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We have developed an empirical stochastic model for simulating and 
predicting evolution of the ENSO index x (Fig. 1d; blue line) 
computed as the leading normalized principal component (PC) of the 
tropical Pacific sea-surface temperature (SST) anomalies. The latter 
anomalies were obtained by subtracting the dominant low-frequency 
modes y of the global SST variability defined here in terms of the 
three leading discriminating patterns (Schneider and Held 2001) and 
their companion time series—canonical variates (CVs); see Figs. 1 
a–c. The CVs describe climate modes characterized by maximal 
ratio of interdecadal to subdecadal SST variance, and were treated as 
external predictors in the empirical ENSO model (Kravtsov 2012). 
 
 

Figure 1: Canonical variates (CVs) and SST indices (1856–
2010). (a) CV-1 and area-averaged SST; (b) CV-2 and Pacific 
Decadal Oscillation (PDO) index; (c) CV-3 and Atlantic 
Multidecadal Oscillation (AMO) index; (d) ENSO index (blue line, 
left y-labels) and fractional variations (%) of its 20-year running 
standard deviation (STD) (red line, right y-labels), smoothed with 
20-year boxcar running-mean filter. The SST indices in a–c were 
smoothed using 10-year boxcar running-mean filter.!

Equations (1–2) with P=3 and L=4 are two-level parametric model for 
the evolution (with time index n) of the seasonal-mean ENSO index x; 
the model coefficients linearly depend on external predictors y and on 
time via harmonic annual preditors (see Fig. 3). The second level 
models the main-level forcing r. The model coefficients are found from 
data using regularized regression techniques (Kravtsov et al. 2005). 

Figure 3: The potential function based on the main level (1) of the 1-D 
empirical model (1–2) of ENSO index x with three decadal predictors y 
given by CVs 1–3 (see Fig. 1a–c), for each season and three different 
phases of external multidecadal variability. !
 

Our empirical model captures many aspects of the observed Niño-3 
evolution (Fig. 4), including interdecadal modulation of Niño-3 
variance largely anti-correlated with the AMO index [cf. Dong et al. 
(2006)]; see also Fig. 1d, red line. 

observed (heavy red lines) and simulated (lighter blue lines) fractional 
variations (%) of the ENSO index 20-year running standard deviation 
(STD), smoothed with 20-year boxcar running-mean filter.  

Cross-validated jack-knifing hindcasts of of the ENSO STD are 
presented in Fig. 5 for different choices of external predictors and their 
extrapolation methodologies. All in all, these results demonstrate the 
potential for skillful forecasts of the ENSO variance if the external 
predictors can themselves be forecasted. The results suggest potential 
long-term ENSO STD predictability if the external predictors can 
themselves be forecasted.  
 

Figure 4: Performance of 
the empirical 1-D ENSO 
index model (1–2): 
autocorrelation function 
(ACF)—top left panel 
probability density 
function (PDF)—middle 
panel and ENSO-index 
variance as a function of 
the season (1 winter, 2 
spring, 3 summer, 4 fall)
— top right panel. Bottom: 

Figure 5: Hindcasts of ENSO standard deviation (STD). 
Observed STD is shown as a heavy red line, spaghetti plots 
are for hindcasts at various lead times up to 20 years.!

The central result of this paper is that the random variations of ENSO 
statistics have an insufficient magnitude to rationalize its observed 
multidecadal behavior (the peak-to-trough variations of the ENSO STD 
in Fig. 4). Furthermore, the association between the external predictors 
and ENSO variance is unlikely to be due to random chance (Fig. 2). 
Hence, the Flügel et al. 2004 and Wittenberg’s (2009) null hypothesis 
for decadal ENSO modulation is formally rejected, within our empirical 
model framework, and the effect of the external predictors on ENSO 
statistics is shown to be quantitatively substantial.  
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Figure 2: Association between CVs and long-term modulation in 
ENSO STD in 100 surrogate SST realizations produced by a 
multivariate linear stochastic model. For each realization, the 
surrogate ENSO STD time series analogous to the one shown in 
Fig. 1d (red line) was regressed onto 3 leading CVs of the 
surrogate SSTs, as in Fig. 1a–c (red lines). Shown is the 
histogram of fraction of ENSO STD variance (%) explained by 
the CV reconstruction. Vertical red line shows the observed 
fraction. Conclusion: CV predictors y are external to ENSO x!!
!
 

