Fastening to Concrete

1. Introduction

Dr. Jian Zhao University of Wisconsin, Milwaukee

(b) Cast-in-place anchors

Outlines

- Brief History of Anchor Design
- ACI 318-11, Appendix D
 - Design Equations
 - Phi (Φ) Factors
 - Interaction Equation
 - Seismic Provisions
 - Reinforcements to Prevent Breakout
 - Edge Distances, Thicknesses & Spacing
- Anchor Design in Seismic Zones

Concrete Anchors

Concrete Anchor Failures

Prior to ACI 318-02

- Cast-In-Place anchors:
 - PCI / ACI 349
 - UBC / IBC codes listed <u>allowable stress</u> capacities for CIP bolts
- Design of Post-Installed anchors:
 - Individual manufacturers supplied load values based on testing
 - Values found in catalogs and ICBO/ICC reports
 - Methodology was <u>allowable stress</u> and assumed an uncracked and unreinforced section.

Since ACI 318-08

• <u>Strength design</u> for anchorage to concrete

Nua $\leq \Phi Nn \text{ or } V_{ua} \leq \Phi Vn$

- Cast-In-Place (CIP) anchors
- Post-Installed (PI) anchors
 - Undercut anchors
 - Torque-controlled anchors
 - Deformation-controlled anchors
 - PI anchors must be prequalified per ACI 355.2

Design Equations & Failure Modes

Design equations check Multiple failure modes

- Steel capacity
 - Tension and Shear
- Concrete breakout capacity
 - Tension and Shear
- Pullout/Pull-through capacity
 - Tension only
- Concrete Pryout
 - Shear only
- Concrete side-face blowout
 - Tension and CIP only.

Failure Modes

Design Equations

Tension Capacities

- Nsa = nAse,Nfuta
- $N_{cb} = A_{Nc}/A_{Nco}(\Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N})N_{b}$
- Npn = $\Psi_{c,P}N_{p}$
- Nsb = $(160Ca1\sqrt{Abrg})\lambda\sqrt{f'c}$ Shear Capacities
- $V_{sa} = n \ 0.6 \ A_{se,V}$ futa
- $V_{cbg} = A_{Vc}/A_{Vco}(\Psi_{ec,V}\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V})V_{b}$
- Vcpg = kcpNcbg

Steel Strength In Tension – D.5.1

- $N_{sa} = nA_{se,N}f_{uta}$
- Nsa Nominal tensile strength of an anchor group
- n Number of anchors
- Ase,N Effective cross sectional area of anchor in tension
- futa Specific ultimate tensile strength of anchor

 $Ncb=A_{Nc}/A_{Nco}(\Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N}) N_{b}$

 $N_{cb}=A_{Nc}/A_{Nco}(\Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N}) N_{b}$ $A_{Nc} = Projected failure area of group$ $A_{Nco} = 9h_{ef}, Projected failure area of one anchor$ (Eq. D-6)

Ncb=ANc/ANco($\Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N}$) Nb $\Psi_{ec,N}$: Modification for eccentric load $\Psi_{ec,N} = 1/[1+(2e'N/3h_{ef})]$ (Eq. D-9)

 $N_{cb}=A_{Nc}/A_{Nco}(\Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N}) N_{b}$

 $\Psi_{ed,N}$: Modification for edge effects

- If ca,min \geq 1.5hef then:
- Eq. D-10 $\Psi_{ed,N} = 1.0$
- If ca,min < 1.5hef then
- Eq. D-11 $\Psi_{ed,N} = 0.7 + 0.3(ca,min / 1.5hef)$

 $N_{cb}=A_{Nc}/A_{Nco}(\Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N}) N_{b}$

- $\Psi_{c,N}$: Modification for cracking
- $\Psi_{c,N} = 1.4$ for uncracked section if kc = 17 in eq. (D-7)
- Ψ_{c,N} per evaluation report (ER) if kc from ER used in eq. (D-7)
- $\Psi_{c,N} = 1.0$ for cracked section

