
Climate is extremely complex. Identification, as well as attribution of climate signals may be 
ambiguous. One way of approaching this problem is by concentrating on a subset of large-scale low-
frequency climate modes and determining their reproducibility by climate models and, eventually, their 
predictability. The major goals of this collaborative project (#1243175 UCLA, PI: Dr. D. Kondrashov 
and #124158, PI: Dr. S Kravtsov) are (i) to identify potentially predictable low-frequency modes 
(LFM), where "low-frequency," in climatic perspective, refers to interannual-to-decadal and longer 
time scales; and (ii) develop means for effective empirical modeling of these modes on global-to-
regional scales, as well as of their interaction with smaller-scale, faster processes. 
 
The LFM we studied included ENSO-type variability and decadal-to-multidecadal climate variability 
throughout the Northern Hemisphere, in particular the inherently global modes that result from the 
interaction between these LFM subcomponents (Wyatt et al. 2012; Kravtsov et al. 2014b, 2015). These 
diagnostic studies highlighted, in particular, an intriguing relationship between LFMs and atmospheric 
synoptic eddies (Kravtsov and Gulev 2013; Kravtsov et al. 2014a). This led to an idea of 
comprehensive empirical modeling of atmospheric and climate variability throughout the entire range 
of spatial and time scales. One of the major specific objectives of the past year was to test the 
capability of the Empirical Model Reduction technique (Kravtsov et al. 2005) in faithfully representing 
the atmospheric variability across the whole spatiotemporal landscape, from synoptic scales to 
hemispheric and global LFMs. 
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As an illustration of our empirical model performance, we show in Fig. 2 how well this models 
captures both the observed magnitude and patterns, as well as the seasonal cycle of the band-pass 
filtered SLP variance. In Fig. 2 (right column), the differences between the observed and simulated 
variance are not statistically significant. Similar impressive matches (not shown here) exist between the 
observed and simulated statistics of  propagating SLP anomalies, identified via various Eulerian and 
Lagrangian methods. In particular, the model reproduces, statistically, diverse characteristics of the 
cyclone tracks (Rudeva and Gulev 2007), such as cyclone spatial and the probability distributions of 
various cyclone properties throughout their life cycles.  

We have developed an empirical stochastic model capable of emulating and predicting evolution of 
the sea-level pressure (SLP). The model was trained on the 6-hourly, 0.75º resolution Northern 
Hemisphere’s SLP data from the 1979–2013 ERA-Interim Reanalysis (Dee et al. 2011). 
 
The process of model construction involves several steps (Fig. 1). First, we subtract from the full 
data the monthly SLP climatology and form daily-mean SLPA anomalies. Next, the resulting daily 
SLPA anomalies are projected onto its 1000 leading Empirical Orthogonal Functions (EOFs: 
Monahan et al. 2009), which account for over 99% of the total SLPA variability. The stochastic 
ARMA model for the SLPA principal components x is postulated to have the following multi-level 
form (Kravtsov et al. 2005) [dx=xn+1– xn]: 
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Figure 2: Standard deviations (hPa) of the wintertime (JFM) observed (left column) 
and simulated (middle column) band-pass filtered SLPA anomalies in physical 
space; the relative difference (observed – simulated) in % is shown in the right 
column. The three rows (top to bottom) correspond to the 2–6-day and 6–12-day 
band-pass filtered, and 12-day low-pass filtered anomalies, respectively. 

Figure 1: The flowchart of the empirical model construction and validation procedure.  

!!!!!!! = ! ⋅ ! ! + ! ! ,  

!!!!!!! ! = [! ! !!] ⋅ ! ! + ! ! ,                                                                        (1) 

!!!!!!! ! = [! ! !! ! !!] ⋅ ! ! + ! ! , 

the model’s parameters are found via regularized multiple linear regression and depend on seasonal 
cycle at monthly resolution. 
      At the stage of model simulation, the residual forcing at the third model level r(3) is chosen via 
random sampling from the library of the observed residuals in a way conditioned on the simulated 
state x. The simulated daily anomalies are also used to model, empirically, the 6-hourly SLPA 
residuals. The resulting 6-hourly SLPA anomalies are transformed back to physical space and, after 
adding the mean seasonal cycle, represent an emulation of the full SLP time series. 
 
It should be noted that our empirical model is not expected to produce climate realizations pathwise 
similar to the observed climate; on the contrary, the climate simulated by such a model would be, by 
construction, statistically independent of the actual observed climate realization. Hence, we should 
judge the success of the model’s performance by comparing not the pathwise convergence, but rather 
the long-term statistical properties of the observed and simulated SLP variability, such as the 
spatiotemporal SLP spectra or the composite characteristics of the individual cyclones within storm 
tracks.  
 
 

Building on decades of our previous work on empirical modeling of climate, we have constructed 
examples of highly efficient and statistically accurate EMR models able to capture the entire 
complexity of climate variability in selected fields of interest: thus far, sea-level pressure (SLP) 
[Kravtsov et al. 2015 and multi-level vector winds [not shown]. The model construction and 
simulation methodology brings together in a unique fashion numerous elements of the state-of-the-
art empirical data modeling, including a generalized regularized method of constructing optimal 
linear inverse models (LIMs), parameterizations of the nonlinear interactions via multiplicative 
noise, past-noise forecasting usage of the observed noise snippets conditioned on the large-scale 
state of the system considered, as well as highly accurate statistical interpolation of the simulated 
fields to a higher temporal resolution. The emulated climatic fields have a wide spectrum of potential 
applications in climate variability diagnosis/identification, error estimation and statistical prediction 
studies. In particular, we further plan to use the SST-dependent vector-wind emulator as the 
atmospheric component of an extremely numerically efficient, truly multi-scale hybrid coupled 
model deploying either empirical or dynamical oceanic component   
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