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ABSTRACT 

Clinical term embeddings are traditionally obtained using corpus-based methods, however, these methods 

cannot incorporate knowledge about clinical terms which is already present in medical ontologies. On the 

other hand, graph-based methods can obtain embeddings of clinical concepts from ontologies, but they 

cannot obtain embeddings for clinical terms and words. In this paper, a novel method is presented to 

obtain embeddings for clinical terms and words from the SNOMED CT ontology. The method first 

obtains embeddings of clinical concepts from SNOMED CT using a graph-based method. Next, these 

concept embeddings are used as targets to train a deep learning model to map clinical terms to concepts 

embeddings. The learned model then provides embeddings for clinical terms and words as well as maps 

novel clinical terms to their embeddings. The embeddings obtained using the method out-performed 

corpus-based embeddings on the task of predicting clinical term similarity on five benchmark datasets. 

On the clinical term normalization task, using these embeddings simply as a means of computing 

similarity between clinical terms obtained accuracy which was competitive to methods trained 

specifically for this task. Both corpus-based and ontology-based embeddings have a limitation that they 

tend to learn similar embeddings for opposite or analogous terms. To counter this, we also introduce a 

method to automatically learn patterns that indicate when two clinical terms represent the same concept 

and when they represent different concepts. Supplementing the normalization process with these patterns 

showed improvement. Although clinical term embeddings obtained from SNOMED CT incorporate 

ontological knowledge which is missed by corpus-based embeddings, they do not incorporate linguistic 

knowledge which is needed for sentence-based tasks. Hence combining ontology-based embeddings with 

corpus-based embeddings is an avenue for future work.      
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1. Introduction 

Deep learning based methods have shown success on several natural language processing (NLP) tasks, 

including in the clinical domain [1]. A critical component of all deep learning based NLP methods is the 

representation of words in numerical vector forms, also known as word embeddings. Given that neural 

networks can only take input in numerical form, word embeddings provide a suitable mechanism to give 

words, which are otherwise symbolic, as input to neural networks. Additionally, from machine learning 

perspective, they also provide a way to generalize from words seen during training to those not seen 

during training by leveraging the fact that words with similar meanings have similar word embeddings. 

Word embeddings are commonly obtained using corpus-based methods [2] which work on the basic 

premise that words found in similar contexts would have similar meanings and hence should have similar 

word embeddings. Although this is a reasonable premise, corpus-based methods expect all words to occur 

frequently enough in the corpus so that their embeddings can be suitably learned. However, this is not 

always true, especially in the clinical domain where the names of many diseases or medications may not 

occur frequently in a corpus. For example, consider disease names “pneumonia” and “pneumoconiosis” 

which are both inflammatory disorders of lungs and hence have similar meanings. However, for a corpus-

based method to learn similar word embeddings for them, these words will need to be present in the 

corpus in similar contexts multiple times, which may not happen in a clinical corpus. In addition, 

embedding for each synonym of the disease will have to be learned independently. Given that there are 

more than a million clinical terms, it is not surprising that corpus-based embeddings were not found to do 

well on clinical term similarity prediction task [3].  

 

Ontologies encode knowledge of a domain in the form of a graph, with concepts as nodes and relations 

between them as edges [4]. Medical ontologies, such as SNOMED CT [5], directly encode semantic 

properties of medical concepts in the graph. For example, the concepts of “pneumonia” and 

“pneumoconiosis” are both linked by “is-a” relation to the concept of “disorder of respiratory structure”, 

are linked by “finding site” relation to the concept “lung structure”, and are linked by “associated 

morphology” relation to the concept of “inflammation”. Given that they share multiple relations with 

other concepts, it can be explicitly and directly inferred from SNOMED CT that the concepts of 

“pneumonia” and “pneumoconiosis” are similar. In contrast, this can only be learned implicitly and 

indirectly by corpus-based methods from their contexts that too if they occur frequently enough, as 

pointed out earlier. Hence knowledge from ontologies could be used as an alternate resource for learning 

word embeddings.   
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In the general domain, WordNet ontology has been used to learn word embeddings using graph-based 

methods [6]. However, unlike WordNet in which words themselves are the nodes of the graph, in medical 

ontologies medical concepts are the nodes of the graph. A medical concept (typically denoted by an 

identifier in an ontology) may be associated with multiple terms, each with multiple words. For example, 

there is a concept of viral meningitis (id=58170007) in SNOMED CT, with associated clinical terms (also 

known as descriptions in SNOMED CT) “viral meningitis”, “abacterial meningitis” and “aseptic 

meningitis, viral”. While a graph-based method will obtain embedding for the concept 58170007, it will 

not obtain embeddings for words such as “meningitis”, “viral”, etc. It will also not give embeddings for 

previously unseen clinical terms even though they may be composed of previously seen words, such as 

“bacterial meningitis”.  

 

In this paper, we present a novel method to obtain clinical term and word embeddings from SNOMED 

CT ontology. After obtaining embeddings for concepts using a graph-based method, a deep learning 

network is trained to map clinical terms to these embeddings. In this process, the network learns the 

embeddings of clinical terms and words, including their synonyms, as well as learns to obtain embeddings 

for previously unseen clinical terms. To the best of our knowledge, this is the first method that obtains 

clinical term embeddings from clinical concept embeddings. Using standard benchmark datasets, the 

method was evaluated on clinical term similarity prediction task and on clinical term normalization task. 

