlo simulations as a part of statistical significance estimation (see Section

2.7.1). This happens because the spatial and temporal correlations within the data set are typically explicitly

allowed for in the process of constructing the model that mimics the data set (and in this model itself; these

statements will become clearer when we will have considered the data modeling strategies in Chapter 3).

2.7.3 A priori and a posteriori significance tests

Another concept in significance testing that is often a source of confusion has to do with the
concept of a priori and a posteriori statistical significance. Let us illustrate this concept
with the following example (once again, due to D. Hartmann).
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Example 2.5 (A posteriori problem) Suppose we want to test whether there is any day
in December during which it rains more in Seattle than in any other December day. We use
December rainfall data for the past 120 years. The daily precipitation amounts are to a good
approximation uncorrelated from day to day, so we actually have 120 independent data points
for each day in December. Furthermore, the standard deviations for each day (computed over
120 available points) are similar, so we can use the grand mean standard deviation (computed
over 120 × 31 available data points) for our statistical significance testing. Our problem is
thus to compare the mean for each day with the grand mean for all the days to see if any day
stands out.

We find that the mean for December 15 exceeds the grand mean of all days in the
month sufficiently to pass 99% confidence level (Can you say what would be the difference
between the two means in units of the standard deviation?). Does this mean that there must
be actual dynamical reasons for the December 15 being the rainiest day of December?

Let’s see. Suppose our desired significance level is 99%. Our null hypothesis is that all
the days are independent and drawn from the population with the same mean and standard
deviation. The probability p(31) that mean precipitation (over 120 years) for none of the
31 days will exceed a certain threshold value is thus p(31) = 99%. How do we compute this
threshold value? Let’s call p(1) the probability that the precipitation for a single day out of
31 will not exceed our threshold. Since precipitation amounts for all days are independent
and are assumed to be drawn from the same population, we have 0.99 = p(31) = {p(1)}31

[see (1.10) and Example 1.2], or p(1) = 31
√

0.99 ≈ 0.999677. This result means that in order
to ensure that one of the days really stands out of the rest of days in terms of precipitation
with the probability of 99%, the mean precipitation for this day must exceed the threshold
corresponding to 99.9677% significance level (What, in this case, would be the difference
between the mean for this day and the grand mean over all days in terms of the standard
deviation?). By comparison, if the threshold value for a single-day precipitation is chosen
to correspond to the 99% significance level, the actual probability that this day is special is
0.9931 ≈ 0.73 or 73%, which is not a very high chance by usual standards. The probability
that December 15 stands out is, therefore, not too impressive.

In the example above, we had no a priori reason to assume that December 15 is
special. Therefore, to estimate the chance that each of the 31 days of December is represented
by an independent sample drawn from the same population, we had to take the probability
of one event exceeding the criterion, 99%, and raise it to the power equal to the number
of independent chances (31) we have given the events to exceed this probability — this is
called a posteriori statistical analysis. But what if we really had a reason to assume that
December 15 is special? Let us say, we got to know that aliens have been seeding the clouds



2.7. STATISTICAL INFERENCE 57

in Seattle on December 15 for the past 120 years and our theoretical calculations predict
the seeding should have a significant effect? — In this case, a priori significance testing is
appropriate and can be used in support of our theory.

2.7.4 General inference problem. Bayes problem. Bayes theorem

General inference problem. Let us come back to a discussion in Section 2.7.1 and take
up on the issue of the true parameters of the probability distribution (which presumably
underlies our finite sample of data) being actually unknown. Consider, for simplicity, the
case of one unknown parameter; for example, we have a sample of size n — (x1, x2, . . . , xn)
— which we assume to come from a normally distributed population with known variance
σ and unknown mean θ. Let us call x our sample’s average. The conditional probability
density pn(x | θ) (whose integrals over some interval of x(1) ≤ x ≤ x(2) represent probability
of the sample mean x to lie within the interval [x(1), x(2)]) given the value of θ is thus

pn(x | θ) =
1

σ

√
n

2π
exp

{
−n

2

[
x− θ
σ

]2
}
. (2.68)

The general inference problem is formulated as follows: Given the function pn(x | θ)
and an observed value of x (NB! both pn(x | θ) and x are based on n observations), find, for
each interval T , the chance Qn(T ) that θ falls in T :

Qn(T ) = P{θ ∈ T}. (2.69)

Bayes problem. In order to find the answer to the inference problem, one has to realize
that this answer must depend not only on the observed value of x and conditional probability
pn(x | θ), but also on the function p0(θ), which is called a priori chance or overall chance of
an θ value. The quantity p0(θ) defines the probability that our object of experimentation
(subsequently subjected to n trials) is indeed characterized by the distribution with the
parameter θ. For example, we take daily-mean temperature samples of size n = 100; in
order to solve the inference problem, we have to know what the overall distribution of θ
(true mean of random temperature variable) is. In other words, we allow for the fact that
different samples of temperature might come from the distributions having different values
of θ: we characterize this by counting hypothetical number of cases Nk(N) in which our
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randomly chosen sample would have a value of θ in the interval θ± dθ, divided by the total
number of cases N in the limit N →∞ and call this number (in the continuous case taking
also the limit dθ → 0) p0(θ). If we do know a priori chance of θ — p0(θ), then an observation
of the sample mean will give us additional information so that we could say more about the
values of θ by computing a posteriori chance of θ. Of course, the terms a priori and a
posteriori here have nothing to do with the concepts outlined in Section 2.7.3:
they just refer to different probabilities of an θ value — namely, (i) the one in the absence
of (prior to) observations (a priori chance); and (ii) the one after the observed value of x is
available (a posteriori chance).

The necessity of knowing p0(θ) was first recognized by Thomas Bayes (1763) and the
problem formulated above is also known as Bayes problem. Let us derive the solution of
Bayes problem in the case of discrete events. Denote events as E1, E2, . . . , EK and assume
that the events (i) have positive probabilities; (ii) are mutually exclusive; and (iii) define all
possibilities (sum of events’ probabilities is equal to one). This is illustrated in Venn diagram
of Fig. 2.9 for K = 4 (the rectangle is assumed to have a unit area).

E E

E
E

1
2

3
4

B

Figure 2.9: Illustration to the solution of the Bayes problem (see text).

If, more specifically, the four events refer to probabilities of four possible values of θ,
then the corresponding discrete distribution is our P0(θ) — an a priori chance of θ. Now,
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consider an event B, which is also defined on the same set of events (that is, contains a
statement about the value of θ). What is the conditional probability of Ei, given B has
occurred? In the basic example of the present section, the event B is “the sample average
has a certain value.” The answer to the latter question, as easily seen from Fig. 2.9, is

P (Ei |B) =
P (B |Ei)P (Ei)

K∑
k=1

P (B |Ek)P (Ek)

, (2.70)

since the conditional probability of Ek given B equals to the (area of) intersection of Ek and
B, divided by the area of B. Note that a posteriori chance of θ (provided that we interpret
events in terms of possible values of θ) given by (2.70) can be distributed very differently
from the a priori chance; this distribution will depend on the shape and location of B in the
diagram.

Bayes theorem. Returning to the continuous case and using notations of the general
inference problem (2.69), we write the solution of this problem as

Qn(T ) ≡ P (θ ∈ T ) =

∫
(T )
pn(x | θ)p0(θ) dθ∫
pn(x | θ)p0(θ) dθ

, (2.71)

where the integral in the denominator is extended over all values of θ for which p0(θ) is
different from zero. If the latter (a priori) density is assumed to be constant, the solution
becomes

Q′n(T ) =

∫
(T )
pn(x | θ) dθ∫
pn(x | θ) dθ

, if p0(θ) = const. (2.72)

It is fairly easy to prove (see Von Mises 1964) that under certain (not very restrictive)
conditions on p0(θ), Q′n(T )→ Qn(T ) as n→∞: The inferred chance Qn(T ) approaches,
with increasing n, the value Q′n(T ) which holds for p0 = const.

The crucial condition under which the above result is valid has to do with the property
of pn(x | θ) condensing as n → ∞, that is, for a fixed x, the density pn(x | θ) becomes more
and more confined in a neighborhood of some point θx as n becomes larger and larger. For
example, the distribution (2.68) condenses at the point θx = x. Now, let us define interval T
as a neighborhood of our conditional probability’s condensation point pn(x | θ). As n→∞,
the integrals in the numerator and denominator of (2.71) tend to the same value (since the
integration outside the condensation region does not contribute, increasingly with n, to the
value of both integrals) andQn(T )→ 1 as n→∞ no matter how small neighborhood of θx we
have chosen. For the same reasons, Q′n(T )→ 1 as n→∞, and, therefore, Qn(T )→ Q′n(T ).
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The result that Qn(T ) → 1 as n → ∞ when applied to the Bernoulli problem [re-
peated alternatives with (now unknown) probabilities of “success” p and “failure” q = 1−p;
see Section 2.4.1] can be proven under even less restrictive conditions [p0(p) must be bounded,
continuous and be nonzero at the point p = θ, where θ = n1/n; n1 is a number of successes
in n trials]. In this case it is also known as Bayes theorem:

Theorem 3 (Bayes theorem)The chance, inferred from n trials with n1 = θn successes
for the fact that the probability of a single success p lies in the interval θ − dθ < p < θ + dθ
tends toward unity as as n increases indefinitely, no matter how small dθ is.

The above results imply, in general, that as a number of trials (sample
size) becomes large, inferences about the underlying distribution parameter(s)
θ (θ may also be a vector) can be made from the sample averages, without
the knowledge and irrespective of a priori probability p0(θ). On the other hand,
no inferences can be made from a small number of observations unless something is known
about the a priori probability p0(θ). Example: suppose that we know, for a given region T
and the region outside of T , which we denote by T̄ , that the min{p0(θ ∈ T )} = m and
max{p0(θ ∈ T̄ )} = M . We write

1

Qn(T )
=

∫
(T )

. . . +
∫

(T̄ )
. . .∫

(T )
. . .

≤ 1 +
MQ′n(T̄ )

mQ′n(T )
,

or, since Q′n(T ) +Q′n(T̄ ) = 1,

Qn(T ) ≥ Q′n(T )

Q′n(T ) + M
m

[1−Q′n(T )]
. (2.73)

In particular, if M ≤ m, then Qn(T ) ≥ Q′n(T ).

2.7.5 Re-examination of the method of confidence intervals

How to reconcile the statement of the preceding section (about impossibility of inference from
a small number of observations without the knowledge of a priori distribution of parameter(s)
of interest) with the hypothesis testing procedure, in which one talks about pre-specified
probability of a certain parameter to have a value in a certain range? There is nothing in
the hypothesis testing that restricts the samples to be large enough to avoid the influence of
a priori distribution (we might want to track the number of degrees of freedom in t test and
χ2 test, but we do not have to assume that this number is large).
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We have already made cautionary notes about interpretation of confidence intervals
as statements about the distribution parameters in Sections 2.3.2 and 2.6.315. Let us now
look in more detail into how the confidence limits in the hypothesis testing can be used
to formulate statements about unknown distribution parameters; we will see that these
statements do not really depend on the a priori distribution of these parameters (a good
thing!), while the high success chance in the method of confidence intervals is reached at
the expense of freedom in formulating the contentions about the parameter lying within an
interval of values (in particular, it will turn out that we have really no control in specifying
this interval — not a very good thing, in principle).

Let us refer to Fig. 2.10. In this section, we, once again, call θ the parameter on
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Figure 2.10: Method of confidence intervals (see text). Reproduced from Von Mises (1964).

which the distribution of the quantity x depends. We thus assume that the conditional
distribution pn(x | θ) is known, while the overall distribution p0(θ) is unknown. The chance
density for the occurrence of definite x and definite θ is pn(x | θ)p0(θ). The total range of
possible x- and θ-values is indicated in Fig. 2.10 as the rectangle ABCD. Consider within
this rectangle some domain β. If we conduct an infinite sequence of experiments using n
trials or observations involving n independent samples, the outcome of each experiment is

15No paradox arises, however, if we interpret hypothesis tests as the statements about the sample quantities
(averages, dispersion etc.) given the hypothesis that the sample comes from a distribution with known
parameters.
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represented by a point in (x, θ)-plane. The limiting frequency of this point falling into the
region β is

P (β) =

∫ ∫
(β)

pn(x | θ)p0(θ) dx dθ. (2.74)

The quantity P (β) can, in general, be computed if p0(θ) is known. There exists,
however, a special region within ABCD, whose P (β) can be found independently of any
knowledge or assumptions about p0(θ). On a straight line EF parallel to x-axis (fixed θ),

the integral
F∫
E

pn(x | θ) dx has, by definition, the value of one. Given the quantity α < 1, we

can, therefore, find some smaller interval from x1(θ) to x2(θ), for which

x2(θ)∫
x1(θ)

pn(x | θ) dx = α. (2.75)

The locus of the points x1(θ) and x2(θ) for all θ define two curves: we choose the former
curve (associated with x1) to start at point A (Fig. 2.10), while the latter curve to end in C
and call the region between these two curves α-belt βα. Substituting (2.75) into (2.74), and

noting that
D∫
A

p0(θ) dθ = 1, we find that P (βα) = α.

