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ABSTRACT

Effective force testing (EFT) is a test procedure that can be used to apply real-time
seismic simulations to large-scale structures that can be represented by lumped-mass
systems. In an EFT test, hydraulic actuators are used to applied dynamic forces through
the mass center of the test structure anchored to a stationary base. The force to be
imposed (effective force) is the product of the structure mass and the ground acceleration
record, thus a known priori. Motions measured relative to the ground are equivalent to
those of the structure in a shake table test or an earthquake event. This research extended
the development and implementation of the EFT method to fully utilizing test equipment
and testing nonlinear SDOF structural systems undergoing large deformation in real time.

Velocity feedback compensation is required for the actuator control to ensure that
forces are applied to the test structure accurately. Nonlinearities in the servo-system
could have a significant impact on the implementation of velocity feedback compensation
when an EFT test requires large flow demands, which could be caused by large structural
velocity responses and/or large forces applied to the structure. Detailed mathematical
models were proposed for a test system at the University of Minnesota, which accurately
described the servo-system behavior over a wide range of frequencies and across the
major operation range of the servovalve.

Based on the nonlinear servo-system model, a nonlinear velocity feedback
compensation scheme was proposed and verified through computer simulation and

experimental tests on a mass-spring-dashpot structural system. Results showed that with
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the nonlinear velocity feedback compensation, dynamic forces could be applied to the
nonlinear structure at all frequencies of interest. In addition, the effects of system
uncertainties on the performance of the test system including stability were investigated
through linear system analyses, computer simulation, and experiments.

The viability of the EFT method was further validated by a proof-of-concept test, in
which a one-story steel structure was tested using a shake table and the EFT method. The
comparison of the test results indicated that the EFT method can be used to apply real-

time seismic simulation to structures undergoing large nonlinear deformation.
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CHAPTER ONE

INTRODUCTION

1.1 General

Experimental research remains important in earthquake engineering though nonlinear
dynamic analysis of structures has advanced much in recent years. This is especially true
when the behavior of structural components, required by analytical studies, is difficult to
model due to nonlinearities and strain-rate dependencies. In addition, the analysis of a
full-scale structural system based on individually proven component models needs to be
validated experimentally before the results can be extended in practice. Hence,
experimental procedures that can be used to subject large-scale structures and structural
components to seismic loading are essential to further our understanding of the effects of
earthquakes. When the behavior under investigation is velocity or strain-rate dependent,
such as in cases where structures incorporate active, semi-active, or passive control
devices, real-time dynamic testing is necessary.

Shake table testing can simulate real-time dynamic loading on structural models.
However, structures tested on shake tables typically have to be scaled down, and very
few shake tables have the capacity as shown in Ogawa et al. (2001) to apply earthquake
loads to full-scale structures. At smaller scales, it is difficult to investigate structural
details such as anchorage of reinforcements in concrete and resistance mechanisms such
as shear. Tests with small-scale models also may not accurately demonstrate the effect of

structural control devices. In addition to the scaling limit, table outputs may not replicate



the required ground motion due to the interaction between the table and the test structure,
especially when the test structure behaves nonlinearly (Shield et al., 2001). Shake tables
tests are also economically constrained due to the high cost of table construction.
Effective force testing (EFT) is a real-time dynamic testing technique that overcomes
many of the limitations of shake tables, while using common laboratory equipment (i.e.,
servo-hydraulic actuators). EFT is applicable to structures that can be represented by
lumped-mass systems as in a shake table test. With the EFT method, hydraulic actuators
apply dynamic forces through the center of mass of the test structure attached to a fixed
base. Motions measured relative to the ground would be equivalent to the responses that
the structure would develop relative to a moving base as in a shake table test or an

earthquake event (Dimig et al., 1999; Shield et al., 2001).

1.2 Effective Force Testing
EFT is based on a transformation of coordinates (Murcek, 1996). Consider a single-
degree-of-freedom (SDOF) system subjected to ground acceleration shown in Fig. 1.1
(a), the structural response relative to the global reference X; is the summation of the
relative response to the shake table X and the table motion X4. The governing differential
equation of the structure can be obtained by applying D’Alembert’s principle of dynamic
equilibrium to the free-body diagram of the structure shown in Fig. 1.1 (a),
mX, +cX+kx=0, (1.1)
where m is the mass of the system, C is the equivalent viscous damping coefficient, and k

is the system stiffness (Chopra, 1995). Because the total structural acceleration X,, is



defined as X, = X+ X , Eq. (1.1) can be rewritten as
MX +CX +kx =-mX; = Py . (1.2)

The structure subjected to effective force testing is illustrated in Fig. 1.1 (b), in which
hydraulic actuators are used to apply "effective forces" (Petf) to the center of the structure
mass. The effective forces are the product of the ground acceleration and the structure
mass. Hence, they are known a priori and are independent of the structural properties
(i.e., stiffness and damping) and the changes in structural properties during a test. If the
actuator could apply effective forces accurately to the test structure, the responses of the

structure in an EFT test would be same as those in the shake table test.

1.3 Literature Review
1.3.1 Effective Force Testing
The concept of EFT was first described in papers discussing the pseudodynamic
testing method (Mahin and Shing, 1985; Mabhin et al., 1989). These papers presented the
possibility of conducting real-time tests using a pseudodynamic test setup with explicit
time-varying forces imposed at the center of the lumped mass. It was pointed out that
this technique would eliminate the need for computing required displacements as in
pseudodynamic testing while it would require high-quality controllers and servovalves.
Murcek (1996) first experimentally evaluated the effective force testing method using
a linear elastic SDOF system, which consisted of a cart and a pretensioned (to 15 kip to
prevent possible buckling) rod that served as a spring. The structural stiffness, natural
frequency, and damping were found to be 67.1 kips/in., 6.2 Hz, and 2% critical damping,

respectively. A 77-kip actuator with a three-stage 90-gpm servovalve was used to apply
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the required effective forces. Both sinusoidal forces and earthquake effective forces were
tested. It was found that when controlled only by the feedback control coming with the
test equipment, the actuator was unable to apply forces accurately near the natural
frequency of the test structure. The inability of the actuator to apply force accurately was
attributed to the interaction between the actuator control and the structure through an
intrinsic "natural velocity feedback" loop (Dyke et al., 1995).

After identifying the problem and confirming it through computer simulations,
Murcek proposed a solution: a velocity feedback correction loop added to the control of
the actuator to negate the effect of the natural velocity feedback. The natural velocity
feedback was compensated by modifying the command signal to the servovalve based on
the measured structure/piston velocity. The solution was tested through simulations,
based on which, Murcek further noted that the performance of the compensated system
would depend on the accuracy of the servo-system modeling.

This experimental verification of the solution using precorrected command signals is
summarized in Dimig et al. (1999). The correction to the command signals was made
using the anticipated velocity of the test structure instead of the measured velocity in real
time. The expected velocity was calculated by solving the equation of motion of the
linear elastic SDOF structure, and the modified command was generated before testing.
Test results showed that with the precorrected command signals, the actuator was able to
apply effective forces at all frequencies (0-10 Hz).

Timm (1999) implemented the velocity feedback correction using the same test setup
with a measured velocity. It was found that when the compensation was made in real

time instead of using the precorrection, the expected resonance at the natural frequency of
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the structure was not excited. This was attributed to an inevitable response delay in the
servo-system because the implementation of EFT with the precorrected command signals
was successful, and yet a time offset in the measured response was evident compared to
the expected response. Timm modified the analytical model of the servo-system to
include a phase delay of the servovalve and proposed a phase adjustment for the velocity
feedback compensation to negate the response delay. Computer simulation incorporating
the phase delay confirmed the findings and the proposed solution. Tests with phase
adjusted velocity feedback correction demonstrated success in applying forces near the
natural frequency of the structure.

Shield et al. (2001) summarized this work and pointed out that the effective force
testing method enabled real-time dynamic tests for the linear elastic system and the
implementation of EFT was independent of the properties of the test structure. On the
other hand, several mismatches in the comparison of the Fourier amplitude of the
measured forces and the command forces were evident, such as a sharp drop at the
natural frequency (6 Hz), a spike around 12 Hz, and a discontinuity near 4 Hz. The
discontinuity near 4 Hz was likely caused by an additional vibration mode of the system
associated with a bouncing motion of the cart. The other two mismatches were attributed
to the 15-kip offset of the actuator force command (to keep the bar pretension) because
simulations without the pretension did not show the drop and the spike, and simulations
with the pretension showed the drop and the spike.

The previous implementations of velocity feedback compensation and the validation
of the EFT method were limited by the test setups in that the test structure needed to be

its linear range of behavior. In addition, the relatively large stiffness and the large natural
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frequency prevented large velocity responses of the structure; hence the concept of the
velocity feedback compensation could only be tested within a limited operating range of
the servovalve. The bar pretension also caused the servovalve to have nonlinear
behaviors, which were not considered in the previous investigations due to the limitation
of the analog circuits used in the studies. A new test setup and digital implementation
were necessary to investigate the natural velocity feedback and its compensation
techniques at large flow demands.

1.3.2 Natural Velocity Feedback

The natural velocity feedback describes the interaction between the actuator control
and actuator piston motion. The principles for the interaction were described by Merritt
(1967) through a continuity analysis of fluid volumes in actuator chambers. However,
the applications of the principles documented in Merritt (1967) were in displacement-
controlled systems; hence, the effect of the natural velocity feedback on the force
tracking ability of actuators was not demonstrated.

Dyke et al. (1995) studied the effect of the control-structure interaction in the design
of active structure control strategies. It was shown using pole-zero mapping that the
poles of the structure attached to the actuator were also the zeros of the transfer function
from the command to the actuator force. Therefore, the actuator attached to a lightly
damped structure would be greatly limited in its ability to apply forces near the natural
frequency of the structure. Actuators would be unable to apply a force at the natural
frequency of undamped structures. As part of the study, the interaction between the
actuator control and the structure was demonstrated by a feedback loop from the structure

velocity to the load flow of the servovalve, and the feedback loop was named "natural
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velocity feedback."

Alleyne et al. (1999) explained a similar force-tracking problem in the control of
active suspension of automobiles using hydraulic actuation. It was discussed that due to
the intrinsic piston velocity feedback, the force tracking ability of a hydraulic actuator
could be greatly limited near the natural frequency of the attached system. It was further
pointed out that simple control strategies, such as a Proportional-Integral-Derivative
(PID) control, are not sufficient for a system in force control using servo-hydraulic
actuation, and more advanced control algorithms are necessary.

The interaction between the actuator and the attached structure can be found in other
applications of hydraulic actuation under force control, such as in Niksefat et al. (2001).
It is evident in their derivation of the transfer function of the controlled system that the
poles of the structure attached to the actuator are also the zeros of the overall transfer
function. However, the dynamics of the attached structure was stiffness-dominant (the
system mass and damping were negligible), therefore the natural frequency of the system
was very large, and the effect of the natural velocity feedback were neglected.

1.3.3 Velocity Feedback Compensation

The detrimental effect of the natural velocity feedback on a force-controlled test
system was observed during the development of the EFT method. As discussed
previously, a solution, velocity feedback correction, was proposed by Murcek (1996) and
implemented by Timm (1999) to compensate for the effect. The experimental results
showed success of the solution under limited conditions. In the solution, a positive
velocity feedback loop was added to the control of the servo-system to eliminate the

interaction between the actuator control and the structure attached to the actuator.
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Similar concepts can be found in other applications of servo-hydraulic actuation.
Heintze (1997) discussed a "cascade AP inner-loop control" of a servo-hydraulic actuator,
which combined with a displacement controlled outer loop, improved the position
tracking ability of a brick-laying robot. In the inner-loop control, a velocity feedback
compensation, which was conceptually similar to the velocity feedback compensation,
was used to decouple the dynamics of the actuator load (i.e., the structure attached to the
actuator) from the actuator control. Schothorst (1997) further explained the concept of
the "cascade AP inner-loop control", and pointed out that the inner-loop control would
make the actuator act as a force generator (i.e., the actuator would follow a force
command). The inner-loop control combined with a multi-fold outer-loop control
(displacement, velocity, and acceleration) was used to control a flight simulator.

In both applications, the structures were mass-dominant systems, thus the natural
frequency of the structure was very small. In addition, force tracking was not the control
objectives, and velocity feedback compensation was treated as a means for improving the
performance of the outer-loop control. The compensated was based on the desired
velocity of the flight simulator or the estimated velocity of the robot arm, resulting in
feedforward compensation. Consequently, the importance of the response delay of the
servo-system was not noticed. To avoid potential instability, undercompensation by
using a larger servovalve flow gain in the compensation was recommended (Heintze et
al., 1995).

Alleyne (1996) proposed a Lyapunov-based control algorithm for force tracking of a
servo-hydraulic actuator in applications of a machine tool axis. The control algorithm

was later applied to the control of an active automobile suspension system (a structure
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with mass, damping, and stiffness) (Alleyne et al., 2000). In the experimental study, the
excitation frequency (1 Hz) was not close to the natural frequency of the test setup (4
Hz), and the system damping was large (25% of critical damping). Therefore, the effect
of the natural velocity feedback was not clearly demonstrated. The Lyapunov-based
algorithm was further simplified such that the determination of the system input (desired
valve command) included a velocity feedback compensation term. It was further pointed
out that if the dynamics of the actuator load were well known, the velocity feedback
compensation could actually be replaced by a feedforward compensation as indicated by
Heintze et al. (1995). However, the coefficient of the velocity feedback compensation
term was not explicitly given.

Although aforementioned studies have provided some information regarding the
natural velocity feedback and the velocity feedback compensation, their effects on an
EFT system (a force-controlled system) have not been fully understood. The EFT system
is unique because force tracking of the actuator is the control objective, and the behavior
and the dynamics of the test structure are typically not known before testing. Therefore,
it is necessary to systematically investigate the natural velocity feedback and its
compensation. For this purpose, detailed mathematical models of the system including
system nonlinearities are necessary.

1.3.4 Servo-system Modeling

Modern servo-hydraulic control dates from World War II, when Mr. Moog invented
the servovalve (Maskrey et al., 1978). Ever since then, servovalves have seen numerous
applications in transportation, machinery, missile, and robot control. The great demand

for this highly efficient means of power transmission has fostered the rapid development
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of modern hydraulic control engineering. The text by Merritt (1967) covers the
fundamentals, operating principles, modeling, and analysis of hydraulic control
components and systems. Nonlinearities in control systems briefly mentioned at the end
of the text have been further studied by others for various applications. In addition, the
specification standards for servovalves (Thayer, 1965) and specifications for individual
products, such as Moog specifications and MTS specifications have been helpful for
people to understand and model the behavior of servovalves and actuators.

Based on the well-documented operating principles of servovalves, various models
with different complexity levels have been derived for individual applications. Nikiforuk
et al. (1969) presented a detailed analysis of a two-stage servovalve, which considered
the dynamics and interaction of major valve components, such as a nozzle-flapper and
spool. Wang et al. (1995) developed a detailed nonlinear model for a two-stage MTS
servovalve, in which the component dynamics and interactions, such as jet flow forces on
the pilot-stage spool were considered. Theyer (1965) provided a "simplified" model for
two-stage Moog valves, which included armature-flapper dynamics of the first-stage
valve. Schothorst (1997) and Heintze (1997) considered the flapper-nozzle dynamics for
the pilot-stage in their modeling of a three-stage servovalve. The dynamics of the main-
stage spool was omitted; instead the main-stage spool velocity was directly related to the
pilot-stage flow by a constant. A nonlinear main-stage flow property was observed
during their system identification though a single flow gain was used in the controller
design. A problem with these complex models is that it is difficult to accurately
determine the model parameters.

On the other hand, simple models have been developed and used in many engineering
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applications of servovalves. Newell et al. (1995) presented a model for a two-stage
servovalve used in a small-size sliding shake table. The dynamics of the servovalve was
represented by a first-order transfer function, and the actuator piston friction and the load
pressure influence on the servovalve flow property were considered. Conte et al. (2000)
derived a linear model for a three-stage servovalve used in controlling a uni-axial shake
table. The servovalve dynamics were represented by a gain and a response delay term.
The valve flow was assumed proportional to the servovalve spool opening. Gavin (2001)
described a two-stage servovalve model, in which the servovalve dynamics were
approximated by a first-order term, and the nonlinear servovalve flow property (i.e., load
pressure influence) was linearized using Taylor's expansion as described in Merritt
(1967). These simple models are helpful for linear system analysis and linear controller
design; however, simple models can be insufficient to capture the significant nonlinear
dynamics of a servo-system.

To implement the effective force testing method, large size servovalves are necessary
for testing large size structural systems undergoing large velocities. Hence, there is a
need for accurate yet uncomplicated servo-system models that can capture the major
dynamics and nonlinearities of a three-stage servovalve. In the mean time, the model

parameters should be identifiable with typical structural laboratory equipment.

1.4 Objectives and Research Scope
The purpose of the research was to extend the development and implementation of
the EFT method to fully utilizing the capacity of test equipment and to testing nonlinear

SDOF structural systems undergoing large deformations in real time. The objective of
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the research was to control the actuator to follow effective force commands accurately
and robustly even when the servo-system was taken into its nonlinear range of behavior
as the test required large hydraulic power (flow). The feasibility of the EFT method was
examined by comparing the forces applied to the test structures (measured by a load cell)
with respect to the command forces (effective forces). Comparison of structural
responses provided a secondary validation of the compensation scheme designs.

The objective of this research was accomplished in two phases. In the first phase,
detailed mathematical models for a test system were derived to better understand the
system behavior and to facilitate the development of the velocity feedback compensation
schemes. Numerical simulations and linear system analysis were conducted to
investigate potential stability problems. Experimental tests on a simple SDOF (mass-
spring-damper) structure were used to validate the analytical results. The structure was
designed to have repeatable nonlinear structural behaviors such that the effect of
structural nonlinearities on the test system performance could be studied.

In the second phase of the study, a one-story steel structure was tested on a shake
table at the University of Illinois and using EFT at the University of Minnesota. Results
obtained using two earthquake simulation techniques were compared to validate the EFT
method, and to verify the feasibility of the proposed nonlinear velocity feedback
compensation scheme. The comparison included both global responses (effective forces,
structure accelerations, velocities, and displacements) and local responses (damper
forces, and column base shears).

The dissertation is organized as follows. Chapter 2 presents fundamentals and

background knowledge in structural engineering, hydraulics, and control engineering,

12



which are essential to understanding and modeling the test system. Chapter 3 contains a
derivation of a servo-system model for the simulation of the system behavior and for the
design of velocity feedback compensation schemes. Chapter 4 describes the system
identification, in which the parameters used in the models developed in Chapter 3 were
determined with available resources and designed experiments.

Chapter 5 presents an analysis of the natural velocity feedback and the concept of
velocity feedback compensation. A nonlinear velocity feedback compensation scheme
was designed and validated analytically. Chapter 5 also summarizes an investigation of
the effects of three critical parameters on the performance of the velocity feedback
compensation. Chapter 6 presents the experimental validation of the proposed nonlinear
velocity feedback compensation and the conclusions drawn in Chapter 5 regarding the
critical parameters.

Chapter 7 presents a discussion of important factors that can affect the performance
of the EFT method and related stability problems. Chapter 8 summarizes a proof-of
concept test for the EFT method, in which a one-story steel structure was tested using a
shake table and the EFT method, and test results were compared. Finally, Chapter 9
summarizes the conclusions drawn from the research at the University of Minnesota on
the implementation of nonlinear velocity feedback compensation for effective force

testing.
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CHAPTER TWO

BACKGROUND AND FUNDAMENTALS

When testing structures using the EFT method, servo-hydraulic actuators are powered
by hydraulic fluid under pressure and in force control (i.e., the command and feedback
signals are forces). The multidisciplinary research requires knowledge in structural
dynamics, hydraulics, and modern feedback control. This chapter provides some basic
engineering concepts and methods in these fields to facilitate the understanding of the

physical system operation, test system modeling, and control algorithm design.

2.1 Dynamic Analysis of SDOF Structures

Structures, such as highway bridges and one-story buildings can be modeled as
single-degree-of-freedom (SDOF) systems when subjected to earthquake loadings. The
equation of motion for a SDOF system in Eq. (1.1) can be derived from D'Alembert's
principle of dynamic equilibrium. The equation in a more general form is

m + fy + fg = —mX, 2.1

where fp is the damping force and fs is the resistance force.

The damping component models the energy dissipation of the structural system.
Although many mechanisms contribute to the energy dissipation, damping in structural
systems is usually idealized as viscous damping (causing an exponentially decaying free

vibration response) and Coulomb friction (causing a linearly decaying free vibration
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response) (Chopra, 1995). The damping can be further idealized by an equivalent
viscous damping (i.e., f, =CX) to simplify system analyses.

Force fs represents the force-deformation relation of a structural system, and is
usually determined by structural analysis or through static loading tests. This relationship
is of interest because it describes the ability of the structure to resist external forces.
Typically, the initial structural response is linear elastic (i.e., the resisting force is
proportional to the structural deformation, fs = kx). Beyond the linear elastic range, the
structure can be either nonlinear elastic, such as the one shown in Chapter 3 through
Chapter 7 or nonlinear (i.e., the resisting force is a function of the structural deformation
history), such as the one shown in the proof-of-concept test in Chapter 8.

The governing differential equation of a linear elastic structure subjected to sinusoidal
force is

mX 4+ CcX +kx = p, sinwt . (2.2)
The solution of Eq. (2.2) with zero initial conditions (i.e., X(0)=0 and X(0)=0) is

(Chopra, 1995)

X(t) = e (Acos wyt + Bsin w,t) + Csin wt + D cos ot (2.3)
where
c_ P 1-(w/a)
k [1—(0)/0)”)2} +[2¢ (w/o,)] 04
D= Py —2?((0/(0”) .
K [1—(0)/(0r1 )2} +[2§(a)/a)r1 ):I2
and
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A=-D
oo (2.5)

N

where @, =./k/m is the natural frequency, @, =+/1-¢"®,, is the damped natural

frequency, and { = C/ (24/mk) is the damping coefficient of the structure. The vibration

at the forcing frequency persists (thus called steady-state response) while the transient
response decays with time due to structural damping. The decaying rate and pattern
depend on the structural damping.

If the forcing function is an earthquake ground acceleration input, numerical methods,
such as the Newmark- method (with y = 1/2 and S = 1/4), were used to solve the
equation of motion. When the structure went into the nonlinear range of behavior,
Newton-Raphson iteration was applied to each incremental time step to minimize
computational errors. The calculated structural responses (referred to as expected
responses) were compared to measured responses.

The effective forces were applied to the structure through an actuator, which was
powered by hydraulic fluid under pressure. Hence, knowledge of hydraulics is essential

for understanding and modeling the servo-system behavior.

2.2 Fluid Mechanics

A petroleum-based fluid, Mobil DTE 25, was used in the servo-system of this study
(MTS, 1994). Some physical properties of hydraulic fluids such as density, viscosity,
and bulk modulus and fluid flow such as Bernoulli's equation and Reynolds number are

introduced in this section. In addition, the properties of hydraulic flows through orifices
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are discussed in detail because flow through orifices enables the hydraulic power
transmission from the supply (hydraulic pumps) to applications.
2.2.1 Hydraulic Fluid Properties
Density

The weight density, 7 (in terms of 1b/in®), of a Mobil DTE 25 fluid is 0.0319 Ib/in® at
0°F (Exxonmobil, 1996). The variation of the weight density with the temperature of the
fluid is

Yar =0.0319—-0.144 x10*(T - 60°F) (2.6)

where T is the temperature in Fahrenheit. The fluid temperature in the operation of the
servo-system was typically around 120°F; therefore, the weight density of the Mobil DTE
25 fluid under the operating condition was approximately 0.031 Ib/in’.

The mass density of the fluid p, in units of Ib-sec?/in”, can be calculated using
p== 27)
g

where g is the acceleration due to gravity, 386.1 in/s*>. For the Mobil DTE 25 fluid in the
test system in operation, the mass density is 0.8 x10™* Ib-sec’/in".
Viscosity

Viscosity of the fluid represents the friction between fluid layers when relative
motion between layers occurs (resembles the damping of a fluid in motion). The absolute
viscosity of a fluid z, in units of Ib-sec/in’, is directly defined as the ratio of the friction

force to the velocity gradient. In terms of x the kinematic viscosity is defined by
y=H, (2.8)
yo,
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and appears in many equations and definitions of fluid properties.

The fluid viscosity varies with the fluid temperature. For a Mobil DTE 25 fluid, the
kinematic viscosity was typically 0.066 in“/sec at 104°F and 0.01 in“/sec at 212°F
(Exxonmobil, 1996). Through linear interpolation, the kinematic viscosity was 0.058
in*/sec at the common operation temperature (120°F).

Bulk Modulus

The bulk modulus S of a fluid describes the change in the fluid volume along with the

change in fluid pressure at a constant temperature T, and is defined as

4(3)

where V is the volume of the fluid, Vj is the initial total volume of the fluid, and P is the
pressure to which the fluid is subjected.

The bulk modulus of a fluid represents the “stiffness” of the fluid. The bulk modulus
for Mobil DTE 25 under 3000 psi pressure was 253.7 ksi at 120°F. However, a value as
high as this is rare in practice because entrapped air can significantly reduce the bulk
modulus. Because an accurate measurement of the bulk modulus is difficult to obtain,
experience is essential in estimating the bulk modulus of the fluid in the servo-system.
According to Merritt (1967), an effective bulk modulus (4) of 100 ksi can yield reliable
results for petroleum base hydraulic fluids. The effective bulk modulus value was used
throughout this study.

2.2.2 Hydraulic Flow
The analysis of a general compressible flow is not necessary for most applications of

hydraulic actuation in structural/material testing because the typical operation pressure (3
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ksi) of a hydraulic fluid is small compared to the bulk modulus of the fluid (£, 100 ksi).
In addition, the pressure variation that affects the volume of the fluid is negligible
(typically less than 1 ksi). Therefore, incompressible flow is a good approximation of the
hydraulic flow in the test system, and an analysis of flow of an incompressible fluid with
a constant density and viscosity is discussed next.
Navier-Stokes Equations

The equation of motion of a flow can be derived by applying Newton’s second law to
an infinitesimal control volume (Street, 1993). The resulting Navier-Stokes equations is
given here for a two-dimensional incompressible flow with a constant mass density of p

and an absolute viscosity of z,

ot OX 0z OX ox> oz’
(2.10)
oW oW oW oP o’'w  o*w
pl—+U—+W— |=pZ ——+ > >
ot OX 0z 0z OX 0z

where U and w are the velocity components of the flow in the x and z direction of
Cartesian coordinates, respectively, t is time, X and Z are the body forces per unit volume
in the X and z directions, respectively, and P is pressure acting on the fluid.

Fluid motion (flow) is generally dominated by either inertia forces (mass) or friction
forces (viscosity). Flows dominated by inertia forces are referred to as turbulent, and are
characterized by irregular motion of fluid particles while flows dominated by viscosity
are referred to as laminar, and are characterized by orderly motion of fluid. The different
regimes of a flow can be distinguished by its Reynolds number.

Reynolds Number

The Reynolds number, a dimensionless quantity, is used to describe the transition
19



from inertia-dominated flows to viscosity-dominated flows (Street, 1993). The Reynolds

number is defined as the ratio of the inertial forces to the friction forces of a flow,

R-pud _ud @.11)

U 1%
where U is the average velocity of the flow and d is a characteristic length of the flow.
The flow velocity can be approximated by the total flow rate divided by the cross-
sectional area of the flow while the characteristic length is different from one case to
another, and is typically related to the geometry of the flow passage.

The behavior of laminar flows could be obtained by solving the Navier-Stokes
equation, while obtaining the behavior of turbulent flows is typically empirical (Merritt,
1967). On the other hand, solving the Navier-Stokes equations for general flow
relationships is neither practical nor necessary for engineering practices. In many cases,
such as flows in pipes or through orifices, simplified analyses can be used to generate
accurate and useful results.

Potential Flow and Bernoulli’s Equation

For a flow in a cylindrical pipe or through an orifice, friction forces are important
only on boundaries, such that the flow away from the boundary is dominated by inertial
forces, but behaves like a laminar flow. If the boundary can be neglected, the resulting
orderly flow dominated by inertial forces is termed potential flow (Merritt, 1967).