Both corpus-based and ontology-based embeddings suffer from the limitation that they tend to obtain 

similar embeddings for terms with opposite or analogous meaning, for example, “left kidney” and “right 

kidney”. Although, they seem similar, “left kidney” and “right kidney” clinically mean very different 

things and hence should not be treated as similar. To counter this limitation of embeddings, we also 

introduce a method to automatically learn patterns from UMLS [7] which indicate whether two clinical 

terms would have same meaning or not. Not only these patterns showed improvement in normalization 

performance for both corpus-based and ontology-based embeddings, but they could also be used as a 

resource to further improve clinical term embeddings in future.  

 

2. Related Work 

Although there has been a lot of work in obtaining embeddings using corpus-based methods in the 

clinical domain [2], there has been relatively less work in obtaining embeddings from biomedical 

ontologies. Some researchers obtained embeddings of concepts in UMLS [8,9], but we note that although 

UMLS Metathesaurus combines clinical concepts from multiple sources, it does not encode meanings of 

concepts in terms of their relations with other concepts as is done in SNOMED CT which is an ontology 

based on the description logic framework [10]. Hence SNOMED CT is a better candidate for learning 
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meaning-based embeddings. Agrawal et al. [11] obtained embeddings from SNOMED CT using graph-

based methods, however, they obtained embeddings of clinical concepts, not terms or words. 

Consequently, they could evaluate those embeddings only on concept related tasks, such as, classifying 

the relation between two concepts, and not on tasks related to clinical terms. Using a method similar to 

OWL2Vec* [12] from the general domain, Castell-Díaz et al. [13] recently obtained knowledge graph 

embeddings for clinical concepts and clinical terms together from SNOMED CT. Our method is very 

different from theirs because we first obtain clinical concept embeddings using a graph-based method and 

then train a deep learning model to map clinical terms to these embeddings. An advantage of our method 

is that the trained model can directly give embedding of a multi-token clinical term, in contrast, their 

method requires adding and averaging the embeddings of the individual tokens. Furthermore, their 

embeddings were aimed specifically for the task of creating new SNOMED CT post-coordinated concepts 

from clinical terms [14] and were evaluated only for that task. 

 

In past, corpus-based embeddings have been retrofitted to ontological relations in the general domain 

[15,16] as well as in the clinical domain [17,18]. An approach to transform corpus-based embeddings to 

minimize their cosine similarity with graph-based embeddings was presented in [19]. However, these 

approaches only indirectly use ontological knowledge to influence corpus-based embeddings, they do not 

directly learn embeddings from ontology. Noh and Kavuluru [20] presented a method where MeSH [21] 

concept codes are directly inserted into a corpus in place of the clinical terms and then a corpus-based 

method is used to jointly learn embeddings for both the words and the concepts. Although this approach 

is a good way to learn embeddings for concepts using a corpus, it does not leverage ontological relations.   

 

3. Materials and Methods 

3.1. Obtaining Clinical Term Embeddings 

We chose to use SNOMED CT as the ontology for obtaining embeddings because it is the most 

comprehensive medical ontology, and unlike other resources such as UMLS [7] and MeSH [21], 

SNOMED CT defines concepts in terms of their relations with other concepts thus making it more 

conducive for learning meaning-based embeddings. Given the SNOMED CT ontological graph with the 

concepts as nodes and the relations between them as the edges, our method first uses the random walk 

method to obtain embeddings of the concepts [11]. In this method, the graph is randomly traversed from 

one node to another and these traversed paths are collected as if they were “sentences” with the nodes 

being the “words”, thus forming a “corpus”. Next, a corpus-based method, skip-gram [22], is applied on 

this synthetic “corpus” to obtain embeddings for the nodes. The dimension of embeddings was 200 which 

was found to work well in the previous work [11]. The premise behind this method is that similar 
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concepts will have similar relations to other concepts which will act as similar “contexts” and hence will 

lead to similar embeddings.  

 

As mentioned in the Introduction, this method can only obtain embeddings of the clinical concepts which 

form the nodes of the graph, but we want embeddings of clinical terms and words, as well as a 

mechanism to obtain embeddings of previously unseen clinical terms. To accomplish this, we developed a 

novel method. In this method, a deep learning model is trained which takes clinical terms as input and the 

corresponding concept embeddings as targets. Figure 1 shows the network along with an illustrative 

example. Given that clinical terms could be of multiple words and vary in length, we used a recurrent 

neural network model [23]. We did not find it necessary to use attention-based models [24] because 

clinical terms are not too long to need long-distance attentions. Figure 1 shows the recurrent network 

unrolled over time for the clinical term of length three. The first layer is the embedding layer which is 

where the embeddings for words get learned to suit the task. This is followed by two GRU layers [25] and 

a fully connected layer. The target is the concept embedding corresponding to the input term as obtained 

from the graph-based method. Thus, the network learns to map clinical terms to their concept 

embeddings. The network was implemented using the Keras deep learning package [26].  

 

To create training examples for this model, every concept in SNOMED CT is used as target and is paired 

with its every description (i.e., its fully specified name and every synonym) in SNOMED CT as well as 

its every synonym from UMLS as input. Figure 1 shows the embedding of the clinical concept upper 

abdominal pain (SNOMED CT id=83132003) which was obtained earlier using the graph-based method 

being used as the target with its description “upper abdominal pain” as input. As part of the training 

process of mapping the clinical term to the target concept embedding, the network will learn the 

embeddings for the words “upper”, “abdominal” and “pain” in the embedding layer. For training, 10 

epochs were found sufficient for convergence.   
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Figure 1. Deep learning network that maps clinical terms to their concept embeddings obtained using a graph-based 

method and in this process learns the embeddings for clinical terms and words through the embedding layer. The 

figure shows the recurrent neural network unrolled over time for a three token input. 

