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Fig. 2. Fraction of unexplained variance [i.e., Var{ri 
(0)}/Var{dx i}] in the

main level of model (1). The models, whose results are shown on the
left, all predict the evolution of leading 20 EOFs, but the right-hand
side of the equation for each variable only contains this variable, and
its M nearest neighbors [e.g., for M=2, the equations for dx1 and dx2
contain x1 , x2 , and x3; the equation for dx3 contains x2 , x3 , and x4 ,
and so on]. The models on the right use M nearest neighbors in
computing nonlinear terms, but all 20 variables to estimate the linear
part of the operator. Results for M = 0, 2, 4, and 19 are shown.
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Fig. 1. Leading EOFs of 300-mb streamfunction (Northern
Hemisphere parts of global patterns are shown). EOFs 2 and 3
resemble the Arctic Oscillation (AO) and Pacific–North American
pattern (PNA), respectively. The four EOFs account for 8%, 3.5%,
3%, and 2.5% of variance, respectively.

Fig. 3. The root-mean-square (rms) error of four different statistical
characteristics of a reduced-model data: variance, skewness,
kurtosis, and integral correlation time scale. The rms is computed
by averaging the errors (i.e., difference in a given statistical
characteristic between full-model and reduced-model data sets)
among first three model variables: nonlinear effects are most
pronounced in the time dependence of EOFs 2 and 3 (not shown).
The results from quadratic (blue) and cubic (red) models are
shown as a function of the number of variables N in these models.

Fig. 4. Performance of 9-variable cubic model. Left frame: Probability density function (PDF); right frame: Autocorrelation function. Each panel’s
title refers to the number of variable being displayed. The results from the reduced model are shown in red, GCM data results are plotted in blue.

The model (1) has many more nonlinear terms than the linear ones, but the linear
tendency in fact dominates (see Fig. 2): inclusion, in a given 20-variable
regression model, of a linear dependence on all 20 variables results in the most
dramatic reduction of unexplained variance (compare left and right panels of Fig.
2), while turning up nonlinearity does not lead to any such appreciable increase
(right panel). The main nonlinear effects manifest in the evolution of EOFs 2 and 3
(not shown). Both linear and nonlinear properties of the full-model time series are
captured best by the 9-variable cubic model (Fig. 3).

General circulation models (GCMs) used for climate prediction are
extremely difficult to analyze. One way of simplifying such an analysis is
by constructing a reduced model (the one with fewer degrees of freedom),
which will nevertheless capture essential dynamics of a GCM.

Motivation and methodology Choice of the best model and results

 An excellent performance of the 9-variable cubic model, in terms of capturing both the probability density function (PDF), and the autocorrelation function
of the full-model time series, is summarized in Fig. 4. Two- and three-dimensional PDFs of the synthetic data (not shown) also describe fairly accurately the “zero-
order” Gaussian structure of full-model PDFs, as well as deviations from Gaussianity in the latter.

GCM data
We decompose daily 300-mb streamfunction fields from the output of a 106-
day-long perpetual-winter simulation of an early version of the Community
Climate System model CCM0 (Branstator and Berner 2005) into empirical
orthogonal functions (EOFs; Fig. 1). Cubic and quadratic (τ≡0) three-level
models (1) are constructed in a phase space spanned by N leading EOFs,
where the optimal number N and the degree of nonlinearity in the model are
determined by cross-validation: we aim to choose the model that will fit best
both linear and nonlinear properties of a few leading EOFs (see below).

In this study, we apply an empirical methodology for such a reduced-
model construction (Kravtsov et al. 2006) to analyze a realistic GCM.

The reduced model (1) operates in a phase space x of model’s EOFs
(see below), has two hidden levels r1 and r2 , and is driven by a spatially
correlated white noise w. All coefficients (τ, α, β, γ) in the model are
found directly, using GCM output, by least squares. The increments dx,
dr1 , and dr2 are approximated as daily differences (x(n+1)–x(n) and so on).

While the reduced model produces synthetic multi-channel time series
whose statistical properties resemble closely those of the full-model
time series, the discrepancies between the two are also notable: the
reduced model fails to capture the fourth-order moment of the
distribution of EOF-2, and underestimates the time scale of the same
EOF. Both deficiencies may be related to a restrictive form of a
regression model (1), which only has additive noise terms. Majda et al.
(1999) have developed a systematic mode-reduction strategy, which
predicts a slightly different formulation of reduced-model equations,
namely that including not only additive, but also multiplicative noise
terms. The latter terms may represent, dynamically, the so-called
synoptic-eddy feedback, and may result, in principle, in both “flatter”
PDF distributions and increased persistence of the patterns of low-
frequency variability.

The reduced model (1), which mimics the GCM data pretty well,
can be further used to infer dynamics behind the “observed,” full-model
statistics (cf. Kondrashov et al. 2006), or be combined with the full
model into a medium-range prediction scheme; here, the reduced model
(which is thousands times less computationally expensive than full
GCM) produces “most probable” long-term trajectory for its variables,
for further assimilation into the GCM to forecast other variables.

Discussion