Consider an incompressible potential flow subjected to a negligible body force. In its

steady state, the following assumptions can be made: du/dt =0 (steady state), X =0 (no
body forces), and ¢ =0 (no friction forces in main body of flow). The general Navier-
Stokes equation (2.10) reduces to
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yM__LP (2.12)
OX p OX

and after integration to

u2

—+E = constant . (2.13)
29 7

Eq. (2.13) is called Bernoulli’s equation. Note that an average velocity across the
flow section is used in Bernoulli’s equation to simplify the analysis. Bernoulli’s equation
can be used to describe flow through orifices, which is the basic means of controlling
hydraulic power in a servo-system.

Flow through Orifices

An orifice is a sudden change in a flow passage or a sharp-edged opening. The flow
through an orifice inside a cylindrical pipe shown in Fig. 2.1 is comparable to the flow in
a servovalve. Referring to Fig. 2.1, the application of Bernoulli’s equation at a point
upstream (point 1) and a point a distance away from the orifice downstream (point 2,

termed vena contracta) yields

2 2
W P _W LR onstant (2.14)
29 y 29 vy

where P; and P; represent the pressure upstream and downstream, and U; and U, are the
average velocities of the flow at the two points, respectively.
For an incompressible flow, the conservation of mass requires
Q=Au =Au, (2.15)
where Q is the flow rate in in3/s, and A; and A, are the cross-sectional area of the flow at
the two points under consideration. The cross-sectional area of the pipe A; is readily

known while the vena contracta area A; is usually difficult to obtain. To facilitate the
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analysis, the vena contracta area is replaced by the modified orifice area CcAo.

Substituting (2.15) into (2.14) gives

Q=C A /%(PI—PZ) (2.16)

where C, =C, / \/l—Cf(Ab/ A)’ is the discharge coefficient of the orifice flow. The

discharge coefficient is a function of orifice geometry and the flow properties, and is
difficult to obtain analytically except for a few ideal cases.
Discharge Coefficient

The discharge coefficient of a flow is usually expressed as a function of its Reynolds
number. Because the Reynolds number is linked back to the flow rate to be determined,
discharge coefficients are often estimated experimentally. Figure 2.2 shows a discharge
vs. Reynolds number plot for a pipe orifice flow that is closer to a laminar flow than a
turbulent flow (Merritt, 1967). The discharge coefficient increases rapidly with an
increase of Reynolds number for a low Reynolds number range. Beyond that region, the
discharge coefficient decreases asymptotically to a constant value as the Reynolds
number increases.

The submerged orifice shown in Fig. 2.3 can be characterized in a similar way. In
this case, the upstream pressure keeps constant, and the downstream pressure varies,
which are similar to a valve orifice with a constant pressure supply, and variable load
pressure. As can be demonstrated, the relationship between the flow rate Q and the
pressure drop across the orifice (P1-P2) is similar to Eq. (2.16). Again, the discharge
coefficient can be treated as a function of the Reynolds number. A typical plot of the

discharge coefficient vs. Reynolds number for this flow case is shown in Fig. 2.4 (Street,
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1993). Similar observations can be made: the flow discharge increases rapidly with an
increase in the Reynolds number at the low Reynolds number region. After the peak, the
flow discharge decreases asymptotically.

Therefore, the nature of the discharge of an orifice flow is nonlinear with respect to
the Reynolds number, which is a function of the fluid properties and orifice geometry.
However, experience has shown that a discharge coefficient of Cq = 0.6 may be a good

approximation for flows through small orifices (i.e., A, << A)) (Merritt, 1967).

The flow through servovalve orifices enters actuator chambers to cause differential
pressures and generate mechanical forces that are applied to test structures. The relation
between hydraulic flows and the resulted mechanical forces is described by the law of
conservation of mass.

2.2.3 Continuity Equation

Consider a fluid with a mass density p in a controlled volume Vj (e.g., an actuator
chamber), the law of the conservation of mass states that the rate of the mass change in
the volume must be equal to the incoming flow rate minus the outgoing flow rate

(Merritt, 1967). Therefore,

d(pV,) dv, . d
SM, - S My, = (c’j’tO)=p dt°+v0d—’to (2.17)

where M=pQ, and Q is the flow rate. The mass density p is a function of pressure and
temperature of the fluid inside the control volume. The first-order terms Taylor's series

expansion may be used to approximate the small variation of p (Merritt, 1967),

op apj
do=|-%Xt| dP+| = | dT. 2.18
P (apl +(6T . 219
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Because the temperature of hydraulic fluids in operation is approximately constant,
the rate of change in density of the controlled fluid volume (i.e., pV=constant) as a

function of pressure is

dp dP1(0 [ 1(ov dP
_P:p__(_/’j _,® __(_j _pdP (2.19)
at  “dt plop ), Pt vier )| gt

Substituting Eq. (2.19) into Eq. (2.17) and dividing both sides by o gives

ZQin _ZQout =%+\%2_T' (220)

The law of the conservation of mass shown in Eq (2.20) indicates that the net flow
into a controlled volume (such as an actuator chamber) is consumed by the expansion of
the volume and the compression of the fluid inside the volume due to increased pressure.
Note that the compressibility of hydraulic fluids is small enough that the mass densities
of the incoming fluid, the outgoing fluid, and the fluid inside the volume are assumed
identical.

Hydraulic power is transmitted from supply sources (e.g., a hydraulic pump) to test
structures through controlled orifice flows described using Egs. (2.16) and (2.20). Such
control of the power transmission is made in real-time automatically through actuators,
servovalves, and their controllers. Therefore, knowledge of general dynamic systems and

feedback control is essential in understanding the behavior of a test system.

2.3 Feedback Control of Dynamic Systems
Dynamic systems are usually modeled by differential equations. The response of the

systems to an input can be obtained by solving the governing differential equations for
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the input. Similar to the dynamic analysis of a SDOF structure, numerical simulations
are required to calculate the response of dynamic systems when inputs are arbitrary or
when the system has significant nonlinearities. On the other hand, analyzing system
performances in general, such as stability, is essential in control engineering. Although
stability can be analyzed for nonlinear systems, linearization of the system about an
equilibrium point (e.g., the system null position in this study) can greatly facilitate the
analysis and controller design. For a linearized system with single input and single
output, frequency domain methods of control system design can be applied.
2.3.1 Transfer Function

The response of the one-story structure shown in Fig. 1.1 (a) to an earthquake input

can be determined by solving the equations of motion (mX+ cX +kx =u(t)) in the time
domain as shown in Eq. (2.1) through Eq. (2.5). Specifically, if the input function takes
the form of a complex exponential, u(t) =e*, where s is complex (i.e., S=o + jo), the
particular solution (steady-state response) of the system can be assumed as

X(t) = H(s)u(t) = H(s)e" (2.21)
Substituting Eq. (2.21) into the differential equation of the system gives

ms’H (s)e™ +csH (s)e™ + kH (s)e™ = e (2.22)
and solving Eq. (2.22) for H(S) yields

1 X(t)
ms>+cs+k  u(t)

H(s) = (2.23)

Function H(S) is called the transfer function of the linear system, which directly
relates the system output to the input €. For a general linear system, the transfer

function is defined as the ratio of the Laplace transform of the system output to the
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Laplace transform of the system input, and can be formulated using Laplace transform
theorems with zero-initial-condition assumptions (Ogata, 1997).

A dynamic system may include multiple sub-systems, which are connected in such a
manner that the input of one sub-system is the output of another sub-system. The transfer
function of each component can be placed in a box, and the input-output relationships
between components can be represented by lines with arrow ends. With the resulting
block diagram, the transfer function of the overall system can be obtained following the
rules of block diagram algebra (Franklin, 1999).

The transfer function of a linear system provides an algebraic representation of the
system because it is an operational expression of the governing differential equations of
the system. Once the transfer function of a linear dynamic system is established,
analytical tools of modern control engineering, such as the pole-zero map, root locus, and
frequency response method, can be used to obtain the characteristics of the system.

2.3.2 Pole-Zero Map
If the behavior of a dynamic system is modeled as a group of ordinary differential

equations, its overall transfer function is a ratio of polynomials,

I_|(s)=num(s)=K (s—2)(s—1,) - o)
den(s) (s—p)(S—Pp,)-- : .

where z; (roots of num(s) = 0) are zeros of the system and p;j (roots of den(s) = 0) are
poles of the system, respectively. The poles and zeros of a system can be plotted in the S-
plane (o-axis vs. w-axis), and the resulting plot is called a pole-zero map of the system.
The positions of poles and zeros of a dynamic system in the s-plane indicate the system

characteristics. For example, vibration modes and the frequency and damping of the
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vibration, can be obtained directly from the plot.

Response of systems to a unit impulse input &t) is usually used to explain the
correspondence between system responses and pole positions (Franklin, 1999). The
correspondence is summarized in Fig. 2.5. Poles of a dynamic system decide the shape
of the impulse response (exponential or sinusoidal function). Poles in the left half-plane
correspond to stable responses of the system while right half-plane poles correspond to
unstable responses. The stability criteria can be extended to a system subjected to other
inputs because any input can be viewed as a sequence of impulses. Zeros of a system
affect the system response by limiting the magnitude of the response corresponding to
adjacent poles. Specifically, a zero on top of a stable pole cancels the contribution of the
corresponding response to the total response of the system (Franklin, 1999).

System parameters may change, thus affecting the pole and zero locations and system
characteristics, such as the system stability. The root locus method can be used to study
the changing positions of the poles of a system in the s-plane with respect to the changing
system parameters. In some cases, especially when the coefficients are in a symbolic
form, it is necessary to analyze the stability of a system without solving for the roots of
the denominator of the system transfer function.

2.3.3 Routh’s Stability Criterion

The denominator of a system transfer function, den(s) as shown in Eq. (2.24), is
called the characteristic equation of the system. For an nth-order linear system, the
characteristic equation is an nth-order polynomial:

den(s)=a,s" +a,s""' +a,s" > +...+a,,S+4, (2.25)

where the coefficients a through a, are real quantities. The previous discussion indicates
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that the system is stable if all the roots of this equation have negative real parts. Routh’s
stability criterion provides a necessary and sufficient condition for stability without
solving for the roots of the characteristic equation. A detailed procedure for applying
Routh’s stability criterion can be found in many control engineering texts, such as the
ones by Franklin et al. (1999). An example is shown in Appendix 3 to investigate the
stability of the test system.

Routh’s stability criterion is a useful method for determining the ranges of parameters
from the perspective of stability. On the other hand, such analysis needs an accurate
model of the system while in some cases, an accurate model of the system is not available
due to lack of knowledge and/or unknown system parameters. The system responses to a
series of sinusoidal inputs with various frequencies can be measured to identify the
system model. The response of a linear dynamic system subjected to sinusoidal inputs is
referred to as the system's frequency response.

2.3.4 Frequency Response

For a stable system such as a damped second-order system subjected to a sinusoidal
input, the transient response vanishes after awhile. At the steady-state, the frequency
response of a system can be directly related to its transfer function. For example, given

an input, u(t)= p,sin(a,t), the steady-state response of system shown in Eq. (2.2) is
X(t) = p,M sin(w,t + @) (Chopra, 1995). It can be shown that the amplitude ratio M is

the magnitude of the transfer function of the system shown in Eq. (2.23) evaluated at the
input frequency,

1 .
M = —=|H(ia)

\/(k —ma)j)2 +(ca,)
28
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and the phase difference between the output and input is the phase angle of the transfer
function evaluated at the input frequency,

C

0= tan_l(k—fn)oa)z) = ZH(j,). (2.26b)
0

The magnitude and phase angle of the transfer function of a system can be calculated
for a range of frequencies, and plotted against the input frequencies. The resulting plots
(i.e., magnitude and phase versus frequency) are called Bode plots. Magnitude plots are

usually in logarithmic scale and the standard unit for magnitude is dB, which is equal to

20log|H (jo)

, where the base of the logarithm is 10. The frequency responses of simple
first and second-order systems are discussed as follows.
First-order Term

For a system with H(s)=(rs+1)"", where ris a positive real number, the magnitude

and phase are,

H(jo)|=1/J(@r) +1 (2.27a)

ZH(jo)=—tan " (w7), (2.27b)

as shown in Fig. 2.6. The system output copies inputs with low frequencies while the

response magnitude rolls off at high frequencies. At the frequency w=1/7, the magnitude

of the system output reduces to about 70 percent of the input (1/ V2 , or -3dB) and the

phase angle is -45°. The output always lags behind the input, and when the product of @t
is small, the phase lag can be approximated as,

ZH(jo)=—tan " (w7) = —01 (2.28)

Similarly, for a system with H(s)=(zs+1)"', the magnitude is the inverse of the
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magnitude shown in Eq. (2.27a) and Fig. 2.6. The output has a phase lead (tan'(w7)).

When the product of w7 is small, the phase lead can be approximated as wr.

Second-order Term
1
For systems with H(s)= [(S/a)n )2 +24 (s/w,)+ 1} , such as the one in Eq. (2.2), the

magnitude and phase,

IH(jo)|= /\/(1 —(a)/a)n)z)2 +(2¢ a)/a)n)2 (2.29a)

: 4| 2o/,
H =— —=t n_ 2.29b
ZH(jw)=—tan l:l—(a)/a)n)z}’ ( )

are shown in Fig. 2.7. The system output follows inputs with low frequencies while the
response magnitude rolls off at a greater rate than that in a first-order system at high
frequencies. For systems with low damping, inputs with frequencies around the natural
frequency of the system are amplified.

At the system natural frequency, resonance happens and the magnitude is

L

R (2.30)

H(jo,)|=

The response of a system with very small damping does not have a phase lag; rather the
phase has a sudden change around the natural frequency of the system. However, if the

system damping is large, the phase delay of the system response is not negligible. When

2

—= is small, the phase lag can be approximated by

w,

AH(jw):—z—gw for w << @, . (2.31)
o,

n
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For a system with H(S):(S/a)n)2+2§ (s/w,)+1, the frequency response is the

inverse of the curve plotted in Fig. 2.7. Around the natural frequency of the system, the
response magnitude will reduce depending on the system damping. Specifically, at the

natural frequency of the system, the magnitude becomes
H(jo,)|=2¢, (2.32)

which indicates that a system with a pair of conjugate zeros will not respond well to
sinusoidal inputs with a frequency close to its natural frequency. When the system
damping is zero, the magnitude of the system response to inputs with the system natural
frequency becomes zero.

Any system of the form (2.24) can be expanded in partial fractions with each term a
1 or 2™ order system. These basic terms can be used to generate frequency responses
for the overall system (Franklin, 1999). Fig. 2.8 presents the frequency response of a
third-order system made of a second-order term with a natural frequency of 1.6 Hz and a
first-order term with a time constant of 0.05s. It can be observed that the slope of the
magnitude response after the peak is larger than that in Fig. 2.7 though the basic shape
does not change much. In addition, the phase lag is evident at all frequencies.
2.3.5 Applications of Frequency Response

Many complicated dynamic systems or system components behave in such a way that
they can be approximately modeled using a first-order or second-order transfer function.
Frequency response plots are sometimes given in product specifications for small
amplitude inputs (to keep the system in the linear range of behavior). The frequency

response of an unknown system can also be obtained experimentally using a series of
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sinusoidal inputs or a sinesweep input (sine waves with linearly increased frequencies).
An equivalent system model and the related parameters can be obtained from the
obtained frequency responses.

On the other hand, the applicability of the theories always needs check. For example,
in the study of an EFT system, transient responses are significant in total responses.
Hence, the frequency response method might not be fully applicable in explaining the
system behavior with an earthquake input. On the other hand, transient responses of a
dynamic system are related to their steady-state responses as revealed in Section 2.1.
Specifically, the coefficients of complementary solution of the governing differential
equation are algebraic functions of the coefficients of its particular solution, from which
the frequency response is derived. Therefore, the frequency response method combined
with computer simulation, which includes both transient and steady-state responses, were
used in the study.

First-order model identification

If a system is represented using a first-order transfer function, the required time

constant 7 can be determined by

r=1/w (2.33)
where o is the frequency in rad/s, at which the magnitude response reduces to 1/ 2 (or
roughly 70%) of input.
Second-order model identification

For a second-order approximation, two parameters are to be determined (£ and ).
When the frequency response of a system is obtained experimentally with sinusoidal

inputs, the system damping can be estimated by
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§:2|H(jwn)|'

(2.34)

The natural frequency of the system is the frequency, at which the phase of the system is
90° (7/2).
Phase-lead network

Another example of a first-order system can be found in a phase-lead network,

Tys+1

H(s)=
) als+1

(2.35)

where Tyq is the time constant to be designated, and « is a constant smaller than unity.

The frequency responses,

H(j@)| =1+ (T, ) [{1+(aaT, ) (2.36a)

ZH(jw)=tan™ (oTy)—tan" (aawT,) (2.36b)

are shown in Fig. 2.9 for two time constants (50 ms and 10 ms) and & equal to 0.1. When
T4 is small, the resulting phase lead can be approximated by

LH(ja))=(1—a)T|da). (2.37)

Figure 2.10 shows the phase responses in regular scale. A frequency range exists for

both given systems depending on the time constant Ti4, in which the phase angle is

approximately proportional to input frequency. Within the linear range, the phase lead

can be represented by the slope of the curve, T, determined by
T,=(1-a)T,. (2.38)

The slope has a unit of time, thus called lead-time, which represents the phase lead the

network can provide.
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The effectiveness of a phase-lead network can be affected by the constant « for a
given time constant Tig. On the other hand, a phase-lead network also amplifies signals
as shown in the amplitude response in Fig. 2.9. The amplification is determined by the
constant « because the magnitude of the frequency response becomes 1/« as the input
frequency goes to infinity. A range of values for the constant & may be appropriate for

an application, and a value of 0.1 was chosen for this study.

2.4 Summary

This chapter presents a brief review of fundamentals in structural dynamics,
hydraulics and control engineering, applications of which can be found throughout the
thesis, from system identification/analysis to controller design. The next chapter presents

the system modeling.
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CHAPTER THREE

MODELING OF TEST SYSTEM

It is necessary to establish mathematical models for the test system before system
analysis and control design. The derivation of mathematical models may take many
paths depending on particular situations. Some equations can be obtained by applying
physical principles while others may be approximated from analyzing experimental data.

Both of these techniques were employed in this chapter.

3.1 Description of the Test System

A schematic of the test system is presented in Fig. 3.1, in which a 35 kip MTS 244.52
actuator is attached to a SDOF structure model. The actuator was controlled by a 90 gpm
MTS 256.09 servovalve, which was in turn controlled by an MTS 407 analog controller.
During a test, force command signals were sent from a personal computer to the
servovalve controller, which compared the command signal to a feedback signal and sent
a current proportional to the difference between these two signals to the servovalve to
drive the valve spool. The spool regulated the hydraulic flow entering the actuator,
causing differential fluid pressure across the actuator piston. The pressure difference
multiplied by the piston area was approximately the force applied to the test structure.
The force was sensed by a load cell on the actuator piston, and was fed back to the
servovalve controller to close the control loop.

The servovalve is the key component of the servo-system because it converts
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electronic command signals into physical motion of valve spools, which makes the
regulation of hydraulic flow possible. As schematically shown in Fig. 3.2, the servovalve
contains three stages. The first stage is a torque motor armature, and the second stage is a
spool-type valve. The first two stages form a two-stage servovalve that can be used as a
functional unit. In a three-stage servovalve, a larger size spool-type valve is used to
increase the ability of the servovalve to control flows. In this case, the two-stage valve is

called the pilot-stage valve, and the larger valve is called the main-stage valve.

3.2 Mathematical Models
3.2.1 Servovalve Controller

The control of the system starts from a command signal, which can be generated by
the internal function generator of the MTS 407 controller or an external program input,
such as the effective force inputs in this study. The external input was converted into a
voltage signal by a factor (Cg), which is same as the sensitivity factor of the feedback
sensor (i.e., the load cell for the actuator). The command signal was adjusted by a dither
signal (i.e., a small sine wave with a high frequency (500 Hz)), and then compared with a
feedback signal. The difference between these two voltage signals is called the DC error
(e). The error signal was modified by a Proportional-Integral-Derivative (PID)
controller, and then sent to the valve driver module inside the controller as a valve
command (V). The process is schematically shown in the block diagram of Fig. 3.3, in
which the limit check block represents the £10 volts limit of the electrical signals.

The valve command signal was expressed as

v=C,(G,e+G,e), 3.1)
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where Gy and Gq are the proportional and derivative gain setting of the PID controller,
respectively (Note that the integral gain was always set as zero in this study). The DC
error and its derivative are

e=u-F,é=u-F (3.2)
where U is the command signal (effective force), F is the force feedback measured by the
actuator load cell, and U and F are the time derivatives of these signals.

The valve command signal is the input to the inner feedback control loop shown by
the dashed lines of Fig. 3.1. The inner loop controls the position of the main-stage valve
spool, which is measured by an internal Linear Variable Differential Transformer
(LVDT), and is fed back to the valve driver to close the inner control loop.

3.2.2 Valve Driver Module

The valve driver module inside the servovalve controller functioned similarly to the
outer loop controller except that the valve command signal indicated the desired spool
position, and the feedback signal measured by an LVDT indicated the actual spool
position. A block diagram is presented in Fig. 3.4 to illustrate the inner control loop.
The the DC error of the inner loop, €; is

e =v-KX (3.3)
where Kj is the equivalent sensitivity factor of the LVDT and X, is the main-stage spool

position.

A PD controller was built into the valve control module to adjust the inner loop error
signal before sending it to the pilot-stage valve. Following the tuning procedure of the
servovalve by the manufacturer, a unity proportional gain and a zero derivative gain were

found suitable for the control of the servovalve; therefore, the dynamics of the inner PD
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controller was neglected (i.e., the pilot-stage valve command equals the inner loop error

vV, =¢€;). The dynamics of other components of the servovalve shown in Fig. 3.4 are

described individually in the following sections.
3.2.3 Servovalve (Pilot-Stage)

The pilot-stage valve was a 1 gpm MTS 252.21 servovalve custom manufactured by
Moog, Inc. The first stage was a torque motor armature. Electrical current applied to
coils wound around the armature generated torque, causing the rotation of the armature
and a flapper connected with the armature. The offset of the flapper from its neutral
position caused differential flow/pressure acting on the ends of the spool of the second-
stage valve. The position of the spool was sensed by a center spring, which was an
extension of the flapper. The position of the second-stage spool, in turn, controlled
hydraulic flows to the main-stage valve.

Although it is possible to derive high-order models for the pilot-stage valve including
the dynamics of individual valve components, such as in Nikiforuk (1969), simple
models can be enough to capture the behavioral characteristics of Moog valves (Thayer,
1965). Because the frequency range of interest is typically limited for seismic
applications (e.g., 0-10 Hz in this study), it is only necessary for a model to represent the
servovalve response up to a certain frequency (e.g., 20 Hz). Therefore, a first-order
differential equation is usually sufficient to approximate the flow (Qyp) controlled by the
pilot-stage valve corresponding to an inner-loop command signal (v;). The pilot-stage

valve dynamics was described as

Q,, +Q,, =K,V (3.4)

where K,; is the flow gain of the pilot-stage valve and 7 is the equivalent time constant of
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the pilot-stage valve. The subscription p stands for "pilot-stage valve."
If the response at high frequencies is under investigation, a second-order model can

be necessary (Thayer, 1965)
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va + va = Kvpvi s (3.5)

where ayns and s are the apparent natural frequency and the equivalent damping ratio of
the pilot-stage valve, respectively. The second-order model was used to validate the
parameter identification of the first-order model in the next chapter. Note that an
assumption has been embedded in these models that the pilot-stage flow is proportional
to the position of the pilot-stage spool position. This assumption will also be validated in
the next chapter.

3.2.4 Servovalve (Main-Stage)

The pilot-stage flow controls the movement of the main-stage spool by causing
differential pressures acting on the spool ends. It can be shown that the forces acting on
the main-stage spool, such as the force required to move the spool (the load pressure) is
typically small compared with the available driving force (the pressure supply), and the
motion of the spool is small (on the order of a tenth of an inch) (Chen, 2003). Therefore,
the effects of spool mass, friction, and other forces acting on the spool as well as the
compressibility of hydraulic fluid are negligible (Thayer, 1965). These assumptions
resulted in the following relationship between the pilot-stage flow (Q.p) and the main-

stage spool position (X, )
AX, =Q,. (3.6)

where A, is the main-stage spool area, and ?V is the time derivative of the main-stage
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spool position (velocity of the spool).
The relationship between the valve command signal (V) and the main-stage spool

position (X,) can now be formulated by combining Eqgs. (3.3), (3.4), and (3.6) and
regrouping

AKX, + AR, + K, KX, =K, v. (3.7)
Note that the spool position of the main-stage valve (X, ) has a unit of length. It is often

convenient to normalize the spool position by the maximum spool stroke X as shown

vmax 2
in Fig. 3.4. The normalized spool position is named spool opening (Xy, -1 <X, < 1), and
used throughout the thesis. The main-stage spool regulates the direction and flow of
hydraulic fluid to an actuator.

3.2.5 Main-stage flow

The actuator piston is driven by hydraulic flow under pressure. As the actuator
applies variable loads to the test structure, the pressure inside the two chambers of the
actuator may vary significantly. The pressure change in turn affects the behavior of the
flow through the main-stage valve, thus a detailed analysis is necessary to formulate the
relationship between the main-stage spool opening and the flow to the actuator.

As shown schematically in Fig. 3.5, the main-stage valve is a symmetric spool-type
valve. When the spool is at its null position, there is no flow through the valve because
both load ports are closed to both the supply line and return lines though leakage flows
exist due to the matching tolerance between the spool and its sleeve. When the spool
moves away from its null position (to the right as shown in Fig. 3.5), two similar sharp-

edged orifices are formed, as shown in Fig. 3.6 (a), to allow hydraulic flow into the right
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load port (Q1) and hydraulic flow out of the left load port (Q2). Two other flow passages
are formed as shown in Fig. 3.6 (b) to allow leakage flows into the return lines. The
pressure (P1) inside the right load port rises because of the incoming flow, while the
pressure (P2) inside the left load port drops because of the outgoing flow. The resulting
differential pressure across the actuator piston is defined as the load pressure (PL),

P =P-P,. (3.8)

Flows through the load flow orifices can be described by Eq. (2.16). Therefore

Q] :CdA/s %(PS_F)]) (39)

Q. =CiA. 2P, (3.10)
Yol

where Cy is the orifice discharge coefficient, Ay is the orifice area, Ps is the hydraulic
pressure supply, and p is the mass density of the hydraulic fluid. Note that the return
pressure was assumed zero in the above derivation. The orifice area is related to the
spool opening by

As = WX, | = wlx, |x (3.11)

Vmax

where W is the area gradient (perimeter) of the valve spool.
When the spool moves away from its null position, the resulting leakage orifices are

small annular orifices, which are greatly different from the load flow orifices. Therefore,

instead of using Eq. (2.16), the leakage flows was approximated by (Merritt, 1967)

_arel L 3(e) e
Q3—6ﬂ|_[1+2(cj }(Ps P) (3.12)
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arc’| . 3(eY
Q,= 6L {HE(EJ }Pl (3.13)

where I, C, and € are servovalve geometric coefficients as illustrated in Fig. 3.6 (b), u is
the fluid viscosity, and L is flow passage length (X, in this case). Again, the return
pressure was assumed zero. As can be seen, leakage flows are proportional to 1/x, for a
given valve (i.e., fixed geometric coefficients); therefore, the valve leakage reduces as the
spool opening increases (Merritt, 1967).

For a symmetrical critically centered valve,
Q =Q, (3.14)
Q,=Q, (3.15)
Substituting Egs. (3.9) and (3.10) into Eq. (3.14) yields
P.=P+P,. (3.16)
Note that the same result can be obtained by substituting Egs. (3.12) and (3.13) into Eq.