Not only this network can obtain embeddings for words, but it can also give embeddings for clinical 

terms previously unseen by the network. For example, after it has been trained, if the network shown in 

Figure 1 is given input “acute upper abdominal pain”, it will give its concept embedding even though the 

term or the concept is not present in SNOMED CT or UMLS. We note that it is very common to 

encounter clinical terms not already present in terminologies, for example, one study estimated that 

19.75% of clinical terms mentioned in text did not have their concepts present in SNOMED CT [27]. 

There are two main reasons for this. First, concepts can be compositionally created in medicine from 

other concepts and no terminology can exhaustively list all possible concepts and their corresponding 

terms. Second, variability in natural languages allows one to express a clinical concept in multiple ways. 

We also found in our experiments with clinical term similarity and clinical term normalization tasks that 

clinical terms often do not match exactly in clinical terminologies, and in these situations the ability of 

our method to provide embeddings for previously unseen clinical terms is crucial.  

 

Our method ends up learning embeddings for all the words used in the clinical terms in UMLS which 

offers a wide coverage of clinical words. But in case it encounters an unknown word in a clinical term, it 

uses a random embedding for the word to compute embedding for the clinical term. We found that 

random embeddings worked better than using a designated unknown word or using all zeros as an 
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embedding because otherwise the method would incorrectly regard two unknown words to be same 

during similarity matching. In future, our method could be used to learn character-based embeddings, or it 

could employ subword tokenization as used by the BERT system in order to better handle unknown 

words.   

 

3.2. Clinical Term Similarity 

The first task on which we evaluated clinical term embeddings obtained from SNOMED CT is the clinical 

term similarity task. In this task, given two clinical terms, a method has to predict similarity between 

them which is then compared against the expert-judged similarity score. We used five benchmark datasets 

for this task whose details are depicted in Table 1. Each dataset consists of a list of clinical term pairs 

along with their expert-judged similarity scores. The first four datasets have been widely used in the past 

[28], more recently, a fifth dataset “EHR-RelB” was introduced which is much larger and consists of 

longer clinical terms [3]. 

Dataset Number of clinical term pairs Average clinical term length 

Pedersen’s [29] 29 1.57 

Hliaoutakis’s [30] 35 1.69 

MayoSRS [31] 101 1.55 

UMNSRS [32] 566 1.02 

EHR-RelB [3] 3630 3.04 
Table 1. Benchmark datasets used for evaluation for the clinical term similarity task. 

To obtain embedding of a clinical term, it is given as input to our trained model described in the previous 

section, which then outputs its embedding. Given a pair of clinical terms, similarity between them is 

computed as the cosine similarity between their embeddings. For a list of clinical term pairs, the 

similarities thus computed are compared against the expert-judged similarity scores in the dataset using a 

measure of correlation coefficient. We compare the performance of SNOMED CT embeddings with 

corpus-based embeddings on this task. 

 

3.3. Clinical Term Normalization 

The second task on which we evaluated clinical term embeddings obtained from SNOMED CT is the 

clinical term normalization task [33]. In this task, given a clinical term, it is to be mapped to its concept 

(identified by an identifier) in a medical terminology, typically in UMLS Metathesaurus [7]. For example, 

given a clinical term “pain in abdomen”, it should be normalized to the concept which has the UMLS 

concept unique identifier (CUI) of C0000737. This task is challenging because a clinical term does not 

always exactly match the clinical terms listed in a terminology due to the variability allowed in natural 

languages such as English. For example, the clinical term “pain in abdomen” does not exactly match any 

clinical term in UMLS even though UMLS has several clinical terms listed for that concept, such as 
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“abdominal pain”, “pain in stomach”, “gut pain” and “bellyache”. For our experiments, we used the 

benchmark MCN dataset [27] which has been used extensively for evaluating normalization methods 

[33]. This dataset has 6,684 clinical terms for training and 6,925 clinical terms for testing. In the entire 

dataset, 2.7% of clinical terms are “CUI-less”, that is, they do not correspond to any concept in UMLS, 

while others are paired with their correct CUIs. We also evaluated on the ShARe/CLEF eHealth 2013 

dataset [34] for its normalization subtask. This dataset contains 5,816 clinical terms for training and 5,351 

clinical terms for testing. Unlike MCN dataset, these clinical terms are restricted to only the 

disease/disorder semantic type. In this entire dataset, 30.3% of clinical terms are “CUI-less”.  

 

3.3.1. Normalization Using Embeddings 

To normalize a clinical term, our method first tries to exactly match it in UMLS as well as in the training 

examples. If it exactly matches, then the concept corresponding to that term is given as the output. In case 

it matches multiple clinical terms corresponding to multiple concepts then the average similarity between 

the given clinical term and all the clinical terms in UMLS corresponding to each of those concepts is 

computed and the concept with the highest similarity is given as the output.   

 

Figure 2. Flowchart depicting the clinical term normalization process. 

 

If the clinical term does not match exactly either in UMLS or in the training examples, then the method 

first obtains embedding of the clinical term using the model described earlier. It then computes cosine 

similarity of this embedding with the embedding of every clinical term in UMLS and determines the 

closest clinical term. The concept corresponding to this closest clinical term is then given as the output. 

However, if the difference between the similarity of the top concepts is too close (less than 

epsilon=0.001) then the average similarity with all the clinical terms in UMLS corresponding to those top 

concepts are computed and the concept with the highest similarity is given as the output (analogous to 
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how it is done when there are multiple exact matches). If no clinical term is found in UMLS with 

similarity more than threshold=0.9 then “CUI-less” is given as the output. The entire normalization 

process is shown as a flowchart in Figure 2 (the use of patterns is explained in the next subsection). 

 

For efficiency, the embeddings of all the clinical terms in UMLS are pre-computed using our model. 

