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ABSTRACT 

 

 

Effective force testing (EFT) is a test procedure that can be used to apply real-time 

seismic simulations to large-scale structures that can be represented by lumped-mass 

systems.  In an EFT test, hydraulic actuators are used to applied dynamic forces through 

the mass center of the test structure anchored to a stationary base.  The force to be 

imposed (effective force) is the product of the structure mass and the ground acceleration 

record, thus a known priori.  Motions measured relative to the ground are equivalent to 

those of the structure in a shake table test or an earthquake event.  This research extended 

the development and implementation of the EFT method to fully utilizing test equipment 

and testing nonlinear SDOF structural systems undergoing large deformation in real time.  

Velocity feedback compensation is required for the actuator control to ensure that 

forces are applied to the test structure accurately.  Nonlinearities in the servo-system 

could have a significant impact on the implementation of velocity feedback compensation 

when an EFT test requires large flow demands, which could be caused by large structural 

velocity responses and/or large forces applied to the structure.  Detailed mathematical 

models were proposed for a test system at the University of Minnesota, which accurately 

described the servo-system behavior over a wide range of frequencies and across the 

major operation range of the servovalve. 

Based on the nonlinear servo-system model, a nonlinear velocity feedback 

compensation scheme was proposed and verified through computer simulation and 

experimental tests on a mass-spring-dashpot structural system.  Results showed that with 



 

 iii 

the nonlinear velocity feedback compensation, dynamic forces could be applied to the 

nonlinear structure at all frequencies of interest.  In addition, the effects of system 

uncertainties on the performance of the test system including stability were investigated 

through linear system analyses, computer simulation, and experiments. 

The viability of the EFT method was further validated by a proof-of-concept test, in 

which a one-story steel structure was tested using a shake table and the EFT method.  The 

comparison of the test results indicated that the EFT method can be used to apply real-

time seismic simulation to structures undergoing large nonlinear deformation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 iv 

ACKNOWLEDGMENTS 

 

My deepest appreciation is extended to my advisors Dr. Catherine French and Dr. 

Carol Shield for their guidance on this research project as well as for the guidance and 

support they have provided during my graduate study at the University of Minnesota.  I 

sincerely appreciate the help Dr. Thomas Posbergh has provided throughout the research.  

I would like to thank Paul Bergson from the University of Minnesota and Dr. Greg Banas 

from the University of Illinois at Urbana-Champaign for providing valuable technical 

advice and assistance with the equipment used for this project.  Acknowledgment is also 

given to many of my fellow students at the University of Minnesota for their assistance in 

making the research a success.  This research was funded in part by the National Science 

Foundation under grant number NSF/CMS-9821076.  Acknowledgment is also given to 

the Doctoral Dissertation Fellowship support (2002-2003) provided by the 3M 

Corporation through the Graduate School at the University of Minnesota. 



 

 v 

TABLE OF CONTENT 

 

ABSTRACT........................................................................................................................ ii 

ACKNOWLEDGMENTS ................................................................................................. iv 

TABLE OF CONTENT...................................................................................................... v 

LIST OF TABLES.............................................................................................................. x 

LIST OF FIGURES ........................................................................................................... xi 

NOMENCLATURE ........................................................................................................ xix 

CHAPTER ONE INTRODUCTION.................................................................................. 1 

1.1 General...................................................................................................................... 1 

1.2 Effective Force Testing............................................................................................. 2 

1.3 Literature Review ..................................................................................................... 3 

1.3.1 Effective Force Testing...................................................................................... 3 

1.3.2 Natural Velocity Feedback................................................................................. 6 

1.3.3 Velocity Feedback Compensation ..................................................................... 7 

1.3.4 Servo-system Modeling ..................................................................................... 9 

1.4 Objectives and Research Scope .............................................................................. 11 

CHAPTER TWO BACKGROUND AND FUNDAMENTALS...................................... 14 

2.1 Dynamic Analysis of SDOF Structures .................................................................. 14 

2.2 Fluid Mechanics...................................................................................................... 16 