(3.15). Solving Eq. (3.8) and Eq. (3.16) simultaneously gives

p-F ; R (3.17)
P, = PSEPL (3.18)

Finally, the load flow (Q.) (the flow into/out of the actuator chambers) can be

determined by
Q =Q-Q, (3.19)
Q=Q,-Q, (3.20)

By substituting Egs. (3.9), (3.13), and (3.17), into Eq. (3.19), the load flow equation
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becomes

1 arc’ 3(eY |P. +P
—ca Lp_py_ 1+3(8) |RtR 321
Q. =C A, p(s ) 6~V{+2(c)} 5 (3.21)

Because the leakage flow can be viewed as part of the flow leaving a control volume (i.e.,
an actuator chamber), it is neglected in determining the flow property of the valve to
simplify the system analysis. Its effect is considered in the analysis of the actuator

dynamics in the next section. Therefore

QL=CdA/s1/%(Ps_PL) (3.22)

When the spool moves in the opposite direction (to the left), the resulting load

pressure would be -P, and the load flow can be determined by
1
QL :_CdA/s ;(Ps + PL) (323)

where the minus sign indicates the direction of the flow is opposite to that of the previous

case. Combining Eqgs. (3.22) and (3.23) and applying Eq. (3.11) gives

Q =KX, /1—|§—V|% (3.24)

where K, = (Cd WX, .. 1/ P |/P. is called the flow gain of the servovalve. Note that the

S

flow gain is proportional to \/E . This relation is used to calculate the flow gain of the

S
main-stage valve in the next chapter.
Hydraulic fluid flows into one actuator chamber and out of the other chamber, thus
raising the pressure on one side of the actuator piston while reducing the pressure on the

other side by roughly the same amount. It is now necessary to formulate the relationship
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between the load flow (QL) and the resulting load pressure (P.).
3.2.6 Actuator

The actuator piston for a double acting actuator is schematically shown in Fig. 3.6.
The servovalve spool opening is assumed positive as shown in Fig. 3.5, which causes
hydraulic fluid flow into the right chamber of the actuator. The resulting pressure
difference causes a tension force of the actuator piston, which is defined as a positive
force herein. The law of conservation of mass shown in Eq. (2.20) can be used to relate
the load pressure to the load flow.

It is necessary to first define the leakage flows shown in Fig. 3.6. The clearance
between circular actuator piston rings and their sleeves forms an annular flow passage
that allows a leakage flow. Similar to Eq. (3.12), the cross-port leakage (i.e., leakage

from one chamber of the actuator to the other) is

Qy=C,(R-P) (325)

3 2
where C;) = 76[rCL {1+§(E) } is the internal leakage coefficient. The external leakage
7 c

flows (i.e., leakage from actuator chambers to the drain ports) are approximated by
Qi =C,P, 1=1,2 (3.26)

where Cgp (similar to Cjp) is the external leakage coefficient and P; is the pressure inside
the actuator chambers.
Applying the continuity equation (2.20) to both chambers yields

v VR

Ql_Cip(Pl_Pz)_Ceppl _E ﬂe dt (327)
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v, v, dR

Cip(Pl_Pz)_CepPZ_Q2= dt ﬂe dt

(3.28)

where Q1 and Q- are flows into/out of the actuator chambers, V; and V; are the chamber
volumes, P; and P, are the chamber pressures, respectively, and t is time.

It is appropriate to assume that the volume of the pressure side chamber increases
while the volume of the return side chamber decreases simultaneously. The volume

change equals the piston area times the piston stroke, therefore

V=V, +AX, % = AX (3.29)
V, =V, — AX, %=—AX (3.30)

where Vp; and Vy; are the initial volumes of the chambers including the connecting lines,
A is the actuator piston area, and X is the actuator piston movement. Because the actuator
piston is rigidly connected between the test structure and an assumed rigid support, X is
also the structural displacement response. Similarly, the actuator piston velocity X is
also the structural velocity response.

Differentiating Eq. (3.17) and Eq. (3.18) once with respect to time gives (assuming

that the variation of the pressure supply is negligible)

B:ldi (3.31)
dt 2 dt

@z_lﬂ (3.32)
dt 2 dt

Substituting Egs. (3.29) through (3.32) into Eq. (3.27) and Eq. (3.28) and subtracting Eq.

(3.28) from Eq. (3.27) yields
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.V, dP
(Q+Q,)-2C, (P —P,)~Cy (P —P)=2A%+ L —L

TR (3.33)

where V, =V, +V, is the total contained volume of both chambers.

Recall that Q1 and Q> are slightly different from the load flow Q. determined by Eq.
(3.22) due to the neglected servovalve leakage. The leakage flow is now considered in

determining the flow (Q; and Q) to the actuator chambers,

Qlan :QL_Qw- (334)
The valve leakage flow Qy is
3 2
Q, = mi 1+§[E] Rrh (3.35)
61X, 2\c 2

It can be seen that the leakage flow can be treated as two parts: a "constant leakage"
(related to Ps) and a "proportional leakage" (related to P.). The proportional leakage is
considered here while the effect of the constant leakage will be investigated in Chapter 7
through computer simulations. In order to the facilitate the system analysis, the
complicated servovalve leakage was further approximated by

Qv=C,R, (3.36)

Substituting Egs. (3.8), (3.34), and (3.36) into Eq. (3.33) yields

Q. =K,P +C,P_+AX (3.37)
where K, =V,/4/8, is the compressibility coefficient of the hydraulic fluid inside both

actuator chambers, and C, =C,, +C, +C, /2 is the total leakage coefficient of the

servovalve/actuator combination.

Eq. (3.37) indicates that the load pressure is affected by the velocity of the actuator
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piston/test structure. The load pressure multiplied by the piston area (P LA) gives the
force (F) applied to the test structure; therefore, the applied force is affected by the
structural velocity response. The effect will be discussed in detail later in the system
analysis.
3.2.7 Test Structure

The test structure was modeled as a SDOF system. Both viscous damping and
Coulomb friction were considered in the following equation of motion,

F—F, =mX+cx+kx, (3.38)
where F. is the Coulomb friction of the test structure, m, ¢, and K are the structural mass,
damping, and stiffness, respectively. When implementing the structural model in
computer simulations, a situation must be considered where a total driving force is
smaller than the designated Coulomb friction. In the block diagram model shown in Fig.

3.8, the total driving force F —(mX+ cX+kx) is compared with the designated friction

force; then, the real friction takes the smaller value between these two forces.

If the friction is small enough such that the structure is able to move smoothly, the
friction effect can be approximated using an equivalent viscous damping (Chopra, 1995).
The dynamics of the test structure can then be described by

F=mX+cx+kx, (3.39)
where the same notation C is used to represent the total equivalent viscous damping.

In summary, the major function of the servovalve controller (a PID controller) is
described by Eq. (3.1). The dynamics of the three-stage servovalve within a certain range
of frequencies (0-10 Hz) can be represented by Eq. (3.7). The flow property of the

servovalve is defined by Eq. (3.24). The dynamics of the actuator described by Eq.
47



(3.37) relates the hydraulic flow to the actuator to the force acting on the test structure.
These equations along with structural models given in Eq. (3.38) or (3.39) can be solved
simultaneously to simulate the dynamic response of the test structure subjected to
effective forces applied by a servo-hydraulic actuator. Computer simulations can be used

to obtain the system responses.

3.3 Computer Simulation Models

Block diagrams are often more convenient for revealing relationships between
individual components, such as the effect of the piston/structure velocity on the actuator
dynamics shown in Eq. (3.37). To construct a block diagram, the dynamics of the system
components in terms of transfer functions are formulated as follows.

In the frequency domain, the transfer function corresponding to Eq. (3.1) is
H, =C¢ (G, +Gys). (3.40)

The first-order model of the pilot-stage valve, Eq. (3.4) is

KVp
= , (341
7S+1

sp

and the dynamics of the main-stage spool, Eq. (3.6) is

1

H,, = s (3.42)

By applying principles of operational algebra to the block diagram model of the inner
loop control shown in Fig. 3.4, the transfer function for the three-stage servovalve can be

derived as
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. 1+ HSpHsmK3 vaax - TA,82 + A\IS + I<3|<Vp vaax ‘

(3.43)

The flow property of the main-stage valve remains the same as Eq. (3.24). The
transfer function for the actuator dynamics is cross-linked with the dynamics of the test
structure, for which the transfer function is formulated by

A

Hy=—75—"—.
ms- +cs+k

(3.44)

st

The block diagram model portion shown in Fig. 3.9 was used to demonstrate the
interaction between the piston (structure) velocity and actuator dynamics. The summing
point represents the law of the conversation of mass: the flow driven into the actuator
chamber needs to counteract the compressibility of the hydraulic fluid, the leakage flow,
and the chamber volume variation represented by AX. The corresponding loop from the
structural velocity to the summing point is the natural velocity feedback loop discussed in
Dyke et al. (1995).

The block diagram model of the overall test system is shown in Fig. 3.10, in which
masked blocks are used to represent the dynamics of the analog controller, servovalve,
and the SDOF structure. Computer simulations were conducted with SIMULINK® 3.0, a
dynamic system simulation package for MATLAB® version 5.3. In addition to computer
simulations using the nonlinear high-order models, linear system analysis was used to
provide closed form derivations and solutions for the linearized systems within a limited
range of system parameters. Linear system analysis was also used to study the stability

of the test system.
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3.4 Models for Linear System Analysis

Nonlinear models were approximated within a useful, though limited, range as linear
systems, and high-order transfer functions were approximated using low-order transfer
functions within a certain range of frequency. For example, the nonlinearity, load
pressure influence in the servovalve flow property, states that the load flow is
proportional to the square root of the supply pressure minus the load pressure. When the
load pressure is small, such that the square root term is close to unity, the nonlinear flow
model shown in Eq. (3.24) can be simplified to a linearized approximation,

Q=K/x,. (3.45)

The derivative gain of the servovalve controller is usually very small (on the order of

a tenth of millisecond), thus for low frequencies, the PID controller was approximated by

V=G,e. (3.46)

In addition, for low frequencies (i.e., well below the roll-off frequency of the servovalve),
such as frequencies below 10 Hz in this study, the servovalve dynamics shown in Eq.
(3.7) were represented by the linear relation,

X, =K.\, (3.47)

Vv S

where K, = is the valve gain.

K3XVmax

With the linearized system models, control engineering techniques such as pole-zero
mapping and the frequency response method shown in Chapter 2 was used to provide
insight to the system behavior including system stability. Preliminary system analysis

was conducted to study the interaction between system components and to form the

transfer function of the test system.
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3.5 Linear System Analysis
With the linearized component models shown in Eq. (3.45) through (3.47), the block
diagram model of the test system shown in Fig. 3.10 was used to formulate a transfer

function (Ggy) from the force command to the force output,

AK,C.K.G, (ms® +cs+k)

. 3.48
A’s +(K,s+C))(ms® +cs+k) + AK,C K .G (ms® +cs +k) (3.48)

GFu(S) =

The numerator polynomial includes the denominator of the structure transfer function

(ms® +cs +k); therefore, the poles of the structure are also zeros of the overall transfer
function. The second-order term in the numerator indicates that the force output of the
system will not respond well to command forces that have frequencies near the natural
frequency of the second-order term (i.e., the natural frequency of the test structure).

Note that the natural velocity feedback exists in every test system using servo-
hydraulic actuation. However, it causes control problems when a test system is in force
control while it does not affect the performance of a test system in displacement control

(see Appendix 1 for detailed derivation).

3.6 Summary

Mathematical models for a test system using servo-hydraulic actuation were derived
in this chapter. Preliminary system analysis was conducted to derive an overall system
model, from which general characteristics of the test system (natural velocity feedback
problem) was obtained. Parameters for the proposed models need to be identified to

facilitate the detailed analysis and computer simulation.
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CHAPTER FOUR

SYSTEM IDENTIFICATION

The parameters of the system models to be determined are listed in Table 4.1.
Among these parameters, the servovalve response delay and servovalve flow property
were critical because they have a significant impact on the performance of the test
system. Other servo-system parameters and structural properties are important to the
understanding of the system behavior through computer simulations. The parameter

identification roughly follows the order in which they were introduced in the last chapter.

4.1 Pilot-Stage Servovalve
4.1.1 Valve Dynamics

The performance curve of the MTS 252.21 valve indicated that its frequency response
(magnitude) was constant for frequencies below 30 Hz, and rolled off as the command
frequency increased. To approximate the valve performance at low frequencies using the
first-order model shown in Eq. (3.4) and Eq. (3.41), a time constant (7 ) was needed. It
was estimated from the performance curve that the response reached 70% of its full
capacity at a frequency of 115 Hz, hence the time constant was

T= !
27(115)

=0.0014s. (4.1)

This estimation is very close to the suggested value (0.0013 s) for a Moog series 30

servovalve (Thayer, 1965), which roughly has the same capacity as an MTS 252.21
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servovalve.

The product specification also states that the frequency corresponding to the 90°-
phase point for the servovalve is 230 Hz. This indicated that the servovalve dynamics
over a wider range of frequency could be represented by the second-order model shown
in Eq. (3.5), in which two parameters, the apparent natural frequency (@n) and the
equivalent damping ratio (¢), were needed. By the definition of the 90°-phase point of a
second-order system, the apparent natural frequency was 230 Hz, at which the magnitude
was found to be 45% of the full capacity from the performance curve. Hence, the

equivalent damping ratio was estimated following Eq. (2.30)

1

= ~1.11
¢ 2(0.45)

4.2)

As indicated in the last chapter, both the first-order and second-order model should
provide similar frequency response for low frequencies. The frequency responses of the
two models are compared in Fig. 4.1. Both magnitude and phase responses are well
matched in the low frequency range (< 10 Hz), and a close match can be observed at
higher frequencies (< 30 Hz) with reasonable accuracy. At a frequency around the
apparent natural frequency of the valve, the magnitude responses are still close though
the phase responses have deviated. Hence, the first-order model with a time constant of
0.0014 s was adequate and used for representing the dynamics of the pilot-stage valve for
frequencies up to 30 Hz.

4.1.2 Valve Flow Property
The hydraulic flow through the pilot-stage valve was controlled by a spool-type

valve, thus the flow property of the valve could be described using Eq. (3.24). Similar to
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the main-stage spool, the force acting on the pilot-stage valve was negligible compared to
the pressure supply. Therefore, a similar linear relation as Eq. (3.45) was used for the
pilot-stage valve.

The rated flow capacity of the MTS 252.21 servovalve is 1 gpm (3.85 in.*/s) under
1000 psi pressure drop across the valve. Meanwhile, the supply pressure was roughly
2800 psi, and the return pressure was negligible. Thus, after considering the real pressure

drop as shown in Eq. (3.24), the flow gain of the pilot-stage valve was approximately

~3.85in.’/s+/2.8

K,
10 volt

=0.644 in’/s/volt . (4.3)

Note that the pilot-stage flow gain was defined as the flow per volt referring to Eq. (3.4).

4.2 Main-Stage Servovalve
4.2.1 Valve Dynamics

The main-stage spool position is related to the pilot-stage flow by Eq. (3.6), in which
the spool area A, needs to be determined. The resulting spool position is normalized by
the maximum spool stroke Xymax, such that the main-stage spool opening is expressed in

terms of percentage of spool opening (—1< X, <+1) as shown in Fig. 3.4. These two

parameters may be measured, and yet are proprietary to the servovalve manufacture. The
sensitivity factor of the spool LVDT was estimated as

K, =10/x (4.4)

Vmax ?
such that a 10-volt LVDT signal indicates the maximum spool stroke.
An experimental procedure was used to validate the valve model and the parameters.

The actuator was in displacement control, and the actuator piston was kept in its neutral
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position by shutting of the hydraulic supply to the main-stage valve. Therefore, the DC
error signal was equal to the command signal. In addition, the proportional gain of the
servovalve controller was set to unity and the derivative gain set to zero, such that the
valve command signal was equal to the DC error signal. With this procedure, the
command signal to the servovalve could be controlled without additional equipment. A
sinesweep input (0-100 Hz in 100 seconds) with constant amplitude of 2 volt was chosen
as the command signal.

The MTS 407 controller allowed the monitoring of the valve command signal and
inner loop feedback signal that represented the spool position. By plotting the magnitude
ratio and the phase difference of these two signals in the frequency domain, the frequency
response of the servovalve was obtained. The measured frequency response is compared
in Fig. 4.2 to simulation results. The proposed servovalve model with a first-order pilot-
stage model matched well with the experimental results at low frequencies (below 10
Hz), while it deviated from the measured response at higher frequencies. The fast
descending pattern of the phase response shown in Fig. 4.2 at high frequencies indicates
that the servovalve might have higher-order dynamics. This was explained by a better
match of the calculated response with the second-order pilot-stage model shown in
dashed lines.

The discrepancy of the magnitude response at high frequencies was attributed to an
underestimation of the pilot-stage flow gain (K,p). The flow gain was determined as the
slope of a straight line connecting the maximum spool opening point and the origin while
the flow property of a spool-type valve (i.e., a curve of flow vs. spool opening) can be

nonlinear. During the above test, the spool opening was kept small (within 10%), at
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which the flow gain is typically higher. Simulation results with a larger flow gain
(arbitrarily 10% greater than the identified flow gain) better matched the experimental
results as shown in Fig. 4.3. Especially, the phase responses matched the experimental
results well up to 50 Hz.

The flow gain typically reduces as the spool moves away from its neutral position
(can be smaller than the secant flow gain). Therefore, the identified flow gain was
deemed as a better representation of the servovalve flow property on an average base
across the whole operating range of the pilot-stage valve. In addition, frequencies below
10 Hz were of interest; hence the first-order pilot-stage model was chosen for the rest of
the study.

4.2.2 Simplified Valve Dynamics (Valve gain)

Experimental results shown in Figs. 4.2 and 4.3 also indicated that the magnitude
response was constant for low frequencies (below 10 Hz); therefore, it was appropriate to
further simplify the servovalve dynamics to a gain shown in Eq. (3.47), and the valve
gain was

K.=0.1 (4.5)

To further validate this parameter for large amplitude and low frequency inputs, the
same experimental procedure was followed with another sinesweep input (0-10 Hz). A
phase-lead network shown in Eq. (2.35) was used to amplify the command signal such
that a larger command signal was obtained and tested. A plot of the spool opening versus
the valve command is presented in Fig. 4.4, in which the thick dashed line represents the
linear curve fit of the experimental result. The servovalve gain was roughly 0.1 across

almost the whole operating range of the servovalve. In addition, a hysteretic behavior
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was evident as shown in Fig. 4.4.
4.2.3 Servovalve Response Delay

The hysteresis was due to the response delay of the servovalve, which is elucidated in
Fig. 4.5 that the spool position lags behind the valve command. With the second-order
servovalve model shown in Eq. (3.7) and the parameters identified above, the servovalve

phase delay was estimated using Eq. (2.31) for low frequencies as

XA (4.6)

d = = .
@, K3 Kvp

The apparent natural frequency of the system was calculated as 59 Hz, the equivalent
damping was determined to be 96.4% of critical damping, and the time delay was 5.2 ms.
Note that the inner-loop controller P gain setting can have an impact on the servovalve
response delay if it not unity as in this study.

The calculated response delay was verified using the measured phase response of the
system shown in Fig. 4.6. A linear regression was made to approximate the phase delay
as a linear function of input frequency (Hz). The response delay was the slope of the
regression line divided by 27, resulting a response delay of 4.7 ms.

The small inconstancy in these estimations is inevitable due to uncertainties in the
servo-system and modeling errors. Fine tuning of the parameter was made based on
observations in Chapter 7, and a response delay of 5 ms was used in the implementation.
The servovalve flow property was another parameter that was affected by servo-system
nonlinearities and uncertainties.

4.2.4 Initial Flow Gain

A servovalve flow curve relates the flow into the actuator to the main-stage spool
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opening. The initial flow gain K, is defined as the slope of the flow curve at the origin.

According to the product specification, the initial flow gain for the servovalve is 1.6 gpm
(6.16 in.’/s) per percentage of spool opening with a pressure drop of 1000 psi across the
servovalve. Because the spool opening in this study was defined between -1 and 1, the
flow gain was determined as 160 gpm (6.16 in.’/s) with a pressure drop of 1000 psi. The
real pressure drop needs to be considered to determine the flow gain of the servovalve in
operation.

Although the pressure supply of the test system is about 2800 psi as indicated by a
pressure gage on the hydraulic service manifold, and the pressure in the return line is
usually negligible, a smaller pressure drop was more realistic because of supply pressure
variations during a test. Therefore, a pressure drop of 2650 psi, as to be shown in Section
7.1.2, was used to consider the real pressure drop across the servovalve. According to
Eq. (3.24), the initial no-load flow gain was determined as

K, =616 in.’/s4/2.65 =1003 in.*/s . (4.7)

If the servovalve flow property were linear, the maximum flow through the valve
would be 260 gpm (1003 in.%/s). However, an MTS 256.09 servovalve is capable of
regulating 90 gpm with a fully opened spool and 1000 psi pressure drop across the
servovalve. After taking the effect of the pressure drop into account, the maximum flow
rate through the servovalve was calculated as 147 gpm (564 in.’/s). The difference
between the linearly predicted maximum flow and the maximum flow capacity indicates
a nonlinear relationship between the spool opening and the regulated flow. A hydraulics
explanation of the nonlinear no-load flow property of the servovalve can be found in

Appendix 2.
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A typical flow curve of an MTS 256.09 servovalve with a pressure drop of 1000 psi
and zero load pressure is shown in Fig. 4.7 (Chen, 2001). It can be seen that the flow
gain decreases with an increase in spool opening. Because the testing condition (e.g.,
hydraulic supply) was different from the one, under which the typical flow curve was
constructed, an experimental procedure was necessary for the flow property identification
of the servovalve.

4.2.5 Nonlinear Servovalve Flow Property

In the designed test procedure, the actuator was under displacement control with a
sinusoidal input, the frequency and amplitude of which could be determined according to
Appendix 3. The test was conducted under no load condition (without a structure
connected to the actuator) such that the pressure difference across the actuator piston
(load pressure) was negligible. The spool opening was obtained directly by measuring
the inner-loop feedback while the corresponding flow was calculated using Eq. (3.37).
Because the load pressure was negligible and its derivative was deemed (and proved
during the test) negligible, the flow calculation was further simplified as the piston
velocity multiplied by the piston area. The piston velocity was calculated using the
central difference method from the measured piston displacement.

The result of a typical test is presented by dots in Fig. 4.8. Although a curve fitting
can be used to determine a flow curve that best represent the flow property, it was not
used the error of the resulting curve, especially near the origin, can be large enough to
deteriorate the performance of EFT. In addition, the difference between the obtained
flow curve and the inverse flow curve (another curve fitting) was large enough to ruin

computer simulations. Therefore, as shown by the solid lines in Fig. 4.8, a piecewise
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linear curve that connected 21 control points at an interval of 10% spool opening was
constructed to represent the flow property of the servovalve. The flow values at the
control points were calculated as the mean of the experimental results. The values of a
typical flow curve are listed in Table 4.2, in which a linear extrapolation was used to
generate the points beyond the 80% spool opening.

Within a certain range of spool opening (10 % in this study), the measured servovalve
vs. spool opening curve is linear as shown in Figure 4.8; hence, the linear velocity
feedback compensation might be viable. On the other hand, the slope of the flow curve
decreases significantly at 80% spool opening, indicating reduced controllability of the
servovalve. A spool opening of 60% was deemed a good upper limit for practice because

the corresponding flow gain would not be significantly reduced.

4.3 Actuator Dynamics

Actuator dynamics include the fluid compressibility and leakage of the system. To
estimate the compressibility coefficient of the actuator, the total chamber volume was
determined by the piston area multiplied by the total stroke of the actuator (10 in.).
According to the product specification, the piston area was 12.73 in.”. Therefore,

K =V 203182 in.?/ksi 4.7)
45

a
e

It was difficult to determine the leakage coefficient C; of the servo-system in practice
because the leakage was related to the level of wornness of the equipment such as the
piston sealing. The product specification indicated that the null flow (mainly leakage

when the spools are at their neutral position) of the three-stage valve was 3.5 gpm and the
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null flow of the pilot-stage valve was 0.29 gpm under a 3000 psi pressure drop across the
servovalve. Hence, the leakage coefficient was estimated to be 1.1 gpm (4.2 in.%/s) per
ksi pressure drop for the valve ((3.5-0.29) gpm/(3 ksi)). Significant uncertainties exist in
the above estimation such that a leakage coefficient within the following range
41in’/s/ksi<C, <8 in.’/s/ksi (4.8)
could be a good estimation for the whole servo-system. Fortunately, the system leakage
does not affect the implementation of the velocity feedback compensation though it may
affect the system stability (i.e., the determination of the maximum allowable controller P
gain (Gp) as shown in Section 4.5, in which a leakage coefficient of 5.5 in.*/s/ksi was

used.

4.4 Test Structure

Two structures were used in this study to validate the EFT method: A simplified
structure that could be modeled as an SDOF system was used in the development of
various velocity feedback compensation algorithms for EFT, and a one-story building
structure was used in the proof-of-concept tests discussed in Chapter 8. The simplified
structure described by Eq. (3.48) is considered in this section.

The structural model consisted of a concrete mass atop four caster wheels with two
springs on each side of the structure in the direction of motion as shown in Fig. 4.9. The
springs, which had a rated stiffness of 1 kip/in. each, were designed to have one-inch
precompression. The springs on either side of the mass were designed to lose contact
with the mass at displacements exceeding the precompression, resulting in a reduced

stiffness. Thus, the structure was a linear elastic structure when the displacement
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response was within the precompression, while it acted as a nonlinear elastic structure
when the displacement response exceeded the precompression.

A measured force-displacement relation for the experimental setup is shown in Fig.
4.10. The initial stiffness was found to be 3.96 kip/in., and the stiffness reduced to 2.0
kip/in. beyond precompression based on a linear curve fit. The concrete mass weighed
approximately 15.5 kips. A fluid viscous damper provided damping to the structure.

To determine the damping and the friction force of the structure, a free vibration test
was conducted, and results are presented in Fig. 4.11. Simulations (dashed lines) based
on Eq. (3.38) and the block diagram model shown in Fig. 3.7 were made to determine the
combination of viscous damping and friction force that minimized the error between the
measured displacements and simulation results based on a least square technique. The
resulting damping ratio and friction force were 3.0% of critical damping and 6 Ibs,

respectively.

4.5 Controller Gains

The major function of the servovalve controller was a PID controller. A large P gain
typically improves the system performance while it may cause instability. A proper
amount of D gain reduces overshoot caused by a high P gain in a feedback-controlled
system. However, the derivative term would amplify signals with high frequencies, such
as noise signals. The integral gain reduces the steady-state tracking error while it may
cause a wind-up problem when a constant offset exists in feedback signals or command
signals. Appropriate gain settings were found such that the system would be the most

responsive yet with enough margins for stability.
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It was appropriate to consider the system stability at the null operating point of the
servovalve because system operation usually occurred near this region, and the valve
flow gain took its maximum value at this position. In addition, the load pressure was
typically small when the servovalve spool was at its null position such that the load
pressure influence was negligible, and the linear analysis was valid. As shown in
Appendix 3, Routh’s stability criterion was applied to a linearized system model to
determine the maximum allowable P-gain as

G, <0.71. (4.9)

A slightly larger proportional gain (e.g., 0.8) was used in practice without causing serious
instability because the leakage flow might have taken the upper limit of the range shown
in Eq. (4.8) instead of 5.5 in’/s/ksi as used in the derivation of Eq. (4.9).

With a P gain 0f 0.8, a small D gain (e.g., 0.2 ms) was found to be appropriate for the
system through trial and error. In addition, controller I gain is to reduce steady-state
tracking errors while the purpose of this study was to investigate time-dependent

responses of structural systems. Hence, the controller I gain was set as zero.

4.6 Parameter Verification

In order to verify the identified system parameters and the system models proposed in
Chapter 3, computer simulations of the test system were conducted, and the results were
compared to the experimental results. A frequency range of 0 to 10 Hz was of interest to
this study because the frequency contents of typical earthquake ground accelerations
corresponding to larger frequencies are small. A sine wave sweep (i.e., a sine wave

function with a constant amplitude and a linearly increasing frequency generated by

63



sin[2ﬁ$%t2), where @ = 10 Hz, T =32 s, and 0<t<T) for frequencies between 0

and 10 Hz enables the investigation of the system response at every frequency within the
sweep. Fig. 4.12 presents the experimental and the simulation results of the system with
a 0.5-kip sinesweep input. The close match between the test results and the simulation

indicates the accuracy of the proposed models and identified parameters.