Through pilot experiments we found that besides cosine similarity, including the fraction of the words 

common between the two clinical terms is also useful (giving an accuracy gain of around 1% absolute on 

the normalization task), especially when the terms have rare words in common for which good 

embeddings may not have been learned by the model. We define similarity between two clinical terms as 

weighted similarity with 90% weight of the cosine similarity and 10% weight of the fraction of the words 

common between them. This is the similarity measure which is used in the method described above. 

 

We observed a limitation of the embeddings obtained from SNOMED CT which is also a limitation of the 

embeddings obtained using corpus-based methods. The model learns very similar embeddings for terms 

with opposite meanings, for example, “left” and “right”, or “acute” and “chronic”. In addition, it learns 

similar embeddings for words with analogous meanings but that completely change the meaning of a 

clinical term, for example, “primary” and “secondary”, or “cervical” and “thoracic”. For example, 

“primary tumor” should not be normalized to “secondary tumor”. However, the learned embeddings will 

tend to do so because they would learn similar embeddings for “primary” and “secondary”. This happens 

because the clinical terms with opposite or analogous meanings will have their concepts in very similar 

positions in the ontological graph. For example, the concepts of “left kidney” and “right kidney” will be 

related to the same other concepts with the same relations, except for “laterality”. As a result, our model 

tends to learn very similar embeddings for such terms even though they have clinically very different 

meanings. Corpus-based embeddings also suffer from this limitation because words with opposite or 

analogous meanings are often found in similar contexts in text and hence corpus-based methods also learn 

similar embeddings for them.  

 

Another limitation we observed was that the model sometimes would learn different embeddings for 

terms with similar meanings which could be synonyms or sometimes spelled differently, for example, 

“ultrasonography” and “ultrasound”, or “edema” and “oedema”, or “bilateral” and “left and right”. This 

affects normalization when the given term is, for example, “left and right kidneys” which then may not 

normalize to “bilateral kidneys”. This limitation also affects corpus-based embeddings unless they see 

these words in similar contexts frequently enough in the training corpus.  
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To counter the above limitations, we supplemented our normalization method with some patterns which 

were automatically learned from UMLS as described in the next subsection. We later include results of an 

ablation study that shows how much they contributed to the normalization task.  

 

3.3.2. Supplementing Normalization Method with Patterns 

Each of our patterns is derived from two clinical terms and consists of two parts. The first part consists of 

words which are present in the first clinical term but not in the second clinical term, and the second part 

consists of the vice-versa. For example, given two clinical terms “primary neoplasm” and “secondary 

neoplasm”, the pattern derived from them will be “primary | secondary”, where the two parts of the 

pattern are shown separated by “|”. The pseudocode to derive a pattern from two terms is shown as the 

first function in Figure 3. Words(T) represents the set of words in term T on which set operations are then 

applied.  

 
Figure 3. Pseudo-code for the methods to derive, match, and learn patterns from UMLS. Words(T) represents the set 

of words in term T. The pseudo-code uses set operations on the set of words. Concept(T) represents the concept in 

UMLS corresponding to the term T. 
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There are two types of patterns – positive patterns and negative patterns (we describe it later how we 

obtained them).  If a pattern is positive, then it means that replacing words from its one part in a clinical 

term with the words from its second part does not change the meaning of the clinical term. For example, 

the pattern “bilateral | both” is positive because replacing the words “bilateral” with “both” does not 

change the meaning of a clinical term (for example, “edema of bilateral lower extremities” and “edema of 

both lower extremities”).  In contrast, if a pattern is negative then it means that replacing words from its 

one part in a clinical term with the words from its second part changes the meaning of the clinical term. 

The pattern “primary | secondary” is a negative pattern because replacing “primary” with “secondary” in a 

clinical term changes its meaning (for example, “primary tumor” and “secondary tumor”). The two parts 

of the pattern are considered inter-changeable when being applied (in other words the pattern “secondary | 

primary” is equivalent to the pattern “primary | secondary”).  

 

One of the parts of a pattern could also be empty which would capture whether presence of extra words 

changes the meaning of a clinical term or not. For example, the positive pattern “nos | ” indicates that 

presence of “nos” (meaning “not specified”) does not change the meaning when added to a clinical term 

(or removed from it), whereas the negative pattern “infected | ” indicates that presence of “infected” 

changes the meaning when added to a clinical term (or removed from it). A part of a pattern can also have 

multiple words, for example, “bilateral | left and right” which is a positive pattern indicating that 

“bilateral” can be replaced by “left and right” in a clinical term without changing its meaning. The words 

within a part are treated like bag of words (that is, their order is ignored). We found that this made the 

patterns more general, thus improving the performance, while losing the word order rarely created a 

problem. For example, the same pattern will also match “right and left” in a clinical term, while an 

ungrammatical word order, such as “left right and”, is unlikely to be present in a clinical term. We note 

that these patterns are different from patterns from our past work [35,36], because those patterns were 

meant to generate a new clinical term with the same meaning and could not handle clinical terms with 

opposite or analogous meanings. In contrast, these patterns are meant to determine if two clinical terms 

represent the same concept or different concepts.   

 

A pattern can be matched against a pair of clinical terms to determine whether the two clinical terms 

mean the same thing (in case a positive pattern matches) or cannot mean the thing (in case a negative 

pattern matches). The pseudocode to match a pattern against a pair of clinical terms is shown as the 

second function in Figure 3. If the pattern derived from the pair of clinical terms is same as the given 

pattern, then we say that the pattern matched the pair of the clinical terms. For example, the pattern 

“bilateral | left and right” will match the pair of clinical terms “ultrasonography of bilateral kidneys” and 
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“ultrasonography of left and right kidneys”. This is because in the pattern derived from this pair of 

clinical terms, the first part will be “bilateral” which is the only word in the first term which is not in the 

second term, while the second part will be “left and right” which are the only words in the second term 

which are not in the first term. Thus, the pattern “bilateral | left and right” matches these two clinical 

terms. Given that it is a positive pattern, it can be concluded that the two terms mean the same thing or 

map to the same concept. 