Thus, for any prescribed α < 1, an α-belt βα can be found for which the chance P (βα)
has the value α [that is, if we conduct, once again, a series of experiments (each involving
n trials), a fraction α of these experiments will result in (x, θ)-values belonging to βα, as
the number of experiments increases indefinitely]. How can we use the belt to formulate
statements about θ? Suppose that in a single set of n experiments, we have observed a
certain value of x. Let us draw, in Fig. 2.10, a vertical line with the abscissa x; this
line will intersect the boundaries of the belt in two points with ordinates θ1(x) and θ2(x).
The statement “θ lies between θ1(x) and θ2(x)” is equivalent to the statement “(x, θ)-point
belongs to the belt β.”

Therefore, if, in a series of experiment (each experiment consists of n observations,
from which we derive the quantity x), we pronounce, following each experiment, the con-
tention that θ lies in the interval θ1(x) to θ2(x), where θ1(x) is the smallest and θ2(x) is
the largest θ-value in the α-belt with abscissa x, we have the chance α of being right. In
other words, if α = 0.9, and we process the results of a large number of experiments, our
statements about θ belonging to the interval θ1(x) to θ2(x) (the value of x is an outcome of a
given experiment) will be right in 90% of the cases. We can thus make inference statements,
whose chance of success will be as high as we wish. Note, however, that, as advertised in the
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beginning of this section, the downside of the high success rate in the method of confidence
intervals is the fact that the interval [θ1(x), θ2(x)] is not pre-specified: it depends on x and
is thus changing from one experiment to the other. The inequalities restricting the range of
parameter in the hypothesis testing [(2.31), Example 2.1, (2.66)] should be understood in
this narrow sense only.

We have seen that the method of confidence intervals is in some sense a restricted form of parameter inference. !

Let us also comment here on the maximum likelihood estimation (MLE; see Section 2.7), in which one is
concerned with obtaining the “best” estimate of θ given an observed value of x. The quantity pn(x, θ)p0(θ)
is proportional to the a posteriori chance of θ. Therefore, the value of θ, which makes this product maximum
will be correct (in the long run, after many experiments are completed and documented) in more of the cases
in which this particular value of x has been observed, than any other θ value. The problem is, once again,
that a priori chance of θ, p0(θ) is unknown, so what is traditionally referred to as the maximum likelihood
estimate of θ is computed under the assumption p0(θ) = const and is thus defined by the equation

∂

∂θ
pn(x, θ) = 0.

If x is the average of n observations and if θ is the theoretical mean value of x, the function pn(x, θ)

shows a property of condensation as n increases: the values of pn(x, θ) out of immediate neighborhood of

θ become very small and negligible [see (2.19) of Section 2.1]. Furthermore, in this case, the a posteriori

distribution Qn becomes more and more independent of p0(θ). These properties make the MLE estimate

of the population’s mean θ, derived based on the sample’s average x, the one that has, approximately, the

greatest chance to be correct. Further discussion and examples of maximum likelihood estimation will be

given in Chapters 3, 5, and 6.

Let us connect the ideas developed in this section to the normal sampling signifi-
cance testing procedures. Namely, we consider two examples covering the cases described in
Sections 2.3.2 and 2.3.3.

Confidence intervals on the mean of a normally distributed population inferred
from a finite sample: Case of known variance. Consider the problem of determining
the true mean θ given a finite sample’s average value x. We will assume that the sample of
size n is drawn from a normal distribution with a known variance σ; x is distributed according
to (2.68). The range of possible (x, θ)-values covers, in this case, the whole (x, θ)-plane (see
Fig. 2.11).

The α-belt βα in this case is the strip limited by two parallels to the bisectrix of the
axes with the half width OA = ξ determined by the following equation:

α = Θ(

√
n

2

ξ

σ
), (2.76)
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Figure 2.11: Confidence intervals based on a sample from a normally distributed population
with a known variance. Reproduced from Von Mises (1964).

where

Θ(u) =
2√
π

u∫
0

e−u
2

du (2.77)

is the probability integral. It is easily seen that the equations (2.76) and (2.77) are equivalent
to the condition (2.75) defining the α-belt βα, provided pn(x | θ) is given by (2.68). GIven a
sample’s average x, the limits in θ are (see Fig. 2.11) θ1(x) = x− ξ and θ2(x) = x+ ξ.

Therefore, if N independent samples of size n, drawn from a normally distributed
population with unknown mean θ and known variance σ are considered, and N sample av-
erages x(k), 1 ≤ k ≤ N are computed, then the contention that the true mean θ lies between
x(k)−ξ and x(k) +ξ, where ξ computed from (2.76), will be correct, in the long run (N →∞)
in αN out of N cases.

Variance unknown: Student’s t test. Consider the previous example, but drop an
unrealistic assumption that σ is fixed and known. We thus end up with two unknown
parameters θ and σ, and would like to make statements about the true mean θ given an
observation of a sample’s average x and dispersion s2.
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To do so, we have to generalize definition of the α-belt to include multivariate case.
The conditional probability pn(x, s | θ, σ) is now defined in a four-dimensional space. A
region in this space can be defined by means of a function F (x, s, θ, σ); namely, let us
define region β as the collection of points for which some function F (x, s, θ, σ) < 0. The F
defining the βα is chosen so that for each pair of constant θ and σ∫ ∫

(β:F<0)

pn(x, s | θ, σ) dx ds = α; α < 1. (2.78)

Given (2.78), it is straightforward to show that the chance of a point x, s, θ, σ falling in βα is
equal to α [the double integral (2.74) for the case of one unknown parameter is substituted by
a quadruple integral in the present case]. Given the observed values of x and s, the inequality
F (x, s, θ, σ) < 0 thus gives an estimate of the ranges of θ and σ that will be correct, if
multiple samples with their respective (x, s)-pairs are considered, in α-fraction of all cases.

The joint distribution of the sample’s average x and dispersion s2 under the assump-
tion that the sample is drawn from a normal population with the mean θ and variance σ2

can be shown (see Von Mises 1964) to equal to

pn(x, s | θ, σ) = const · e−n[s2+(x−θ)2]/2σ2

sn−2, (2.79)

while the appropriate choice of F is

F (x, s, θ, σ) = (n− 1)

(
x− θ
s

)2

− t2α ≡ t2 − t2α, (2.80)

where t is the Student’s t-ratio [see (2.33) of Section 2.3.3)], while tα is found from

α =

tα∫
−tα

f(t) dt. (2.81)

Here f(t) is the PDF of Student’s t distribution with n− 1 degrees of freedom — Eq. (2.34)
of Section 2.3.3.

The points in (x, s)-plane for which F determined by (2.80) is less than zero fill the
sector (see Fig. 2.12) between the two straight lines AB and AC which intersect the x-axis
in x = θ and form with the vertical AD the angle φ: tanφ = tα/

√
n− 1. If tα is given by

(2.81), the probability of the point (x, s, θ, σ) falling in this sector (limiting frequency of
samples with the appropriate values of x, s, θ, σ) is equal to α.
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Figure 2.12: Confidence intervals based on a sample from a normally distributed population
with unknown variance (Student’s t test). Reproduced from Von Mises (1964).

Therefore, in a series of N observed samples of size n, we expect that in αN cases
(as N →∞) the following inequality is valid:

(n− 1)

(
x− θ
s

)2

≤ t2α or x− tα√
n− 1

s ≤ θ ≤ x+
tα√
n− 1

s. (2.82)

The latter equation is identical to the one used in Example 2.1.

2.7.6 Concluding remarks

The present chapter has provided fundamental concepts and ideas pertaining to the probabil-
ity theory and statistical data analysis. The emphasis has been on the descriptive statistics,
which explores the properties of given data sets without trying to associate them with a cer-
tain model. We were mainly concerned with establishing how similar of different two or more
sets of data are (are the sample means different? are the sample variances different? are the
distributions from which the data sets are presumably drawn different or not? etc.) These
questions have been answered using the methodology of hypothesis testing, which provides
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answers in terms of the probability of a certain event (e.g., the means of two samples are
different) to happen, given some assumptions about the actual distributions underlying the
data.

Geophysical data sets are typically characterized by a fairly large number of degrees
of freedom (that is, the number of independent measurements), which has profound conse-
quences with respect to their statistical properties. In particular, the importance of normal
(Gaussian) distribution becomes apparent due to the central limit theorem; furthermore,
large sample size plays an important role in the problem of parameter inference: in this
limit, statements about the parameters of underlying distribution can be made based on
the value of sample averages, without any a priori information. We have thus been able to
introduce the subject of inferential statistics: a suite of statistical analysis techniques and
procedures that are model-dependent (see example of the nonparametric bootstrap method
and general description of Monte Carlo procedures for significance testing).

In the following chapters, we will use the techniques described presently in combi-
nation with linear (matrix methods: multiple regression, PC analysis) and nonlinear (PDF
estimation and cluster analysis) methods to both detect and model potentially predictable
signals on the background of random (unpredictable) noise.
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Chapter 3

Regression and Theory of Correlation.
Modeling of Data

Suppose that we are given a set {yn} (1 ≤ n ≤ N) of N observations of some quantity
y and that each observation is associated with some value of the independent variable x.
Consider first the case in which the values {xn} (1 ≤ n ≤ N) are assumed to be known
exactly, while each observation yn is susceptible to random measurement errors; these errors
are characterized by the standard deviation σn. For example, we are processing a set of
simultaneous observations ({yn}) of an air pollutant’s concentration at N stations, which
are located at points with specified coordinates (in one-dimensional case — {xn}).

We would like to represent this data set economically by fitting it to a model that
relates the predictand or response variable y to predictor variable x and depends on J ad-
justable parameters aj (1 ≤ j ≤ J)

y = ŷ(x; a1, a2, . . . , aJ). (3.1)

The algebraic form of the model (3.1) is assumed to be known and the problem of finding
appropriate values of parameters am is referred to as the regression problem. Solving the
regression problem will enable us, in particular, to infer the values of y for any given x (for
example, interpolate or extrapolate irregularly spaced observations onto a regular grid etc.).

A general way of solving the regression problem (3.1) is to design a merit function
that measures the agreement between the data and the model given a particular set of model
parameters. The parameters are then adjusted to achieve a minimum of the merit function,
yielding best-fit parameters. One of the most widely used choices of the merit function has

69
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the quadratic form, resulting in the so called least-squares fit:

Find {a1, a2, . . . , aJ} −→ minimize
N∑
n=1

[yn − ŷ(xn; a1, a2, . . . , aJ)]2. (3.2)

We thus want to find a set of model parameters that minimizes the sum of the squared
differences between the data and our assumed parametric dependence ŷ(x).

3.1 Least squares as a maximum likelihood estimator.

Chi-square fitting

Well, we have solved (3.2) and obtained our “best-fit” parameters. What are the uncertain-
ties associated with these estimates? How do we know whether our least-squares fit (3.2) is
a “good” one or not? In general, what is the connection between the regression problem and
probabilistic aspect of data analysis? In answering the above questions, one has to acknowl-
edge the fact that data are in general not exact: they are either subject to measurement
errors, or, in the model-generated data, to natural predictability limits rooted in the climate
system’s nonlinear dynamics. In the latter case, useful deterministic (predictable over a rela-
tively long time scale) relations between two or more variables (say, persistent large-scale flow
patterns) are typically masked by shorter-time-scale smaller-spatial-scale variability, which
can be treated, on the long time scale of interest, as random noise.

Maximum likelihood estimation. Suppose that the set {∆yn} (1 ≤ n ≤ N) of nor-
malized deviations ∆yn ≡ (yn − ŷ)/σn of each measurement yn from the “true” model
ŷ(xn; a1, a2, . . . , aJ)1 is a sample of size N drawn from a population having the standard
normal distribution. The probability dPn of the n-th measurement to fall within an infinites-
imal interval of length dy containing yn is therefore given by the area of a shaded strip in
Fig. 3.1:

dPn = pn(yn) dy =
1√

2πσn
exp

[
−1

2

(
yn − ŷ(xn; a1, a2, . . . , aJ)

σn

)2
]
dy

=
1√
2π

exp

[
−1

2
∆y2

n

]
dy′n, (3.3)

where dy′n ≡ dy/σn. Since all measurements are independent, the increment of the probabil-

1That is, the model with the “correct” parameters a1, a2, . . . , aJ .
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Theoretical PDF of observational error
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Figure 3.1: Hypothesized distribution of observational error (see text for details).

ity dP of the entire data set to occur, that is the probability that each of N measurements
will fall within the distance dy of its actual observed value yn (1 ≤ n ≤ N), is

dP = dP1 . . . , dPN =
N∏
n=1

1√
2πσn

exp

[
−1

2

(
yn − ŷ(xn; a1, a2, . . . , aJ)

σn

)2
]
dy

=
N∏
n=1

1√
2π

exp

[
−1

2
∆y2

n

]
dy′n. (3.4)

We are interested in finding the set of parameters {an} (1 ≤ n ≤ N), which maximizes
the probability (3.4) of our data set to occur. In other words, we are looking for the set
of parameters, whose likelihood is maximized given our observed data. Maximizing (3.4)
is equivalent to maximizing its logarithm, which is, in turn, equivalent to minimizing the
negative of its logarithm. Taking the natural logarithm of (3.4) and multiplying the resulting



72 CHAPTER 3. REGRESSION. CORRELATION. MODELING OF DATA

sum by −1, we find that the maximum likelihood estimate of our parameters is

{a1, a2, . . . , aJ} −→ minimize
N∑
n=1

∆y2
n ≡

N∑
n=1

[yn − ŷ(xn; a1, a2, . . . , aJ)]2

σ2
n

, (3.5)

since the other terms in the some are constant and do not depend on our adjustable param-
eters. Comparing (3.5) and (3.2) we see that least-squares fitting is a maximum likelihood
estimation of the fitted parameters provided that the measurement errors are (i) independent;
(ii) normally distributed; and (iii) have the same standard uncertainty (σn = σ).