4.7 Summary

System parameters in the mathematical models developed in Chapter 3 were
identified in this chapter, and listed in Table 4.1. The system model and the identified
parameters were used to analyze the test system and its response. Various velocity
feedback compensation schemes for the implementation of the EFT method are

investigated in the next chapter.
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CHAPTER FIVE

VELOCITY FEEDBACK COMPENSATION

This chapter presents an analysis of the natural velocity feedback in detail, and then
extends the implementation of velocity feedback compensation to consider servo-system
nonlinearities. In addition, critical parameters in the implementation of the proposed
compensation scheme are discussed, including controller P gain, the servovalve flow
gain, and the response delay of the servovalve. Classical control engineering methods,
such as pole-zero map, root locus, and frequency response were the major tools used for
both analysis and design of the velocity feedback compensation. Computer simulations

were used for the analysis of the test system with nonlinear compensation schemes.

5.1 Natural Velocity Feedback

The implementation of the EFT method without any velocity feedback compensation
was shown to be unsuccessful with a simplified SDOF structural model (Murcek, 1996).
A similar phenomenon was observed in both the experiment and simulation of a different
test system (including the test structure) shown in Fig. 4.12. The magnitude of the
measured force was below that of the command force across the whole frequency range
(0-10 Hz). At the natural frequency of the test structure (1.56 Hz), the force amplitude
approached zero. The actuator could not accurately apply forces near the natural
frequency of the test structure due to the interaction between the actuator control and

actuator piston velocity.
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5.1.1 Control-Structure Interaction

Referring to the test system models shown in Figs. 3.9 and 3.10, the objective of
actuator control is to minimize the error between the command signal (effective force)
and the feedback signal (applied force to the test structure). The control is realized
through the control of the fluid pressures inside the actuator chambers, which are
regulated by the hydraulic flow into/out of the chambers. When the system is in
operation, hydraulic flow is driven into one actuator chamber (roughly the same amount
of flow is driven out of the other chamber) to generate forces applied to the test structure.
Meanwhile, the structure moves under the applied forces, as does the actuator piston,
which is rigidly attached to the structure. The resulting motion (i.e., the velocity) of the
piston changes the volume of both chambers, thus affecting the fluid pressures inside the
chambers.

Mathematically, the phenomenon is described by the principle of conservation of
mass shown in Eq. 3.37, where the chamber volume change is represented by the piston
velocity multiplied by the piston area (AX). The natural velocity feedback loop is
indicated in Fig. 3.9, and its effect is represented by a flow "deduction" from the load
flow regulated by the servovalve.

5.1.2 Effect of the Natural Velocity Feedback

For a system in force control, a force feedback loop incorporated in the servovalve
controller helps the actuator track force commands. The natural velocity feedback affects
the actuator in applying forces accurately because the aforementioned chamber volume
variation could not be directly sensed by the servovalve controller.

For the linearized system shown in Fig. 3.11 but with the second-order servovalve
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model, the transfer function from force command (u) to the applied force (F) is

F " Mvp

[A’s+(K,s+C)(Ms” +cs+K)(AS” + As+ KK, )X, o + AK,CLK, G (Ms” +Cs+k)

F*Mvp

G.(s) = AK,C:K,,G,(ms” +cs+k) .(5.1)

Because the dynamics of the servovalve are unlikely the same as those of the test
structure, the numerator and the denominator of the transfer function do not have
components in common. Therefore, the numerator includes the denominator of the test
structure, and the transfer function has zeros that are the poles of the structure as shown
in the pole-zero map of the test system in Fig. 5.1.

The frequency response of the system is shown in Fig. 5.2. Corresponding to the
conjugate zeros shown in Fig. 5.1, there is a dip in magnitude at the natural frequency of
the test structure, for which the frequency response is shown by the dashed line in Fig.
5.2. The dip indicates that at steady state the ability of the actuator to apply forces with a
frequency near the natural frequency of the test structure is greatly limited. As indicated
in Section 2.3.4, the amplitude of the force output of the test system with a sinusoidal
input can be estimated by the norm of the transfer function evaluated at the natural
frequency of the test structure. Because the norm of a second-order term is 2¢, the
amplitude of the force output would be proportional to the damping of the test structure.
When the structure damping is zero, the actuator is unable to apply any force at the
natural frequency of the test structure.

The test system had two pairs of conjugate poles as shown in Fig. 5.1, corresponding
to two vibration modes. The low frequency poles should represent the dynamics of the
test structure. However, the poles were displaced due the natural velocity feedback. In

addition, the damping of the vibration mode was large, indicating that force inputs at that
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frequency would not be amplified. The poles with a higher frequency (61 Hz) were
related to the dynamics of the servovalve because they would disappear if the system
were represented by Eq. (3.48), in which the servovalve dynamics was simplified as a
valve gain.

The high-frequency poles correspond to the amplitude spike in solid line as shown in
Fig. 5.2. This vibration mode can be excited when the system becomes instantaneously
unstable due to uncertainties in the system. In this case, electrical noise, which usually
has a frequency of 60 Hz, would be amplified, and the force output would be noisy. In
addition, this lightly damped vibration mode also amplifies forces with frequencies above
20 Hz as shown in the frequency response. This amplification may be a potential

problem for tests with high-frequency excitations.

5.2 Direct Velocity Feedback Compensation

Understanding the natural velocity feedback leads to a direct solution shown in Fig.
5.3. In this solution, the chamber volume variation to be compensated was determined by
the product of the piston area and the piston/structure velocity, and the compensation was
made directly to the actuator to cancel the effect of natural velocity feedback. The
solution was not readily viable because the ports to the actuator were usually not
accessible, and the implementation required a special valve and its controller that were
not available. Nevertheless, the concept was used to explore the potential of velocity
feedback compensation and the properties of the compensated system.

With the direct velocity feedback compensation, the transfer function Gg, becomes
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AK,C.K,G

Ge,(5) = - i , (5.2)
(K5 +C)(TAS” + AS+ KK, )X, + AK,CL K, G,
or
AK C.K.G
Gru(s) = ek (5.3)

K.s+C, +AK,C.KG,’

if the servovalve dynamics is simplified as a servovalve gain (Ks). Comparison of the
transfer functions to Eq. (5.1) or Eq. (3.51) shows that poles of the test structure are no
longer zeros of the overall system. A stable pole-zero cancellation removes the conjugate
zeros from the transfer functions such that the system output (force) would not be
affected by the dynamics of the test structure.

The roots of the system are plotted relative to the various levels of velocity feedback
compensation in Fig. 5.4. The motion of the roots with increasing compensation level
(from zero compensation to full compensation) is shown by arrows. As the conjugate
poles approach the zeros, the effect of the zeros is reduced as shown in the frequency
response of the system in Fig. 5.5 (i.e., the affected frequency range decreases, and the
depth of the dip at the natural frequency of the test structure reduces). With a full
compensation, the poles are on top of the zeros, indicating a total cancellation of the
effect of the natural velocity feedback.

On the other hand, when the natural velocity feedback is over compensated, the poles
that cancel the zeros move towards the right-hand side of the s-plane, indicating a
reduced stability margin or even instability. In addition, with the velocity feedback
compensation, the conjugate poles corresponding to the high-frequency vibration mode
(lightly damped as discussed previously) move to the left, indicating a more stable

vibration with a smaller frequency and a faster decaying rate once the vibration mode is
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excited.

The frequency responses with different compensation levels shown in Fig. 5.5
indicate that a slight undercompensation can significantly deviate the effect of the
compensation. For example, the response magnitude at the natural frequency of the test
structure corresponding to 95% compensation is about -10 dB or the amplitude of the
force output is about 32% of the force command. Therefore, the acceptable range of
compensation is very narrow.

The compensated system behaves as a first-order system at low frequencies as shown
in Eq. (5.3) with a high roll-off frequency, hence the actuator should be able to follow the
command closely within the frequency range of interest. However, the numerator and
denominator of the transfer function do not have the same zero-order coefficient,
indicating an amplitude reduction in the force output for low frequency inputs. The
tracking error is due to the leakage of the servo-system, and the amplitude reduction (RF)
can be estimated by

AK,C.KG,

RF =1- .
C, +AK,C.KG,

(5.4)

With the parameters identified in Chapter 4 (listed in Table 4.1), RF was calculated as
2%.

Therefore, the velocity feedback compensation can improve the ability of the actuator
to track force commands. In practice, the velocity feedback compensation was made by

modifying the command signal to the servovalve (Murcek, 1996).
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5.3 Velocity Feedback Compensation

The velocity feedback compensation is schematically shown in Fig. 5.6. Instead of a
positive feedback loop (a)-(b)-(c) as in the direct compensation, a positive feedback loop
(a)-(d)-(e)-(f) was added to the actuator control to cancel the effect of the natural velocity
feedback (a negative loop (a)-(b)-(c)). Comparing to the direct compensation, the
chamber volume variation to be compensated ( AX ) must be multiplied by the inverse
dynamics of the servovalve and its controller before the compensation signal is added to
the command signal. In addition, it is only necessary to consider the dynamics of the
servovalve and its controller in the velocity feedback compensation loop. Therefore, the
success of the velocity feedback compensation depends on how accurate the servovalve
model defines the real system performance and how well the compensation scheme is

implemented.

5.4 Linear Velocity Feedback Compensation
5.4.1 Linear Compensation Design

The design of the velocity feedback compensation is presented in Fig. 5.7. The path
from point (f) to point (c) shows the forward dynamics formed by three components: the
dynamics of the servovalve controller described by Egs. (3.1) and (3.40), the servovalve
dynamics by Egs. (3.7) and (3.43), and the servovalve flow property by Eq. (3.24). In
order to implement the velocity feedback compensation, the inverse of the dynamics of
these components is needed.

The inverse flow relationship determines the required spool opening that allows a

certain amount of flow (i.e., a compensation flow for AX) to the actuator. The
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servovalve flow model shown in Eq. (3.24) contains two major nonlinearities of the

servo-hydraulic system: nonlinear flow gain and load pressure influence. If the spool

opening and the applied forces are within a limited range (i.e., |XV|£0.1 and

|PL|£O.05PS) such that the nonlinearities are negligible, the servovalve flow can be

simplified to be proportional to the spool opening as shown in Eq. (3.45). Therefore

within a limited range, the inverse flow relationship is

x = (5.5)

where K, is the initial no-load flow gain determined by Eq. (4.6).

The inverse servovalve dynamics relate the required spool opening determined by Eq.
(5.5) to a valve command. The direct inverse of the servovalve dynamics results in a
transfer function with a second-order term in the numerator, which is inherently unstable
because it can greatly amplify signals with high frequencies, such as an electrical noise.
On the other hand, the inverse of the simplified relation shown in Eq. (3.47) (1/K,) is not
good enough because it omits the response delay of the servovalve included in Eq. (3.43),

while the response delay of the servo system is significant to the performance of the

velocity feedback compensation (Timm, 1999). Hence in the compensation design, a

first-order term (K, ) with a time constant (Tg) of 5 ms was used to represent the

d
servovalve dynamics for frequencies of interest (0-10 Hz), and the first-order phase-lead

network shown in Eq. (2.34) multiplied by 1/K, was used to invert the valve dynamics.

The required time constant was determined by
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T, = : (5.6)

where the constant o was taken as 0.1 because it could provide both good phase-lead
performance (the performance would be reduced if « is too large) and acceptable noise
amplification (noises would be greatly amplified if « is too small). Fig. 5.8 presents the
frequency response of the second-order servovalve model, the simplified first-order
model, and the phase-lead network (inverse dynamics). The responses (amplitude and
phase) of the combined dynamics (i.e., the second-order servovalve model followed by
the phase-lead network divided by Ks) shown in dark solid lines are flat up to 20 Hz,
indicating effective inverse dynamics for a wide range of frequencies.

PID controls with a zero I gain introduce some phase lead into the DC error signal if
the derivative gain (controller D gain) is not zero. The derivative gain was usually set to
a small value (a few tenths of a millisecond such as 0.2 ms) in this study; hence, the
controller dynamics was simplified as a gain. To inverse the dynamics, the resultant

phase lead (the lead-time G, / G, ) was considered by reducing the time delay determined
by Eq. (5.6), and the inverse relation was simply 1/ G,.

5.4.2 Analysis of the linearized compensation scheme

The test system with linearized velocity feedback compensation is shown in Fig. 5.9,
in which the velocity feedback compensation is represented by shaded blocks. Because
the transfer function of the system is cumbersome to present, the pole-zero map of the
compensated system shown in Fig. 5.10 is instead used to demonstrate the system
performance. A stable pole-zero cancellation is evident near the imaginary axis,

indicating that the actuator would be able to apply force at the natural frequency of the
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test structure. Correspondingly, in the frequency response of the compensated system
shown in Fig. 5.11, the amplitude dip around the natural frequency has been removed. In
addition, compared to the pole-zero map of the uncompensated system in Fig. 5.1, the
high-frequency mode in the compensated system has higher damping (from 0.4% to
1.6%).

However, the poles and zeros are not exactly the same as in the directly compensated
system. This is because the phase-lead network is not an exact inverse of the dynamics
of the servovalve and its controller. Consequently, both magnitude and phase responses
of the compensated system are not perfectly smooth around the natural frequency of the
test structure due to the close but incomplete pole-zero compensation, as indicated by two
pointers in Fig. 5.11. The frequency response near the structural natural frequency is
enlarged in Fig. 5.12. Although the bump can be reduced (not removed) through fine-
tuning of the time constant of the phase-lead network, it is not practical because it is
impossible to determine the exact response delay of the servovalve in practice.

Similar to the directly compensated system, the linearly compensated system has a
steady-state tracking error at low frequencies as shown in Fig. 5.12. The close match
between the responses of the linearly compensated system and the directly compensated
system indicates that the error can be estimated using Eq. (5.4). With the parameters
identified in Chapter 4, the tracking error was found to be 2%. In addition, the system
output (applied forces) approaches the command as the frequency increases, and the
output is roughly equal to the command at 10 Hz. Beyond 20 Hz, the system output is
significantly affected by the lightly damped vibration mode of the system such that the

force output grows rapidly with an increase of the forcing frequency.
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A computer simulation of the system subjected to a 0.5 kip sine wave sweep was
conducted and the result is presented in Fig. 5.13. A portion of the simulation result
(from 4s to 8s) is shown in the time domain to make the plot more readable. The force
tracking of the actuator is greatly improved compared to the case without compensation.
On the other hand, the following problems can be identified: the force output does not
match the force command between 5s and 7s in the time domain. Correspondingly, the
FFT amplitude of the force output does not match very well that of the command forces
from 1.5 Hz to 2.5 Hz. The reason is that the maximum spool opening in the simulation
was about 13%, which slightly exceeded the linear range of the servovalve flow property
when the forcing frequency was between 1.5 and 2.5 Hz (between 5s and 7s in the time
domain). In addition, the load pressure influence was not considered in the linear
velocity feedback compensation. Hence, A nonlinear compensation scheme is necessary

in order to remove these discrepancies.

5.5 Nonlinear Velocity Feedback Compensation

In the linear compensation design, the servovalve was assumed to perform near its
null position, and the applied force was assumed much smaller than the capacity of the
actuator. However, it is likely that the limit would be breached during the application of
the EFT method. In tests that require large flow demands (represented by large spool
openings), caused by either large force command or large structural velocity response,
nonlinearities in the servo-system become significant and must be addressed in the

velocity feedback compensation.
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5.5.1 Nonlinearities in Servovalve

Equation (3.24) describes the servovalve flow property, which contains two major
nonlinearities, load pressure influence and nonlinear flow gain. The load pressure
influence is explicitly represented by the square root term in Eq. (3.24). It reflects the
nonlinear relation between the flow through an orifice and the pressure drop across the
orifice: the larger the chamber inside pressure, the smaller the pressure drop across the
load flow orifice, and the harder it is for the servovalve to drive hydraulic fluid into the
actuator chamber.

The nonlinear flow gain is typically not obvious because servovalves are typically
deemed proportional, meaning the controlled flow is proportional to valve commands if
the load pressure is negligible. As discussed in Appendix 2, the nonlinearity is caused by
the nature of hydraulic flow through a variable sharp-edged orifice: the flow discharge
rate decreases with an increase of the orifice area (spool opening). Other factors that
affect the flow property of a servovalve are the variation of supply pressure and return
pressure. This factor was lumped into the nonlinear flow gain because the flow curve
was determined under the working conditions of the servovalve. A piecewise linear
curve based on test (identification) results was used to represent the nonlinear no-load
flow gain of the servovalve.

5.5.2 Nonlinear Compensation Design

The design of the nonlinear velocity feedback compensation is presented in Fig. 5.14.
The objective of the design was to incorporate in the compensation path (from point (d)
to point (e)) the inverse of the dynamics including nonlinear relations in the forward path

(from point (f) to point (c)). Because the controller remains the same, and the servovalve
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dynamics model has been proven accurate for frequencies up to 20 Hz and throughout the
operation range of the servovalve, the inverse dynamics of the servovalve and its
controller remained the same in the nonlinear compensation design.

The inverse of the nonlinear servovalve flow property was based on the nonlinear
characteristic of the servovalve identified in Chapter 4. Once the nonlinear flow model
was verified through simulation and experiment, the nonlinear velocity feedback

compensation was straightforward. The compensation signal ( AX) was first multiplied

by / /1— |§"||;L to consider the effect of large forces being applied to the structure.

Then a linear interpolation based on the piece-wise linear flow curve was used to find the

required spool opening to provide the compensation flow to the actuator. The inverse of
the load pressure influence requires two more inputs, the spool opening and the load
pressure. The spool opening was obtained directly from the servovalve controller, and
the load pressure was approximated by the measured force divided by the piston area.
5.5.3 Evaluation of Nonlinear Compensation Scheme

The test system with the nonlinear velocity feedback compensation is shown in Fig.
5.15. To evaluate the efficiency of the nonlinear velocity feedback compensation design,
a computer simulation was conducted for the system subjected to a 0.5-kip sine wave
sweep. Figure 5.16 compares the simulation forces to the command forces in both the
time domain and the frequency domain. Again only a portion of the response in the time
domain (from 4s to 8s) is presented to facilitate the comparison. With the nonlinear
compensation, which incorporated the exact inverse of the nonlinear flow relation of the
servovalve, the discrepancies shown in Fig. 5.16 (with linear compensation) were almost
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completely removed.

The effect of the nonlinear compensation is further demonstrated in the response of
the system subjected to a 2-kip sine wave sweep shown in Fig. 5.17. In this simulation,
the maximum required spool opening was around 55%, which was way beyond the linear
range of the servovalve flow property (10%). No obvious difference between force
output and command can be identified in the time domain. In the frequency domain, the
force output follows the command throughout the whole frequency range (0-10 Hz). A
small spike exists at the natural frequency of the test structure, reflecting the incomplete
pole-zero compensation. As predicted by Eq. (5.4), the amplitude of the force output is a
bit less than that of the command at low frequencies.

The simulation results of the test system with linear compensation and without
compensation are also shown in Fig. 5.17 for comparison. A sharp drop of the FFT
amplitude of the force output around 1.6 Hz is evident for the linearly compensated
system in the frequency domain. This can be explained as follows: because the initial
flow gain used in the linear compensation scheme is the largest slope of a typical flow
curve, using the reciprocal of the initial flow gain in the compensation loop causes
undercompensation when the spool opening is large. Meanwhile the force tracking
ability of the actuator can be greatly affected by a slight undercompensation (e.g., 5%) as
indicated in Fig. 5.5.

In summary, to negate the effect of the natural velocity feedback, the compensation
was made by modifying the command signal to the servovalve controller. The proposed
compensation scheme requires an accurate knowledge (model) of the dynamics and the

flow property of the servovalve. The physical system may have uncertainties such that
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the identified models may deviate from the physical properties of the system. Therefore,
it is necessary to investigate the ability of the compensation scheme and the compensated

system to accommodate variation in system parameters.

5.6 Critical Parameters in Velocity Feedback Compensation

The design of velocity feedback compensation schemes require the determination of
the following parameters: controller P gain (Gp), controller D gain (Gq), servovalve gain
(Ks), servovalve response delay (Tq), and servovalve flow property including the initial
no-load flow gain (K,). Among these parameters, the controller D gain was considered
with the overall response delay of the servovalve, and the servovalve gain identified in
Chapter 4 was deemed accurate. The remaining three parameters are discussed in this
section, and the discussion includes their effects on the overall system stability.
5.6.1 Controller P Gain

As indicated in Figs. 5.4 and 5.10, a compensated test system has two second-order
components: one represents the vibration of the test structure, and the other represents the
dynamics of the servovalve (typically with a high frequency). With the velocity feedback
compensation, the dynamics of the first component approaches that of the test structure,
which is the goal of the test system. Meanwhile, the damping of the high-frequency
mode increases. Therefore, any P gain below the maximum P gain determined in Chapter
4 for the purpose of the stability of the uncompensated system should be appropriate for
use in the compensated system.

Generally, relatively larger P gains should be used in a test system because they

usually improve the overall performance of a stable system. Figure 5.18 compares the
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frequency response of the compensated system with various controller P gains. A higher
P gain corresponds to smaller distortion caused by the incomplete pole-zero cancellation
in both amplitude and phase responses around the natural frequency of the test structure.
In the last case shown in Figure 5.18, a P gain of 0.8 was used while the maximum
allowable P gain for the uncompensated system was 0.71 according to Routh’s stability
analysis because a larger P gain would usually cause an unstable high-frequency
vibration. A larger P gain than the predicted limit would be expected in general in
practice due to a larger system leakage than the assumed leakage as to be discussed in
Section 7.1.1.

Increasing the controller P gain may slightly increase the damping of the vibration of
the test structure as shown in Fig. 5.19, the root loci of the test system. On the other
hand, larger controller P gains (e.g., 1.0 for this test system, which is way beyond the
maximum allowable value) may cause instability as indicated by the two poles at the
right-hand side of the s-plane in Fig. 5.19. It should be noted that the resulting unstable
poles correspond to a component of the force output at a frequency around 65 Hz, which
usually does not cause damage of the test structure because the structure does not respond
to excitations at such high frequencies.

Based on these observations, the laboratory implementation of the EFT method,
which will be discussed in the next chapter, started with a P gain that could keep the
uncompensated system stable (0.7), and proceeded with larger P gains (0.8 and 1.0 with
an additional leakage path) to improve the overall system performance.

5.6.2 Servovalve Flow Gain

The velocity feedback compensation is based on an estimation of the flow property
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including the initial flow gain, which may vary during a test due to uncertainties of the
test system and test environment (i.e., hydraulic supply, etc.). Therefore, the natural
velocity feedback may be instantly either under- or over-compensated when the
compensation is based on a predetermined flow curve.

The initial flow gain (K,) is an important representative property of the servovalve
flow. The root loci of the linearly compensated system with respect to various initial
flow gains are shown in Fig. 5.20. Two conjugate poles that represent the SDOF test
structure shown in larger crosses are expected if there is no problem in applying forces to
the structure. Slight over- or under-compensation may change the damping of the
vibration mode that represents the test structure. Although overcompensation appears
helpful in stabilizing the high-frequency vibration, an overcompensated system may
become unstable. Unlike the instability caused by a large controller P gain, the unstable
vibration at a frequency close to the structural resonant frequency can cause unwanted
damage to the test structure. The stability margin of the system, indicating the maximum
tolerable overcompensation, was related to the structural damping. A high structural
damping helps the system tolerate system identification errors.

Compared to the rest of the flow curve, a relatively accurate initial flow gain may be
readily obtained because tests with small amplitude excitations can be conducted to
optimize the estimation. The effect of the whole flow curve of the servovalve is shown in
Fig 5.21, which compares the simulation results of a nonlinear system subjected to a 2-
kip sine wave sweep (0-10 Hz) with different compensation levels. The flow curve was
modified by a factor of 1 or 2 percent while the initial flow gain was kept the same. As

can be seen, 2% undercompensation resulted in large reduction in force amplitude at the
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natural frequency while 1% overcompensation might cause unpredictable force output
such as the spikes in the time domain.

It should be noted that the spike at the natural frequency in the frequency domain
does not necessarily correspond to the spikes in the time domain. Instead, the spike at the
natural frequency was attributed to the fact that the overcompensation contaminated the
valve command signal with small signals at the resonant frequencies of the structure
(from the structural velocity response). The accumulating process of the FFT calculation
builds up a spike at the frequency.

It can be anticipated that the results of a real test would lie in between these two cases
because both under- and over-compensation may happen in a single test at different
instances. Noisy force output is likely to happen when the required spool opening is
large because the system uncertainties usually increase with flow demands.

5.6.3 Servovalve Response Delay

Another system parameter that cannot be determined exactly prior to testing is the
response delay of the servovalve. Similar to the main-stage valve flow property, the
pilot-stage valve can be affected by the variation of the hydraulic supply, which in turn
may affect the response delay of the three-stage servovalve. Therefore, slight under- or
over-compensation of the servovalve response delay is likely to happen when the delay
compensation is based on a predetermined delay time.

The effect of the delay compensation to the root loci of the compensated system is
illustrated in Fig. 5.22. The system with more delay compensation has larger damping
for both vibration modes than that of a less compensated system. Specifically, the high-
frequency mode can be unstable if the response delay is not compensated. In addition,
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incorrect delay compensation alters both the frequency and the damping of the mode that
represents the test structure, which is unwanted. Compared to the case of the flow gain,
the system has a wider stability margin with respect to the response delay compensation.
The frequency responses of the system with various delay compensation schemes are
shown in Fig. 5.23. As identified in Chapter 4, 5 ms is a good estimate of the total
response delay of the servovalve and its controller in this study. If the response delay is
undercompensated, the amplitude response shows a peak at a frequency smaller than the
natural frequency and a valley at a frequency larger than the natural frequency. The
system response with overcompensation shows a reversed pattern, a valley before a peak.
For the test system with the nonlinear velocity feedback compensation, a series of
simulations were conducted, and the results are presented in Fig. 5.24. Similar
observations can be made regarding the correspondence between the delay compensation
and the pattern of the force amplitude in the frequency domain. This information is

useful when searching for the optimal time constant for the phase-lead network.

5.7 Summary

In this chapter, the natural velocity feedback loop intrinsic to the servo-system was
discussed along with a solution, velocity feedback compensation. Linear velocity
feedback compensation is limited because significant nonlinearities exist in the
servovalve when large flow demands are required during a test. The servo-system
nonlinearities must be considered in the velocity feedback compensation to assure the
force tracking ability of the actuator. A nonlinear compensation scheme was designed

and discussed using computer simulations along with three critical parameters (i.e., the
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controller P gain, the servovalve flow property, and the servovalve response delay).
These compensation schemes were experimentally investigated using a SDOF structural

model.
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CHAPTER SIX

EXPERIMENTAL IMPLEMENTATION OF EFT

The feasibility of EFT with velocity feedback compensation is experimentally
evaluated using a SDOF structure. Details of the experimental program are first
described. Test results with both sinesweep inputs and earthquake effective forces are
then presented to evaluate the performance of the test system with the velocity feedback
compensation schemes. Experimental studies are also used to verify the conclusions

drawn in Chapter 5 regarding the effect of the critical parameters.

6.1 Experimental Program
6.1.1 Test Setup

A schematic of the test system is shown in Fig. 6.1, in which the velocity feedback
compensation was applied using an additional controller shown as the dashed block. The
investigation was conducted using an SDOF mass-spring-damper structural model. A
schematic of the test setup is illustrated in Fig. 6.2, and the laboratory realization of the
test setup is shown in Fig. 4.12. The structural properties (i.e., m, ¢, and k) are listed in
Table 4.1, and details of the test structure are given in Section 4.4 and Appendix 4.