Is the apparent connection btw multidecadal ENSO STD variations 
(Fig. 1d, red line) and CVs (Figs. 1a–c, red lines ) random (Flügel et 
al. 2004) and/or the result of ENSO’s midlatitude teleconnections 
(Vimont 2005)? This question is addressed in Fig. 2. 
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Fig. 2d, light blue line), as well as the running STD time

series of the ENSO index analogous to that in Fig. 2d
(heavy red line). We then regressed of each of the surrogate

ENSO STD time series onto the three leading surrogate

CVs, and assessed the goodness-of-fit by computing the
correlation between the actual and regression-based ENSO

STD time series, as well as the fraction of the ENSO STD

variance explained by the regression fit. The histograms of
these quantities for the 100 surrogate SST realizations are

shown in Fig. 3a, b, respectively, with vertical red lines

indicating the observed values.
Since the observed goodness-of-fit exceeds the values

obtained for the surrogate SST time series, we conclude

that the observed multidecadal variations cannot be ascri-
bed to random noise (cf. Flügel et al. 2004). Furthermore,

while the EMR model we used to produce surrogate SST

realizations can, in principle, generate low-frequency
multidecadal signatures via Vimont (2005) mechanism, it

failed to rationalize the correlations between the multi-
decadal climate modes and ENSO STD variations. These

tests thus support our interpretation of the CVs playing the

role of forcing variables dynamically external to the pro-
cesses instrumental for ENSO variability; hence we will

refer to them as the external predictors in our empirical

ENSO index model.

2.5 Formulation of the ENSO-index model

We consider the time series of seasonal-mean ENSO index

x, as well as those of K leading CVs y ! fyðkÞg; k ¼
1; 2; . . . ; K; associated with secular climate variability:

xn ¼ xðtnÞ; yðkÞn ¼ yðkÞðtnÞ; tn ¼ nDt;

n ¼ 1; 2; . . . ; N; k ¼ 1; 2; . . . ; K; Dt ¼ 3 mo:
ð5Þ

The full observational record has the length of N = 616,

but we will also use, in cross-validated hindcasts described

in Sect. 4, shorter segments of the time series to estimate
the coefficients (‘‘train’’) our empirical models, in order to

be able to assess the models’ predictive power during the

validation intervals not included in the training period.
While Sect. 3 reports on the results obtained for the model

trained on all available data using K = 3 external

predictors defined as the leading CVs of SST, we note
here that all of these results can be reproduced or even

improved using the multidecadal predictors (that is, CVs 2

and 3) only (not shown). This issue is also further
addressed in Sect. 4.

The main level of our parametric model for ENSO
variability expresses the tendency xnþ1 & xn of the state

variable x as the polynomial function of x itself:

xnþ1 & xn ¼
XP

p¼0

apðy; tnÞxp
n þ rn; ð6aÞ

where we used the value of P = 3, which is the lowest

possible value that results a stable nonlinear model, since

quadratic model’s solutions are always unbounded. Note
that the coefficients ap depend on low-frequency predictors

y whose variability is implicitly assumed to be governed by
non-ENSO dynamics and time t via seasonal dependence

described below. The tendency rnþ1 & rn of the main-level

Fig. 3 Association between CVs and long-term modulation in ENSO
STD in 100 surrogate SST realizations produced by a multivariate
linear stochastic model (see text for the details of this model). For
each realization, the surrogate ENSO STD time series analogous to
the one shown in Fig. 2d (red line) was regressed onto 3 leading CVs
of the surrogate SSTs, as in Fig. 2a–c (red lines). a The histogram of
correlations between actual and CV-reconstructed ENSO STD time
series; b the histogram of fraction of ENSO STD variance (%)
explained by the CV reconstruction. Vertical red lines show the
corresponding quantities based on the observed SST data
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residual r is in turn modeled as the linear function of

extended state variables, which consist of current and

delayed x variables, up to the lag L, as well as the current r:

rnþ1" rn ¼
XL

l¼0

blðy; tnÞxn"lþ bLþ1ðy; tnÞrnþ cðy; tnÞ þ rð1Þn :

ð6bÞ

Once again, all of the b and c coefficients in (6b) are

assumed to be the functions of y and t. Trial and error

method determined that the choice of L = 4 produces best
results, in terms of statistical properties of the ENSO model

trained on all available data (see Sect. 3).