Chi-square fitting. In a general case of non-equal σn’s, the merit function to be minimized
is given by (3.5) and called chi-square:

χ2 ≡
N∑
n=1

∆y2
n ≡

N∑
n=1

[yn − ŷ(xn; a1, a2, . . . , aJ)]2

σ2
n

. (3.6)

If our normalized observational errors ∆yn ≡ [yn − ŷ(xn)]/σn have the standard normal
distribution, the quantity χ2 in (3.6) has the χ2 distribution with N degrees of freedom (see
Section 2.6.3), hence its name.

After we have adjusted our parameters to minimize the value of χ2, the individual
terms in the sum (3.6) are no longer all independent, since in the process of computing
the best-fit parameters, we have imposed M additional constraints. The minimum of a
quadratic functional (3.6) is achieved if the parameters a satisfy the system of equations
∂χ2(a1, . . . , aJ)/∂am = 0 (1 ≤ j ≤ J), or

0 =
N∑
n=1

(
yn − ŷ(xn)

σn

)(
1

σn

∂ŷ(xn; a1, a2, . . . , aJ)

∂aj

)
; j = 1, . . . , J. (3.7)

Call â ≡ (â1, . . . , âJ) the solution of (3.7) [the set of our best-fit parameters]. Defining the

quantities Y ′n, j ≡ 1
σn

∂ŷ(xn; â)
∂aj

, where the partial derivatives are computed for a = â, we see

that the normalized observational errors ∆yn ≡ [yn − ŷ(xn)]/σn satisfy J constraints

0 =
N∑
n=1

∆ynY
′
n, j; j = 1, . . . , J. (3.8)

Since Y ′n, j is just the set of known numbers, we see that any set of J of the ∆yn’s can be
linearly expressed in terms of other N − J ∆yn’s; we are thus left with N − J independent
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measurements only. It turns out that for the models that are linear in a ≡ (a1, . . . , aJ),
the probability distribution of the function χ2 at its minimum â is the χ2 dis-
tribution with N− J degrees of freedom2.

The latter property gives us means to estimate the goodness of fit, by computing the
expected fraction of cases in which the sum of squares of N − J standard normal random
variables will exceed our observed χ2, that is, the probability of exceeding the value of χ2

by chance (see Section 2.6.3). Small values of this probability (say 1%) indicate in general
that our χ2 is unlikely to be large simply due to unfortunate sampling, but rather one of the
following three possibilities takes place:

• the model is wrong and can be statistically rejected (see more discussion of this possi-
bility below);

• the estimates of the measurement errors σn were wrong (the errors are in fact larger
than was stated, so that the χ2 sum is in fact smaller); conversely, if the measurement
errors have been overestimated, the fit might appear to be unrealistically good;

• the measurement errors are not normally distributed. Non-normal distributions are
typically characterized by longer tails — that is, they generate a larger fraction of
points with large deviations from the mean (see, for example, Section 2.5.3); therefore,
given the same standard deviation, the sum of squares of random variables drawn from
such distributions will tend to be larger than the sum of the same number of normally
distributed variables. The subject of Robust Statistics (see the discussion at the end
of Section 3.2) deals with cases in which the normal model is a bad approximation. If
we know how measurement errors are actually distributed, it is possible to generate
synthetic data set via Monte Carlo simulations (Section 2.7.1); this will also provide a
way to estimate uncertainties of the estimated model parameters (Section 3.6.1).

Exercise 9. How do you expect the value of χ2 to change (increase, decrease, stay the
same) if the measurements in a data set are not independent (compared to the case of the
same number of independent measurements)? How would the expected spread of χ2 values
change?

The first possibility from the list above relates to the case in which we are assum-
ing a fixed parametric form of some deterministic relation between our two variables and

2This is in general not true for models that are nonlinear in a.
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estimate the likelihood of this assumption given the data subjected to measurement errors;
the negative result here indicates that the assumed deterministic relation is unlikely. Such
formulation is typical for statistical analysis of engineering problems. In geophysics (in
particular, in meteorological and oceanographic applications), the relation between two vari-
ables is rarely purely deterministic due to presence of instabilities and dynamical noise which
masks the signal (useful relationship between the variables) of interest. Furthermore, the
amplitude of the noise is typically as large as or larger than the amplitude of the signal. In
this situation, the “dynamical” uncertainties (rather than the “measurement uncertainties”)
are not known in advance. A way to proceed under such circumstances is to assume that
all data points have a certain fixed uncertainty σn = σ and also to assume a good fit ! The
model parameters are then estimated by minimizing χ2 (in which σ is now constant, so that
the problem reduces to the standard least-squares fit) and finally, the standard uncertainty
is estimated as

σ2 =
N∑
n=1

[yn − ŷ(xn)]2/(N − J). (3.9)

We can then try to answer a question of how reasonable our model is by using this estimate
of uncertainty to fit a different sample of paired data {xn, yn} (for example, from a different
time segment of a numerical [dynamical] model integration) to our [statistical] model, while
comparing the estimated parameters of this fit and our original fit (we can now do so, since
given the input data uncertainty σ and our new χ2 fit, we can estimate the uncertainty of
our output fitted parameters).

Taking this procedure one step further, we can divide available sample into two ar-
bitrary segments, estimate the uncertainty as above by assuming a good fit on one of the
sub-samples (train our model) and then try to predict the other sub-sample using this model
(validate our model). A measure of the model performance (for example, correlation coeffi-
cient between the model prediction and actual data; see below) gives an estimate (in some
controlled fashion related to the data uncertainty) of how good the model is. Now, the
division into training and validation intervals can be done in many possible ways and our
measure of the model’s goodness can be ensemble averaged (this will reduce the chances that
the model performs too well or too poorly due to a particular random sampling). This pro-
cedure is called cross-validation. We will come back to the problem of statistical forecasting
in Section 3.7.
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3.2 Fitting data to a straight line. Theory of correla-

tion

Fitting data to a straight line. A didactic example, which is, however, of frequent
practical application as well, is fitting a set of N data points {xn, yn} (1 ≤ n ≤ N) to a
straight line

y = bx+ a, (3.10)

were a and b are unknown coefficients that need to be estimated in an optimal way using
available data. This problem is often referred to as linear regression. Once again, each xn is
assumed to be known exactly, while each “measurement” yn associated with xn has a known
standard error σn [the quantity (yn − a− bxn)/σn is thus assumed to be a random variable
drawn from the standard normal distribution].

The χ2 merit function (3.6) in this case is given by

χ2 =
N∑
n=1

(
yn − a− bxn

σn

)2

. (3.11)

If the measurements are indeed normally distributed, than minimizing the expression above
will give the maximum likelihood estimate of our linear model’s parameters; otherwise, we
will just end up with the straight-line fit that minimizes the weighted distance between this
line and our set of points — not necessarily a useless estimate! To achieve the minimum of
χ2, the parameters a and b must satisfy the following equations [cf. (3.7)]:

0 =
∂χ2

∂a
= −2

N∑
n=1

1

σn

yn − a− bxn
σn

,

0 =
∂χ2

∂b
= −2

N∑
n=1

xn
σn

yn − a− bxn
σn

. (3.12)

Expressions (3.12) state that normalized measurement errors ∆yn ≡ (yn−a− bxn)/σn, upon
our adjusting the parameters a and b, are subject to two linear constraints, with coefficients
Y ′n,m (1 ≤ n ≤ N, 1 ≤ m ≤ 2) [Y ′n, 1 = 1/σn, Y ′n, 2 = xn/σn] that do not depend on a and b [cf.
(3.8)]. This property of parametric regression models with linear dependence on parameters
(the property of independence of additional constraints on the values of fitted parameters)
enables one to derive the theoretical distribution of χ2 — the χ2 distribution with N − 2
degrees of freedom for the two-parameter case of the present section, and with N−M degrees
of freedom for a general case of M parameters. For nonlinear models, Y ′n,m will depend on
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parameters and this result is not valid (although in practice the χ2 distribution is not too
bad an assumption even for models that are not linear in their parameters).

Let us denote, for any data set {zn} 1 ≤ n ≤ N the quantity

z̄ ≡

N∑
n=1

zn/σ
2
n

N∑
n=1

1/σ2
n

. (3.13a)

If σn = const, z̄ in (3.13a) represents the sample’s average value. If we are given two data
sets {xn} 1 ≤ n ≤ N and {yn} 1 ≤ n ≤ N , we can also define, in addition to x̄ and ȳ, the
quantities x2, y2 and xy in an analogous way:

x2 ≡

N∑
n=1

x2
n/σ

2
n

N∑
n=1

1/σ2
n

, y2 ≡

N∑
n=1

y2
n/σ

2
n

N∑
n=1

1/σ2
n

, xy ≡

N∑
n=1

xnyn/σ
2
n

N∑
n=1

1/σ2
n

(3.13b)

With these notations, the system (3.12) can be written as:

a+ bx̄ = ȳ

ax̄+ bx2 = xy. (3.14)

The solution of (3.14) is

∆ ≡ x2 − (x̄)2

b = (xy − x̄ȳ)/∆

a = ȳ − bx̄ = (x2ȳ − x̄xy)/∆, (3.15)

and these are the expressions for our best-fit parameters.

Exercise 10. What is the minimum value of the merit functional χ2? Define the deviations
from our weighted averages (3.13a), (3.13b), or anomalies x′n and y′n, as

x′n = xn − x̄ and y′n = yn − ȳ; 1 ≤ n ≤ N. (3.16a)

Express the quantity y∗n ≡ yn − ŷ ≡ yn − a− bxn via x′n, y′n, and b, and show that if (3.12)
are satisfied, then

χ2 ≡
N∑
n=1

y∗2n
σ2
n

=
N∑
n=1

y′2n
σ2
n

− b2

N∑
n=1

x′2n
σ2
n

. (3.16b)



3.2. FITTING DATA TO A STRAIGHT LINE. THEORY OF CORRELATION 77

The goodness-of-fit can now be assessed by computing the probability of obtaining, by
chance, the value of χ2 larger (that is, worse) than our estimated value, assuming that
χ2 is indeed χ2 distributed with N − 2 degrees of freedom.

Let us now compute the standard uncertainty of our estimated parameters. The
expressions (3.15) can also be written in the following form:

a =
N∑
n=1

αnyn; b =
N∑
n=1

βnyn, (3.17)

where

αn ≡
1

N∑
n=1

1/σ2
n

(x2 − x̄xn)/σ2
n

∆
; βn ≡

1
N∑
n=1

1/σ2
n

(xn − x̄)/σ2
n

∆
. (3.18)

The variances of the coefficients a and b, σ2
a and σ2

b, respectively, are expressed through
the variances of individual observations Var{yn} ≡ σ2

n as3

σ2
a =

N∑
n=1

α2
nσ

2
n; σ2

b =
N∑
n=1

β2
nσ

2
n. (3.19)

Substituting (3.19) into (3.18) and using definitions (3.13a), (3.13b) for x̄ and x2, as well as
the first of equations (3.15) for ∆, we obtain

σ2
a =

1
N∑
n=1

1/σ2
n

x2

∆
; σ2

b =
1

N∑
n=1

1/σ2
n

1

∆
. (3.20)

Looking at the expressions for the regression coefficients in the form (3.17) we see
that even if the individual observations yn are independent, the coefficients a and b cannot
in general be considered as independent random variables, since they are but different linear
combinations of all yn’s. To measure the degree of linear association between two random
variables (in the present case a and b), we can introduce the covariance [see (1.19b) of Section
1.3.3] Cov{a, b}:

Cov{a, b} ≡ E{(a− E{a})(b− E{b})} = E{ab} − E{a}E{b}. (3.21)

3The derivation is analogous to that for the variance of the sample’s average (Section 2.1 and Exercise
1 ).
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The covariance between a and b can be shown to be [derivation is using (3.21), but otherwise
is completely analogous to that for (3.19)]

Cov{a, b} =
N∑
n=1

αnβnσ
2
n, (3.22)

which, upon substitution of expressions (3.18) for αn and βn, becomes

Cov{a, b} = − 1
N∑
n=1

1/σ2
n

x̄

∆
. (3.23)

Exercise 11. Derive the expressions (3.19), (3.20), (3.22), and (3.23).

The coefficient of correlation rab between a and b is defined as!

rab ≡
Cov{a, b}√

Var{a}Var{b}
= − x̄√

x̄2
. (3.24)

The correlation coefficient is the number taking values from −1 to 1. A positive value of rab indicates that

the errors in a and b are correlated (are likely to have the same sign), while the opposite is true for the

negative value of rab, in which case the errors in a and b are anticorrelated (are likely to have the opposite

signs). Zero correlation coefficient signals that the errors in a and b are linearly independent. We will return

to the sampling theory of correlation in Section 3.3.