  

We used the following simple method to automatically learn positive and negative patterns from UMLS. 

Its pseudocode is shown as the third function in the Figure 3.  The method first derives patterns and then 

determines whether they are positive patterns or negative patterns or neither. The patterns are first derived 

by considering every two clinical terms in UMLS. As mentioned earlier, the words which are present in 

the first clinical term but not in the second clinical term become the first part of the pattern, and the vice-

versa become the second part of the pattern. To make this process efficient and to also find more useful 

patterns, only those pairs of clinical terms are considered which have at least half the words in common. 

To avoid large patterns that may not match often, the patterns are restricted to have the combined length 

of the two parts to be less than five.  

 

Once a pattern has been derived, its number of positive matches and negative matches are counted. If a 

pattern matches two clinical terms in UMLS which share the same concept then it is considered a positive 

match, but if they do not share the same concept then it is considered a negative match implying that the 

two clinical terms mean different things. In the shown pseudocode, the counting is done along with 

deriving the patterns in the same loop that iterates over every two clinical terms in UMLS. A newly 

derived pattern is included in the set of patterns if it is not already present. Whether the pattern is already 

present or newly included, its count for either positive matches or negative matches is incremented by one 

based on whether the two clinical terms (it was just derived from) share the same concept or not. 

Ambiguous clinical terms (that are associated with more than one concept) are not included in this 

learning process.  

 

After the process of deriving all the patterns and counting their number of positive and negative matches, 

the patterns are identified as either positive patterns or negative patterns or neither of them.  We call the 

patterns as positive patterns if they have more than 5 positive matches and 10 times more positive 

matches than negative matches. Similarly, we call the patterns negative patterns if they have more than 5 

negative matches and 10 times more negative matches than positive matches. The patterns which are 

neither positive patterns nor negative patterns are simply dropped. A minimum of 5 matches are required 
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so that the patterns are not too rare, and 10 times matches are required so that the patterns are at least 90% 

accurate (a goal for the normalization task). The method learned total 11,236 positive patterns and 

6,078,532 negative patterns from UMLS. Table 2 shows a few examples of positive patterns and negative 

patterns learned from UMLS along with their number of positive and negative matches.  

 

These learned patterns are supplemented in the normalization method in a simple way as follows which is 

also shown in the flowchart of Figure 2. The negative patterns are used to eliminate candidate concepts. If 

a negative pattern matches the clinical term to be normalized paired with a candidate clinical term in 

UMLS, then the concept corresponding to that clinical term can never be the output. This is because a 

match with a negative pattern indicates that the two clinical terms have different meanings.  The negative 

patterns thus mitigate the limitation that similar embeddings may be learned for clinical terms with 

opposite or analogous meanings. For example, the negative pattern “primary | secondary” will not allow 

“primary tumor” to be normalized to “secondary tumor” even though the two terms may have very similar 

embeddings. The positive patterns are used to find clinical terms which are treated like exact matches. If a 

positive pattern matches the clinical term to be normalized paired with a clinical term in UMLS, then it is 

treated as if the two terms matched exactly.  This is because a match with a positive pattern indicates that 

the two clinical terms have the same meaning. The positive patterns thus mitigate the limitation that 

different embeddings may be learned for terms with similar meanings. For example, the positive pattern 

“bilateral | left and right” will normalize “left and right kidneys” to “bilateral kidneys” even though the 

two terms may have very different embeddings. The rest of the normalization process proceeds as 

described in the previous subsection. 

 

Our trained model and the learned patterns are available through the website:  

https://sites.uwm.edu/katerj/JBI2023. 
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Example Patterns Positive Matches Negative Matches 

Positive Patterns   

metastatic to | secondary of 480 0 

assay | measurement of  231 0 

hepatic | liver 206 0 

subcutaneous injection | percutaneous 196 0 

ultrasound scan | ultrasonography 193 0 

k+ | pot 185 0 

bilateral extremities | both limbs 31 0 

Negative Patterns   

benign | malignant 0 2770 

anterior | posterior 0 2670 

lumbar | thoracic 0 1622 

artery | vein 0 1245 

bilateral eyes | left eye 0 540 

moderate | 0 342 

right structure of | 0 243 
Table 2. A few examples of positive and negative patterns automatically learned from UMLS along with their positive 

and negative matches in UMLS. The two parts of a pattern are shown separated by “|”, a part could be also empty. 

Replacing words from one part of a pattern with words from the other part does not change meaning of a clinical term 

for a positive pattern but changes meaning for a negative pattern. 

4. Results and Discussion 

4.1. Clinical Term Similarity 

Table 3 shows the results of the clinical term similarity task on the four benchmark datasets comparing 

the embeddings obtained from SNOMED CT using our method with the embeddings obtained using a 

few corpus-based methods as reported in Wang et al. 2018 [28]. We added the results we obtained using 

embeddings from ClinicalBERT [37]. The numbers in the table are Pearson correlation coefficient 

between the similarity scores obtained using the embeddings and the expert-judged similarity scores. 

Among the corpus-based embeddings, “EHR” embeddings were obtained using a clinical corpus from 

electronic health records, “MedLit” embeddings were obtained using a corpus of medical literature, and 

the embeddings “Glove” and “Google News” were obtained using general domain corpora [28].  