Six linear variable differential transformers (LVDTs) were used to monitor the
displacement response of the cart in the beginning. After concerns about possible torsion
of the cart and slip between layers of the concrete mass were cleared, the LVDT housed

within the actuator was the only displacement sensor used. The range of the internal
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LVDT was +5 inch. A positive displacement corresponded to a displacement of the
actuator piston towards the actuator reaction frame, which is also the positive force
direction.

The velocity response of the structure was monitored with a P510 series tachometer-
type velocity transducer by Unimeasure Inc. The velocity transducer was placed on the
side of the mass opposite the actuator, and aligned with the center of the mass. The
velocity sensor had a sensitivity factor of 0.196 volt/in/s, and a travel length of 10 inch.
A positive velocity corresponded to an extension of the sensor cable (a motion towards
the actuator reaction frame), thus a displacement increase would cause a positive velocity
signal.

Actuator forces were measured using a load cell mounted on the actuator piston. The
load cell signal as well as the actuator LVDT signal was conditioned by two conditioning
modules installed in the servovalve controller. The outputs were available through two
BNC connectors on the rear panel of the controller. The servovalve spool opening (spool
position) was measured by an LVDT inside the main-stage servovalve house. The signal
along with other internal control signals, such as the valve command signal and DC error
signal were available through two BNC connectors on the front panel of the servovalve
controller.

Data was collected by an Optim MEGADAC 3008AC data acquisition system. A
sample rate of 200 samples per second was chosen for most of the experimental program.
Four channels of data were typically read, including the actuator position, the actuator
force, the structural velocity, and the spool opening of the servovalve. The Optim data

acquisition system had a sample-and-hold mechanism, which locked the voltage signals
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in all channels simultaneously before they were sampled and converted into digital
signals.

The velocity feedback compensation schemes were implemented using a dSpace
DS1102 DSP controller. The hardware consisted of a DSP Controller Board based on a
Texas Instruments TMS320C31 floating-point digital signal processor (DSP) built as a
standard PC/AT card. The DS1102 contained two 16-bit 250KHz sampling A/D
converters (ADCs) and two 12-bit 800KHz sampling A/D converters. Each ADC had a
sample/hold circuit (i.e., no delay between signals). All ADCs take single-ended bipolar
inputs with £10 volt input span. The DS1102 also contained four 12-bit D/A converters
(DACs). All DACs had single-ended voltage outputs with £10 volt span. The DS1102
hardware was managed by ControlDesk®, software installed in the host computer of the
DS1102.

6.1.2 Ground Accelerations

Command signals were sent to the servovalve controller from a National Instruments
digital-to-analog (D/A) card, which was installed in a Windows NT workstation. A
computer program read the values from a user-defined data file, and sent the digital
signal to the D/A card, which produced an output voltage that was proportional to the
data values. The scale factor was the conversion factor (CF) pre-determined for the
program according to the type of input units (control variable) chosen in the servovalve
controller. An example data file is shown in Appendix 5 to demonstrate the format of the
data file. Earthquake ground acceleration records are typically defined at 0.02-second
intervals while in this study, the data was refined by linearly interpolating nine points

between each data point such that the signals sent to the servovalve controller were
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updated every 0.002 seconds.

The input functions used in the experimental investigations included sinesweep (0-10
Hz) and earthquake effective forces. The ground acceleration records chosen for the
experimental program were the Imperial Valley earthquake of May 18, 1940, recorded at
El Centro at 270 degrees, with a peak ground acceleration of 0.34 g and the Northridge
earthquake of January 17, 1994, recorded at Santa Monica City Hall ground at 90
degrees, with a peak ground acceleration of 0.84 g. These earthquake records were
obtained from the strong motion database of the Pacific Earthquake Engineering

Research Center (PEER) at http://peer.berkeley.edu/smcat/search.html.

The ground acceleration records for these earthquakes are shown in Figs. 6.3 and 6.4
along with their FFT amplitudes. In order to reduce the amount of data to be collected,
segments of these earthquake records were used that represented the most demanding
portion of the records and had frequency content similar to the entire records. These
ground acceleration records and their FFT amplitudes are shown in Figs. 6.5 and 6.6,
respectively.

The earthquake records were chosen based on their frequency contents. Fig. 6.7
shows a force-velocity curve for the servovalve-actuator combination generated based on
Eq. (3.24) and Eq. (3.37). The fluid compressibility and leakage were omitted, thus the

piston velocity was directly related to the load flow of the servovalve by

(=0, = - X RA
Ax=Q, =Q(x,) |1 X[PA (6.1)

For a given spool opening (from -1 to 1 with an interval of 0.2 in the plot), the

maximum achievable velocity can be calculated using Eq. (6.1) for any given load
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pressure (applied force divided by the piston area). The nonlinear no-load flow property

of the servovalve was included in the calculation of Q(X, ).

With sine wave sweep inputs, the structure would be excited with small amplitude
forces. Therefore, the horizontal shaded area in the force-velocity plot in Fig. 6.7 would
be tested for the system. The Northridge earthquake ground acceleration record has small
frequency content around the resonant frequency of the structure, but has large
acceleration peaks at 9s as shown in Fig. 6.5. Therefore, the vertical shaded region in
Fig. 6.7, which represents conditions with large forces and small velocities, could be
tested. Tests with El Centro earthquake effective force inputs could demonstrate the
system performance for the blank regions inside the £60% spool opening curve because
large force and large velocity might happen at the same time during the tests.

In the following sections, the performances of the system are demonstrated through
comparing test results (i.e., force output and structural responses). In the comparison of

forces, "commands" are effective force commands (—mX;) sent to the servovalve

controller. "Measurements" are the forces measured by the actuator load cell, that is, the
forces physically applied to the structure. "Simulations" are the simulated forces to the
structure. When comparing structural responses. "Expected responses" are the results of
the numerical integration of the governing differential equation shown in Eq. (3.38) with
the effective force inputs. "Measured responses" are the structural displacements and
velocities measured by the actuator LVDT and the velocity transducer. "Simulation
responses” are the results of the numerical simulation of the whole test system with the

effective force inputs.
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6.2 Direct Implementation of EFT

The first objective of the experimental study was to demonstrate the natural velocity
feedback problem using a different test system than that of previous studies at the
University of Minnesota (Murcek, 1996 and Timm, 1999). The system response was first
evaluated over a range of frequencies (0-10 Hz) of interest by applying sinesweep input
functions, and then by applying effective force input functions to the test system without
velocity feedback compensation.

Sinusoidal Input Function

Figure 6.8 compares command forces, simulation forces, and measured forces and the
FFT amplitude of these forces using a 0.5 kip sine wave sweep input function. The
actuator had difficulties applying forces throughout the test. Correspondingly, in the
frequency domain, the ability of the system to apply forces around the natural frequency
of the structure (1.6 Hz) was greatly limited due to the effect of the natural velocity
feedback. The comparison of the expected, simulation, and measured structural
responses is shown in Fig. 6.9. The resonant frequency of the structure was not excited
because of the missing forcing content around the natural frequency, and the structural
responses were significantly smaller than the desired responses. Computer simulations
correctly predicted the performance of the test system.

The applied force was noisy, especially at the beginning of the test. This was due in
part to the static friction, which the actuator had to overcome to move the structure. The
noisy system response (force) was also due to a lightly damped vibration mode of the
system with a frequency around 61 Hz as shown in Fig. 5.3. On the other hand, the force

content at this frequency (61 Hz) could not excite the structure, and the structural
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responses were smooth as shown in Fig. 6.9.
Earthquake Effective Force Inputs

Tests were also performed in which effective forces based on the ground acceleration
of the earthquakes described in the previous section were input to the system. Figs. 6.10
and 6.11 present the test results using the El Centro earthquake record, and Figs. 6.12 and
6.13 present the test results using the Northridge earthquake record. The El Centro
earthquake contained significant frequency content around the natural frequency of the
test structure, thus the actuator had difficult in following the command signal, especially
in catching the force peak at 2s. On the contrary, the Northridge earthquake contained
little frequency content at the structural resonant frequency, and the actuator seemed to be
able to better follow the force command and catch the force peak around 9s.

In the frequency domain, there was a range of frequencies for both tests around the
natural frequency of the structure, where the amplitude of the force outputs was
significantly below that of the force commands. Due to the missing frequency content in
the applied forces, the resonant frequency of the structure was not excited as shown in the
displacement and velocity responses of the structure in Figs. 6.11 and 6.13. Toward the
end of the tests with zero force commands, aftershock free vibrations were expected as
shown in grey lines, while they were not obtained during the tests or in the simulation.

These test results indicated that with the direct application of the EFT method, the
hydraulic actuator could not apply forces accurately around the resonant frequency of the
structure, which was rigidly connected to the actuator piston. This confirmed the
observations made in previous studies by Murcek (1996) and Timm (1999). The effect
can be compensated by modifying the command signal to the servovalve controller based

91



on measured piston velocities.

6.3 Linear Velocity Feedback Compensation

In the laboratory implementation of the velocity feedback compensation, the chamber
volume change due to the piston motion was determined by the measured structural
velocity multiplied by the piston area. The compensation signal was modified by the
inverse of the forward dynamics and then added to the command signal. The linear
compensation scheme had been implemented using analog circuits (Timm 1999). A
digital implementation of the linear compensation is presented in this section to illustrate
some conclusions drawn in Chapter 5.
Laboratory Implementation

In the digital implementation, analog signals (e.g., command signals from the
National Instruments D/A card, and voltage signals from the velocity transducer, etc.)
were converted into digital signals by the A/D converter of the DSP board. The digital
signals were then processed by the control algorithm to generate the modified command
signals. The new command signals were converted back to voltage signals and sent to
the servovalve controller. The control algorithms were coded in C language with
functions provided by dSpace and compiled by the C language compiler for TMS320C31
DSP hardware provided by Texas Instruments. An example of the compensation
schemes in C language can be found in Appendix 6.

The velocity transducers used in this study did not have signal conditioning, hence, a
unit buffer (a unity-gain circuit) was closely coupled to the transducer to avoid signal

attenuation over a long distance of the signal transmit. A buffer circuit can be found in
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texts such as the one by Horowitz and Hill (1990). Note that the voltage signal generated
by the velocity transducer should be divided by the sensitivity factor to get the velocity
signal shown in the compensation schemes in terms of simulation models.

Figure 5.9 shows the test system with the linear velocity feedback compensation. In
the laboratory implementation, all constants in the compensation loop were combined
into a single factor determined by,

(oA
S K K.G

viNdv NS~

(6.2)

where S, is the sensitivity factor of the velocity transducer. For example, when the
solution was first tried, a Trans-Tek Model 0114-0000 velocity transducer was used with
a range of £2 in., and a sensitivity factor of 0.582 volt/in./s. The gain was calculated as
0.271 with the parameters identified in Chapter 4 (K,=1003 in./s. Ks=0.1, and Gp=0.81).
A discrete equivalent of the phase-lead network shown in Eq. (2.35) was used in the
digital implementation. By applying the trapezoid-rule substitution for the frequency

variable s (Franklin 1994), the phase-lead network can be rewritten as

H(Z)zij(z) _ (T +2Ty)z+(T -2Ty)

(2) [ +2aT)z+(T —2aTy) (6.3)

In the time domain, the current output was calculated using the current input and past

input and output by
1
x(t) = m[a +2T U (t)+(T 2T u(t—T)—(T —2aT,, )x(t-T )] (6.4)

where u(t) and x(t) are the current input and output signal samples, u(t—T) and

X(t —T) are the last input and output signal samples, Tiq is the lead time (T|&=Tq/(1-),

93



where Ty is the response delay to be compensated) and « is 0.1 as in the simulation
studies, and t=KT , where K is an integer and T is the sampling period. With a sampling
rate of 2 kHz in this study, T was 0.5ms.

Sinusoidal Input Functions

The system response (i.e., force output) to a 0.5k sinesweep input function is shown
in Fig. 6.14 along with the FFT amplitudes of the forces. The measured force followed
the command force in the time domain except the noisy force peaks and valleys between
5s and 7s, which could have been due to the lightly damped high-frequency vibration in
the system. Comparison in the frequency domain indicates that the actuator was able to
apply forces at all frequencies within 10 Hz. A small amplitude spike at 1.6 Hz is evident
in the frequency domain due to the aforementioned accumulative process of the FFT
amplitude calculation.

The amplitude of the applied force was slightly below that of the command force over
the whole frequency range in Fig. 6.14. It was in part attributed to the proportional
leakage of the servo-system shown in Eq. (5.8). The force tracking error should be
reduced at high frequencies as indicated by the simulation results shown by the dashed
lines in Fig. 6.14. However, the servovalve leakage was not constant throughout the
whole range of its operation. When the actuator tried to track the high frequency signals,
the spool was near its null position, where the leakage coefficient was larger. The
increased leakage flow at small spool openings in turn affected the tracking ability of the
actuator at high frequencies. Another factor was the constant leakage in the system to be
discussed in Chapter 7.

Figure 6.15 compares the measured structural responses with the expected and
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simulation results. The displacement and velocity responses show that the measured
response generally matched the expected response but did not achieve the magnitude of
the expected response. The reason that the structure was not fully excited might have
been that the applied force was low at frequencies near the natural frequency of the
structure due to incomplete velocity feedback compensation.

The simulation was generally able to predict the force output and the structural
responses, indicating that the analysis of the system model in Chapter 5 was applicable to
the physical test system. On the other hand, because the simulation could not capture the
real-time variation of the servovalve flow property, the amplitude spike at the natural
frequency and the shallow drop around 2 Hz were not captured by the simulation. In
addition, the simulation did not match well the experimental responses after 15s when the
structural responses were small in Fig. 6.15. The reason may have been that the
mechanism of the energy dissipation could not be modeled well with a combination of
viscous damping and friction when the structure moved within a small range as shown in
the analysis of the free vibration results in Fig. 4.12.

The system response to a 2.0 kip sinesweep input function is shown in Fig. 6.16. The
applied force was able to follow the sinesweep input except over the time range from 4s
to 7s, when the desired velocity was large (as shown in Fig. 6.17). The large velocity
caused a large hydraulic demand (55% spool opening should have been required if the
actuator had had no problem in tracking forces) because the modified command signal to
the servovalve was dominated by the velocity compensation signal, which was based on
the structural velocity. The servovalve exhibited nonlinear flow properties at large spool

openings; hence, the linear velocity feedback compensation was not sufficient. In the
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frequency domain, the FFT of the applied force shows a sharp drop around the natural
frequency of the test structure.

Due the lack of the frequency content in the force applied to the structure, the
structural responses were significantly below the expected responses as shown in Fig.
6.17. Again, the simulation accurately predicted both the force output of the test system
and the structural response under the incorrect excitation, indicating that the models
developed in Chapters 3 and 4 could accurately represent the physical test system. Both
the experimental and simulation results demonstrated that the linear velocity feedback
compensation was not able to negate the natural velocity feedback when large hydraulic
power was required (expressed as large spool openings).

Earthquake Effective Force Inputs

The digital implementation of the linear velocity feedback compensation was also
tested with earthquake effective force inputs. The system response to the El Centro
earthquake (0.17g) shown in Fig. 6.18 indicates that the actuator was generally able to
follow the command force. The comparison in the frequency domain shows a good
match over the entire frequency range of interest. However, the force peak at 2s was not
fully reached, and the FFT amplitude of the applied force around the natural frequency of
the structure (1.6 Hz) was slightly less than that of the effective force input.

The required spool opening in the first 4s of the test was larger than 10% (16%
around 2s), thus the system was under-compensated with the linear compensation. As a
result, the measured displacement and velocity response shown in Fig. 6.19 were smaller
than the expected responses during the first 8s. The influence of the under-compensation

near 2s was spread out because the structure went into the nonlinear range of its behavior,

96



and the structural responses after the peak at 2s were dependent on the response history.
Around 8s, both the effective force and the structural responses were small, which
resembled a new test starting point; hence during the rest of the test, the linear
compensation was adequate, and the experimental results matched the expected responses
well.

The system response for the Northridge earthquake (0.42g) in Fig. 6.20 closely
matched the effective force input in both the time domain and the frequency domain, and
the structural responses in Fig. 6.21 closely matched the expected responses. This was
because the Northridge effective force input contained only a small amount of frequency
content around the natural frequency of the structure, thus the velocity response and the
required spool opening were small (< 10%), and the linear velocity feedback
compensation worked well in this case. Especially, when the effective force peak hit the
structure at 9s, the structural velocity was around 5 in./s, and the required spool opening
was small; hence, the force peak was reached in the test. In addition, the free vibration
after 15s when the force command stopped was realized though the experimental
response decayed slightly faster.

Therefore, the linear velocity feedback compensation can be used to negate the effect
of natural velocity feedback under limited conditions: the structural velocity and the
applied force remain small, corresponding to a small hydraulic demand (the maximum
spool opening remains below 10%) during a test. Beyond this limit, nonlinear velocity

feedback compensation is necessary.
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6.4 Nonlinear Velocity Feedback Compensation
Laboratory Implementation

According to the nonlinear velocity feedback compensation design shown in section

5.5.2, the compensation flow ( AX) needs to be multiplied by / /1 —|X"||;L to consider
XV S

the load pressure influence. Three new measurements were required for this process, the
current spool opening (Xy), load pressure (P.), and pressure supply (Ps). Because the
instant pressure measurements were difficult to obtain, the pressure supply was assumed
constant (2.65 ksi), and the load pressure was approximated by the measured force
divided by the piston area. The spool opening was read directly from the servovalve

controller, which always contained offsets. In order to remove the effect of the initial

offset on the determination of the sign of the spool opening ( X, / | X,|), the average of the

inputs during the first ten-second operation of the DSP controller (with zero force input)
were calculated and subtracted from spool opening signals. The same process was used
for other measurements, such as the piston velocity and the measured force, to remove
their initial offsets.

The modified compensation flow was then used to determine the required spool
opening based on the identified piece-wise linear flow curve. The curve was defined by
flow values at 21 control points within the whole servovalve operation range (-1 ~ 1)
with an interval of 0.1; hence linear interpolation was used between control points in the
process. The required spool-opening signal was then multiplied by the inverse
servovalve gain to obtain the corresponding valve command signal (voltage), and was

modified in phase using the same phase-lead network as in the linear compensation.
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After being divided by the controller P gain, the phase-adjusted voltage signal was finally
added to the effective force command signal.
Sinusoidal Input Functions

With the flow curve identified in Chapter 4, tests were conducted with sinesweep
input functions. Fig. 6.22 presents the system response to a 0.5 kip sine sweep input.
Compared to the test with the linear velocity feedback compensation, the amplitude drop
around 2 Hz in Fig. 6.14 was removed, indicating an improved ability of the actuator to
follow force commands within the frequency range. With an improved force input near
the resonant frequency, the structural responses shown in Fig. 6.23 better matched the
expected responses. In addition, the expected peaks in both the displacement and
velocity response were reached. The noisy force output from 5s to 8s and the
discrepancy in the displacement and velocity responses after 10s were attributed to
uncertainties in the system (i.e., hydraulic supply variation) that the nonlinear
compensation was not able to model and include.

Figure 6.24 presents the test results for a 2.0 kip sine sweep input. The FFT of the
measured force does not show any obvious drop across the whole frequency range,
indicating that the actuator was able to apply forces correctly at all frequencies.
Compared to the test with the linear velocity feedback compensation, the ability of the
actuator to follow force commands was greatly improved. Small discrepancies can be
seen in the frequency domain from 1.5 Hz to 2.5 Hz, which corresponds to 4s to 8s in the
time domain, where the force output was noisy. As shown in Fig. 6.25, the structural
velocity response between 4s to 8s was large, which indicates large required spool

openings (55% maximum) during the test. At large spool openings, the system
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uncertainties become significant as indicated by the larger variation in the servovalve
flow property as shown in Fig. 4.9. Hence, the velocity feedback compensation based on
the piece-wise linear flow curve might instantly incomplete. The inaccurate force applied
to the structure might have been responsible for the discrepancy in the structural
responses in Fig. 6.25. The structural responses after their peaks were also affected
because nonlinear structural responses are dependent on the loading history.

Earthquake Effective Force Input

The responses of the system to the same earthquake effective force input functions as
in the linearly compensated tests are shown in Figs. 6.26 - 6.29. The measured
displacement and velocity response generally followed and were in phase with the
expected responses. Compared to Figs. 6.18 - 6.21, both the system response (force
output of the actuator) and the structural responses were improved. In the test with the El
Centro earthquake, the force peak at 2s was better reached as shown in Fig 6.26, and the
structural responses were better matched between 1s and 8s as evident in Fig 6.27. In the
test with the Northridge earthquake, a better match between the measured force and
command force can be observed in the frequency domain from 1 Hz to 2 Hz, and the
velocity peak around 9s was better reached.

The test results with increased effective force input functions (from 50% of the full
scale to 80% of the full scale) are presented in Figs. 6.30 - 6.33. The actuator had no
problem in following force commands that contained relatively small frequency content
at the structural resonant frequency such that the structural velocity was small when the
force peak was applied to the structure, as in the case with the Northridge earthquake
effective force input. On the other hand, the actuator showed some difficulties in
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catching force peaks when a large velocity occurred at the same time as in the case of the
El Centro earthquake effective force input.

In the test with the 0.27 g El Centro earthquake effective force input, the structural
responses showed some large discrepancies from the expected responses. The measured
responses were smaller than the expected responses before 12s and larger after 17s. This
was attributed to the fact that the incomplete velocity feedback compensation might have
changed the loading history to some extent, which in turn resulted in a different response
history because the nonlinear structural response depended on the loading history.

Simulation results match the effective forces and expected structural responses better
than the measured responses because the exact inverse of the forward dynamics including
servovalve nonlinearities were incorporated in the compensation loop of the simulation.
The simulation results indicate that the performance of the proposed nonlinear velocity
feedback compensation depends on the accuracy of the model of the servovalve and its

controller.

6.5 Comparison of Compensation Schemes

To further demonstrate the nonlinear velocity feedback compensation, tests were
conducted with the full-scale El Centro earthquake (0.34g) and the full-scale Northridge
earthquake (0.84g). The test results are compared to those of the tests with the linear
velocity feedback compensation scheme and without velocity feedback compensation in
Figs. 6.34 - 6.37.

The tests with the El Centro earthquake are shown in Figs. 6.34 and 6.35. With the

nonlinear compensation, the measured force in general better followed the command
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force than that of the test with the linear compensation. For example, the force peak at 2s
was better (yet not fully) reached with the nonlinear compensation. The measured
structural responses generally follow the expected responses though there is some phase
shift between 6s and 11s. On the other hand, with the linear compensation, the structural
responses were significantly smaller than the expected responses.

In the tests with the Northridge earthquake shown in Figs. 6.36 and 6.37, the
measured forces showed a good match with the command force in both cases. However,
the structure in the test with the linear compensation developed a very different
deformation pattern after 11s, and the response amplitudes were significantly smaller
than the expected response and that of the test with the nonlinear compensation.

These comparisons demonstrate the superiority of the nonlinear compensation
scheme over the linear compensation scheme. Meanwhile, the comparisons also reveal
the limitation of the current nonlinear compensation scheme: the natural velocity
feedback compensation is based on a predetermined servovalve flow curve while at large
spool openings, the variations in the servovalve flow property become important, and
may deteriorate the system performance. The ability of the test system to tolerate

uncertainties is explored in the following section.

6.6 Effect of Critical Parameters

Tests with a 0.5 kip sine sweep input function and the linear velocity feedback
compensation were conducted to demonstrate the effect of three parameters on the
performance of the compensated system discussed in Chapter 5. These parameters were

the controller P gain (Gp), servovalve flow gain (Ky), and servovalve response delay (Tjq).
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It should be noted that although it was intended to consider these parameters individually,
their effects are usually combined.
6.6.1 Controller P Gain

Large controller P gain generally improves the overall system performance; however,
the increase of the controller P gain is limited due to potential stability problems. Linear
analysis by applying Routh's stability criterion indicates that the maximum allowable P
gain is closely related to the servo-system leakage, which was hardly a fixed value. A P
gain of 0.81 was initially used though the predicted maximum P gain was 0.71 as shown
in Appendix 3.

During the course of the study, the actuator developed problems and required new
seals and a recharge of the piston. This repair significantly reduced the actuator leakage;
consequently, a P gain of 0.68 had to be applied to keep the uncompensated system
stable. The small P gain caused large force tracking errors of the actuator across the
whole frequency range of interest. Therefore, a needle valve was connected to the
actuator ports to create additional "cross-port leakage". With the increased proportional
leakage, the maximum allowable P gain was increased to 1.0.

Figure 6.38 compares the performance of the linearly compensated system with three
controller P gains. The additional "cross-port leakage" was engaged in all the tests. The
force tracking error of the test with the smaller P gain (0.61) was significantly greater
than that of the other cases (i.e., Gp of 0.81 and 1.0). Although the system performance
with a P gain of 1.0 looked similar to that of the test with a P gain of 0.81, the structural
response was indeed improved with a larger P gain because of the improved force
tracking ability of the actuator.
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On the other hand, a large P gain may drive the high-frequency mode of the test
system into the unstable range as shown in Fig. 5.22. This situation (i.e., unstable high-
frequency mode) happened many times when tests were conducted to determine the
maximum allowable P gain beyond the predicted one in Appendix 3 before the additional
leakage flow passage was installed. An example of the unstable high frequency vibration
is shown in Section 6.6.3, where a P gain of 1.0 was used, and the servovalve response
delay compensation was purposely set incorrectly.

6.6.2 Servovalve Flow Gain

Because of the uncertainties in the servo-system, such as hydraulic supply variation,
the predetermined flow property is unlikely able to reflect the physical condition all of
the time, thus causing under- or over-compensation during a test. Fig. 6.39 compares the
system response with linear velocity feedback compensation based on various initial flow
gains. Similar to the simulation results shown in Fig. 5.24, under-compensation
weakened the ability of the actuator to track forces around the natural frequency of the
structure while over-compensation contaminated the command signal with a signal at the
structural resonant frequency.

The conclusion can be extended to tests that required the nonlinear velocity feedback
compensation. The actuator in an under-compensated system would have problems in
tracking force commands, such as reaching force peaks, while an over-compensated
system would cause incorrect structural responses and even instability. Both situations
were observed experimentally during the process of the development of the nonlinear

velocity feedback compensation scheme.
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6.6.3 Servovalve Response Delay

Uncertainties in the determination of the servovalve response delay may affect the
system response as shown in Figs. 5.26 and 5.27. The simulation results were confirmed
by experiments shown in Fig. 6.40. As indicated in Chapter 4, a time delay of 5 ms was
optimal for the servovalve in this study while tests with 3-ms and 7-ms compensation
were conducted to investigate the effect of the variation of the compensated time delay.
With insufficient delay compensation, a peak before a valley appeared in the FFT of the
measured force while a peak after a valley appeared in the frequency domain when the
delay was over-compensated.

As indicated in Section 5.6, a combination of high P gain and insufficient delay
compensation might cause an unstable high-frequency vibration of the actuator piston.
On the other hand, the unstable vibration would not grow unbounded due to physical
limits of the test system. An example of the system response with a P gain of 1.0 and the
compensated delay of 2ms is shown in Fig. 6.41. Towards the end of the test when the
force command was zero, the actuator applied a force with 1-kip amplitude and 64 Hz
frequency to the structure. The force vibration might have started by some random input
(i.e., noise), and would go on until the hydraulics were shut down or the controller P gain
was turned down such that the high-frequency mode moved back to the stable range.
Meanwhile, the disturbance in the applied force was not able to excite the structure

because the forcing frequency was far away from the resonant frequency of the structure.

6.7 Summary

In the direct implementation of the EFT method, the interaction between the actuator
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control and the actuator piston velocity, termed "natural velocity feedback", affected the
actuator's ability to apply forces accurately around the natural frequency of the test
structure. The concept of velocity feedback correction proposed by Murcek, termed
"velocity feedback compensation" herein, was implemented using a physical SDOF
structural model and a digital controller. The effect of the natural velocity feedback was
compensated by modifying the command signal to the servovalve controller. This
process required that the compensation loop incorporate the inverse of the dynamics of
the servovalve and its controller.