The main-level of model (6a) includes nonlinearity to
address non-gaussianity of ENSO statistics, while the

dependence on the lagged ENSO index in the model’s

second level (6b) is necessary to capture quasi-periodic
character of ENSO. The algebraic structure of model (6)

thus possesses features of conceptual ENSO models

(Suarez and Schopf 1988; Battisti and Hirst 1989; Cane
et al. 1990; Tziperman et al. 1994, 1998; Jin 1996, 1997;

Torrence and Webster 1998; Burgers et al. 2005), but

involves more parameters to achieve quantitative accuracy
in simulating and predicting the ENSO evolution.

The multi-level structure of the model (6–7) is similar to

that of empirical model reduction (EMR) models of Kravt-
sov et al. (2005, 2009) and Kondrashov et al. (2005, 2006).

Notable differences are the inclusion of higher-degree ([2)

polynomial at the main level and the use of extended delayed
state variable at the second level; both features are necessary

due to extreme low-dimensionality (dimension of 1) of the

state vector considered and our intent to faithfully model
both linear and nonlinear characteristics of ENSO.

All the coefficients in (6a, b) are assumed to be sea-

sonally dependent linear functions of the external predic-
tors, which is the major difference of this model from its

earlier conceptual counterparts. In particular,

apðy; tnÞ ¼ að0Þp; 1 sin ð2pn=4Þ þ að0Þp; 2 cos ð2pn=4Þ þ að0Þp; 3

þ
XM

m¼1

ðaðmÞp; 1 yðmÞn sin ð2pn=4Þ þ aðmÞp; 2 yðmÞn

& cos ð2pn=4Þ þ cðmÞ3 yðmÞn Þ; p ¼ 0; 1; . . . ;P;

ð7aÞ

blðy; tnÞ ¼ bð0Þl;1 sin ð2pn=4Þ þ bð0Þl; 2 cos ð2pn=4Þ þ bð0Þl; 3

þ
XM

m¼1

ðbðmÞl; 1 yðmÞn sin ð2pn=4Þ þ bðmÞl; 2 yðmÞn

& cos ð2pn=4Þ þ bðmÞl yðmÞn Þ; l ¼ 0; 2; . . . ; L;

ð7bÞ

cðy; tnÞ ¼ cð0Þ1 sin ð2pn=4Þ þ cð0Þ2 cos ð2pn=4Þ

þ cð0Þ3

XM

m¼1

ðcðmÞ1 yðmÞn sin ð2pn=4Þ þ cðmÞ2 yðmÞn

& cos ð2pn=4Þ þ cðmÞyðmÞn Þ: ð7cÞ

For M = 3, each of the expressions (7) contains 12
coefficients that need to be estimated, so that the main level

(6a) of our model contains 48 coefficients (p = 0, 1, 2, 3),

while the second level (6b)—84 coefficients (l = 0, 1, 2, 3,
4, 5 for b and 12 additional coefficients for c). Thus, the

model (6–7) with three external predictors has the total of

132 parameters to be estimated. In cases where only two
external predictors are used (see Sect. 4), the total number

of model parameters reduces to 36 ? 63 = 99 coefficients

to be estimated.
The coefficients of model (6–7) could be estimated by

the ordinary multiple linear regression if very long data

time series were available. Since this is not the case, and
the number of data points N = 616 is not vastly larger than

the number of model coefficients to be estimated, we used

the automated model selection technique known as the
partial least squares (PLS) regression (Abdi 2003; Kravtsov

et al. 2009). This method iteratively forms linear combi-

nations of original observed time series on the right-hand
side of Eq. (6) to define new, smaller, subset of time ser-

ies—the latent-variable time series—that are best corre-

lated with the response variable to be modeled, that is, with
the time series of the observed tendencies on the left-hand

side of Eq. (6). The optimal number NL of latent variables

was determined by cross-validation, which showed that the
model coefficients, for each model level (6a) or (6b), are

statistically stable in a wide range 15 \ NL \ 30. We

hence used 20 latent predictors to find 20 corresponding
regression coefficients for each model level, and then found

the regression coefficients in the space of original right-

hand side time series by the linear transformation inverse to
the one that formed the latent variables. This means that

despite the model (6a, b) formally contains great many

coefficients, the effective number of coefficients we esti-
mated by linear regression equals to NL = 20 for each

model level, and is thus much less than the number of data

points N, thus ensuring stable estimates of regression
parameters.

In producing the random realizations of the ENSO

variations using model (6–7), the second-level residual rð1Þn

in (6b) was modeled as

rð1Þn  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0 þ f1 sin ð2pn=4Þ þ f2 cosð2pn=4Þ

p
nn; ð8Þ

where nn is a random number drawn from a standard
normal distribution with zero mean and unit standard

2382 S. Kravtsov

123

(1) 

(2) 