 

SNOMED CT based embeddings performed consistently better than the corpus-based embeddings on 

each dataset. This shows that the knowledge about meanings of clinical terms that is indicative of 

similarity between them can be better gleaned from SNOMED CT than from text corpora.  
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Dataset SNOMED CT 

Embeddings 

Corpus-based Embeddings 

EHR MedLit Glove Google News ClinicalBERT 

Pedersen’s 0.81 0.63 0.57 0.40 0.36 0.08 

Hliaoutakis’s 0.79 0.48 0.31 0.25 0.24 0.00 

MayoSRS 0.67 0.41 0.30 0.08 0.08 0.10 

UMNSRS 0.49 0.44 0.40 0.18 0.15 0.23 

Table 3. Results on clinical term similarity benchmark datasets comparing embeddings obtained from SNOMED CT 

using our method with a few corpus-based embeddings – four of them as reported in Wang et al. 2018 [28] and 

ClinicalBERT. The numbers are Pearson’s correlation coefficient between the similarity scores obtained using the 

embeddings and the expert-judged similarity scores.  

Table 4 shows the results on the larger and more complex clinical term similarity dataset introduced by 

Schultz et al. 2020 [3]. For comparison, results from several other open-source embeddings are also 

shown as reported in Schultz et. al. 2020 [38] in terms of Spearman’s ranked correlation coefficient. The 

sources of these embeddings were as follows: PMC (PubMed Central), PM (PubMed), PP (both) and 

PPW (both plus Wikipedia) – [39], ASQ (BioASQ challenge dataset) – [40], LTL2 (Language 

Technology Lab, window size 2) and LTL30 (window size 30) – [41], AUEB2 (Athens University of 

Economics and Business, dimensionality 200) and AUEB4 (dimensionality 400)– [42], extr (extrinsic 

tasks) and intr (intrinsic tasks) – [17], and MIM (MIMIC) and MIM M (MIMIC and its model) – [43]. We 

added the result we obtained using embeddings from ClinicalBERT [37]. It can be observed that 

SNOMED CT based embeddings did better than other embeddings except one (ASQ) which was slightly 

better than it. Thus the results on this larger dataset further confirms that embeddings that encode 

knowledge about clinical term meanings can be obtained from SNOMED CT. Embeddings from 

ClinicalBERT embeddings did not do well on this dataset either. Their performance might have been 

limited because they are contextualized embeddings while this task does not provide contexts for the 

clinical terms. Our findings are consistent with previous findings that corpus-based embeddings, 

including contextual embeddings, do not capture semantics of clinical terms well [3]. 

 
SNOMED 

CT 

PMC PM PP PPW ASQ LTL2 LTL30 AUEB2 AUEB4 extr intr MIM MIM 

M  

Clinical 

BERT 

0.45 0.40 0.44 0.42 0.41 0.47 0.36 0.41 0.40 0.40 0.35 0.37 0.33 0.33 0.23 

Table 4. Results comparing embeddings obtained from SNOMED CT using our method with a few corpus-based 

embeddings (as reported in Schultz et al. 2020 [38]) and ClinicalBERT on the EHR-RelB benchmark dataset. The 

numbers are Spearman’s ranked correlation coefficient between the similarity scores obtained using the embeddings 

and the expert-judged similarity scores. 

4.2. Clinical Term Normalization 

Table 5 shows the results for the clinical term normalization task on the MCN dataset [27] which was 

used in the n2c2 2019 shared-task [33]. The first column shows results obtained by the full system. The 

second column shows the results when the patterns as described in Subsection 3.3.2 were not used. The 

last column shows the results of only exact matching as a baseline for comparison. When the correct 
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answer is not the top closest concept determined by the system, often it is one of the top closest concepts. 

Hence to gauge how far the correct answer is when the top answer is incorrect, the table also shows the 

results when the correct answer is within the top 2, 5 and 10 closest concepts. 

 
 Embeddings+Patterns+Exact  Embeddings+Exact Exact only 

Top 1 80.23 79.19 76.05 

Top 2 82.37 82.23 78.05 

Top 5 83.43 83.65 78.46 

Top 10 83.78 83.97 78.46 

Table 5. Results on the clinical term normalization task on the MCN benchmark dataset using the embeddings 

obtained from SNOMED CT using our method. The numbers are accuracies (%) when the correct answer is within 

the top 1, 2, 5, and 10 closest concepts according to the system. 

 

Our system obtained 80.23% accuracy on this task. For comparison, the 33 teams that participated in the 

n2c2 2019 shared-task had obtained accuracies ranging from 51.85% to 85.26% with the top 10 teams 

obtaining accuracies ranging from 79.57% to 85.26% [33]. There was a large gap between the best 

(85.26%) and the second-best system (81.94%) system. These systems had used a variety of approaches 

and many of the top performing systems had specifically trained machine learning methods for the 

normalization task. In contrast, our system was not specifically trained using machine learning methods 

for the normalization task but it simply used embeddings learned from SNOMED CT to find the most 

similar concept. It did not even use the training data provided in the MCN corpus other than using it as a 

source of additional synonyms of clinical terms for exact matching. Yet our system performed 

competitively and would have secured 7th rank in this shared-task based on the accuracy. This shows that 

our method obtains embeddings for clinical terms which encode their concepts well enough that they can 

be used to normalize the clinical terms to their concepts.  