Theory of correlation between two finite samples. We can define a measure of linear
association between two finite data samples {xn} 1 ≤ n ≤ N and {yn} 1 ≤ n ≤ N — the
correlation coefficient — in the same way we have just introduced the correlation coefficient
between two linearly dependent random populations, but using sample averages in place of
expectation integrals. The correlation coefficient so defined is intimately connected with the
problem of linear regression in the following way.

We first rearrange the formula (3.16b) by dividing both its right- and left-hand sides

by
N∑
n=1

1/σ2
n and using definitions (3.13b) as

y′2 = y∗2 + b2x′2, (3.25a)

or, after division by y′2,

1 =
y∗2

y′2
+ b2x

′2

y′2
. (3.25b)
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The expression (3.15) for b, written in terms of anomalies x′ and y′ [see (3.16a)], becomes

b = x′y′/x′2. (3.26)

Substituting (3.26) into (3.25b), we get

1 =
y∗2

y′2
+

(x′y′)2

x′2 y′2
=
y∗2

y′2
+ r2, (3.27)

where we have defined the quantity r as

r ≡ x′y′√
x′2
√
y′2
. (3.28)

Consider now the special case, in which all standard uncertainties are assumed to be
equal: σn = σ; the χ2 fit then reduces to the ordinary least-squares fit. In this case, the
anomalies x′ ≡ x − x̄ and y′ ≡ y − ȳ are defined with respect to the sample average x̄ and
ȳ, while the quantities x′2, y′2, and x′y′ are entries of the dispersion matrix D, which is a
finite-sample analog of the covariance matrix based on a population of a random-variable
pair:

D ≡
(
x′2 x′y′

x′y′ y′2

)
. (3.29)

The dispersion matrix is a finite-sample analog of the covariance matrix based on a two-
dimensional random population [see (1.19a) and (1.19b)]. The quantity y′2 is the dispersion
of y, while y∗2 is the square of the so-called root-mean-square error, or r.m.s. error of
our least-squares fit. The ratio y∗2/y′2 in (3.27) thus measures the fraction of dispersion
unexplained by a least-squares fit. Since

[fraction of explained dispersion] + [fraction of unexplained dispersion] = 1,

the square of correlation coefficient r defined by (3.28) measures the fraction
of dispersion explained by a linear least-squares fit between two variables. This
fraction is naturally less than unity unless x and y are exactly linearly related; therefore,
r2 ≤ 1 or −1 ≤ r ≤ 1.

For example, if the correlation coefficient is equal to r = 0.5, the dispersion of the
data set ŷn ≡ a + bxn (1 ≤ n ≤ N), where a and b are the best-fit parameters based on N
pairs of {xn, yn}, is only equal to 25% of the dispersion of the original set {yn}. Thus, 75% of
the original set’s dispersion remains “unexplained” by our least-squares fit. The normalized
r.m.s. error is, therefore, equal to

√
0.75 ≈ 0.87. In other words, only 13% reduction in the

r.m.s. error of y due to hypothesized linear dependence between x and y results from the
correlation coefficient of 0.5. Consider the following table:
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r r.m.s. error

0.98 20%
0.90 43%
0.80 60%
0.50 87%
0.30 96%

As this table illustrates, large value of correlation coefficient does not necessarily
mean that the statistically significant linear association between y and x can be exploited
to forecast the value of the variable y given the knowledge of the variable x. In other words,
given enough data, we may be able to show that the true correlation coefficient exceeds 0.3
at 99% confidence level (see Section 3.3), but this correlation, according to the table above,
is useless for forecasting, reducing r.m.s. error by 4% only!

Exercise 12. In the least-squares fit (σn = σ), show that the correlation between ε ≡
{yn− a− bxn} (1 ≤ n ≤ N) and x ≡ {xn} (1 ≤ n ≤ N) (a and b are the best-fit parameters
for N pairs {xn, yn}) is zero. Prove also that the correlation rε y between ε and y ≡ {yn} (1 ≤
n ≤ N) satisfies the relation r2

ε y + r2
x y = 1, where rx y is the correlation between x and y.

The correlation coefficient is often used as a measure of whether two data sets are related via cause-and-effect!

relationship or not. When doing so, one has to realize that the following possibilities might take place:

• Zero or small correlation coefficient does not necessarily mean that the two variables are not related.
The variables may:

– be related nonlinearly (see Fig. 3.2d). For example, if the true relationship is y = x2 and data
is sampled evenly with respect to x = 0, then the linear correlation coefficient is zero.

– be in quadrature with each other. For example, meridional wind and geopotential are approx-
imately uncorrelated along latitudes even though the winds are very well approximated as the
derivative of the geopotential (by geostrophy) — one says that the meridional wind is in quadra-
ture with the geopotential [if the geopotential Φ(x) ∼ sin(x), then v(x) ∼ ∂Φ/∂x ∼ cos(x) =
sin(x+ π/2) ∼ Φ(x+ π/2)].

• Large correlations may occur if two dynamically unrelated variables are both correlated with the third
variable. Example: most geophysical variables are correlated with seasonal cycle. This correlation does
not mean that the reason for the cold Arctic during Northern Hemisphere’s winter lies in anomalously
warm Antarctica. High anti-correlation in this case might be regarded as spurious from the standpoint
of trying to find real relationship between two variables that might lead to physical insight or be useful
in prediction.

• Be mindful of other possibilities illustrated in Figs. 3.2b,c: in the former case, the data contains an
outlier and we’d better use robust regression techniques (see the discussion at the end of the present
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section), while the latter case was created by drawing the values of y from the normal distribution with
the mean of −0.5 for any x < 0 and with the mean of +0.5 for x > 0; the deterministic relationship
between y and x (contaminated by noise) thus has a step-function character.
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Figure 3.2: Examples of linear regression lines — in all cases a linear correlation of
y with x is 0.5: (a) a useful fit; (b) an outlier; (c) a shift in data (no actual linear trend
present); (d) y is exactly related to x via parabolic (that is, not linear) expression.

Straight-line fit for a data set with errors in both dimensions. In the above discussion, !

we have assumed that one of the variables (x) is precisely known, while the other one (y) is contaminated
by measurement errors. In reality, it often happens that both variables are subject to errors. The simplest
way to proceed in this case is to treat one of the variables as an independent variable, that is, ignore the
associated measurement errors, and apply the standard linear regression. Note that the outcome of such a
procedure depends on which of the variables is assumed to be independent: the two possible regression lines
obtained by regressing y on x and x on y are the same only if the data are exactly collinear.

The task of fitting the straight-line model (3.10) to the data is considerably harder in the case we
want to consistently allow for the fact that both variables are known to within some finite precision. Each
quantity yn − a− bxn ≡ (yd, n − a− bxd, n) + (yr, n − bxr, n) is assumed to be the sum of two parts, of which
(yd, n − a − bxd, n) represents the true deterministic relation between y and x (and is equal to zero for a
perfect fit), while the remainder is random and consists of the errors due to uncertainties in both x and y.
The latter two random components are assumed to be statistically independent, so that the expression for
the variance of yn − a− bxn is

Var{yn − a− bxn} = Var{yn}+ b2Var{xn}; (3.30)
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note that if xn is known exactly (Var{xn} = 0), then Var{yn − a− bxn} = Var{yn}. The quantity χ2 given
by

χ2 =

N∑
n=1

(yn − a− bxn)2

σ2
y,n + b2σ2

x,n

, (3.31)

where σ2
y,n, σ2

x,n are variances of y and x measurements, is thus χ2-distributed as the sum of N random

variables normalized by their respective standard deviations (if N is large, the possible non-gaussianity of

individual errors does not matter for the validity of the latter statement; otherwise, the individual errors

are implicitly assumed to be Gaussian-distributed — in which case adjusting a and b to minimize (3.31)

also gives the maximum likelihood estimate for these parameters.)An extra difficulty, which we encounter in

trying to minimize (3.31) is that the function ∂χ2/∂b is nonlinear in b and its solution is more challenging

to find. A useful geometrical interpretation of χ2 given by (3.31) is the one in terms of the dispersion

Figure 3.3: Straight-line fit with errors in both coordinates (see text for details).

in the direction of smallest χ2 between each data point and the line with slope b (“direction of minimum

variance” in Fig. 3.3). In a particular case σ2
y,n = σ2

x,n = const, minimizing χ2 is equivalent to minimizing

the perpendicular distance between the data points from the line in a two-dimensional space. This problem is

solved by the so-called empirical orthogonal function (EOF) analysis, also known as the principal component

analysis (PCA); see Chapter 4. This method finds an orthogonal rotation of the (x, y) coordinate system

x′ = x cos θ − y sin θ; y′ = x sin θ + y cos θ, where θ is the angle of rotation, that aligns the new x-axis with

the direction of maximum variance and the new y axis with the perpendicular direction of minimum variance

(see Fig. 3.3). Posed in this way, the regression problem is related to finding eigenvalues and eigenvectors

of the data’s dispersion matrix.
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Robust estimation. Figure 3.3(b) presents an example of the case in which the standard linear least !
squares procedure does not work because of the presence of an outlier in the data. Mathematically speaking,
the reason for this failure is due to the assumption of a Gaussian distribution of errors, implicit in the above
procedure, being violated. If we know that the data are strongly non-normal, it is desirable to use robust
techniques of statistical analysis. The term “robust” is used here in the sense of being less sensitive to the
small departures from the idealized assumptions about the probability distributions which underlie the data,
than the technique based on the assumption of Gaussianity. In Fig. 3.3(b), just one oulier point changes
the linear fit dramatically. A similar example is presented in Fig. 3.4. There is an outlier point at x ≈ 10,

Least squares:

Robust:

Y = −0.188327 + 1.10351*X

Y = −1.77278 + 1.50415*X

RMS error = 2.21375

RMS error = 1.42934
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Figure 3.4: Robust regression [produced by MATLAB’s command “robustdemo”] (see text
for details).

which results in the slope of the least-squares straight-line fit (red line) to be underestimated. A possible way
of making least-squares estimation more robust is to use χ2 fitting by assigning the outlier points smaller
weights in the merit functional than to the points in the central portion of a sample distribution. In the
iterative technique called the robust regression, this assignment is done iteratively, by first computing the
ordinary least-squares fit, then searching for the outliers with respect to the fitted line and assigning to those
points smaller weights for the subsequent χ2 fit. The outliers are then re-defined with respect to this new
fit and the procedure is repeated until convergence of the fitted line’s slope and intercept.

There is a number of other parametric and nonparametric robust techniques. The former assume
some kind of non-Gaussian distribution, typically with longer tails (e.g., two-sided exponential), and derive
the maximum likelihood estimators in a fashion similar to the χ2-fit derivation of Section 3.1. Nonparametric
methods seek to maximize some measure of association between two data sets without a priori assumptions
about the underlying probability distributions. Yet another technique, Kalman filtering, produces “best
estimates” of a signal in the presence of noise, by an optimal online processing of incoming raw measurements
in a way that accounts for slow changes both in the signal and in the noise (error) covariance. Related data
assimilation methods combining numerical models and observational data are currently used for operational
weather forecasting.
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3.3 Sampling theory of correlation

Suppose we have computed the correlation coefficient r between the components of a paired
data set {xn, yn} (1 ≤ n ≤ N) using (3.28). How do we decide if this value of correlation
coefficient is statistically significant? As in any statistical significance testing procedure, we
assume that our paired data set is just a sample of size N of independent random variables
drawn from a known two-dimensional distribution, whose covariance matrix (see 1.19a or
1.19b) is diagonal. The latter condition means, in other words, that x and y are assumed
to be truly uncorrelated. We then would like to compute the distribution of such finite
samples’ correlation coefficient and check whether the observed correlation falls within the
appropriate critical region or not. Below we list, without proof, several statements pertaining
to the distribution of the finite paired sample’s correlation coefficient.

The first statement is that if our theoretical distribution is sufficiently “good” (tails
fall off to zero sufficiently rapidly), the sample size N is large (N > 500, according to Press
et al. 1994), and the true correlation coefficient ρ = 0, then a finite sample’s correlation
coefficient r has a Gaussian distribution with mean zero and variance 1/N . Once again,
the theoretical distribution in the case of large N need not necessarily be two-dimensional
Gaussian, or binormal —

p(x, y) ∼ exp{−1

2
(a11x

2 − 2a12xy + a22y
2)} (3.32)

with a12 = 0 [a11, a22 and a12 are arbitrary constants, and the theoretical correlation coef-
ficient ρ between two random variables defined by distribution (3.32) is ρ = −a12/

√
a11a22]

— for the above statement about the distribution of r to be true.

All further statements ASSUME that the underlying theoretical PDF is
the binormal one — (3.32), but DO NOT assume, in return, that N is large. For
example, to test the null hypothesis of zero correlation, one makes use of the fact that the
quantity

t = r

√
N − 2

1− r2
(3.33)

has the Student’s t-distribution with ν = N−2 degrees of freedom (and, of course, asymptotes
Gaussian distribution with mean zero and variance 1/N as N →∞).