Servovalves have high-order dynamics and nonlinear flow properties. In the
laboratory implementation of the velocity feedback compensation, the servovalve
dynamics were simplified as a first-order delay with a valve gain; the servovalve flow
property was first linearized around the null position of the servovalve spool. The above
linearization resulted in a linear compensation scheme, which can be implemented using
either analog circuits (Timm, 1999) or a digital signal processor. Test results showed that
within a certain operating range of the servovalve (£10% spool opening as indicated in
Section 4.2.5), the linear compensation could be used to negate the effect of the natural
velocity feedback. Beyond the linear range, caused by a large hydraulic demand (large
spool opening), nonlinearities in the servovalve must be considered in the velocity
feedback compensation.

Two major nonlinearities, nonlinear flow gain and load pressure influence, were
identified in Chapter 4. The identified piece-wise linear flow curve was used to invert the
servovalve flow relation. An estimation of the supply pressure and two additional inputs,

the spool position and the applied force were needed to invert the load pressure influence.
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The experimental results showed that with the nonlinear velocity feedback compensation,
EFT could be used to apply larger forces at all frequencies to the structure in tests that
required large flow demands.

The proposed nonlinear velocity feedback compensation scheme required an accurate
model (knowledge) of the servovalve. Critical system parameters affected by servo-
system uncertainties were studied experimentally to investigate their effect on the
implementation of the EFT method. The test results correlated with those obtained
analytically in Chapter 5. Other factors that can affect the performance of the EFT

method are discussed in the next chapter.
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CHAPTER SEVEN

FACTORS THAT AFFECT THE PERFORMANCE OF EFT

The methodology of velocity feedback compensation has been shown through both
experiment and simulation to be able to negate the effect of natural velocity feedback and
make the implementation of EFT success. The implementation of velocity feedback
compensation requires an accurate knowledge of the servo-system. Uncertainties of the
servo-system that could affect the laboratory implementation of the EFT method are

discussed in this chapter.

7.1 Uncertainties in Servo-System

The performance of the proposed nonlinear velocity feedback compensation depends
on an accurate servovalve flow curve and accurate delay estimation. Uncertainties in the
servo-system, such as leakage and pressure supply variation, reduce the accuracy of the
system identification. Leakage in the system may affect the system stability and the
controllability of the actuator, while variation in the supply pressure affects the flow
property and response delay of the servovalve.
7.1.1 Leakage Flow

Servo-system leakage includes the main-stage valve leakage described by Eq. (3.21)
and actuator leakages described by Eqgs. (3.25) and (3.26). The proportional leakage C,
used in the analytical study represents the actuator cross-port leakage, part of the actuator

external leakage, and part of the servovalve leakage. Because leakage passages are
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caused by hardware wear and imperfection, which are difficult to evaluate, the leakage
coefficient is difficult to determine accurately. Controller gain setting based on incorrect
leakage estimation may affect the system performance and stability.

The effect of the proportional leakage is shown in the root loci of a linearly
compensated system with respect to various proportional leakages in Fig. 7.1. If the
leakage were zero instead of 5.5 in.”/s/ksi, which was used in determining G, for the
design of the linear compensation scheme, the compensated system would have an
unstable vibration mode related to the valve dynamics. Large proportional leakage
increases the damping of the high-frequency mode, and thus allows a larger controller P
gain (Gp). This is shown in Fig. 7.2, in which the maximum achievable P gain calculated
following Routh's stability criteria is plotted against the proportional leakage. The
observation was the base of the addition of the cross-port leakage passage mentioned in
Chapter 6. Meanwhile, it should be noted that large leakage increases the force-tracking
error of the actuator as shown in Section 5.2.

The proportional leakage cannot fully represent the total leakage of the system. For

X 2\c

3 2
example, the servovalve leakage described by ;zrc {1 +E(EJ }% includes a term
HX,

related to half of the supply pressure. In addition, part of the actuator external leakage

This

+
shown in Eq. (3.26) is proportional to the supply pressure because P, = R ; R

part of the leakage (termed constant leakage) represents a physical phenomenon that the
leakage exists whenever the hydraulic pressure is applied to the system. Because of the

constant leakage, the force output of the actuator would be below the command force
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across the whole frequency range as shown in the simulation results in Fig. 7.3. The
simulation with a constant leakage of 0.5 in.*/s matched well the system response to a 0.5
kip sinesweep input function with linear velocity feedback compensation (also shown in
Fig. 6.22), indicating that the force tracking error could be in part attributed to the
constant leakage of the system. In addition, simulation results indicated that the tracking
error of the actuator would increase with an increase of constant leakage. For example, a
constant leakage of 2.0 in./s would result in an unacceptable system tracking error as
shown by the dark dashed lines in Fig. 7.3.

Although a feedforward compensation of the constant leakage was theoretically
possible, such compensation was not further explored because the test system was
sensitive to incomplete compensation, and the leakage parameter was difficult to
accurately identify. Instead, increasing the effective force command signals was used to
offset the effect of small constant leakages. If the constant leakage is large, the servo-
system should be sent to the factory for repair.

7.1.2 Pressure Supply

Two hydraulic pumps provided 150 gpm oil flow at 3000 psi pressure to the entire
laboratory at the University of Minnesota. When an actuator in the laboratory took
hydraulic flow from the supply line and drove the same amount of flow into the return
line (work was done during the process), the flow consumption caused a pressure drop in
the supply line. The pressure reduction in the supply line was sensed and compensated
by the hydraulic pumps. Because the hydraulic pumps had their own dynamics and
response delay, the pressure supply to the servovalves varied while other tests were

underway in the laboratory. The pressure supply variation caused by the other tests was
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generally small and dependent on their relative positions to the EFT system on the supply
line while the pressure supply variation caused by an EFT test itself was significant.

Figure 7.4 shows the supply pressure variation during a test with a small amplitude
sinesweep input, in which the peak spool opening increased from zero to 15% and then
decreased at a similar rate to zero. The supply pressure was 2860 psi in the beginning
and returned to the same value at the end. During the test, the supply pressure dropped
when the spool opened in either direction, and pressure regained roughly its initial value
when the spool moved back to its null position. When the pressure drop was large (due
to a large spool opening), the regained pressure in the supply line had a small overshoot
(i.e., the supply pressure could have been instantaneously greater than the initial value,
2860 psi).

The result of a similar test, in which the maximum spool opening reached 80%, is
presented in Fig. 7.5. A similar observation can be made regarding the pressure variation
along with the variation of the hydraulic demand (represented by the spool opening). The
instantaneous supply pressure overshoot was greater but was capped by an upper limit.
In addition, a sudden pressure drop and regain were evident at 18s and 52s respectively,
roughly corresponding to a 45% spool opening, indicating some unknown dynamics of
the hydraulic system.

The unknown pump dynamics and related response delay were also believed to be
responsible for the unsymmetrical supply pressure history corresponding to a
symmetrical spool opening history shown in Figs. 7.4 and 7.5. The asymmetrical
pressure variation pattern indicates nonlinearity in the hydraulic supply, meaning that the

supply pressure variation is dependent on the hydraulic demand history. The nonlinearity
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increases the difficulty in determining the servovalve flow property.

The supply pressure variation was not compensated in the laboratory because it was
difficult to model the pressure variation and the relation between the supply pressure and
the servovalve flow. The modeling error might be significant enough to result in a poor
response of the test system. A roughly average value in the second test (2650 psi) was
used as the supply pressure in the compensation of the load pressure influence.

An accumulator with a capacity of % gallon closely coupled to the servovalve was
used to reduce the uncertainty of the servovalve flow property. The nonlinear flow curve
of the servovalve with the accumulator is presented in Fig. 7.6. Compared to a previous
flow curve shown in Fig. 4.8, the scattering of the experimental data is reduced. In
addition, the slopes of the curve at +80% spool openings are increased, indicating better

controllability of the servovalve.

7.2 Uncertainties in Test Structure and Test Environment

The velocity feedback compensation was based on a measured piston velocity. The
velocity measurement might include other vibration components in the test structure such
as the rotation of the cart in Timm (2001). Results of both experiment and simulation
indicated that the velocity feedback compensation could compensate for the effect of
some secondary vibration modes in the test structure. This section explores potential
problems in testing structures against a flexible reaction frame, in which the piston
velocity would not be the same as the structure velocity.

When the actuator applies forces to the test structure (represented by m, ¢, and k), the

same forces are applied to the reaction frame (represented by mj, €1, and k;). As shown
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in Fig. 7.7, the piston velocity with respect to the actuator house, which affects the
actuator control, is the summation of the velocity responses of the structure and the
reaction frame because the actuator house moves with the reaction frame. Fig. 7.8
presents the root locus of a test system with a flexible reaction system, which was
assumed to have a 150 Ib equivalent weight and 40 kip/in. stiffness. The system without
velocity feedback compensation has two pairs of zeros corresponding to the natural
frequency of the test structure and the reaction frame such that the actuator would not be
able to apply forces at both frequencies. When the piston velocity is compensated, two
conjugate poles move towards the zeros that represent the structure and eventually cancel
them. On the other hand, two other conjugate poles that are supposed to cancel the zeros
corresponding to the reaction frame instead move into the unstable region. Therefore, if
the compensation were based on a piston velocity relative to a light flexible reaction
frame (e.g., an A-frame), the system might become unstable.

If the compensation were based on the structure velocity instead, the effect of the
zeros corresponding to the structure would be cancelled while the zeros corresponding to
the flexible reaction frame would not be affected as shown by simulation in Fig. 7.9. The
effect of the remaining zeros on the force tracking ability of the actuator within the
frequency range of interest would be reduced if the reaction system had either large
damping or a large resonant frequency (a frequency away from the frequency range of
interest).

The root locus of another assumed test system with a heavy stiff reaction system,
which is represented by a 150 kip equivalent weight and 400 kip/in. stiffness, is shown in
Figs. 7.10 and 7.11. It seems that the stable pole-zero cancellation is achieved without
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any problem if the velocity feedback compensation is based on the piston velocity.
However, the simulation results cannot be extended to other reaction systems blindly.
Computer simulations should be conducted for the individual test system to avoid
potential stability problems. When the compensation is based on the structural velocity,
the effect of the remaining zeros depends on the damping and the resonant frequency of
the reaction system. A slightly damped vibration mode close to the natural frequency of
the test structure might still significantly affect the ability of the actuator to excite the test

structure correctly, and the compensation based on the piston velocity would be required.

7.3 Effect of Servo-system on Test Structure

Effective forces are applied to the test structure by a hydraulic actuator, which is not
an exact replacement of the force vector acting on the structure shown in the free body
diagram in Fig. 1.1 (b). A close examination of the test system shown in Fig. 7.12
reveals that the piston rod moves with the structure. Hence, friction and viscous damping
(caused by the shear of the hydraulic fluid between the piston and actuator house) might
affect the test structure though the actuator control is based on load cell reading, which
does not include the above friction and damping forces. The effect of the servo-system
on the test structure was evaluated by comparing the results of free vibration tests with
the actuator attached to those identified in Chapter 4, where the actuator was unattached.
In the parametric simulations shown below, a stiffness of 3.96 kips/in. was used though
static loading tests shown in Fig. 4.10 indicated some variations (less than 1%) in the

structural stiffness.
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7.3.1 Damping of Structure

In the free vibration tests with the actuator attached, another actuator on the opposite
side of the structure as shown in Fig. 7.13 was used to pull away the structure. The
structure was released when a steel coupon attaching the structure to the second actuator
fractured. The structure then had an initial offset prior to release. The velocity feedback
compensation was applied to the attached actuator, which had a zero force command.

The test result with a -0.69 in. initial offset is shown in Fig. 7.14 along with
simulation results that best fit the test results. The simulation result in grey dashed lines
indicates that the system had a damping coefficient of 0.008 and a friction force of 35 Ibs.
Although the damping properties are different from those identified in Chapter 4 (0.024
and 6 1bs), test results normalized by the initial offsets shown in Fig. 7.15 indicate that
the vibrations were dampened to similar amplitude at 7s after the same number of cycles.
Therefore, the test system with proper velocity feedback compensation would have
equivalent energy dissipation to the structure on a shake table though the dissipation
mechanism may be different.

The change in the energy dissipation mechanism was attributed to actuator force
(energy) input. Because the actuator was controlled with zero force command, it tried to
cancel the resistant force (sensed by the actuator load cell) caused by the actuator
chamber volume variation and friction and damping forces of the actuator during the free
vibration test. Due to inevitable incomplete compensation, the actuator force was not
zero as indicated by the load cell readings. The force measurement was plotted versus
the structural velocity in Fig. 7.16. A linear curve fitting was made to characterize the

relation between the resistant force and the structure velocity (i.e., the slope and the
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intercept of the regression line). The slope represents an equivalent viscous damping
coefficient and the intercept represents the friction of the actuator. The curve fit indicates
that the actuator input was equivalent to a negative viscous damping (-0.022) and a
positive friction (38 Ibs).

If the actuator force measured by the load cell was used as the input (F) in the
simulation based on Eq. (3.38), a damping coefficient of 0.028 and a friction of 2 Ibs best
fit the test results as shown by the dark dashed lines in Fig. 7.14. This simulation
considers only the structure; hence, the identified damping properties are similar to those
in Chapter 4. A simple relation can be found between the two identified damping
properties: The structure viscous damping (friction force) plus the damping (friction
force) provided by the actuator gives the system viscous damping (friction force). The
negative viscous damping and positive friction indicate that the actuator did both positive
and negative work. With proper velocity feedback compensation, the energy input was
similar to the energy takeout such that the structural behavior was not affected
significantly though the exponentially decayed response became a linearly decayed
response. Two more free vibration tests were conducted, one with slight over-
compensation and another with under-compensation, to investigate the effect of velocity
feedback compensation on the energy dissipation of the test system.

7.3.2 Effect of Velocity Feedback Compensation

The free vibration test with the over-compensation of the natural velocity feedback is
presented in Fig. 7.17. Compared to the case with the roughly correct compensation,
more negative damping occurred (a viscous damping of -0.003 and a friction force of 37

Ibs) because the actuator was commanded to apply additional forces to the structure due
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to the incomplete cancellation of the natural velocity feedback. The additional force was
proportional to the structure velocity because the modification of the actuator command
was based on the structure velocity. On the other hand, if the actuator force was used as
the input (F) in the simulation based on Eq. (3.38), the identified parameters (0.026 and 1
Ibs) were very close to those in Chapter 4. The actuator force is plotted against the
structure velocity in Fig. 7.18. Again, the structure damping (friction) plus the damping
(friction) provided by the actuator is close to the damping (friction) of the test system,
indicating that over-compensation caused additional energy input to the test structure.

On the contrary, the free vibration test with under-compensation of the natural
velocity feedback shown in Fig. 7.19 indicates high damping in the system (0.026 and 38
Ibs). If the actuator force was considered as the input in the simulation, the identified
parameters were 0.027 and 3 Ibs, respectively, which are again very close to the structure
damping properties identified in Chapter 4. The plot of the actuator force vs. structure
velocity shown in Fig. 7.20 indicates that the actuator caused a damping of -0.003 and a
friction force of 29 Ibs. The aforementioned relation between the system damping and
the actuator/structure damping holds for this case, indicating that the actuator input less
energy than it should to the system if the velocity feedback is under-compensated.

Therefore, the structural behavior related to damping is sensitive to the level of the
velocity feedback compensation. The apparent damping properties depend on whether
the natural velocity feedback is over- or under- compensated. Generally, the actuator
input more energy into the system with over-compensation for the natural velocity
feedback, while the actuator dissipated more energy in the under-compensated system.

As a result, the test structure would show smaller damping in an over-compensated
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system and larger damping in an under-compensated system. This correlates with the
conclusions drawn in the root locus analysis of the system in Fig. 5.20.
7.3.3 Mass of Structure

The actuator piston moves with the test structure, thus the system mass includes the
mass of the actuator piston. The piston in this study weighed approximately 120 Ibs,
which represented less than 1% of the mass of the test structure. This would be expected
in general for EFT because the actuator would typically be sized according to the
structural mass and the peak ground acceleration (Spink 2002). The effect of the addition

of the mass on the natural frequency of the test structure was deemed negligible.

7.4 Nonlinear Behavior of Structure

Theoretically, a successful implementation of the EFT method is independent of the
nonlinear behavior of a test structure. However, testing a nonlinear structure might
require large hydraulic flow demand due to large structural velocity response during the
test. In these cases, the implementation (not the methodology) of the velocity feedback
compensation would be affected because the current nonlinear compensation scheme
requires an accurate knowledge of the servo-system, which is difficult to obtain due to
system uncertainties, especially at large spool openings. Consequently, the velocity
feedback compensation might be instantaneously incomplete, and the test results would
be different from the expected results if the structural response is sensitive to loading
histories.

For example, in the test with a 2.0 sine sweep input function and nonlinear velocity

feedback compensation shown in Fig. 6.25, the measured structural responses matched
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well with the expected responses even though the maximum spool opening was 55%.
During the test, the structure was well into the nonlinear range of its behavior (the
structural stiffness reduced by half when the displacement was beyond 1 in.). Other
examples include the test with full-scale Northridge earthquake effective force input
shown in Figs. 6.36 and 6.37 and the nonlinear velocity feedback compensation. The
structure was correctly excited such that the nonlinear structural behavior was captured
during the test.

On the other hand, in another nonlinear test with 0.27g El Centro earthquake effective
force input shown in Figs. 6.30 and 6.31, a smaller response was obtained in the test
before 11s while the measured response was larger than the expected response after 18s.
The reason might have been that the structural response was sensitive to the force peak
around 2s, which the actuator did not fully reach at due to instantaneous under-

compensation.

7.5 Summary

Many factors can affect the performance of the proposed nonlinear velocity feedback
compensation and the EFT method. The effects may come from uncertainties in the
servo-system, such as leakage flow and pressure supply variation, or from uncertainties in
the test environment such as a flexible reaction frame and/or large flow demands.
Compared with a structure subjected to a shake table test or an earthquake event, the
structural response in a test using the EFT method can be slightly affected by the actuator
attached to the test structure. The actuator physically adds a small mass to the structure

and alters the energy dissipation of the structure through additional energy input to the
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test system. The energy input can be positive or negative (dissipation) depending on the
performance of the velocity feedback compensation. Nevertheless, with a correct
implementation of the velocity feedback compensation, the EFT method can be used to
apply real-time seismic simulation to nonlinear structures. This is further validated using

a single-story steel structure in the next chapter.
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CHAPTER EIGHT

PROOF-OF-CONCEPT TEST

To verify that the EFT method would produce results equivalent to those produced in
a shake table study, a proof-of-concept test was conducted by subjecting the same

structure to both test methods and comparing the results.

8.1 Experimental Program

A simple one-story structure was selected for the proof-of-concept test. The structure
consisted of a rigid diaphragm (two rectangular steel frames filled with reinforced
concrete) supported at its corners on four replaceable steel columns as shown in Fig. 8.1.
The shake table study was conducted using the shake table at the University of Illinois at
Urbana-Champaign, and the EFT study was conducted at the University of Minnesota.
The concrete mass weighed approximately 10 kips to fit the load capacity of the table,
and the column spacing was 60x72 in. to fit the hole-pattern of the base plate of the table.
The column spacing also fit the size of the diaphragm, which was made for the previous
SDOF structure. Four plates with tapped holes were welded on the steel frame of the
diaphragm to provide connections for the columns.

The columns were made of W10x15 sections with A572 grade 50 steel, which had a
measured yield stress of 62.5 ksi. The columns were 72 in. high and oriented in weak-
axis bending such that the resonant frequency of the structure was approximately 3 Hz.

The structure stiffness in the orthogonal direction was approximately 23 times larger than
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that in the direction of motion; hence the out-of-plane motion was prevented without
additional diagonal braces. Because the results of the shake table study showed
repeatable structural behavior even after major yielding of the columns, the same
columns were used in the companion EFT tests. In order to minimize the effects of the
connections on the comparison of the dynamic responses of the structure, the column
ends were welded to a 1.5-in. thick plate at the bottom and a 1-in. thick plate at the top,
and the plates were bolted to the diaphragm and the foundation using four ’2-in. diameter
A490 bolts.

Two fluid dampers were connected between the middle chevron brace and the
foundation. The dampers were used to keep the structure from extensive damage for
most of the tests while tests both with the dampers and without the dampers were
conducted. The behavior of the dampers was found to be nonlinear; hence, the structural
behavior was difficult to predict even when the columns were in the linear elastic range.

Both global and local responses of the structure were monitored. The measured
global responses included acceleration (A), velocity (V), and displacement (D) of the
mass. In the shake table tests, the structural velocity was measured directly relative to the
table while the structural acceleration and displacement were measured relative to the
global reference frame. The table displacement and acceleration were subtracted from
these measured responses to calculate the relative responses to the table, and the relative
responses were compared to the measured responses in the EFT study.

The monitored local responses included column flange strains and damper forces.
The column moment and shear (Q) were calculated from strain measurements. Strain

gages were placed on each column 8 in. from both column ends as shown in Fig. 8.2 (a).
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It was assumed that plane sections remained plane after deformation at the gage sections
(i.e., linear strain distribution across the section as shown in Fig. 8.3). Hence, the strains
at the flange tips were calculated using a linear extrapolation (strain gages were not right
at the flange tips). The moment at a gaged section was calculated by ES¢ before the
section yielded (&<g), where ¢ was the average strain at the four flange tips of the
section. The stress-strain relationship was assumed elastic-perfectly plastic. When

yielding occurred at a gaged section, the corresponding moments were approximated by

& ? &
M, =ESe|1-|1-2X| | 1+2L |, (8.1)
RIS

where E is the modulus of elasticity of steel (29,000 ksi), S is the section modulus of the
column with respect to the weak axis (1.45 in.”) , and g 1s the yield strain of the steel
(0y/E=0.0021). The second term in the bracket estimates the contribution of the shaded
blocks in Fig. 8.3 that need to be subtracted from a moment calculated by ESe.

The base shear for each column was calculated by dividing the sum of the two end
moments by the distance between the gaged sections. The total base shear was the
summation of the base shears of the four columns. The total base shear (kx) was also

calculated by subtracting the damper force (cX ), measured by two load cells in line with

the dampers, from the total inertial force, —m(>’<‘ + 5('9), where X+ X, was the measured

acceleration relative to the global reference. In the EFT study the total inertial force was

replaced by the measured actuator force (should be —mX;, where X is the measured

g b
shake table acceleration) plus the relative inertial force (—mX).
The load cells were made of a 1-in. diameter threaded rod. The gage placement on
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the threaded rod is shown in Fig. 8.2 (b), including two gages measuring the axial strain
and the other two measuring the Poisson strain. The load cells were calibrated with the
signal conditioner, a 2100 system by Measurement Group Inc. The conditioner excitation
was 5 volts, and the gain was set such that the output was +1 volt when using shunt
calibration. With the above conditioner setup, the sensitivity factor of the load cells was
found to be 2.0 kips/volt by static loading tests.

The input functions used in the shake table study included a sine wave sweep (1-10
Hz), the El Centro earthquake ground acceleration, and the Northridge earthquake ground
acceleration. The frequency of the sinesweep inputs started from 1 Hz because the shake
table actuator was under displacement control. The ground acceleration signals were
transformed into required displacement signals by the actuator controller through double
integration. For low frequency accelerations, the above process could cause a large
displacement command, which might exceed the table stroke limit (-2in. to 2in.). The
maximum peak ground accelerations for the El Centro and Northridge earthquake records

used in the shake table study were limited (0.30g and 0.55g, respectively) for this reason.

8.2 Shake-table Test
A schematic of the test structure on the shake table is shown in Fig. 8.4, and the
laboratory realization is shown in Fig. 8.5. More details regarding the connections can be

found in Appendix 7. The relative responses were calculated using

D,, =(Dy +2D,, + Dg)/4-D; (8.2)

S|

A=A —A (8.3)
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Fost = _(va - LE) (8.4)

where Dy, Vi, and Agy are the displacement, velocity, and acceleration of the structure
relative to the table, and Fpg is the damper force. As labeled in Figs. 8.4 and 8.5, there
were four potentiometers, three at the structural mass level (Dy, Dy, Ds) and one on the
shake table (D), two accelerometers, one on the mass (Ay) and the other on the table
(Ar), and two load cells (Lw and Lg), one for each damper. The sign conventions for
positive global responses and positive column moment and shear are shown in Fig. 8.4.

The columns were bolted to a '2 in. thick base plate, which was bolted to the table
using ’2-in. diameter bolts shown as the dots in Fig. 8.6. The bending of the base plate
during testing was prevented by one bolt located 5 in. away from the column base plate in
the direction of motion. Experimental results have shown that more than 97% of the
structural displacement was due to the shear deformation of the columns and the rest of
the displacement was from the overturning of the structure due to the bending of the table
base plate.

The load displacement relationship for a static loading test of the structure on the
shake table is shown in Fig. 8.7, from which the structural stiffness was found to be 8.65
kips/in. using a linear curve fit. Due to the physical limitation of the test equipment, the
static loading test was conducted in one direction (positive displacement direction) with a
maximum offset of % in. Free vibration tests with and without the fluid dampers were
conducted to determine the structural properties, and the test results are shown in Figs.
8.8 and 8.9, respectively. Because the measured table displacement was too noisy to be
used in determining the structural displacement relative to the table, the measured

structural velocity was used in the parameter identification.
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The parametric simulation was based on Eq. (3.38), where the structural stiffness k
was obtained through the static loading test, while the structural damping (i.e., viscous
damping ¢ and Coulomb friction F¢) and the structural mass were determined based on a
least square technique. The structural mass was considered in the process because it may
affect the period of the simulation response, which in turn may affect the error evaluation
of the process of the parameter identification.

In the test without dampers, the structural velocity relative to the table remained
constant after 4s because the shake table could not stay stationary during the tests.
Hence, the measured table acceleration multiplied by the structural mass was considered
as the input force F in Eq. (3.38). The results of the simulation with 10.1 kip mass, 0.3%
viscous damping, and 1 1b. friction force best matched the experimental results.

In the case with the fluid dampers, the dampers were found to have a complicated
nonlinear damping characteristic, which slightly affected the natural frequency of the
structure. Hence, the structural mass (9.3 kips) obtained in this test was deemed incorrect
due to the inaccurate damping characterization (using a combination of viscous damping
and Coulomb friction to model the complex behavior). In addition, the structural
response would be difficult to predict analytically due to the difference between the

modeled and the actual structural damping .

8.3 Effective Force Testing
A schematic of the structure used during the EFT study is shown in Fig. 8.10, and the
laboratory realization is shown in Fig. 8.11. The same columns as in the shake table

study were used in the EFT study because the shake table tests had good repeatability of
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the column behavior even after major yielding. More details regarding the connections

are documented in Appendix 7. The structural responses were calculated using

D, =(2D, + D, +Dy)/4 (8.5)
Ay =(A +A)/2 (8.6)
Foer = Lw — Le (8.7)

where Deri and Aett are the displacement, velocity, and acceleration of the structure and
Fpert is the damper force. As labeled in Figs. 8.10 and 8.11, the sensors used in EFT tests
included two potentiometers, one at the structural mass level (Dy) and one at the damper
level (Dp) in addition to the actuator LVDT (Dj), two accelerometers (Ay and As), one on
each side of the mass, and same two load cells (Lw and Lg). The sign conventions for
positive global responses and positive column moment and shear are shown in Fig. 8.10.

The columns were bolted to a %-in. thick base plate, which was bolted to the strong
floor using 1-in. diameter threaded rods (36 in. long) shown as dots in Fig. 8.12.
Although the base plate and the anchorage of the base plate were different from those in
the shake table study, experimental results have shown that the structural stiffness was
close to that in the shake table study. The load displacement relationship for a static
loading test of the structure is shown in Fig. 8.13, from which the structural stiffness was
found to be 8.77 kips/in. through a linear curve fit.

The structural stiffness of the structure in the EFT test was 1.4% greater than that
obtained in the shake table study due to a slight change in column boundary conditions.
The structural mass changed by 2%, which was in part due to the addition of a thick plate

for connecting the actuator in the EFT test. With the above structural properties, the

127



natural frequency of the structure changed approximately by 1% between the two tests
(from 2.89 Hz in the shake table study to 2.87 Hz in the EFT study).