 $N_{cb}=A_{Nc}/A_{Nco}(\Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N}) N_{b}$

- Ψ_{cp,N}: Modification for Post-Installed Anchors (Uncracked concrete, No supplemental reinforcements to control splitting)
- If Ca,min \geq Cac then:

$$\Psi_{cp,N} = 1.0$$
 (Eq. D-12)

• If Ca,min < Cac then:

 $\Psi cp, N = Ca, min/Cac$ (Eq. D-13)

Where cac= 2.5hef (undercut anchors) 4.0hef (wedge anchors)

 $N_{cb}=A_{Nc}/A_{Nco}(\Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N}) N_{b}$

- Nb=kc $\lambda \sqrt{f'c} h_{ef^{1.5}}$ (Basic concrete breakout strength)
- kc Coefficient for basic concrete breakout strength
 - Found in either App. D or per product ER
- λ Modification factor for lightweight concrete
- f'c Concrete compressive strength
- hef Effective embedment depth

Pull-out Strength – D.5.3

• Npn = $\Psi_{c,P}N_{p}$

- (Eq. D-14)
- Npn Nominal pullout strength
- $\Psi_{c,P}$ Modification for cracking
 - 1.0 for cracked
 - 1.4 for uncracked
- \bullet N_p Pullout strength in tension

Pull-out Strength – D.5.3

- Npn = Ψ c, P Np (Eq. D-14)
- Np Pullout strength in tension
 For PI anchors Np based on ACI 355.2 test results For CIP anchors, Np based on:
 - -Np = 8 Abrgf'c (Eq. D-15) headed bolts
 - $-N_p = 0.9f'c eh da$ (Eq. D-16) hooked bolts

Side-Face Blowout Strength – D.5.4

- Nsb = $(160Ca1\sqrt{Abrg})\lambda\sqrt{f'c}$ (Eq. D-17)
- Nsb Side-face blowout strength (headed anchors only)
- Ca1 edge distance
- Abrg Net bearing area of the head of anchor
- λ Modification factor for lightweight concrete

Steel Strength In Shear – D.6.1

- Vsa = n Ase, v futa (Eq. D-19) CIP
- Vsa = n 0.6 Ase, v futa (Eq. D-20)
- n number of anchors
- Ase,v effective cross sectional area of a single anchor in shear
- futa specified tensile strength of anchor steel

- $V_{cbg} = A_{Vc}/A_{Vco}(\Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V})V_{b}$ (Eq. D-22)
- Vcbg Concrete breakout strength in shear

Concrete Breakout In Shear – D.6.2 • Vcbg = Ανc/Ανco(Ψec,ν Ψed,ν Ψc,ν Ψh,ν)Vb

Avc – projected concrete failure area of a group of anchors

 $A_{Vc} = (1.5c_{a1} + s_1 + c_{a2})h_a$

Concrete Breakout In Shear – D.6.2 • Vcbg = Ανc/Ανco(Ψec,ν Ψed,ν Ψc,ν Ψh,ν)Vb

Avco – maximum projected concrete failure area of a single anchor

• $V_{cbg} = A_{Vc}/A_{Vco}(\Psi_{ec,V}\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V})V_{b}$

$\Psi_{ec,V}$ – Modification for eccentric load (Eq. D-26)

- $V_{cbg} = A_{Vc}/A_{Vco}(\Psi_{ec,V}\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V})V_{b}$
 - $\Psi_{ed,V}$ Modification for edge effects If Ca2 > 1.5Ca1 $\Psi_{ed,V} = 1.0$ (Eq. D-27) If ca2 < 1.5ca1 V
 - $\Psi_{ed,V} = 0.7 + 0.3C_{a2}/1.5c$ (Eq. D-28)

- $V_{cbg} = A_{vc}/A_{vco}(\Psi_{ec,v} \Psi_{ed,v} \Psi_{c,v} \Psi_{h,v})V_{b}$
 - $\Psi_{c,V}$ Modification factor for cracking $\Psi_{c,V} = 1.4$ for anchors located in a region where analysis indicates no cracking at service loads $\Psi_{c,v} = 1.0$ for anchors in cracked concrete with no supplemental reinforcement or edge reinforcement smaller than a #4 bar