If the true correlation coefficient is not expected to be zero, the significance test-
ing relies on the so-called Fisher’s z-transformation, which converts the (asymmetrically-
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distributed) r into the variable z which is normally distributed:

z =
1

2
ln

{
1 + r

1− r

}
, (3.34)

with the mean µz

µz =
1

2

[
ln

{
1 + ρ

1− ρ

}
+

ρ

N − 1

]
(3.35)

and standard deviation σz

σz ≈
1√

N − 3
. (3.36)

Example 3.1 Let us take N = 21 and r = 0.8 and find 95% confidence limits4 on ρ. The
value of z given by (3.34) is 1.0986, and the 95% confidence limits on a true value of µz are

z − 1.96σz < µz < z + 1.96σz or 0.6366 < µz < 1.5606,

where we have used the expression (3.35) for σz and applied two-sided test with z0.025 = 1.96.

To convert this to the statement about correlation coefficient, we make use of the fact
that N is sufficiently large, so we neglect for simplicity the second term on the right-hand
side of the expression (3.35) for µz. This gives

ρ ≈ tanh(µz),

yielding the 95% confidence interval on ρ to be 0.56 < ρ < 0.92.

The above procedure can also be used to assess statistical significance of the difference
between the correlation coefficients r1−r2 based on samples of sizes N1 and N2: the statistic

z =
z1 − z2 − (µz1 − µz2)

σz1−z2
, (3.37)

in which σ2
z1−z2 ≡ σ2

z1
+ σ2

z2
and the quantities z’s, µz’s and σz’s are given by expressions

(3.34), (3.35), and (3.36) estimated using the data for our first and second sample, has the
standard normal distribution.

4Recall, however, that the method of confidence intervals gives an estimate of a true parameter in a
particular sense; see Section 2.7.5.
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3.4 Autocorrelation

3.4.1 Autocorrelation function

Given a continuous function x(t) of an independent variable t, defined on the interval [t1, t2],
the autocovariance function φ(τ), τ ≥ 0 is

φ(τ) ≡ 1

t2 − t1 − τ

t2−τ∫
t1

x′(t)x′(t+ τ) dt, (3.38)

where the perturbation x′ with respect to the average x̄ is given by

x′(t) ≡ x(t)− x̄,

x̄ ≡ 1

t2 − t1

t2∫
t1

x(t) dt. (3.39)

In the discrete case, in which x is defined at equally spaced points t1, t2 = t1 + ∆t, t3 =
t2 + ∆t, . . . , tN = tN−1 + ∆t, we can calculate the autocovariance at lag time L∆t as

φ(L∆t) ≡ 1

N − L− 1

N−L∑
k=1

x′kx
′
k+L ≡ x′kx

′
k+L; L = 0, 1, 2, . . . (3.40)

and, of course,

x′k ≡ xk − x̄,

x̄ ≡ 1

N

N∑
k=1

xk. (3.41)

If t is interpreted as time and x(t) is a time series of a variable of interest, then the autoco-
variance is the covariance of the variable with itself at some other time, measured by a time
lag (or lead) τ . The autocovariance at lag zero is thus equal to the variance (dispersion) of
the variable: φ(0) = x′2.

We can also think of autocovariance as of the characteristic of a random process;
our time series x(t) is then assumed to be but a single realization of this process and the
autocovariance based on this time series — the sample autocovariance — is an approximation
to the true autocovariance. The process is the law by which, knowing the value of the variable
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at a given initial time t1, we can estimate the value of this variable at some later time t2,
while the random nature of the process assures that any two such realizations of our system’s
trajectory will be different. Suppose we have performed M long simulations of our trajectory
from the same initial conditions x(t = 0) = x0 and we have obtained M estimates x

(m)
in of

our variable at time t1 and M estimates x
(m)
f of our variable at time t2 = t1 + τ, τ ≥ 0 (t1

is assumed to be much longer than our system’s internal memory). Let us define now the
quantities

x̄in ≡ lim
M→∞

M∑
m=1

x
(m)
in /M, x̄f ≡ lim

M→∞

M∑
m=1

x
(m)
f /M

x
′(m)
in ≡ x

(m)
in − x̄in, x

′(m)
f ≡ x

(m)
f − x̄f ,

Φ(t1, t2) ≡ lim
M→∞

M∑
m=1

x
′(m)
in x

′(m)
f /M. (3.42)

For the stationary process, x̄in = x̄f = x̄ and Φ(t1, t2) = Φ(τ). The latter quantity is the
covariance function of a stationary process, which only depends on a time interval τ and does
not depend on the choice of initial point t1. In a time series analysis, it is assumed,
in general, that the time series is stationary (that is, the underlying process is
stationary); this implies, in particular, that one needs to remove any trends from
the time series prior to the analysis (see Section 3.4.3).

Let us now come back to the definition (3.40). The covariance at lag ∆t, for example,
is obtained by first forming the anomalies x′ with respect to the sample’s average; then the
covariance is estimated as the sum x2x1 + x3x2 + . . . + xNxN−1 divided by N − 2. This
estimate would coincide with (3.42) for t2 = t1 + ∆t in the limit N → ∞ if we have
assumed the underlying process is stationary [in this case the pairs (xk, xk+1) can be viewed
as independent pairs separated by ∆t]. The assumption of stationarity also implies that the
autocovariance function is symmetric φ(τ) = φ(−τ):

φ(−L∆t) = φ(L∆t). (3.43)

Normalized autocovariance

r(τ) = r(−τ) ≡ φ(τ)/φ(0) (3.44)

is called the autocorrelation.
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3.4.2 Red noise and white noise

An important example of a stationary random process is the so-called red-noise process,
which is defined as

x(t) = ax(t−∆t) + (1− a2)1/2ε(t), (3.45)

where 0 ≤ a ≤ 1 is the parameter measuring the degree to which the memory of the previous
state is retained, ε is a random number drawn, at every time step, from the standard normal
distribution with mean zero and unit standard deviation and ∆t is the time interval between
two consecutive data points. The process (3.45) is characterized by x̄ = 0 and x′2 = 1.

What is the autocorrelation of a red-noise process? Multiply both sides of (3.45)
by x(t − ∆t) and ensemble average the resulting expression (recall that we have denoted
ensemble averaging operation by the overbar):

x(t−∆t)x(t) = ax(t−∆t)x(t−∆t) + (1− a2)1/2x(t−∆t)ε(t)

= a · 1 + (1− a2)1/2 · 0; therefore

x(t−∆t)x(t) ≡ ρ(τ = ∆t) = a.

The autocorrelation of the process (3.45) at lag ∆t is equal to a. Let us now express x(t+∆t)
via x(t−∆t):

x(t+ ∆t) = ax(t) + (1− a2)1/2ε(t)

= a2x(t−∆t) + a(1− a2)1/2ε(t) + (1− a2)1/2ε(t−∆t).

Multiplying the above expression by x(t−∆t) and ensemble averaging yields

x(t−∆t)x(t+ ∆t) = a2x(t−∆t)x(t−∆t) + a(1− a2)1/2x(t−∆t)ε(t)

+ (1− a2)1/2x(t−∆t)ε(t−∆t)

= a2 · 1 + a(1− a2)1/2 · 0 + (1− a2)1/2 · 0; therefore

x(t−∆t)x(t+ ∆t) ≡ ρ(τ = 2∆t) = a2 = ρ(τ = ∆t)2.

The autocorrelation of a red-noise process at lag 2∆t is equal to the autocorrelation at lag
∆t squared. By induction

ρ(τ = n∆t) = ρ(τ = ∆t)n = an. (3.46)

The function which satisfies the above property is the exponential function, so the autocor-
relation function of a red-noise process (3.45) is

ρ(τ) = exp{−|τ |/T}, T ≡ −∆t/ ln a. (3.47)



3.4. AUTOCORRELATION 89

The red noise process is often used as a null hypothesis about the nature of observed
geophysical time series. The system’s slow dynamical processes are characterized by the
”memory” parameter a, while the fast processes supply the energy to the low-frequency
subsystem via stochastic excitation. In a special case a = 0 our data series becomes that of
independent random numbers — white noise; this system has no memory of the past state.
The autocorrelation function of the white noise is the delta function δ(τ).

Examples of autocorrelation function for various combinations of signal and noise are
shown in Fig. 3.5.

0 20 40 60 80 100
−1

−0.5

0

0.5

1
Periodic signal

−30 −20 −10 0 10 20 30
−1

−0.5

0

0.5

1
Autocorrelation

0 20 40 60 80 100
−1

−0.5

0

0.5

1
Two−period signal

−30 −20 −10 0 10 20 30
−1

−0.5

0

0.5

1

0 20 40 60 80 100
−4

−2

0

2

4
Noise

white noise
red noise (0.8)

−30 −20 −10 0 10 20 30
−0.5

0

0.5

1 white noise
red noise (0.8)

0 20 40 60 80 100
−4

−2

0

2

4

Time

Periodic + red noise (0.8)

−30 −20 −10 0 10 20 30
−1

−0.5

0

0.5

1

Time lag

Figure 3.5: Examples of autocorrelation function.
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3.4.3 How to estimate the number of degrees of freedom in a time
series?

The autocorrelation of the time series is something that can be used to estimate the number
of effective degrees of freedom N∗ in this time series (denote the length of the time series
by N : N∗ ≤ N). We will list here two estimates of the number of degrees of freedom in the
time series: a more conservative one due to Leith (1973) and an alternative, less conservative
estimate by Bretherton et al. (1999). Both are based on the sample’s autocorrelation r at
lag ∆t, where ∆t is the sampling interval. The Leith’s expression reads as

N∗ =
N∆t

2T
, (3.48)

where T is the time interval over which the autocorrelation drops to 1/e. In other words, the
number of degrees of freedom in the time series is equal to half of the number of e-folding time
scales. For a red-noise process, T is uniquely defined by the value of lag-1 autocorrelation
r(∆t); see (3.47). The expression (3.48) then becomes

N∗

N
= −1

2
ln[r(∆t)], (3.49)

where we have substituted the true value of lag-1 autocorrelation by its sample estimate
r(∆t). Note that (3.49) results in a meaningless N∗/N > 1 for r(∆t) < 0.16, in which case
N∗/N must be set to unity (the two consecutive points in the time series are uncorrelated
and, therefore, we have N independent samples).

Bretherton et al. (1999) have suggested that a more accurate estimate of the number
of degrees of freedom (particularly for variance and covariance analysis) is

N∗

N
=

1− r(∆t)2

1 + r(∆t)2
. (3.50)

The two dependencies (3.49) and (3.50) are shown in Fig. 3.6. We see that the Bretherton
et al.’s formula allows about twice as many degrees of freedom as the Leith’s formula when
the autocorrelation is large.

3.4.4 Linear trend. Testing for trends

We now recall that the autocorrelation, at least when used as above to estimate the number
of degrees of freedom in the time series, has been derived under the assumption that the
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Figure 3.6: Number of degrees of freedom in a time series as a function of lag-1 autocorre-
lation.

underlying process is stationary. Given a time series, therefore, it is important to remove
any trends. Linear trends can be removed by correlating the time series with the time axis,
as in Section 3.2. Detrended time series’ lag-1 autocorrelation can then be computed as in
(3.40), (3.44) and the effective number of degrees of freedom estimated by either of (3.49) or
(3.50). In practice, it is enough to restrict oneself to such linear detrending for the purposes
of estimating the number of effective degrees of freedom in a time series.

After the number of degrees of freedom in the time series has been estimated and
the time series is to be subjected to further statistical analysis, it is desirable to reduce the
number of points in the time series to match the inferred number of degrees of freedom by,
for example, binning the data in some way or another (removing or averaging out extra
points will not, by definition, reduce the information content of the data, since the latter
points are too strongly correlated with the neighbors; in fact, retaining dependent points
deteriorates the accuracy of regression analysis, for example, — see Section 3.5). The sta-
tistical significance of the trend in data can then be estimated by any type of parameteric
or nonparameteric technique. We will consider below examples of application of t-test, signs
test and bootstrap method to estimate statistical significance of global warming.
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Figure 3.7: Testing for trends: global warming (see text for details).

Exercise 13. Consider annual-mean data for the global temperature anomaly (1881–2004;
Fig. 3.7). The instrumental record is shown in blue (top panel) and appears to indicate that
the global temperature increased by about 1 degree during the past one hundred years. Is
that the result of human-induced CO2 increase in the atmosphere? The red curve in the same
plot is that of a stationary red-noise sample with the same dispersion as the instrumental
data record, lag-1 autocorrelation of 0.8 and zero mean. This sample is characterized by
temperature anomalies of about −0.4 in the beginning of the century and by those of about
+0.6 in the end of the century; furthermore, the level and overall time scales of variability in
this time series are similar to those of the instrumental record. This illustrates that, at the
least, there is a nonzero probability that the apparent global temperature trend is just due
to particular random sampling and has nothing to do with increased CO2 in the atmosphere.
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Exercise 13 (continued). There is a number of ways to see if this trend is statistically
significant [assuming that all we have is the data sample above — in practice we may also
try to employ historical data sets (proxy data) and GCM modeling resources to argue for or
against the global warming occurrence]. The steps could be:

(1) Detrend the time series and compute its lag-1 autocorrelation: this results in the
value of r(1 year) ≈ 0.5, so that the number of effective degrees of freedom is (Bretherton
et al. 1999) N∗ ≈ N(1− 0.25)/(1 + 0.25) = 0.6N ≈ 75, since N = 124. Let us define three
possible time series: (i) the original annual data (N1 = 124), (ii) two-year non-overlapping
box-car averages [the first point is just the average between the first and second point of
original time series, the second point is the average between the third and fourth points of
the original time series etc. — equivalently, we may just consider every second point of our
time series (this sampling is shown by black x-signs in Fig. 3.7); the resulting time series
has N2 = 62 points], and (iii) four-year box-car averages (N3 = 31). We can apply the
same types of analysis to all three cases and compare the results. Note, however, that the
case (ii) is the optimal one, since N2 is closest to N∗; the case (i) clearly overestimates the
number of independent samples in our time series, while the case (iii) loses too much useful
information, which may result in an unnecessarily reduced statistical significance.