 

From Table 5, one can observe that exact matching alone obtains 76.05% accuracy which is consistent 

with prior reporting [36]. With exact matching also, sometimes the correct answer is not the first answer 

but could be the second answer showing that clinical terms are sometimes ambiguous and can exactly 

match with more than one concept. The table also shows that the patterns helped in improving the 

accuracy from 79.19% to 80.23%. Given that the top-2 accuracy is almost same with and without 

patterns, it shows that the patterns helped in determining the correct answer when it was within the top-2 

closest concepts. When we used ClinicalBERT embeddings for normalization in the same way as we 

obtained results using our SNOMED CT embeddings, the accuracy was 78.3% without using patterns 

(worse than 79.19% accuracy obtained using SNOMED CT embeddings). With patterns, the accuracy 

improved to 80.16% (slightly worse than 80.23% obtained using SNOMED CT embeddings with 

patterns). This shows that the patterns are general and useful on this task when using corpus-based 
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embeddings as well. Although 1% absolute improvement may not look large, it should be pointed out that 

the margin of improvement is low on this dataset because its post-adjudication inter-annotator agreement 

was itself low (74.2%).  Furthermore, the patterns were not designed to correct every type of error the 

normalization systems could be making but were designed specifically to correct the errors resulting from 

the limitations of embeddings that were pointed out in Subsection 3.3.1.  

 

On a single-CPU computer (Intel Core i7-10700T, 2GHz, with 16 GB RAM), the “Exact only” method 

took 0.01 seconds on average to normalize a clinical term. “Embeddings+Exact” method took 1.31 

seconds while “Embeddings+Patterns+Exact” took 1.54 seconds on average to normalize a clinical term. 

It is not surprising that using embeddings would take much longer computational time than exact 

matching because it needs to compute cosine similarity of the given clinical term with every clinical term 

in UMLS to find the top closest ones. However, this step is amenable for parallel processing and could be 

faster on a GPU-based computer. We note that using patterns only marginally increased the 

computational time, this is because in our implementation pattern matching is done efficiently by storing 

the patterns in a hash table.       

 
 Embeddings+Patterns+Exact  Embeddings+Exact Exact only 

Top 1 86.25 86.11 83.45 

Top 2 87.23 87.09 84.00 

Top 5 87.84 87.84 84.00 

Top 10 88.09 88.06 84.00 

Table 6. Results on the clinical term normalization subtask of the ShARe/CLEF eHealth 2013 dataset using the 

embeddings obtained from SNOMED CT using our method. The large number of CUI-less clinical terms were 

excluded from this evaluation. The numbers are accuracies (%) when the correct answer is within the top 1, 2, 5, and 

10 closest concepts according to the system. 

Table 6 shows the results on the ShARe/CLEF eHealth 2013 dataset. This dataset has a large number of 

CUI-less clinical terms (32.7% in the testing dataset) which the exact-matching-only method would 

trivially answer correctly. We also found that when other methods would normalize such clinical terms, 

they would sometimes normalize them to their correct CUIs even though the dataset would have CUI-less 

as the correct answer. Thus other methods would get unfairly penalized. For example, the clinical term 

“atrioventricular conduction block” is labeled CUI-less in the test set even though its synonym “AV 

block” is labeled with its correct CUI somewhere else in the test set. Similarly, the clinical terms, “mitral 

leaflets thickened”, “bilateral effusion” and “lv systolic function depressed” are labeled CUI-less in the 

test set but the same terms are labeled with their correct CUIs in the training set. Hence we decided to 

only test on the clinical terms with CUIs associated with them (total 3,601) excluding all the CUI-less 

clinical terms. This setting is not unrealistic because it is testing the ability of a system to normalize 

clinical terms to their correct CUIs. 
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The results in Table 6 show a similar trend as the results on the MCN dataset thus showing that the 

performance of the embeddings learned from SNOMED CT generalizes across datasets. On this dataset, 

the patterns helped only marginally. Embeddings from ClinicalBERT did slightly better on this dataset 

obtaining 86.53% accuracy without patterns and 86.67% with patterns. The ShARe CLEF eHealth 2013 

dataset was meant for joint named entity extraction and normalization tasks [34], hence most of the past 

results on this dataset are not comparable because they do not show results separately on the 

normalization task. However, we did another evaluation in which we also excluded the clinical terms 

from testing whose concepts are in the training data. In this setting, only the remaining 618 clinical terms 

were tested. This setting is comparable to the “Unseen concepts” setting from [44] in which a method and 

embeddings were specifically trained for the normalization task and obtained 71.68% accuracy. Our 

results are shown in Table 7. The numbers are lower than in Table 6 because this test setting is more 

difficult given that no concept matches in the training set. For this reason, the exact-matching-only 

method does much worse. The methods that used embeddings obtained a bigger improvement over exact-

matching-only method. There is also a bigger difference from Top 1 to the next top results showing that if 

the topmost answer is not correct then the correct answer is often near the top. On this setting, 

embeddings from ClinicalBERT obtained slightly worse results with 69.26% without patterns and 

70.06% with patterns. We note that ClinicalBERT embeddings as well as the embeddings obtained using 

SNOMED CT are general embeddings and were not trained specifically for the normalization task. 

 Embeddings+Patterns+Exact  Embeddings+Exact Exact only 

Top 1 70.39 70.06 58.58 

Top 2 74.76 73.95 61.17 

Top 5 76.54 76.21 61.17 

Top 10 77.18 76.86 61.17 

Table 7. Results on the clinical term normalization subtask of the ShARe/CLEF eHealth 2013 dataset using the 

embeddings obtained from SNOMED CT using our method. The large number of CUI-less clinical terms and the 

clinical terms whose concepts were in training data were excluded from this evaluation. The numbers are accuracies 