V_{cbg} = Avc/Avco(Ψ_{ec}, νΨ_{ed}, νΨ_c, νΨ_h, ν)V_b
 Ψ_c, ν = 1.2 for anchors in cracked concrete with reinforcement of a #4 bar or greater between the anchor and the edge

V_{cbg} = Avc/Avco(Ψ_{ec}, v Ψ_{ed}, v Ψ_c, v Ψ_h, v)V_b
 Ψ_c, v = 1.4 for anchors in cracked concrete with reinforcement of a #4 bar or greater between the anchor and the edge, and with the reinforcement enclosed v to the stirrups spaced at not n

• $V_{cbg} = A_{vc}/A_{vco}(\Psi_{ec,v} \Psi_{ed,v} \Psi_{c,v} \Psi_{h,v})V_{b}$ $\Psi_{h,v}$ = Modification factor for shear strength of anchors located in concrete members with $h_a < 1.5c_{a1}$ $\Psi_{h,v} = \sqrt{1.5c_{a1}}/ha$ but not less than 1.0 When $h_a < 1.5C_{a1}$, Avc is reduce However, breakout strength is directly proportional to membe [™] thickness. $\Psi_{h,v}$ adjusts for this. $\frac{1}{2}$

 $V_{cbg} = A_{Vc}/A_{Vco}(\Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V})V_{b}$

- $V_b = (7(e/da)^{0.2}\sqrt{da})\lambda\sqrt{f'c}(ca1)^{1.5}(Eq. D-24)$
- - e load bearing length of anchor
 - Same as her if there is no sleeve on anchor
 - Per manufacturer if there is a sleeve
- da outside diameter of anchor
- $\bullet \lambda adjustment$ for lightweight concrete
- - f'c concrete compressive strength
- – Ca1 edge distance

- $V_{cpg} = k_{cp}N_{cbg}$ (Eq. D-30)
 - kcp = 1.0 for hef < 2.5"
 - kcp = 2.0 for $hef \ge 2.5$ "
- N_{cbg} Nominal concrete breakout strength in tension

Phi (Φ) factors

- Nua $\leq \Phi Nn$ or Vua $\leq \Phi Vn$
- Φ-factors are applied to nominal capacities before comparing with factored forces
- Based on:
 - - Supplemental reinforcement
 - - Failure mode
 - - Load type
 - – Anchor property

Phi (Φ) factors D.4.4

Failure Mode	Anchor Property	Φ Factor			
		Condition A		Condition B	
		Tension	Shear	Tension	Shear
Steel	Ductile	Use Condition B		0.75	0.65
	Brittle			0.65	0.60
Side Face Blowout	CIP	0.75	0.75	0.70	0.70
Breakout	CIP	0.75	0.75	0.70	0.70
	Cat. 1	0.75	0.75	0.65	0.70
	Cat. 2	0.65	0.75	0.55	0.70
	Cat. 3	0.55	0.75	0.45	0.70
Pullout	CIP	Use Condition B		0.70	0.70
	Cat. 1			0.65	0.70
	Cat. 2			0.55	0.70
	Cat. 3			0.45	0.70
Erxout	CIP	Use Condition B		0.70	0.70
	Cat. 1			0.65	0.70
	Cat. 2			0.55	0.70
	Cat. 3			0.45	0.70

Phi (Φ) factors D.4.4

Condition A

• Applies where supplementary reinforcement is present except for pullout and pryout strengths.

Condition **B**

• Applies where supplementary reinforcement is not present, and for pullout or pryout strength.

Questions?

SELLEN PROPERTY A REAL PROPERTY AND A REAL the start of a fire and the start start

BEGIN

ERIES

0 v

Copyright Notice

Many images and slides were obtained from the online sources.

The original authors are to be credited!