(2) Form the series of time derivatives Tn+1 − Tn [example for the case (i) is shown in
the bottom panel of Fig. 3.7]. To this series, we can apply: (a) t-test or (b) bootstrap
estimation to see if the average time derivative (whose observed value will be equal, in fact,
to (TN−T1)/(N−1) — a measure of the slope of the temperature time series) is significantly
different from zero; (c) signs test to determine if the median of the time-derivative set is
significantly different from zero.

(3) We can also proceed by computing the least-squares fit to the temperature time series
and estimating weather its slope b is significantly different from zero. The statistic

t = b

√
x′2

(χ
2

N
)/(N − 2)

(3.51)

is t-distributed with N − 2 degrees of freedom (provided the observations are independent).
The above formula becomes (3.33) for the case y′2 = x′2 = 1, in which b = r and χ2/N = 1−r2

(can you see why this is true?)

(4) The trend in Fig. 3.7 seems to be nonuniform, with the steepest warming after
1970. Another way to estimate the significance of warming would be to compare the average
temperatures in 1881–1970 and 1971–2004 using t-test for the difference in means (setting
the expected difference to zero, of course).
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Exercise 13 (continued). There are still other ways to test for trends: for example, we
could fit a red-noise process to the observed time series and do Monte-Carlo simulations to
estimate a large number of synthetic trends and compare these trends with the observed one
and so on.

Are the results of (2)–(4) consistent? How can we interpret discrepancies? What can we
say about inferred causes of warming — Is it likely to be a linear response to increased CO2

in the atmosphere? How probable it is that the warming is just a statistical hoax?

3.5 Multiple linear regression. General linear least

squares

Suppose now that we have more than one predictor variable. For example we measure
temperature zn (response variable) at a set of coordinate points {xn, yn} (1 ≤ n ≤ N), and
we would like to determine an optimal linear fit

z = a0 + a1x+ a2y. (3.52)

Generalizing to the case of N observations x
(n)
j of an arbitrary number J of predictors xj,

and N observations y(n) of a response variable y, the problem is to find a set of best-fit
parameters a0, a1, a2, . . . , aJ for the linear model

y = a0 + a1x1 + . . .+ aJxJ . (3.53)

This problem is known as multiple linear regression, “linear,” since the model (3.53) is
linear in its parameters. The dependence on predictor variables need not be linear, however.
Consider, once again, an example of one predictor variable x and construct the model y(x)
as a linear combination of any number J of specified functions Xj(x) (basis functions). The
functions could be X0(x) = 1, X1(x) = x, X2(x) = x2, . . . , XJ(x) = xJ , in which case

y = a0 + a1x+ a2x
2 + . . .+ aJx

J . (3.54)

The model (3.54) is known as response surface model, and the associated regression problem
is called polynomial regression (quadratic model for the case J = 2). The general form of a
generalized regression model is

y(x) =
J∑
j=1

ajXj(x), (3.55)
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and the problem of optimal fitting a set of aj (1 ≤ j ≤ J) to the model (3.55) given observed
series {x(n), y(n)} (1 ≤ n ≤ N) is called the general linear least squares problem. Note that
mathematically the general linear least squares problem (3.55) is equivalent to multiple linear
regression (3.53) [due to linear dependence on model parameters], but the former attempts
to model nonlinear relationship between predictor and response variables.

3.5.1 Statement of the problem

The general linear least squares problem is solved by minimizing the χ2 merit functional,
defined now as

χ2 =
N∑
n=1

[
y(n) −

∑J
j=1 ajXj(x

(n))

σn

]2

, (3.56)

where σn is the measurement error (standard uncertainty) of the n-th data point. Let
X ≡ {xnj} be an N × J matrix whose components xnj are given by

xnj ≡
Xj(x

(n))

σn
. (3.57a)

Define also an N -component vector ỹ ≡ {ỹn} and a J-component vector of parameters
a ≡ {aj}:

ỹn ≡
y(n)

σn
, a ≡ {aj}. (3.57b)

The matrix X is called the design matrix of the fitting problem; this matrix, as well as the
response-variable and parameter vectors are schematically shown below:

X ≡


X1(x(1))

σ1

X2(x(1))
σ1

· · · XJ (x(1))
σ1

X1(x(2))
σ2

X2(x(2))
σ2

· · · XJ (x(2))
σ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
X1(x(N))

σN

X2(x(N))
σN

· · · XJ (x(N))
σN

 ỹ ≡


y(1)

σ1
y(2)

σ2

. . . . .
y(N)

σN

 (3.58)

a ≡ ( a1 a2 . . . aJ ).

Review of vectors and matrices. Let us now define a few useful matrix–vector operations. !

The scalar product a · b of the two vectors a and b of the same dimension J is the number

a · b ≡
J∑
j=1

ajbj . (3.59)
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The matrix product of the two matrices A and B, with dimensions N × J and J ×M (NB! inner
dimensions of the two matrices must agree!) can be defined as the N ×M matrix C, whose elements cnm
are given by

C ≡ A ·B : cnm ≡ an · bm ≡
J∑
j=1

anjbjm (3.60)

— the scalar product of the n-th row of A and m-th column of B. In case M = 1 the above notation defines
the product of an N × J matrix onto a column vector of dimension J × 1; the result is the column vector of
dimension N × 1.

The sum(difference) c = a± b of two vectors a and b (of the same dimension) is the vector whose
components are equal to the sum (difference) of the respective components of a and b.

The length of the vector is defined as

|a| ≡
√
a · a. (3.61)

Two vectors a and b (of the same dimension) are called orthogonal if their scalar product is zero:

a · b = 0. (3.62)

Orthogonal vectors of unit length are called orthonormal. N orthonormal vectors of length N form a basis.
Example: the columns (or, equivalently, rows) of the identity matrix I, whose diagonal elements are all equal
to one, and all others are equal to zero (the identity matrix is a special case of a diagonal matrix, whose
off-diagonal elements are all zero) —

I ≡


1 0 · · · 0
0 1 · · · 0
. . . . . . . . . . . .
0 0 · · · 1

 (3.63)

— form a basis.

The inverse A−1 of a square (N ×N) matrix A is the matrix which satisfies the relation

A−1·A = I. (3.64)

The notation (3.64) denotes a linear system of N ×N equations for N ×N unknown elements of A−1. This
system only has a solution if all of its N×N equations are linearly independent (that is, none of the equations
can be represented as a linear combination of others; otherwise the number of unknowns exceeds the number
of independent equations and the system is underdetermined). If the latter independency condition is not
satisfied, then this linear system of equations, as well as the matrix A are called singular. The inverse of a
diagonal matrix is also diagonal matrix, each diagonal element of which is the inverse of the corresponding
diagonal element of the original matrix. If the inverse A−1 of a square matrix A ≡ {anm} is equal to the
matrix transpose AT ≡ {amn} (the transpose of a matrix is the matrix in which the rows are the columns
of the original matrix and vice versa) —

A−1 = AT, (3.65)

then the matrix A is called orthogonal. It can be shown that the rows (and columns) of orthogonal matrix

form a basis.
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Using definitions (3.58), and treating ỹ and a as column vectors, the merit functional
(3.56) can be written in vector notation as

χ2 = |ỹ −X · a|2, (3.66)

so that our fitting problem becomes:

find a which minimizes |ỹ −X · a|. (3.67)

3.5.2 Solution by use of normal equations

Basic formalism. Minimum of the quadratic form (3.56) is achieved if the parameters a
satisfy the system of linear equations obtained by setting the partial derivatives of χ2 with
respect to each parameter to zero:

0 =
N∑
n=1

1

σ2
n

[
y(n) −

J∑
j=1

ajXj(x
(n))

]
Xk(x

(n)) k = 1, . . . , J, (3.68)

or, equivalently, as a matrix equation

J∑
j=1

ξkjaj = ηk, (3.69)

where

ξkj ≡
N∑
n=1

Xj(x
(n))Xk(x

(n))

σ2
n

⇐⇒ [ξ] ≡ XT·X (3.70)

is a J × J matrix and

ηk ≡
N∑
n=1

y(n)Xk(x
(n))

σ2
n

⇐⇒ [η] ≡ XT·ỹ (3.71)

a vector of length J . In matrix notation, the latter equation is

[ξ]·a = [η] ⇐⇒ (XT·X)·a = XT·ỹ. (3.72)

Equivalent formulations (3.68), (3.69), and (3.72) are called the normal equations of the
least-squares problem.
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The solution to the system of normal equation, the set of best-fit parameters, is given
by

a = [ξ]−1[η] ⇐⇒ aj =
J∑
k=1

[ξ]−1
jk ηk =

J∑
k=1

cjk

N∑
n=1

y(n)Xk(x
(n))

σ2
n

, (3.73)

where we have defined the matrix C ≡ [ξ]−1 and used definition (3.71) for ηk. Interchanging
the order of summation, we get

aj =
N∑
n=1

α
(n)
j y(n), where α

(n)
j ≡

J∑
k=1

cjk
y(n)Xk(x

(n))

σ2
n

(3.74)

— the expressions for the best-fit parameters are linear in y(n) [compare with (3.17)]. There-
fore, the variance of the parameters [see (3.19)] is

Var{aj} ≡ σ2(aj) =
N∑
n=1

(α
(n)
j )2Var{y(n)} =

N∑
n=1

(α
(n)
j )2σ2

n =

N∑
n=1

J∑
k=1

cjk
Xk(x

(n))

σ2
n

J∑
l=1

cjl
Xl(x

(n))

σ2
n

σ2
n =

J∑
k=1

J∑
l=1

cjkcjl

[
N∑
n=1

Xk(x
(n))Xl(x

(n))

σ2
n

]
. (3.75)

The last term in square brackets is just the element [ξ]kl of the matrix [ξ]. Since C ≡ [ξ]−1,
then convoluting (applying matrix product) by summing over either k or l will result in the
identity matrix, while the remaining summation (over l or k) will be the product of the
matrix C with the identity matrix, resulting in

σ2(aj) = cjj (3.76)

— diagonal elements of C are the variances (squared standard uncertainties) of the best-fit
parameters. Similarly, off-diagonal elements of C are covariances of the best-fit parameters;
see (3.21), (3.22).

Finally, the goodness-of-fit can be estimating by ranking the “observed” value of χ2

[estimated from (3.66) with a given by (3.73)] with respect to χ2 distribution with N −M
degrees of freedom.

How many variables to use? Let us look at the regression problem above from a slightly
different perspective. Once again, given a series of length N of predictand y(n) and those of a
set of predictors x

(n)
j (1 ≤ j ≤ J, 1 ≤ n ≤ N) [predictors can represent different variables, as

in multiple linear regression, or can be specified different functions of a single variable, as in
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general linear least-squares fit], we would like to parametrize y as an optimal linear function
of x ≡ {xj}. Suppose that our “measurement errors” are unknown (for example, we get our
time series from a simulation of a climate model and we hypothesize that the “signal” is our
linear relation between predictand and predictors, but this relation is contaminated by noise
— typical for climatic time series). In this case, we might want to center our raw series by
removing their respective averages and scale them by their respective standard deviations
(square root of dispersion)5:

x
(n)∗
j ≡

x
(n)
j − xj
sxj

, y(n)∗ ≡ y(n) − y
sy

. (3.77)

In the following, we will drop the stars that indicate standardized variables, for convenience.
With the above rescaling, the normal equations (3.69) become

J∑
j=1

rkjaj = rk, (3.78)

where rkj is the correlation coefficient between xk and xj and rk is that between xk and y.

Consider now the special case of J = 2. The solution to (3.78) is

a1 =
r1 − r12r2

1− r2
12

; a2 =
r2 − r12r1

1− r2
12

. (3.79)

As in the one-variable case of Section 3.2, the total dispersion y′2 of predictand can be repre-
sented as the sum of “explained” [χ2/N ≡ (y − ŷ)2] and “unexplained” [(ŷ − ȳ)2] dispersion
(where, of course, ŷ ≡ a1x1 + a2x2). Rearranging this expression in the following way

χ2 = Ny′2(1−R2)

defines the multiple correlation coefficient R [whose square is the fraction of explained dis-
persion; compare with (3.27)], which can be shown to be equal to

R2 =
r2

1 + r2
2 − 2r1r2r12

1− r2
12

. (3.80)

From the above, it becomes clear that adding a second predictor to a linear regression
model is only justified if R2 > r2

1, since only in this case we would “explain” more of the

5In case some of the predictors and predictand have different units, this rescaling might be our only
reasonable choice of fitting strategy.
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variability by our model. The minimal useful correlation r∗2 between a predictand y and an
additional predictor x2 can thus be defined to accommodate the latter condition:

|R| > |r1| if |r2| > |r∗2| ≡ |r1r12|. (3.81)

It can easily be checked that substituting r∗2 = r1r12 into (3.80) results in R2 = r2
1, so that

including the second predictor has no influence on the explained dispersion; in other words,
the second predictor does not contribute at all to reducing the χ2.