The measured displacements obtained in free vibration tests with and without the
fluid dampers are shown in Figs. 8.14 and 8.15, respectively. The structural damping and
mass were determined using the same procedure as in the shake table study, and the
structural displacement was used in the process. The structure without the dampers had
very small damping (0.2% viscous damping plus 1 1b friction). In addition, the
simulation with 8.2% viscous damping best fit the test results with the dampers. The
identified structural properties are listed in Table 8.1 along with those in the shake table
study.

Compared to the shake table study, the structural damping properties had a greater
change than the stiffness. For the case without the dampers, the structural viscous
damping in the EFT test reduced by 33% though the damping was very small such that
test and/or simulation errors might have been responsible for the difference. For the
structure with the dampers, the damping decreased by approximately 10% (from 9.2% in
the shake table test to 8.2% in the EFT test) in addition to the disappearance of the
friction force in the EFT test. The force velocity curve of the damper shown later
indicated that the damper performed differently, which was attributed to an unknown
change in the damper fluid and a change in the working environment of the dampers.
With a reduced damping, it was anticipated that the structural responses observed in EFT

tests would be slightly greater than those in the shake table study.
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8.4 Servo-system Parameters for EFT Tests

The procedure in Appendix 3 was followed to identify the parameters required by the
EFT tests. The structural mass was limited by the shake table capacity, and the peak
ground accelerations for the two selected earthquake records (El Centro earthquake and
Northridge earthquake) were limited by the shake table stroke. With the structural
properties identified in the last section, the capacity of the servo-system was checked
using nonlinear numerical analysis. The servo-system used in this study (a 35-kip
actuator controlled by a 90-gpm servovalve) was found to be capable of applying the
effective forces to the test structure based on measured table acceleration in the shake
table tests.

With the second-order model obtained in Chapter 3 and the parameters identified in
Chapter 4, the servovalve response delay was found to be 5.2 ms. In addition, the
controller P gain was empirically determined as 1.0 and the controller D gain 0.2 ms in
the EFT tests. After considering the 0.2 ms phase lead caused by the PID controller, the
response delay Ty to be compensated was found to be 5.0 ms. Similar to the tests on the
SDOF structural model, the constant & was empirically chosen as 0.1 for the phase-lead
network (Eq. (2.35) and Eq. (6.4)). The valve gain was 0.1 (10 volts command signal
corresponds to 100% spool opening) as in the tests discussed in the previous chapters.

The servovalve flow curve was identified following the procedure in Appendix 3.
The test results are listed in Table 8.2, and the mean curve defined in the shaded blocks
was used in the EFT tests. One noteworthy observation is that the flow values, especially
those corresponding to small spool openings, are larger in the tests with smaller

amplitude commands (i.e., smaller peak hydraulic demand or spool opening). Hence,
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using the average flow curve in the EFT tests that require only small spool openings,
would cause slight over-compensation. There was no attempt made to optimize the flow
curve for individual tests to get the best correlation between shake table test and EFT test
results, and the identified flow curve was used in all EFT tests.

Other required parameters are as follows. The sensitivity factor of the tachometer-
type velocity transducer was 0.196 volt/in./s (specified by manufacturer); the actuator
piston area was 12.73 in.? (specified by manufacturer); and the pressure supply was 2650
psi (empirically measured). With these parameters, tests were conducted with both
sinusoidal and earthquake effective force inputs. Because the shake table was not able to
apply the specific ground acceleration perfectly, the measured table acceleration in the
shake table tests multiplied by the identified structural mass was used for the force

command signals in the EFT tests.

8.5 Test Results

The EFT tests were conducted with the measured table acceleration of selected shake
table tests. In the following comparisons, "Shake table test" represents the measured
table acceleration times the estimated structural mass, which is also the effective force
command for EFT tests. "EFT test" represents the force applied to the structure measured
by the actuator load cell. The forces are compared in both the time domain and the
frequency domain. The structural responses (i.e., displacement and velocity) measure
relative to the shake table or the strong floor and local responses such as column base
shear calculated from strain gage readings are then compared in the time domain. Results

obtained in the EFT tests are shown by dashed lines while the shake table results are
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shown by gray solid lines.

8.5.1 Tests with Dampers

When the two dampers were attached to the structure, the columns were kept in their
linear elastic range of behavior during the shake table study. Hence, the EFT tests
corresponding to the shake table tests with large excitations are presented. Figure 8.16
compares the forces of the tests with a 0.13g sinesweep (1-10 Hz) acceleration input.
Due to the dynamics of the shake table and its servo-hydraulic system, the table output
overshot low frequency signals (< 5 Hz) while the table output was smaller than the
command at larger frequencies. The effective force command based on the measured
table acceleration was followed closely in the EFT test except that the force applied to the
structure by the actuator was slightly greater than the force command from 6s to 9s in the
time domain. This was attributed to a slight over-compensation of the natural velocity
feedback because the maximum spool opening during the test was about 20%, and the
identified flow curve slightly underestimated the real flow property of the servovalve in
this case. The relatively larger discrepancy near 2.8 Hz (i.e., the natural frequency of the
test structure) in the frequency domain was in part attributed to the accumulative nature
of the FFT algorithm.

Both the global response and local response of the EFT test agreed well with those of
the shake table test as shown in Figs. 8.17 though the structural responses in the EFT test
were slightly greater than the shake table results. The difference in the structural
responses was attributed to the slight over-compensation of the natural velocity feedback

and the aforementioned decrease in structural damping. The damper behavior is
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examined by comparing the force-velocity curves in Fig. 8.18. As can be seen, the
resistant forces provided by the dampers in the EFT test were smaller that those in the
shake table test. The columns in both tests had a slight hysteretic behavior as shown in
Fig. 8.19 though the static loading tests shown in Fig. 8.13 indicated that the structure
was still linear elastic.

The results of tests with a 0.29g El Centro earthquake input are compared in Figs.
8.20 through 8.21, and the tests with a 0.55g Northridge earthquake input are compared
in Figs. 8.22 through 8.23. Close matches in both forces and structural responses are
evident indicating that with the nonlinear velocity feedback compensation, the actuator
was able to apply forces accurately. On the other hand, the maximum spool opening in
the 0.29¢g El Centro earthquake test was 16%, and the maximum spool opening was about
30% in the 0.55g Northridge earthquake test. As a result, slight force discrepancies in the
frequency domain near the natural frequency of the test structure indicate a slight over-
compensation of the natural velocity feedback, which correlated to the observations made
in the tests with the sinesweep input shown Fig. 8.16.

8.5.2 Tests without Dampers

The EFT tests without dampers were problematic due to the narrow stability margin
of the system as a result of the small structural damping. Test results with a 0.3g El
Centro earthquake are presented here to illustrate the problem encountered. Figure 8.24
shows a comparison of the measured force in the EFT test with the effective force
command (i.e., the measured shake table acceleration times the structural mass).
Although the actuator seemed able to apply forces at all frequencies within 10 Hz, large
force overshoots around 3s are evident. The force overshoots caused large piston
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velocities, which in turn caused large hydraulic demands. As indicated in Section 7.1.2,
the uncertainties (i.e., primarily the variation in the servovalve flow property) of the
servo-system typically increased with an increase in hydraulic demand. Hence, the
implementation of the EFT method based on a predetermined flow curve might have
caused under- or over-compensation of the natural velocity feedback.

In this case, the over-compensated system was slightly driven into the unstable region
after 3s, and the structural responses were much larger than those in the shake table test
as shown in Fig. 8.25. Because the test structure without dampers had little damping
(0.25%), the test system could not tolerate the instantaneous instability. In addition,
although the command force was zero after 25s, the actuator applied a small amplitude
force to the structure due to the incomplete compensation of the piston velocity. The
frequency of the force input was identical to the resonant frequency of the test structure,
and the force input was in phase with the structural response, thus resulting in a small
energy input. The energy input at this frequency maintained a constant amplitude
oscillation, which did not die down until the program was shut down.

Tests with under-compensation of the natural velocity feedback were conducted to
eliminate the instability. A test with 93% velocity compensation is shown in Figs. 8.26
an 8.27 for the same 0.3g El Centro earthquake input. Although the system was able to
maintain stability and the actuator force seemed able to follow the force command, the
structural responses were much smaller than those in the shake table study due to the
increase in the system damping caused by the under-compensation of the natural velocity
feedback (Section 7.3.1).

Because the proposed nonlinear velocity feedback compensation was based on a
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predetermined flow curve, which did not consider the uncertainties of the hydraulic
supply system, EFT testing with the current velocity compensation should be limited to
structures with some damping (e.g., 2% based on experiences from this study) to prevent
instantaneous instability.

8.5.3 Tests with One Damper

The two fluid dampers provided roughly 8.2% critical damping to the test structure.
Tests with one damper were conducted with EFT to simulate more typical structural
damping. The feasibility of the EFT method was examined by comparing the measured
actuator force to the effective force command because shake table tests with the single
damper were not conducted. Figure 8.28 presents the test results with a 2kip sinesweep
input. The actuator closely followed the force command as shown in both the time
domain and the frequency domain plots. The maximum spool opening during the test
was 55%, which was close to that in the parameter identification tests. Hence, the natural
velocity feedback was properly compensated with the identified flow curve shown in
Table 8.2. In addition, the force tracking ability was not affected by the hysteretic
column behavior (i.e., columns yielded during the test) shown in Fig. 8.29 and the highly
nonlinear damper performance shown in Fig. 8.30.

Similar observations can be made for the test with a 0.29g El Centro earthquake input
shown in Fig. 8.31, and the test with a 0.55g Northridge earthquake input shown in Fig.
8.32. A better match is evident for the El Centro test because the earthquake effective
force had a small frequency content at the resonant frequency of the test structure, hence
peak forces were unlikely to happen simultaneously with peak velocities. These results

indicate that the EFT method with the nonlinear velocity feedback compensation can be
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used to apply real-time seismic simulations to structures. More advanced adaptive

velocity compensation is necessary for testing structures with little damping.

8.6 Summary

The feasibility of the EFT method was examined by comparing the test results
obtained from shake table studies to those obtained from the companion EFT tests on a
single-story steel structure. The comparison of the test results showed that with the
nonlinear velocity feedback compensation, forces can be applied to the structure
satisfactorily at all frequencies of interest, and the EFT method can be used to apply real-
time seismic simulation to structures. On the other hand, with the current nonlinear
velocity compensation scheme, there is a structural damping requirement of
approximately 2% to avoid possible instantaneous instabilities due to variations in
hydraulic supply pressure and uncertainties in the parameters used in the nonlinear

velocity feedback compensation scheme.
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CHAPTER NINE

CONCLUSIONS AND RECOMMENDATIONS

Real-time dynamic testing is necessary for studying structures with strain-rate critical
components and structures utilizing velocity dependent devices (e.g., active or passive
damping devices). Effective force testing (EFT) is a dynamic testing procedure to apply
real-time simulated earthquake loads to large-scale structures that can be simplified as
lumped mass systems. In an EFT test, the test structure is anchored to a stationary base,
and dynamic forces are applied by hydraulic actuators to the center of structural mass.
The force to be imposed (effective force) is the product of the structural mass and the
ground acceleration record, and thus is independent of the structural properties such as
stiffness and damping, and their changes during the test. Motions measured relative to
the ground are equivalent to the response that a structure would develop relative to a
moving base as in a shake table test or an earthquake event.

The development and implementation of EFT has been underway at the University of
Minnesota since 1996. The purpose of this research was to extend the development and
implementation of the EFT method to fully utilizing the capacity of the test equipment
and testing nonlinear SDOF structural systems. The implementation of EFT requires
velocity feedback compensation in order for the actuators to apply forces accurately to
structures. Nonlinearities of the servo-system become significant to the performance of

the EFT method and must be considered when a test requires large hydraulic demands.
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9.1 Summary of Research Program

The objective of the research was to control the actuator to follow effective force
commands accurately even in the nonlinear range of performance of the servo-system.
The feasibility of the EFT method was first examined by comparing the applied forces
measured by the actuator load cell with command forces (effective forces) and secondly
by comparing the measured structural responses relative to the calculated responses of a
simple SDOF structure (mass-spring-damper system). To further verify the EFT method,
a one-story steel structure was tested on a shake table and using the EFT method, and the
measured responses were compared. The comparison included both global responses
(effective force, structural acceleration, velocity, and displacement) and local responses
(damper force and column base shear).

The servo-system in this study consisted of a 35 kip actuator, a 90 gpm servovalve
and an analog servovalve controller. Detailed mathematical models for the servo-system
were derived to better understand the system behavior and to facilitate the velocity
feedback compensation design. Computer simulation and linear system analysis were
conducted to investigate potential stability problems. The conclusions of analytical
studies were validated experimentally using the simple SDOF structure and the one-story
steel structure.

The implementation of the EFT method should be independent of the nonlinear
behavior of test structures as long as the natural velocity feedback can be properly
compensated. To verify the independency, the simple SDOF structure was designed such
that nonlinear elastic structural behaviors could be obtained repeatedly. In addition, in

the tests of the one-story steel structure, the dampers were highly nonlinear though the
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columns were only partly yielded.

9.2 Conclusions
9.2.1 Modeling of Servo-System

A mathematical model of the test system was developed, which describes the
relations between the system components (i.e., servovalve, actuator, controller, and test
structure). The system model was derived from the fundamental physics and the
mathematical formulations by Merritt (1967), while detailed models for the individual
components were proposed to better represent the physical system.

The servovalve controller primarily functions as a proportional-integral-derivative
(PID) controller. A large P gain usually improves the system performance (i.e., better
force tracking of the system); however too large of P gain may cause an unstable high-
frequency vibration mode in the test system. A small controller D gain (i.e., a couple of
tenths of milliseconds) can help stabilize the aforementioned vibration. The controller I
gain was always set to zero to avoid wind-up problems caused by the integration of
signals having constant offsets. In this case (i.e., PID control with a zero I gain and a
nonzero D gain), the PID controller also causes a small phase lead.

The dynamics of the servovalve were modeled as a second-order system, and the
required parameters were determined based on the physical operation of the valve (e.g.,
the spool area and the flow gain) and verified through experiments. The second-order
valve model facilitated the determination of servovalve response delay and the stability
analysis of the test system regarding the high-frequency vibration mode. Experimental

results indicated that the second-order model could accurately represent the servovalve
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dynamics across a wide range of frequencies (0-20 Hz).

The relation between the hydraulic flow through the servovalve and the main-stage
spool opening was found to be nonlinear. Two types of nonlinearities were identified for
the servovalve: load pressure influence and nonlinear flow gain. The load pressure
influence described the nonlinear flow through a fixed orifice with a variable pressure
difference across the orifice. Bernoulli's equation was used to relate the flow to the load
pressure, and the nonlinear relation was explicitly expressed by a square root term. On
the other hand, the nonlinear flow gain, which was found to reflect the nonlinear flow
discharge through a variable orifice, was difficult to describe mathematically. Hence a
testing procedure was proposed to determine the no-load flow property of the servovalve.

The actuator dynamics was derived based on the continuity analysis of the hydraulic
fluid volumes inside the actuator chambers, in which the leakage flow was further
studied. The system leakage flow includes the valve leakage, actuator cross-port leakage,
and actuator external leakage. The system leakage was modeled by a combination of a
proportional leakage and a constant leakage. The proportional leakage, which represents
the leakage related to the load pressure across the actuator piston, was found to stabilize
the high-frequency vibration mode. On the other hand, the constant leakage represented
the leakage that existed whenever the system was loaded by hydraulic pressure. The
constant leakage could significantly deteriorate the force tracking ability of the actuator at
all frequencies of interest.

Parameters for the proposed models were identified based on experiments and
product specifications. The system was tested with sinesweep force and displacement

commands to validate the overall system model and the identified parameters. The close
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match between the simulation results and the experimental results indicated the accuracy
of the model. Various velocity feedback compensation schemes were then investigated
with computer simulation before their laboratory implementation.

9.2.2 Velocity Feedback Compensation

During a test directly implementing the EFT method, the servovalve controls
hydraulic fluid into and out of the chambers of the actuator to generate forces applied to
the structure. Meanwhile the resultant motion of the structure/piston changes the volume
of the chambers. A standard Proportional-Integral-Derivative (PID) controller coming
with the servovalve was unable to compensate for the chamber volume variation, thus
causing force-tracking errors of the actuator.

The direct compensation for the interaction between the actuator control and the
actuator piston velocity requires an access to the ports connecting the actuator chambers
and a special servovalve, which are not easily available. Hence, the effect of the natural
velocity feedback was compensated by modifying the command signal to the servovalve.
Compared to the direct compensation, the proposed velocity feedback compensation
(previously the velocity feedback correction) needs to incorporate the inverse of the
dynamics of the servovalve and its controller. Furthermore, only the dynamics of the
servovalve and its controller needs to be considered in the velocity feedback
compensation.

Although servovalves have high-order dynamics, the dynamics could be accurately
represented by a first-order delay with a valve gain for the frequency range of interest (0-
10 Hz). Hence, a first order phase-lead network with a constant was used to invert the

valve dynamics. The dynamics of the PID controller with a zero I gain was simplified as
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a constant and a small phase lead, which was considered in determining the response
delay of the servovalve.

The servovalve would behave nonlinearly when large flow demands are required
during a test. Hence, the nonlinearities must be considered in the velocity feedback
compensation if the servovalve capacity is to be fully utilized. Large flow demands
could be caused by large structural velocity responses and/or large effective forces.
These situations could happen even in linear elastic tests though structural nonlinearities
could be a cause of large structural velocities. An estimation of the supply pressure and
two additional inputs, the spool position and the applied force were used to compensate
for the load pressure influence, and the identified flow curve (i.e., the piecewise linear
curve connecting 21 control points across the operating range of the servovalve) was used
to invert the nonlinear flow gain of the servovalve.

The velocity feedback compensation schemes were verified experimentally using the
simple SDOF structure and the one-story steel structure.

9.2.3 Experimental Study

The velocity feedback correction proposed in the previous studies (linear velocity
feedback compensation) was found effective but limited (i.e., the maximum spool
opening must be within 10%, the linear range of the servovalve behavior). With the
nonlinear velocity feedback compensation, effective forces were applied to the simple
SDOF structure at all frequencies in tests with a variety of hydraulic demands (maximum
60% spool opening). In some demanding yet successful tests, the structure was taken
well into its nonlinear range of behavior, indicating that the structural nonlinearities
would not affect the implementation of the EFT method.
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The feasibility of the nonlinear velocity feedback compensation and the EFT method
was further evaluated by testing a one-story steel structure with a shake table and EFT
and comparing the results. The comparison of the test results with the two test techniques
showed that with proper velocity feedback compensation, the EFT method could be used
to apply real-time seismic simulation to a structure that has complex damping properties
and hysteretic behaviors.

To completely compensate the natural velocity feedback, accurate model of the servo-
system is necessary. Uncertainties in the servo-system may affect the performance of
velocity feedback compensation because the nonlinear compensation scheme was based
on a single flow curve, and a fixed servovalve response delay. The uncertainties in
servovalve flow properties may cause instantaneous under- or over-compensation of the
natural velocity feedback. The under-compensation might affect reaching force peaks,
especially when the effective force command contains large frequency content at the
resonant frequency of the test structure. On the other hand, the over-compensation might
cause instability in testing a lightly damped structure; hence, it is recommended to use
EFT to test structures with at least 2% critical damping to avoid possible instantaneous
instability.

An incomplete (either over- or under-) compensation of the natural velocity feedback
may slightly change the loads applied to the test structure. Similar to shake table testing,
the effect of the slight inaccurate loading may be significant when testing a nonlinear

structure because the structural responses could be load-history dependent.
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9.3 Future Development of EFT
With the proposed nonlinear velocity feedback compensation and the testing

procedure shown in Appendix 3, the EFT method can be used in the laboratory to apply

real-time simulated seismic loads to large-scale structures. As the EFT method becomes
available to researchers, the testing capability of existing laboratory equipment will
expand from quasi-static testing to real-time dynamic testing of large-scale structures.

The further development of the EFT method may focus on the following directions:

e A better understanding of the uncertainties in the servo-system including the
hydraulic supply and accumulation system. New velocity feedback compensation can
be designed based on a better model of the servo-hydraulic system.

e Adaptive velocity feedback compensation algorithms to improve the performance of
EFT, especially the stability of a system testing structures with small damping.

e Direct compensation of the natural velocity feedback by directly modifying the flow
into/out of the actuator chambers.

e Effective force testing with substructuring techniques for testing structural
subassemblages.

e Multi-degree-of-freedom (MDOF) implementation of the EFT method.

e Bi-directional implementation of the EFT method for testing non-planar structures.
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TABLES

Table 4.1 System parameters for simulation

Parameter Value Parameter Value
A 12.73 in.? Ka 0.3182 in.*/ksi
A, 0.3044 in.” Ks 0.1
c 0.024 kips/in/s K, 1003 in.*/s
Ci 5.5in./s/ksi Kyp 0.644 in.’/s/volt
Cr 0.25 volt/kip m 15.5 kips
Ce 2.0 volt/in. Ps 2.65 ksi
F. 6 lbs Tq 5.0 ms
Gp 0.8059 ~1.0 T 5.6 ms
Gy 0.002 s Xvmae  |0.111in.

k 3.96 kips/in. @ 0.1
Ks 90.91 volt/in. r 0.0014 s

Table 4.2 Flow curve of the servovalve (flow value in in¥/s)

Xy 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 1.0
Q.+ | 1022 1872 2604 369.8 4112 441.0 4683 4957 523.0
Q.- | -101.0 -188.2 -260.9 -3242 -377.1 -419.9 -4523 -480.2 -508.2 -536.2
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Table 8.1 Structural Properties of single-story structure

Shake table study Effective force testing
m Fc k m c Fc k
kip-s’/in. kip-s/in.  kips  kips/in. |kip-s*/in. kip-s/in.  kips  kips/in.
no damper| 0.0262 0.003  0.001 8.62 0.0267 0.002  0.001 8.75
w/ damper | 0.0241  0.088  0.008 8.59 0.0249  0.079 0 8.70

Table 8.2 Servovalve Flow Curve for proof-of-concept test (flow value in in®/s)

Spool | 45in. 4.0in. 3.5in. 3.0in. 2.5in. 2.0in. 1.5in. 1.0in. Average
-1.0 0.0 -515.9
-0.9 0.0 -496.2
-0.8 | -476.4 -476.4
-0.7 | -455.0 -450.3 -452.6
-0.6 |-418.5 -420.6 -417.9 -419.0
-0.5 |-369.7 -374.1 -377.0 -374.7 -373.9
-0.4 |-315.7 -317.5 -320.8 -323.9 -3279 -321.2
-0.3 | -253.2 -254.0 -255.1 -257.9 -264.1 -264.3 -258.1
-0.2 | -183.1 -183.7 -184.6 -184.6 -189.3 -190.0 -190.7 -186.6
-0.1 | 984 -988 -99.1 -99.2 -1009 -102.3 -102.3 -102.6 -100.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 99.2 995 100.0 100.2 102.0 103.2 1039 1045 101.6
02 | 182.7 1829 1835 1834 188.0 188.7 188.5 185.4
0.3 | 2533 2539 2549 2570 263.1 262.6 257.5
04 |313.0 3144 3172 319.6 3223 317.3
0.5 | 3642 367.8 370.0 365.8 366.9
0.6 | 408.7 411.1 405.1 408.3
0.7 | 4447 4384 441.6
0.8 | 464.4 464.4
0.9 0.0 481.5
1.0 0.0 498.7
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Figure 2.3 A submerged sharp-edged orifice
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Figure 3.7 A schematic of an actuator piston
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APPENDIX 1

A TEST SYSTEM IN DISPLACEMENT CONTROL

To validate the system model developed in Chapter 3 and parameters identified in
Chapter 4, the test system was switched to displacement control and analyzed. Figure
Al.1 illustrates a block diagram for the system, in which the servovalve/actuator, the
structure, and the interaction between them are the same as those of the force-controlled
system while the system control is based on the actuator piston displacement instead of
the actuator force. The system was tested with a 0.5-inch sinesweep input, and the
measured displacement is compared with the displacement command in Fig. A1.2 along
with the simulation results. The close match between the simulation and experimental
results indicates great accuracy of the models and parameters.

It is of interest to see the effect of the natural velocity feedback and velocity feedback
compensation on the displacement-controlled system. The transfer function (Gy,) from
the command to the displacement output for the system can be derived as

AK,C.K,,G, (ALD)

[(K,s+C,)(Ms® +Cs+K) + ASI(zAS” + As+ KK, )X, + AK,CK, G,

F " *p~p

G, (s)=

The system does not have a second-order term corresponding to the structure in the
numerator, indicating that the system does not have problems in tracking displacement
commands around the natural frequency of the test structure. On the other hand, the
transfer function from the command (u) to the applied force (F) is

AK,C K, G, (ms® +cs+k)

F" v

[(K,s+C)(ms* +cs+k)+ A’s](rAS* + As+ KK

G, (s) = (Al1.2)

+AK C.K, G,

vp)vaax F'*vp™~p
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The numerator of Gg, includes the denominator of the test structure, such that the
poles of the structure are the zeros of the transfer function. Hence, similar to the force-
controlled system, the natural velocity feedback limits the ability of the actuator to apply
forces around the natural frequency of the test structure. The inability is demonstrated by
a dip at the natural frequency of the test structure in the frequency response of the system
shown in Fig. A1.3.

Unlike force-controlled systems, the natural velocity feedback destabilizes the overall
system in displacement control. When the displacement command has significant
frequency content near the natural frequency of the structure (i.e., the test structure is in
resonance), little force is needed for the actuator to follow the displacement command.
The natural velocity feedback loop causes the actuator to reduce the force applied to the
structure accordingly. In this case, an attempt to compensate for the velocity feedback
might destabilize the overall system.

To validate the statement, the system with the natural velocity feedback compensated
in a similar way to that discussed in Section 5.2 (direct compensation) was investigated.
With a complete compensation, the transfer function Gg, becomes

AK C_K, G (ms®+cs+k)

GFu(S) = 2 sz ! 9 (A13)
(ms” +cs+k)(K,s+C))(AS™ + As+ KK X, ., + AKCK, G,
and the transfer function Gy, becomes
G,,(s) AKCeKyGs . (Al14)

T (ms®+os+ K)(K,s+C)(rAS” + ASs+ KK, )X e + AK,CLK G,

The velocity feedback compensation does not change the zeros of Ggy, indicating that

the actuator cannot apply forces at the natural frequency of the structure even with the
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velocity feedback compensation. Correspondingly, conjugate zeros at the natural
frequency of the structure remain in the compensated system in Fig. A1.4.

An analysis of the denominators of Eqgs. (A1.3) and (A1.4) also indicates that the
compensated system has two conjugate poles at 17.8 Hz near the imaginary axis as
shown in Fig. A1.4. It can be shown that the slightly damped vibration corresponds to
the so-called oil-column resonance. The root locus of the system (Gg,) shows that the
velocity compensation drives this vibration mode into the unstable region (right-hand
side of the s-plane). Hence, complete velocity feedback compensation may not be

applicable to a system in displacement control.
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APPENDIX 2

NONLINEAR NO-LOAD FLOW GAIN

A typical flow vs. spool opening curve with a pressure drop of 1000 psi across the
servovalve and zero load pressure is shown in Fig. 4.8. It can be seen that the flow gain

(i.e. the slope of the curve), decreases with an increase in spool opening. Because the no-

load flow gain is defined by K, = (dexvmax,/l/ P L/PS , and W, Xymax, and p are fixed

quantities, the nonlinearity was attributed to a nonlinear discharge coefficient (Cy).

Theoretical solutions for discharge coefficients are impossible to obtain due to the
complex nature of the orifice flow. Experimental results for a submerged orifice (Fig.
2.3) under constant pressure drop across the orifice were chosen to approximate the
servovalve orifice flow. As can be seen from Fig. 2.4, the discharge coefficient is a
function of the Reynolds number, which in turn is dependent of the orifice geometry and
the flow characteristics.