(%) when the correct answer is within the top 1, 2, 5, and 10 closest concepts according to the system. 
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Top 5 most similar terms  

using SNOMED CT embeddings 

Top 5 most similar terms  

using ClinicalBERT embeddings 

surgical removal of cancer 

excision of neoplasm; excision neoplasm 

malignant; excision of malignant neoplasm; 

excision tumor; excision tumors 

surgical removal of prostate; surgical removal of 

gallbladder; surgical removal of impacted tooth; 

surgical removal of tooth; surgical removal of 

tonsil 

pain in lower extremities 

pain in lower limb; pain in lower limb nos; pain in 

legs; pain in leg; limb pain leg; pain in unspecified 

lower leg  

pain in upper extremities; pain in extremities; pain 

in bilateral lower legs; pain in bilateral upper arms; 

pain in upper arms   

left toe injury 

injury of toe of right foot; injury of toe of left foot; 

open wound of right great toe; open wound of 

lesser toe of right foot; right toe contusion   

left foot injury; left ankle injury; left thigh injury; 

left shoulder injury; right foot injury 

pubic bone metastasis 

secondary malignant neoplasm of pubis; metastatic 

malignant neoplasm to pubis; metastatic malignant 

neoplasm to bone nos; bone neoplasm, malignant - 

pubis secondary; metastasis of malignant neoplasm 

to bone 

dermal metastasis; adrenal gland metastasis; spleen 

metastasis; scrotal metastasis; axillary metastasis 

broken thumb 

fracture of thumb; fracture thumb; fractured thumb; 

fracture of phalanges of thumb; fractures thumb 

broken wrist; broken elbow; broken tooth; broken 

forearm; broken knee cap 
Table 8. Qualitative comparison between the clinical term embeddings obtained from SNOMED CT using our method 

and clinical term embeddings obtained from ClinicalBERT. For each clinical term, none of which is already present in 

UMLS, the top 5 most similar terms in UMLS found using each type of embeddings are shown. 

4.3. Qualitative Comparison 

Besides quantitatively evaluating the embeddings obtained using SNOMED CT on two tasks, we 

qualitatively evaluated them and compared them with corpus-based embeddings. Table 8 shows five 

illustrative clinical terms, none of which is already present in UMLS, and the top 5 most similar clinical 

terms in UMLS found using the embeddings from SNOMED CT obtained by our method and found using 

embeddings from ClinicalBERT. The similarities between clinical terms were computed using cosine 

similarity between their embeddings. It can be observed that SNOMED CT embeddings found similar 

terms based on their clinical meanings, for example, for “broken thumb” it found “fracture of thumb” as 

most similar. In contrast, corpus-based embeddings found similar terms based on their linguistic usage, 

for example, for “broken thumb” it found “broken wrist” and “broken elbow” as most similar. Similar 

trend can be observed in the other examples too. This shows that embeddings obtained from SNOMED 

CT capture clinical semantics better than embeddings obtained from corpus-based methods. 
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5. Limitations and Future Work 

The results presented in the previous section show that clinical term embeddings obtained from 

SNOMED CT using our method capture knowledge about clinical terms well and hence do better than 

corpus-based embeddings on the clinical term similarity task and competitively on the clinical term 

normalization task. We expect them to also do well on tasks where sole clinical terms are involved, such 

as term-based searches and various ontological tasks. However, unlike corpus-based embeddings, they do 

not capture linguistic knowledge because the method was never trained on text data. Hence these 

embeddings lack the information about possible surrounding contexts of clinical terms in sentences. As a 

result, the embeddings obtained from SNOMED CT alone cannot do well on NLP tasks such as named 

entity recognition which heavily depends on cues from surrounding text to recognize named entities. 

There is an important lesson here that goodness of embeddings is task-dependent, that is, an embedding 

that is good for one task may not be good for another task and vice-versa. However, a possible future 

work will be to suitably combine ontology-based and corpus-based embeddings, including contextual 

embeddings obtained using recent transformer-based architectures, so that knowledge from both types of 

sources could be incorporated into embeddings. We expect that a method that fully utilizes both the 

sources of knowledge will obtain better embeddings. 

 

As was pointed out in the Subsection 3.3.1, both corpus-based and ontological-based embeddings suffer 

from the limitation that they learn similar embeddings for the terms which have opposite or analogous 

meanings. In this work, we used a method to learn patterns which captured such terms and then used the 

patterns to correct possible mistakes caused by embedding-based similarity. There is a lesson here that 

sometimes a rule-based approach could easily achieve what may be difficult for an embedding-based 

approach to achieve, hence supplementing embeddings with some rules could be sometimes a viable 

option. However, alternatively, a more principled approach could be developed that would prevent 

embedding methods from learning similar embeddings for terms with opposite or analogous meanings. In 

past, there have been approaches in the general domain to post-process embeddings so that they are 

dissimilar for antonyms [45]. However, this approach expects a list of antonym terms which is not 

available for clinical terms. But our learned negative patterns could be treated as such a resource. Hence a 

possible future work could be to incorporate these patterns in the embedding learning process in order to 

improve them. We also point out that our learned positive and negative patterns could be potentially 

useful for other tasks besides clinical term normalization. 

6. Conclusions 

Traditionally, word embeddings are obtained from text corpora. In this paper, we presented a novel 

method to obtain embeddings for clinical terms and words from the SNOMED CT ontology. The 



21 

 

embeddings performed better than corpus-based embeddings on clinical term similarity task. They also 

performed competitively on clinical term normalization task. These results show that SNOMED CT is an 

alternate resource for obtaining clinical term embeddings and the presented method can successfully 

infuse ontological knowledge into embeddings. We also presented a method that automatically learns 

patterns that indicate whether two clinical terms could mean the same concept or not which were used to 

supplement the embeddings for the normalization task. However, these embeddings lack linguistic 

knowledge because they are not trained using text corpora. In future, the two resources of embeddings 

could be leveraged together to obtain enhanced embeddings.     
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