Stability of multiple linear regression. Similar considerations apply when considering
the third predictor and so on. In general, we need to pick a set of largely uncorrelated (nearly
orthogonal) predictor variables so that each of them is as highly correlated with the response
variable as possible in order to achieve a statistically significant (reproducible on a number
of independent samples) fit. If our additional predictor variable has a low correlation with
the response variable and/or high correlation with existing predictors, its inclusion is not
justified according to (3.81). In the latter case of a high correlation between one or more
predictor variables, the linear system of normal equations (3.78) becomes nearly singular,
which has a detrimental effect on the linear fit.

Consider the expressions (3.79) for the linear fit coefficients in the case J = 2, for
example. If x1 is perfectly correlated with x2 (r12 = 1), then r2 = r1 and the expressions for
a1 and a2 are of the type 0/0 (we cannot fit a meaningful plane if we are only given a data on
a line). If x1 and x2 are nearly (but not perfectly) correlated, then the coefficients are still
a ratio of two very small numbers, and are thus unstable (will most definitely change from
one independent sample to another). This is also reflected in the fact that the variance of
the coefficients, given by [rkj]

−1, will be large (since the inverse of a nearly singular matrix
will contain large elements).

For the above reasons, adding more predictors to be used in a linear regression problem
generally lowers the statistical significance of the “fit” to the data points, and the less likely
the same estimate of regression parameters will be obtained based on an independent data
sample. An objective way to choose an optimal number of predictors, or regularize nearly
singular regression problem involves using singular value decomposition (SVD) of the design
matrix.
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3.5.3 Review of Singular Value Decomposition (SVD)

SVD methods are based on the following theorem of linear algebra (proof is beyond the scope
of these notes). Any N × J matrix X, whose number of rows N is greater than or equal to
its number of columns J can be factored into (represented as the product of) three matrices:
(i) N × J matrix U, which is column-orthogonal (UT·U = IJ×J); (ii) diagonal matrix W
with positive or zero elements (these elements are called the singular values); and (iii) the
transpose of a J × J orthogonal matrix (VT·V = IJ×J):

X


=


U


·


w1

w2 · · ·
· · ·
· · ·

wJ

 ·
 VT

 , (3.82)

where

 UT

 ·


U


=

 VT

 ·
 V



=

 I

 (3.83a)

The latter orthogonality conditions can also be written in a component form using Kronecker-
delta notation (δij is unity if i = j and zero otherwise):

N∑
n=1

UniUnj =
J∑
k=1

VkiVkj = δij, 1 ≤ (i, j) ≤ J. (3.83b)
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The SVD decomposition can also be carried out for N < J , in which case the singular
values wj for all j > N are equal to zero, and the corresponding columns of U are also zero;
naturally, orthogonality conditions (3.83b) hold only for i, j ≤ N .

The SVD decomposition can be done no matter how singular the matrix X is. SVD
decomposition is unique up to (i) an arbitrary simultaneous permutation (re-ordering) of
columns of U, diagonal elements of W and columns of V (that is, rows of VT); or (ii)
forming arbitrary linear combinations of any columns of U and V (and scaling so that their
lengths remain to be unity) whose corresponding elements of W happen to be exactly equal
(that is, if any pair of such columns is substituted by linear combinations defined above, the
matrix multiplication of SVD components so modified will also give the original matrix).

SVD of a square matrix. If X is J × J square matrix, then U, W and V all have
dimensions J × J . Let us compute the inverse of X — the matrix X−1, in terms of U, W
and V. The inverses of orthogonal matrices U and V are equal to their transposes, while
the inverse of a diagonal matrix W is the diagonal matrix whose elements are the reciprocals
of the elements wj. From (3.82) and (3.83a) it then follows that

X−1 = V·[diag (1/wj)]·UT (3.84)

[multiply the decomposition (3.82) on the left by the right-hand side of (3.84) and use (3.83a)
to show that the result is the identity matrix]. Therefore, according to (3.84), the matrix
X is singular if one or more of its singular values are zero. If these values are nonzero, but
small, the matrix is nearly singular, or ill-conditioned : this is measured by the condition
number, which is the ration of the largest of the wj to the smallest of the wj.

SVD is very useful in diagnosing the solvability of linear systems of equations of the
form

X · a = y, (3.85)

where X is a matrix J × J , while a and y are vectors of dimension J . In case X is non-
singular (Fig. 3.8a), the above equation defines linear mapping of an original vector space
into the one of the same dimension, with vector a mapped into a vector y. However, if
X is singular, it maps a vector space into the one with a lower dimension (Fig. 3.8b), for
example, two-dimensional plane into a one-dimensional line (that is, a 2-D vector into a
point!). The latter subspace is called the range of X (since it can be “reached” by applying
transformation X to the original space defined by all possible a’s). The dimension of this
subspace (the number of linearly independent vectors that can be found in it) is called the
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Figure 3.8: Solution of linear systems using SVD (see text for details).

rank of X. The rank of a non-singular J × J matrix is equal to J . The rank of a singular
J × J matrix is less than J . The nullspace of X is the subspace of the original space that is
mapped to zero, and the dimension of the nullspace is called the nullity of X. The nullity of
a non-singular matrix is zero. For an arbitrary J × J matrix nullity plus rank equals J.

The utility of SVD is in that it explicitly constructs orthonormal bases for the
nullspace and range of a singular matrix; in particular, the columns of U corresponding
to non-zero singular values are an orthonormal set of basis vectors that span the range,
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while the columns of V corresponding to zero singular values form an orthonormal basis for
the nullspace. The latter property means that SVD automatically provides the solution of a
homogeneous problem (3.85), with y = 0.

Consider now the case of a singular X and y 6= 0 and compute the quantity

a = V·[diag (1/wj)]·(UT·y), (3.86)

where, if wj = 0, we need to replace 1/wj by zero! The following statements apply (see
Fig. 3.8b):

(i) if y = p is in the range of X, then (3.86) gives the vector solution of (3.85) with the
smallest length |a| [that is, from an infinite number of possible solutions (infinite, since we
can add to our solution any linear combination of vectors from the nullspace of X), it picks
the one closest to zero];

(ii) if y = z is outside of the range of X, then the solution (3.86) is the same as (i) for y = z′,
where z′ is the point from the range of X closest to z.

Both cases can be written in the form of a single statement: the solution (3.86)
finds

a that minimizes r ≡ |X · a− y|. (3.87)

SVD for more equations than unknowns. The above results generalize to the case of
overdetermined system of linear equations:

X


·

 a

 =


y


(3.88)

Here X is an N×J matrix and the vectors a and y have dimensions of J and N , respectively.
Given the singular value decomposition (3.82) of X, the solution of (3.88) which minimizes
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r defined by (3.87), is given by (3.86):

 a

 =

 V

 ·


w−1
1

w−1
2 · · ·
· · ·
· · ·

w−1
J

 ·
 UT

 ·


y


(3.89)

3.5.4 Solution by use of SVD. Dealing with collinearity

Let us now come back to our χ2 fitting problem (3.67), whose solution is given, via the
SVD decomposition (3.82) of the N × J design matrix X, by (3.89), with y = ŷ. Let the
vectors U(j) (1 ≤ j ≤ J) be the columns of U (each such vector has the length N ≥ J), and
V(j) (1 ≤ j ≤ J) be the columns of V (each such vector has the length J). The solution
(3.89) can then be written in the form:

a =
J∑
j=1

(
U(j)·ŷ
wj

)
V(j). (3.90)

One can show that the standard uncertainties (standard deviations) of the estimated param-
eters are given, for the k-th component of a, by

σ2(ak) =
J∑
j=1

1

w2
j

V2
(j),k =

J∑
j=1

(
Vkj
wj

)2

, (3.91a)

while the covariance between ak and am is

Cov(ak, am) =
J∑
j=1

(
VkjVmj
w2
j

)
. (3.91b)

The above estimates of parameter uncertainties must be identical with (3.76), that is,
variances and covariances of the parameters are the elements of the (XT·X)−1.
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Exercise 14. Substitute SVD decomposition of X ≡ U ·W ·VT into (XT·X)−1 and show
that (3.91a), (3.91b) result. Hint. If A is an N ×M - and B is an M ×K-matrix (so that
the product A ·B is defined), then (A ·B)T = BT·AT.

We have seen in Section 3.5.2 that employing an additional predictor variable that
happens to be highly correlated with one of the previously used predictors makes the design
matrix nearly singular, resulting in possible instability of the multiple regression procedure.
It is often not obvious if a certain predictor will be detrimental for the MLR, because its high
correlation might be with some linear combination of previously used predictors, rather than
with just one of them, with the same result of making the design matrix nearly singular.
The presence of hidden linear dependencies between two or more of predictor variables is
called collinearity or multiple collinearity.

What SVD does is in fact forming orthogonal linear combinations of predictors, whose
contributions to reducing χ2 are proportional to the associated singular values wj. If some
singular values are small (the condition number of the design matrix is large), a way to
regularize nearly-singular regression problem is to edit these singular values, by replacing
the corresponding factors 1/wj in (3.90), (3.91a), and (3.91b) with zeros. This procedure of

editing small singular values thus: (i) reduces uncertainty (and increases statistical signifi-
cance) of estimated parameters; and (ii) produces nearly-minimal χ2 by throwing away only
those linear combinations of predictor variables that contribute little to reducing χ2. This
is called principle component regression, due to association of the SVD with the principle
component analysis (also known as empirical orthogonal function (EOF) analysis; Chapter
4) — eigenanalysis of X ·XT and XT·X.

Aside from the principle component regression, there are multitudes of regularization
methods that deal with the problem of collinearity — from a naive stepwise regression,
which tries out different linear combinations of predictor variables, ending up, iteratively,
with the optimal set of predictors — to fairly sophisticated ones, such as partial least-squares
(PLS) procedure. The latter method uses the principle component regularization (which only
employs the information inherent in the design matrix; recall that the latter matrix is based
on the predictor variables) to define the initial basis of orthogonal predictors, but then seeks
linear combinations of basis vectors (or “rotates” principal components) in a way to ensure
that rotated variables are maximally correlated with the response variable (predictand). The
optimal number of initial principal components retained is determined by cross-validation
(see Section 3.7), in which the regression model based (or “trained”) on a part of the data
set, is used to predict (or “validated upon”) the remaining part of the data set, for a number
of possible repartitions of the data set into training and validation segments.
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3.6 Confidence limits on estimated model parameters

Denote the vector of “true” parameters of a linear regression model by atrue; that is, we
assume that there exists a true relationship

y = atrue, 1x1 + atrue, 2x2 + . . .+ atrue, JxJ (3.92)

between the observed variables y and x ≡ (x1, x2, . . . , xJ). We estimate the parameters
a by applying multiple linear regression to N independent measurements of predictors x
and predictand y. This procedure gives us a set of estimated parameters a(0), which is
in general different from atrue due to inherent unpredictability associated with randomness
of “measurement” errors. If we had another realization of our observational data set and
repeated the above analysis, we would end up with yet another estimate of parameters
a(1), and so on. Infinite number of samples of size N would supply us with the probability
distribution of a(k) (the mean of which would necessarily be equal to atrue).

3.6.1 Monte Carlo simulations of synthetic data sets

Of course, we do not have an access to the infinite number of realizations of a(k) — we just
have one data set of size N , and one estimate of the parameters a(0). However, if we have
a guess about the process that produced our data set, we can generate an arbitrary number
of synthetic realizations of this data set and estimate the distribution of the parameters
about their “synthetic true mean” a(0) computing, for each synthetic realization, its own
set of parameters a(k). If the way in which random errors enter the “experiment” and data
analysis does not vary rapidly as a function of atrue, our synthetic Monte Carlo simulations
provide a numerical estimate of the distribution of ∆a ≡ a(k) − atrue, from which we can
make probabilistic statements about our estimated parameters; for example: “Is the slope of
the χ2-fit based on the 1900–1950 global temperature data set different from the one based
on 1951–2000 portion of the global temperature record?” See Exercise 15 of Section 3.7 for
an example of Monte-Carlo-simulation-based analysis.

3.6.2 Constant chi-square boundaries as confidence limits

Let us summarize the general linear least-squares solution derivation in a slightly different
way, following Box et al. (1994). The problem is, once again, given the expression

ŷ = X · a + e, (3.93)
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where X is the design matrix of N weighted observations of predictor-variable vector of
dimension J , and ŷ is the vector of N observations of the response variable, find the vector
â which minimizes the residual vector (or “unexplained variance”) e (of dimension N):

S(a) ≡ eT·e = (ŷ −X · a)T·(ŷ −X · a); (3.94)

Note that the quantity S(a) is identical to what we have previously called the χ2 merit
functional.