An estimation of the range of Reynolds number is necessary to determine the
discharge coefficient for the servovalve orifice in this study. Because the orifices are

sharp-edged orifices, it is appropriate to estimate the flow velocity through the orifice by

u:%:v(\?_x:' (A2.1)

In addition, the spool opening X, was chosen as the characteristic length of the

orifice because the characteristic length is often related to the area of the orifice. Hence,

d=¥X,. (A2.2)
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Substituting Eqgs. (A2.1) and (A2.2) into Eq. (2.11) yields

R=SL (A2.3)
Wy

where W is the area gradient of the main-stage valve spool and v is the kinematic
viscosity of the fluid.
The area gradient of the spool W was estimated using the initial flow gain under a

1000 psi pressure drop across the servovalve. The flow gain was defined in Eq. (3.24) as,

K =2 —cw/|le. (A2.4)
XV X,—0 P
Therefore,
K,  (1.6gpmx3.85)/(0.11x0.01)

= ~2.6in. (A2.5)
CiyP/p  0.61,/1000psi/0.8x10~

In the above calculation, the flow gain had units of in.”/s/in., the pressure supply was
the pressure difference across the valve. A discharge coefficient of 0.61 was used
because it can be a good approximation for any sharp-edged orifice (Merritt 1967).

It was assumed that the initial flow gain was valid up to 10% spool opening, which
corresponds to a flow of 26 gpm (100 in.’/s) under a 3000 psi pressure drop. In addition,
a flow rate of 120 gpm (462 in.’/s) was the maximum that could be obtained with the
servo-system in this study as shown in the identified flow curve in Chapter 4. Therefore,

the flow through the servovalve orifice was estimated between
100in.’ /s <Q, <462in.>/s. (A2.6)
Using Egs. (A2.5) and (A2.6) in Eq. (A2.3), the range of the Reynolds number was

estimated using Eq. (A2.3) as: 665<R,<3064. Based on Fig. 2.4, the discharge
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coefficient was estimated between

0.74>C, > 0.65. (A2.7)

Because the discharge coefficient was larger than the assumed average value (0.61),
an upgraded average value of the discharge coefficient (0.7) was plugged into Eq. (A2.5)
to estimate the area gradient. The new value, 2.27 in., was very close to the actual spool
perimeter obtained from the servovalve manufacturer. Following the same procedure
shown above, the range of Reynolds number was determined as

760 < R, <3509, (A2.8)

which slightly changed the range of discharge coefficient shown in Eq. (A2.7).

Therefore, the discharge coefficient of the servovalve orifice decreases with an
increase in servovalve flow. The reduced discharge coefficient results in a decreased
servovalve flow gain for an increase in spool opening. In addition, the flow property of a
servovalve can be affected by other uncertainties in the system, such as the hydraulic
supply pressure drop as the hydraulic demand (consumption) increases. Therefore, it is
not practical to derive a closed-form solution of the discharge coefficients as a function of
spool opening, and the actual servovalve flow property (the no-load flow gain) must be

determined experimentally.
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APPENDIX 3

A PROCEDURE FOR THE IMPLEMENTATION OF EFT

To implement the effective force testing method, in addition to a servo-hydraulic
controlled actuator and a data acquisition system, the following hardware is required: a
velocity transducer for velocity feedback compensation (cable extension type), a unit
buffer (analog circuit) for powering the velocity signal, a Digital Signal Processor (DSP)
and its host computer. This section presents a typical procedure for testing structures
using the EFT method. Note that the discussion shown below includes some quantities
based on experiences gained in this study.

The implementation of the velocity feedback compensation requires the identification
of the forward dynamics of the servovalve and its controller, which contains three major
components: the PID control with a zero I gain described by,

1

Ho=— (A3.1)
G;s+G,

where Gp and Ggq are the proportional and derivative gain of controller, respectively; the

second-order servovalve dynamics by,

K 1

vp

*TIAS +AS+ KK, X

(A3.2)

v max
where 7 is the equivalent time constant of the pilot-stage valve, Ky, is the pilot-stage
valve flow gain, A, is the main-stage spool area, K3 is the sensitivity factor of the internal
LVDT, and Xymax 18 the maximum spool stroke; and the nonlinear servovalve flow
property stated by
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X, i
|Xv| p (A3.3)

QL = Kva 1-

where Ky is the no-load flow gain of the servovalve, X, is the spool opening of the
servovalve, P is the load pressure (P A is approximately the force applied to the
structure, and A is the actuator piston area), and Ps is the supply pressure.
Match Test and Equipment Capacity

Equipment capacity includes the load capacity of an actuator and the flow capacity of
its servovalve. The load capacity of an actuator can be found in its product specification
(e.g., 35 kips for the MTS 244.23 actuator), or estimated by 90% of the supply pressure

times the actuator piston area. The servovalve flow capacity can be estimated as
Q..aV0-9P, /P, cq » Where Qraeeq is the rated flow of the servovalve at a pressure drop of

Psrated across the servovalve (e.g., 90 gpm for the MTS 256.09 three-stage servovalve
under 1000 psi) and Ps is the supply pressure (roughly 3000 psi in this study). The
calculated flow capacity is limited by other factors in the hydraulic system, such as the
capacity of the pump and service manifold, and the diameter of hydraulic supply hoses.
Accurate flow capacity of a servovalve can be obtained as presented later.

During an EFT test, the maximum structural velocity should be smaller than 80% of
the servovalve flow capacity divided by the actuator piston area, and the maximum
effective force should be smaller than 50% of the actuator load capacity. If the maximum
force likely happens at the same moment as the maximum velocity (i.e., the effective
force input has significant content near the resonant frequency of the test structure), the
maximum spool opening should be smaller than 60%. Refer to Spink (2002) for an

actuator/servovalve sizing technique.
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Identify Structural Properties

Static loading tests and free vibration tests can be used for structure identification.
Note that the effective force command is directly related to the structure mass, and errors
in the estimation would affect the force applied to the structure and potentially the
nonlinear structural behavior. In addition, the stability of the test system is related to the
structural damping. Testing of a structure with a minimum of 2% critical damping using
EFT can be conducted with reasonable confidence. The identified structural properties
can be used to estimate the peak structural responses for the capacity check of equipment
and sensors.
Identify Servovalve Dynamics

To invert the servovalve dynamics for the velocity feedback compensation, the valve
gain (Ks) and the response delay (Tq) are required. The second-order servovalve model
shown by Eq. (A3.2) requires many valve parameters such as valve spool area and the
maximum spool stroke. If the parameters were not available, a measured frequency
response could be used to estimate the parameters for an equivalent second-order model,

K
H, = S . (A3.4)
I 26, s+1

— st +
o o

} ’

A test was conducted to generate a frequency response plot, in which the actuator was
in displacement control, and the actuator piston was kept in its neutral position (the
hydraulic supply to the main-stage valve was turned off). The proportional gain of the
servovalve controller was set to unity and the derivative gain set to zero, such that the
valve command signal could be controlled without additional equipment. A small

amplitude (20% spool opening) sinesweep input (0-100 Hz in 100 seconds) was chosen
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as the command signal.

Matlab® function fft(x) was used to calculate the Fourier transform (FFT) of the
measured input and output signals. For a series of samples X with a length N and a
sample frequency h (Hz), function fft(X) results in a series of complex numbers with the
same length. The first half of the transformed data corresponds to frequencies from zero
to h/2 with an interval of h/N. The magnitude response of the system can be constructed
by plotting the ratio of the magnitude of the FFT of the output signal to the magnitude of
the FFT of the input signal against the frequency; the phase response of the system can be
constructed by plotting the phase difference between the two transformed signals against
the frequency.

Figure A3.1 presents a measured frequency response of the servovalve. The
amplitude corresponding to the asymptotical line of the magnitude response gave a valve
gain (Ks) of 0.1. The frequency corresponding to the 90°-phase point indicated an
equivalent natural frequency (@) of 58 Hz. The corresponding amplitude is 63%,

indicating an equivalent damping (&) of 80% (1/(2x0.63)). The frequency response of

the identified second-order model was compared with the experimental results and that of
Eq. (A3.2) in Fig. A3.1. Although a better match is evident with the identified system
across the whole frequency range (0-100 Hz), it can be shown that Eq. (A3.2) better fit
the experimental frequency response at low frequencies (0-20 Hz). The time delay was

usually underestimated using 2¢, /(27®,) (e.g., 4.4 ms in this case), because pilot-stage

valve flow gain may reduce with an increase in hydraulic demand (spool opening).

Nevertheless, the obtained delay time can be a good approximation, and the obtained

236



servovalve model can be used in the system stability analysis.
Identify Servovalve Flow Property

With an estimated pressure supply (0.9 Ps), the initial flow gain (K,) was estimated
based on the related initial flow gain, which is usually documented in the product
specification. The nonlinear flow curve was identified experimentally using a series of
tests with sinusoidal commands, in which the actuator was in displacement control. The
structure was detached form the actuator such that the pressure difference across the
actuator piston (load pressure) was negligible. The spool opening was obtained directly
by measuring the inner-loop feedback while the corresponding flow was calculated by the
piston velocity multiplied by the piston area. The piston velocity was calculated using
the central difference method from the measured piston displacement.

Although the frequency of the sinusoidal displacement command can be determined
through trial and error, the following discussion provides a guideline for selecting the
frequency such that the valve command can be controllable. A block diagram of a
linearized model of the test system with the actuator running in the air is presented in Fig.
A3.2. The transfer function of the system from command (u) to DC error (e) is

G - As
* As+C.G KK,

(A3.5)

As can be seen, the error (valve command) increases with an increase in the input
frequency. A frequency, at which the error is 90% of the command was chosen as the
frequency of the sinusoidal command. Hence, the frequency @ was obtained by solving
Aw

oI J(A0) +(C.G,KK, )

pi¥s My

G =0.9. (A3.6)
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The frequency was calculated as 5.2 Hz with the previously obtained initial flow gain
(1003 in*/s). On the other hand, the servovalve flow gain decreases as the spool opening
increases; hence, the slope of the line connecting the origin and the related flow point
(600 in’/s) was used to re-calculate the frequency. The estimation resulted in a frequency
of 3.1 Hz, and 3 Hz was used in the tests.

Tests with 90% (4.5 in.), 80% (4 in.), 60% (3 in.), 40% (2 in.), and 20% (1 in.) full
stroke were conducted, and the flow curve up to 80% spool opening were obtained as the
average of these individual curves. The result of the identification process is shown in
Table A3.1, in which linear extrapolation was used to generate the points beyond the 80%
spool opening.

Determine the Maximum Controller P Gain

A large P gain improves the overall performance of the test system, while it may
render the system into unstable region. The maximum controller P gain was obtained
through by analyzing the system stability as shown below (Mathematica™ 4.0 was used).

Linearized system model:

Kvp 1
GS =
S = A2 Avs: Kp K3 xv2

Gl[s_] =CFCpGCs[s] Kv
A(ms?+ cs +K)
(Kas+Cl) (ms2+ cs +k) +A2s
Gl[s] Ga[s]

1+:G1[s] Ga[s]

Coefficient of characteristic function:
ab = CoeffFicient[Denominator [Simplify[Gload] ], s, 5]
a4 = Coefficient[Denominator [Simplify[Gload] ], s, 4]
a3 = Coefficient[Denominator [Simplify[Gload] ], s, 3]
a2 = Coefficient[Denominator [Simplify[Gload] ], s, 2]
al = Coefficient[Denominator [Simplify[Gload] ], s, 1]
a0 = CoeffFicient[Denominator[Simplify[Gload]], s, 0]

AvKamxv2 ¢

AvKamxv2+AvcKaxv2t + AvCI mxv2 ©

AvcKaxv2+ AvCImxv2 + K3KaKmeXV2+A2AVXV2t +AvcCl xv2 t + AvkKaxv2 ¢

ACFGpKvKvpm+ AZ AV xv2 + AvcClxv2 + Av kKaxv2 + cK3KaKvpxv2+ ClHK3Kvpmxv2 + AvCl kxv2 ¢
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AcCFGpKvVKvp+ Av Cl kxv2 + AZK3 Kvp xv2 + ¢ Cl K3 Kvp xv2 + kK3 Ka Kvp xv2

ACF Gp kKv Kvp + ClI k K3 Kvp xv2
System parameters:

CF=0.25; Kv =1003; Ka=0.3182;A=12.73; Ks=0.1;Cl =5.5;

t=.0014; Kvp = 0.644; Av=0.3044; K3 =90.91; xv2= 0.11; m= 0.0399; c = 0.027; k= 3.9518;
Determine maximum controller P gain (Gp)

bl = Expand[ (a4 a3- a5a2) / a4]

b2 = Expand[ (ad4al-a5a0) /a4] ;

Solve[bl == 0, Gp]

{{Gp— 0.781878}}

cl= Expand[ (bla2- b2ad)]

c2=a0;

Solve[cl=: 0, Gp]

{{Gp- -0.0226048} , {Gp - 0.717729}}

dl = Expand[cl b2- blc2]

Solve[dl == 0, Gp]

{{Gp- -21.4791}, {Gp - -0.0232171}, (Gp - 0.711336} )

Therefore, the controller P gain (Gp) needs to be smaller than 0.71. Note that the
theoretical limit was calculated based on a 5.5 in.%/s/ksi leakage. A larger controller P
gain might be applicable if the system leakage were greater than the assumed value.

Tests with Small Amplitude Sinesweep Input

Small amplitude tests with linearized velocity feedback compensation before real
tests were conducted to find out if the identified parameters were accurate. If the P gain
were too large, a high frequency vibration would be excited even with zero command. If
the flow curve underestimates the real flow property of the servovalve, a large amplitude
spike would result at the natural frequency of the test structure or the system might
become unstable with vibration at the resonant frequency of the structure. On the other
hand, tests based on an underestimated flow curve would have a sharp amplitude drop at
the natural frequency of the structure. With insufficient delay compensation, a peak

before a valley appeared in the FFT of the measured force while a peak after a valley

appeared in the frequency domain when the delay was overcompensated. In addition, if
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the test results indicated that the measured force was below the command across the
whole frequency range (due to constant leakage), a factor greater than unity could be

applied to the effective force command to compensate for the effect.

Table A3.1 Identified flow property of servovalve

spool 4.5 in. 4.0 in. 3.0 in. 2.0 1in. 1.0 in. Average
-1.0 -536.17
-0.9 -508.20
-0.8 -480.23 -480.23
-0.7 -451.58  -452.95 -452.26
-0.6 -421.14  -418.66 -419.90
-0.5 -377.87  -378.40  -374.90 -377.05
-0.4 -32433  -32478  -323.40 -324.17
-0.3 -258.76  -260.20  -262.71 -262.04 -260.93
-0.2 -185.68  -186.82  -187.78  -192.67 -188.24
-0.1 -98.81 -99.43 -100.05  -102.97  -103.62 | -100.98
0.0 0.00 0.00 0.00 0.00 0.00 0.00
0.1 100.17 100.68 101.20 103.87 105.28 102.24
0.2 185.17 185.85 186.45 191.19 187.16
0.3 258.73 260.02 262.02 261.00 260.44
0.4 321.32 322.19 319.87 321.13
0.5 372.72 372.50 364.29 369.83
0.6 412.53 409.88 411.20
0.7 441.91 440.00 440.96
0.8 468.31 468.31
0.9 495.67
1.0 523.02
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—— Simulation results w/ Eq. (A3.4)

-== Experimental results

— Simulation results w/ Eq. (A3.2)
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Figure A3.1 Frequency response of the estimated second-order servovalve model
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Figure A3.2 Test system with actuator running in the air
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APPENDIX 4

DETAILS OF THE SIMPLIFED SDOF STRUCTURE

The SDOF structure consisted of a cart (mass) and four springs, two on each side of
the mass. The cart consisted of three rectangular steel frames filled with reinforced
concrete and bolted on the top of four caster wheels as shown in Fig. A4.1. Springs were
type UM-1000 from Belts Spring Company, San Leandro, CA with a nominal stiffness of
1 kip/in. and 6-inch travel length. The connection between the springs and the reaction
frames is shown in Fig. A4.2. The springs were precompressed by 1 in. The
precompression was enacted as follows: starting from the null position of the actuator
piston, the actuator was commanded to have positive 1 inch offset (the cart was pulled
back by 1 inch). The connections of the springs on the opposite side were adjusted such
that the springs touched the mass. Then the actuator was commanded to have negative 1
inch offset, and the connections of the springs at the actuator side were adjust such that
that the springs touched the mass. Finally, when the actuator went back to its null
position, all springs were compressed by 1 inch. A maximum cart (mass) displacement
of 4 in. was set in the servovalve controller to avoid damage of the springs due to
extensive deformation.

Load was applied to the SDOF model with a 35 kip actuator controlled by a 90 gpm
three-stage servovalve. The actuator reacted against a loading frame bolted to the
laboratory strong floor. The connections of the actuator swivel heads with the mass and
the reaction frame are shown in Fig. A4.3. Finally, the configuration of the "additional

leakage passage" discussed in Section 6.6.1 is illustrated by dashed lines in Fig. A4.4.
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Fiure A4.2 A detailed spring connection
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Figure A4.4 Connection of the additional lééka sage
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APPENDIX 5

SAMPLE EFFECTIVE FORCE DATA FILE

The data file for the signal generation at the University of Minnesota has the

following structure:

Line #1 # sinesweep ...  Notes. A '# in the beginning is needed
Line #2 5001 Total data points

Line #3 0.002 Time step

Line #4

Line #5

Line #6

Line #7 Blank lines are necessary,

Line #8 and data should start from line #11
Line #9

Line #10

Line #11 0 Start command data

Line #12 3.92699E-06
Line #13 1.5708E-05

Line #14 3.53429E-05
Line #15 6.28319E-05

Line #5009 -0.248674673
Line #5010 -0.125329338
Line #5011 O End of command data
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APPENDIX 6

DIGITAL VELOCITY COMPENSATION IN C LANGUAGE

The digital implementation of the nonlinear velocity feedback compensation is shown
below in C language. The sample C program includes all necessary functions and
commands for a real-time operation of the Digital Signal Processor (DSP). The italic
lines are related to the velocity feedback compensation algorithm, while the normal lines
are functions and commands defined by the manufacturer for the operation of the DSP.
/*******************************************

FILE: eft nonlinear.c
RELATED FILES: brtenv.h, eft nonlinear.h

DESCRIPTION:
DSP implementation of nonlinear velocity feedback compensation

INPUT:
effective force command (v), velocity (v), spool position (v), and load (v)

OUTPUT:
compensated command (v)

¥ ¥ K K K K K K K K K K K K

(C) 2001-2003 Jian Zhao, University of Minnesota

**********************************************/

#include <brtenv.h> /* basic real-time environment */
#include <math.h>
#include "eft_nonlinear.h™ /* variable and constant definition */

void isr_t1();

void lead_coeffcients_transferfunction();  /* phase lead network coefficients */
double lead(); [* adjust phase */

double lookup(); /* nonlinear flow property */

void main()
{

init(); /* initialize hardware system */
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msg_info_set(MSG_SM_RTLIB, 0, "System (EFT) started.");

/Il define constants
Tl =TI_DEF/(1-ALPHA);
Ks=0.1;
Gp = 1.0012;
A=1273;
CF =10.25;
Ps = 2.65;
Kfix = 1/Ks/Gp;

Il reset virables
In_prev =0.0;
Out_prev =0.0;
ii=0;
adc_1=0.0;
adc 2=0.0;
adc_3=0.0;
adc_4=0.0;
adc_1 i=0.0;
adc 2 i=0.0;
adc_3 i=0.0;
adc_ 4 i=0.0;

dac_1=0.0;

RTLIB_TIC_INIT();
RTLIB_SRT START(DT, isr tl);

while(1)
{

/* lead time constant */
[* valve gain */
[* controller P gain */
[* piston area */
* sensitivity factor (load) */
[* pressure supply */
/* correction gain (temporary) */

/* the first input to the phase lead */
/* the first output of the phase lead */
[* counter */

/* input #1 command */

[* input #2 velocity */

[* input #3 spool */

[* input #4 load */

/* initial offset input #1 command */
[* initial offset input #2 velocity */
/* initial offset input #3 spool */

/* initial offset input #4 load */

/* output #1 command */

/* enable execution time measurement */
/* enable sampling clock timer */

/* background process */

while (msg_last_error number() == DS1102_ NO_ERROR)

{

RTLIB BACKGROUND_ SERVICE() ;

} /* while NO_ERROR */

RTLIB_SRT DISABLE();

/* disable sampling clock timer */

while (msg_last_error_ number() != DS1102_ NO_ERROR)

{

RTLIB_ BACKGROUND_ SERVICE() ;

} /* while ERROR */

RTLIB_SRT ENABLE();
} /% while(1) */

247



} /* main() */

/*
* timerl interrupt service routine
% */
void isr_t1() /* timerl interrupt service routine */
{
ii=ii+1; /* count for 10 sec */
RTLIB_SRT ISR BEGIN(); /* overload check */
host_service(1,0);
RTLIB _TIC START(); /* start execution time measurement */
ds1102_ad_start(); [* start ADC's */
adc_1 =ds1102_ad(ADC1); /* command read in */
adc_2 =ds1102_ad(ADC2); [* velocity read in */
adc_3 =ds1102_ad(ADC3); /* spool opening read in */
adc_4 =ds1102_ad(ADC4); /* load pressure read in */
if (ii > 10/DT) [* operation */
{
cmd = (adc_1-adc_1_i)*IO_MAX;/* Convert input_1 to command */
vel = (adc_2-adc_2_i)*IO_MAX/V_SENS; /* Convert input_2 to velocity */

spo = (adc_3-adc_3_i)*I0O_MAX; /* Convert input_3 to spool position */
Ipres = (adc_4-adc_4_i)*IO_MAX/CF/A; I* Convert input_4 to pressure */

flow = vel*A; /* Compensation flow */

if (spo > 0.0) [* positive spool opening */

{ flow = flow/sqrt(1-Ipres/Ps); /* load pressure influence*/

ilse /* negative spool opening */
flow = flow/sqrt(1+lpres/Ps); /* load pressure influence*/

}

In_cur = lookup(); /* nonlinear flow gain*/

spool = lead(); [* adjust phase */

dac_1 = spool*Kfix+cmd*1.02; /* generate command */

dac_1 =dac_1/10_MAX; [* convert it to [-1~1] for output */

%Ise [* find initial offsets */
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adc_1 i=adc_1 i+adc 1;
adc_2 i=adc_2 i+adc 2;
adc_3_i=adc_3_i+adc_3;
adc_4 i=adc 4 i+adc 4;
if (il > 10/DT-1)
{
adc_1 i=adc 1 i/ii;
adc_2 i=adc_2 ilii;
adc_3_i=adc_3_i/ii;
adc_4 i=adc_4 _ilii;
} /* end while */

} I* one step finishes */

ds1102_da(DAC1,dac_1); /* output result to DACL */
exec_time = RTLIB_TIC READ(); /* calculate execution time */
RTLIB_SRT ISR _END(); /* end of interrupt service routine */

h

e

* Coeffcients used in phase lead network from transfer function

R e e e */

void lead_coeffcients_transferfunction()

{

C_in = (1-2*TI/DT)/(1+2*ALPHA*TI/DT);
C_out = ~(1-2*ALPHA*TI/DT)/(1+2*ALPHA*TI/DT);
C_cur = (1+2*TI/DT)/(1+2*ALPHA*TI/DT);

}

double lead()

double yk1;
inti;
lead_coeffcients_transferfunction();

/* lead computation */
yk1 = C_in*In_prev+C_out*Out_prev+C_cur*In_cur;

[* save previous results */
In_prev = In_cur;
Out_prev = yk1,;
return yki1;
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double lookup()
{
double spool;
inti;

spool = 0.0;
for (i = 1; I<KMAXPTS; i++)

if (flow < Xflow[i])

spool = Yspool[i-1] + (flow-Xflow[i-1])*(Yspool[i]-Yspool[i-1])/(Xflow[i]-
Xflow[i-1]);
goto FOUNDOK,;
}

}
FOUNDOK:

return spool;

}

/********************************************

* FILE: eft nonlinear.h

*

* DESCRIPTION: Head file for eft nonlinear.c

*********************************************/

#define DT 5.0e-4 /* .5 ms simulation step size */

#define IO_MAX 10.0F /* maximum 1/O voltage */

#define V_SENS 0.195672 [* sensitivity factor of velocity transducer */
#define MAXPTS 21 /* maximum data points of the flow curve */
double In_prev; [* previous input for phase lead */

double Out_prev; [* previous output for phase lead */

double In_cur, Out_cur; /* current input and output for phase lead */
double C_in, C_out, C_cur; I* coefficients used in phase lead */

#define TI_DEF 0.005 [* leading time */

#define ALPHA 0.1 /* leading coef. */

volatile double TI; /* leading time and coef. */

double Kfix; [* Fixed feedforward gain */

double Ks; /* Servovalve gain */

double Gp; [* MTS controller P gain */

250



double A;
double Ps;
double CF;
double cmd;
double vel;
double spo;
double lpres;
double flow;
double spool;

[* variables for 1/0 of the board */

double adc_1, adc_2, adc_3, adc_4;

double adc_1 i,adc_2 i,adc_3 i, adc 4 i;
double dac_1, dac_2, dac_3, dac_4;

/* variables for execution time profiling */
double exec time;

[* Actuator piston area */

[* pressure supply */

[* Actuator load conversion factor */
/* Command signal read-in */

I* Velocity signal read-in */

[* Current spool opening read-in */
/* load pressure read-in */

/* flow to be compensated */

/* spool opening in compensation */

[* input channels */

/* output channels */

/* execution time */

I* coefficients of nonlinear flow aeftb01.p0# on 04/28/2003 w/ an accumulator */
double Xflow[MAXPTS] = {-515.2, -500.2, -480.2, -452.3, -419.9, -377.1, -324.2,
-260.9, -188.2, -101.0, 0.0, 102.2, 187.2, 260.4, 321.1,
369.8, 411.2, 441.0, 468.3, 488.3, 503.3};
double Yspool[MAXPTS] = {-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0,
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9, 1.0};

#define ADC1 1
#define ADC2 2
#define ADC3 3
#define ADC4 4

#define DAC1 1
#define DAC2 2
#define DAC3 3
#define DAC4 4

/* Input channel 1 */
/* Input channel 2 */
/* Input channel 3 */
/* Input channel 4 */

[* Output channel 1 */
/* Output channel 2 */
/* Output channel 3 */
/* Output channel 4 */
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APPENDIX 7

DETAILS OF THE ONE-STORY STEEL STRUCTURE

The one-story structure consisted of a mass and four columns at its corners as shown
in Figs. 8.5 and 8.11. The mass consisted of two rectangular steel frames filled with
reinforced concrete. The columns were bolted at both ends as shown in Fig. A7.1. A V-
shape brace made of tube 3x3x% was used to engage two fluid dampers. The connection
between the brace and the dampers is shown in Fig. A7.2. The damper forces were
monitored using two load cells as shown in Fig. A7.3.

During the shake table study, the velocity transducer was installed close to the
dampers as shown in Fig. A7.3 because the velocity at the brace tip was slightly larger
(approximately 3%) than that at the story mass due to a slight overturning of the
structure. Fig. A7.4 (a) shows two accelerometers in the shake table study mounted on
the bottom of the mass, one of which monitored the out of plane response of the structure.

During the EFT study, the structural configuration remained the same, while the
instrumentation for global responses is different as shown in Fig. 8.11. Test results
indicated that the contribution of the overturning of the structure to the structural
response was negligible. Hence, the velocity transducer was installed at the actuator
height but at the opposite side of the structure from the actuator as shown in Fig. A7.5.
The connection of the actuator with the structure, including a 2-inch thick plate is shown
in Fig. A7.6. Two LCA-100-2 accelerometers by Jewell Instruments were used in the
EFT test, the mounting of which is shown in Fig. A7.4 (b). Finally, Fig. A7.7 shows the

configuration of the 4 gallon accumulator mentioned in Chapter 7.
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Figure A7.2 Connection of the dampers

Figure A7.3 Connection of the load cell and {/elocity transducer (Shake table).
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Figure A7.4 Connection of the accelerometers (a) underneath the mass in shake table;
(b) On top of the bottom flange of the side W section of the mass in EFT

Figure A7.5 Connection of the velocity and displacement transducers from a reaction
frame to the test structure (EFT)
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Figure A7.7 Connection of the accumultor (EFT)
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