Plugging the decomposition

ŷ −X · a = ŷ −X · â−X·(a− â)

into (3.94) and choosing

(XT·X)·â = XT·ŷ (3.95)

(normal equations!), results in the following expression

S(a) = S(â) + (a− â)T·XT·X·(a− â), (3.96)

vectors ŷ−X · â and X·(a−â) being orthogonal. The last term in (3.96) is a positive-definite
quadratic form; it thus follows that the minimum of S(a) is achieved at a = â, defined
by the normal equations (3.95) — yielding the same result we have previously derived by
differentiating the merit functional with respect to regression parameters.

If the measurement errors are normally distributed, one can derive analytical
distributions for the quadratic forms S(â) and (a− â)T·XT·X·(a− â). As we have mentioned
before, the former is given by the χ2 distribution with N − J degrees of freedom. It turns
out that the latter form is also χ2-distributed, but with J degrees of freedom. These two
properties allow us to use constant χ2 boundaries as the confidence limits on the estimated
model parameters. In fact, it is more convenient to use the statistic

(a− â)T·XT·X·(a− â)

S(â)

N − J
J

, (3.97)

which is distributed as F (J,N − J) [see (2.67)]. In particular, the inequality

(a− â)T·XT·X·(a− â)

S(â)

N − J
J

≤ Fα(J,N − J) (3.98)

defines 1− α confidence region for a.
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3.6.3 Confidence limits from SVD

The expression (3.98) for J = 1 defines an interval, for J = 2 — an ellipse, for J = 3 — an
ellipsoid and so on. When the solution of the regression problem is written in terms of the
SVD decomposition X = U ·W ·VT of the design matrix X, the above geometrical objects
are given by the expression

w2
1(V(1)·∆a)2 + . . .+ w2

J(V(J)·∆a)2 = S(â)Fα(J,N − J)
J

N − J
, (3.99)

where ∆a ≡ a − â, and V(j) is j-th column of V — this means that the columns of V are
orthonormal vectors aligned with principal axes of J-dimensional ellipsoid defining 1 − α
confidence region for the estimated regression parameters.

3.7 Regression models as a means of forecasting

Forecast skill and rms error. Climatology, persistence, and damped persistence
forecasts. Consider a forecast model that produces a large number of forecasts xf of a
quantity-of-interest x. For example, we initialize our model at some time t = t0 using an
observed value of x0 = x(t0) and integrate it for τ = t1− t0 to get our forecast of the value of
x at t = t1: xf(t1). This procedure results in the forecast time series xf(t), which should be
compared with the actual observed evolution of x(t) in order to make statements about how
skillful our forecast model is; in particular, the term forecast skill relates to the correlation
r between these two series. Another measure of how well the model performs in terms of
forecasting is the root-mean-square (rms) error of our forecast time series relative to actual
data:

ε =

√
(x− xf)2, (3.100)

where the overbar denotes the time average.

The skill and rms errors are related. Suppose that our model is able to reproduce
climatological statistics (the first two moments of “true” climate variability), as measured
by x̄, and x′2 (as before, the prime denotes the anomaly, or the deviation from the time
average):

x̄f = x̄; x′2f = x′2. (3.101)

It then follows that

ε2 = (x′ − x′f)2 = x′2 − 2x′x′f + x′2f = 2(x′2 − x′x′f). (3.102a)
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or, dividing through by x′2,
ε2

x′2
= 2(1− r). (3.102b)

The model has no skill if the anomaly time series x′ and x′f are uncorrelated (r = 0), in
which case ε2 = 2x′2: the squared rms error is twice that of climatological forecast, in which
xf(t) is set to x̄.

0
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rms error of a forecast model

 

 

original forecast
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τ
c

ε(τ
c
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2
)
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Figure 3.9: Verification of forecast models (see text for details).

One can thus judge how good the forecast model is by comparing its skill with that
of climatological forecast (see Fig. 3.9). Here the forecasts are made, using a given model,
from a number of observed initial conditions x(t0) (for a series of different t0), to predict,
for each t0, the value of x(t0 + τ). Figure 3.9 shows the rms distance between the actual
time series and hypothetical forecasts for different values of τ . As τ →∞, the model’s skill

deteriorates and the rms distance tends to
√

2x′2, but before this happens, the model’s rms

curve passes, at τ = τ0, the climatological forecast’s rms,
√
x′2. The simple forecast xf can

be made better (denote the improved forecast by x̂f), that is superior to climatology x̄ for
all τ , by using the regression model of the form

x̂f = axf + (1− a)x̄, (3.103)
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and estimating a, for a given τ , by minimizing

ε̂2 ≡ (x− xf)2, (3.104)

which results in

a = r(τ) =
x′x′f

x′2
(3.105)

(can you show this?). The dependency ε̂(τ) is plotted as a dashed curve in Fig. 3.9.

Another benchmark that the forecast models are usually compared against is the
persistence forecast, in which xf(t + τ) = x(t). Obviously, the persistence forecast will be
better than climatological forecast for short τ and worse than climatological forecast as τ
becomes large. The persistence forecast improved according to (3.103), (3.105) is called the
damped persistence forecast. If we have a forecast model, we need to show that this
model outperforms the damped persistence forecast in order to claim a useful
skill.

Statistical prediction and red noise. The linear regression techniques described in this
chapter can be used for constructing an entirely data-based, predictive model of an observed
phenomenon, by using past values of the observed variable to predict its future values.
Consider, as an example, the anomaly time series (that is, average has been removed) of
some quantity x and construct the model governed by

x̂(t+ ∆t) = ax(t) + bx(t−∆t), (3.106)

in which we are trying to predict the value of the variable at time t+∆t using the information
at the present time t and one time step into the past t−∆t. The model parameters a and b
are obtained by minimizing rms distance between x and x̂. Recall that in order to improve
forecasting using the second predictor x(t − ∆t), compared with the one-predictor (x(t))
model, the correlation of this predictor with the response variable must exceed the minimum
useful correlation (3.81). For the model (3.106), this is given by

|x(t+ ∆t)x(t−∆t)| ≥ |x(t+ ∆t)x(t) · x(t)x(t−∆t)|/x′2, (3.107a)

or
|r(2∆t)| ≥ [r(∆t)]2. (3.107b)

If our time series is a red-noise process (Section 3.4.2), then the equality sign is
realized in (3.107b) [compare with (3.46)], so that the value at two lags previous to now
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contributes exactly the minimum useful correlation, and there is no point in using a second
predictor in this case. Our forecast skill as a function of the forecast period τ will be given
by the autocorrelation (3.47) and will thus be equivalent to persistence forecast (since the
autocorrelation can be computed by shifting a given time series by τ — we thus assume that
x(t+ τ) will be the same as x(t)).

Inverse stochastic models. Parametric linear least-squares can be used to construct
more general forms of statistical forecast models to predict the evolution of a state vector x
(of dimension I) describing some sub-component of the climate system. Consider an example
of a quadratic regression model

dxi = (xTAix + b
(0)
i x + ci

(0))dt+ dri
(0) 1 ≤ i ≤ I. (3.108)

The matrices Ai, the rows b
(0)
i of the matrix B(0) and the components ci

(0) of the vector c(0),
as well as the components ri

(0) of the residual forcing r(0), are determined by least-squares.
The residual forcing is now considered as the part of the model rather than just an estimate of
model errors. This noise models unresolved processes and is essential in energizing large-scale
low-frequency variability we would like to model.

Our “observations” are typically not quite independent: the stochastic forcing r(0)

in Eq. (3.108) typically involves serial correlations and might also depend on the mod-
eled process x. One possible way of dealing with this problem is to include an additional
model level to express the time increments dr(0) (equivalent, in numerical practice, to the
time derivative of the residual forcing r(0)) as a linear function of an extended state vector
[x, r(0)] ≡ (xT, r(0)T)T, and estimate this level’s residual forcing r(1). The linear dependence
is used since the non-Gaussian statistics of the data has already been captured by the first
nonlinear level. More (linear) levels are being added in the same way, until the (L + 1)-th
level’s residual r(L+1) becomes white in time, and its lag-0 correlation matrix converges to a
constant matrix:

dxi = (xTAix + b
(0)
i x + c

(0)
i ) dt+ r

(0)
i dt,

dri
(0) = b

(1)
i [x, r(0)]dt+ ri

(1) dt,

dri
(1) = b

(2)
i [x, r(0), r(1)]dt+ ri

(2) dt, (3.109)

. . .

dri
(L) = b

(L)
i [x, r(0), r(1), . . . , r(L)]dt+ dri

(L+1); 1 ≤ i ≤ I.

The convergence of this procedure is guaranteed since, with each additional level l ≥ 1, we are
accounting for additional time-lag information, thereby squeezing out any time correlations
from the residual forcing.
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In practice, we approximate the increments dxi, dri
(l) as

dxi = xj+1
i − xji , dri

(l) = ri
(l),j+1 − ri(l),j, 1 ≤ l ≤ L, (3.110)

where j is the time index, while dt is assumed to be equal to the data set’s sampling interval;
without loss of generality, we use dt = 1. The last-level residual’s dri

(L+1) covariance matrix
is estimated directly from its multivariate time series; in subsequent integrations of the
inverse model, this forcing is approximated as a spatially correlated white noise.

One can in principle rewrite the multi-level system (3.109) as a single equation that
involves time-lagged values of xi and ri

(l); the resulting construct is equivalent to a multi-
variate version of autoregressive–moving average (ARMA) model (Box et al. 1994), except
for the nonlinear dependence on xi that we allow here, and which is not present in standard
ARMA models. Even for a standard, linear model, though, the way we estimate the coeffi-
cients of this model by successive introduction of additional levels is algorithmically simple,
numerically efficient and dynamically transparent. The system (3.109) describes a wide class
of nonlinear, non-Gaussian processes in a fashion that explicitly accounts for the modeled
process x feeding back on the noise statistics.

The optimal number of state-vector components in Eq. (3.109) is assessed in practice
using Monte-Carlo simulations: in these cross-validation tests, the inverse model is trained
on one segment of the available data and is then used to estimate the properties of the model
evolution during the validation interval. The measure used to assess the statistical model’s
performance depends on the purpose at hand: If the model is to be used for prediction,
the forecast skill, quantified by the correlation between the forecast and observed fields or
the root-mean-square (rms) distance between the two is an appropriate measure of model
performance; in the more theoretical applications below, it is the statistical characteristics
of the observed and modeled evolution, such as PDFs of model variables (see Chapter 5)
and their power spectra (Chapter 6).
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We can test this procedure and learn how to apply regression techniques and concepts
discussed in the present chapter by doing the following

Exercise 15. Consider the monthly Niño-3 index time series x(t) (Fig. 1.1) [seasonal cycle
has been removed]. Call ∆x(t) the time series of differences between two consecutive values
of this index.

• Fit a linear regression model to express ∆x(t) via x(t). Plot the rms distance and
forecast skill of this model as a function of τ(= 1, 2, . . . , 12 months).

• Form now the series of differences between consecutive ∆x(t) and construct a two-level
regression model. How do the skill and rms error of this model compare to those of
our first model?

• Continue on adding levels in the same way. How does the skill and rms error change?

• Consider the case of polynomial predictors 1, x, x2, ..., xJ and fit such a polynomial
regression model to predict ∆x for J = 1, 2, 3, 4, 5. Compute forecast skill and
rms errors of these models and compare them with previous models’ values. Do you
encounter instabilities in any of your integrations?

• Add to polynomial regression models above more linear levels, as before, and repeat
the analysis. Compare across all models.

• Seasonal cycle (ENSO is known to be largely locked to the seasonal cycle). Include, at
the first level of each regression model, two more predictors cos(2πt/T ) and sin(2πt/T )
(T = 12 months). Repeat the analysis for each regression model you have constructed.
Plot the skill and rms error of each model as a function of the calendar month.

• Enter cross validation: divide the time series into several intervals (10–11-year long).
Throw away the data from one of the intervals and train the regression models above
on the remaining data. Use this model to forecast the variability in the omitted
time segment. Repeat this procedure with all pairs of training/validation periods.
Plot the cross-validated skills and rms errors for each model and compare them with
your previous hindcasts (predictions without cross validation, in which training and
validation intervals coincide).

How would you go about estimating the uncertainties of your models’ coefficients using
Monte Carlo integrations? Compute the uncertainties of the coefficients in two of the above
cases.
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4.2 Empirical Orthogonal Function (EOF)/Principal Com-

ponent (PCA) Analysis

4.2.1 Introduction to EOF analysis

4.2.2 EOFs as efficient representations of data sets

4.2.3 Manipulation of EOFs and PCs

4.2.4 Scaling and display of EOFs and PCs

4.2.5 EOF analysis via SVD of the input data matrix

4.2.6 Statistical significance of EOFs

4.2.7 Interpretation of EOFs. How large should the domain size
be?

4.2.8 Rotation of EOFs

4.2.9 Variations and applications of EOF analysis
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4.3 Maximum Covariance Analysis (MCA) and Canon-

ical Correlation Analysis (CCA)

4.3.1 MCA formalism

4.3.2 Scaling and display of singular vectors

4.3.3 Statistical significance of MCA analysis

4.3.4 MCA analysis of unrelated fields

4.3.5 Criticisms of MCA Analysis

4.3.6 Canonical Correlation Analysis

4.3.7 Applications of MCA and CCA Analyses
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