2.2.1 Hydraulic Fluid Properties ............................................................................... 17 

2.2.2 Hydraulic Flow ................................................................................................ 18 

2.2.3 Continuity Equation ......................................................................................... 23 

2.3 Feedback Control of Dynamic Systems.................................................................. 24 

2.3.1 Transfer Function............................................................................................. 25 

2.3.2 Pole-Zero Map ................................................................................................. 26 

2.3.3 Routh’s Stability Criterion............................................................................... 27 

2.3.4 Frequency Response ........................................................................................ 28 

2.3.5 Applications of Frequency Response............................................................... 31 

2.4 Summary................................................................................................................. 34 

CHAPTER THREE MODELING OF TEST SYSTEM................................................... 35 



 

 vi 

3.1 Description of the Test System............................................................................... 35 

3.2 Mathematical Models ............................................................................................. 36 

3.2.1 Servovalve Controller ...................................................................................... 36 

3.2.2 Valve Driver Module ....................................................................................... 37 

3.2.3 Servovalve (Pilot-Stage) .................................................................................. 38 

3.2.4 Servovalve (Main-Stage) ................................................................................. 39 

3.2.5 Main-stage flow ............................................................................................... 40 

3.2.6 Actuator............................................................................................................ 44 

3.2.7 Test Structure ................................................................................................... 47 

3.3 Computer Simulation Models................................................................................. 48 

3.4 Models for Linear System Analysis........................................................................ 50 

3.5 Linear System Analysis .......................................................................................... 51 

3.6 Summary................................................................................................................. 51 

CHAPTER FOUR  SYSTEM IDENTIFICATION.......................................................... 52 

4.1 Pilot-Stage Servovalve............................................................................................ 52 

4.1.1 Valve Dynamics............................................................................................... 52 

4.1.2 Valve Flow Property ........................................................................................ 53 

4.2 Main-Stage Servovalve........................................................................................... 54 

4.2.1 Valve Dynamics............................................................................................... 54 

4.2.2 Simplified Valve Dynamics (Valve gain)........................................................ 56 

4.2.3 Servovalve Response Delay............................................................................. 57 

4.2.4 Initial Flow Gain .............................................................................................. 57 

4.2.5 Nonlinear Servovalve Flow Property............................................................... 59 

4.3 Actuator Dynamics ................................................................................................. 60 

4.4 Test Structure.......................................................................................................... 61 

4.5 Controller Gains...................................................................................................... 62 

4.6 Parameter Verification............................................................................................ 63 

4.7 Summary................................................................................................................. 64 

CHAPTER FIVE VELOCITY FEEDBACK COMPENSATION................................... 65 

5.1 Natural Velocity Feedback ..................................................................................... 65 

5.1.1 Control-Structure Interaction ........................................................................... 66 

5.1.2 Effect of the Natural Velocity Feedback.......................................................... 66 



 

 vii 

5.2 Direct Velocity Feedback Compensation ............................................................... 68 

5.3 Velocity Feedback Compensation .......................................................................... 71 

5.4 Linear Velocity Feedback Compensation............................................................... 71 

5.4.1 Linear Compensation Design........................................................................... 71 

5.4.2 Analysis of the linearized compensation scheme ............................................ 73 

5.5 Nonlinear Velocity Feedback Compensation ......................................................... 75 

5.5.1 Nonlinearities in Servovalve............................................................................ 76 

5.5.2 Nonlinear Compensation Design ..................................................................... 76 

5.5.3 Evaluation of Nonlinear Compensation Scheme ............................................. 77 

5.6 Critical Parameters in Velocity Feedback Compensation ...................................... 79 

5.6.1 Controller P Gain ............................................................................................. 79 

5.6.2 Servovalve Flow Gain...................................................................................... 80 

5.6.3 Servovalve Response Delay............................................................................. 82 

5.7 Summary................................................................................................................. 83 

CHAPTER SIX EXPERIMENTAL IMPLEMENTATION OF EFT .............................. 85 

6.1 Experimental Program ............................................................................................ 85 

6.1.1 Test Setup......................................................................................................... 85 

6.1.2 Ground Accelerations ...................................................................................... 87 

6.2 Direct Implementation of EFT................................................................................ 90 

6.3 Linear Velocity Feedback Compensation............................................................... 92 

6.4 Nonlinear Velocity Feedback Compensation ......................................................... 98 

6.5 Comparison of Compensation Schemes ............................................................... 101 

6.6 Effect of Critical Parameters................................................................................. 102 

6.6.1 Controller P Gain ........................................................................................... 103 

6.6.2 Servovalve Flow Gain.................................................................................... 104 

6.6.3 Servovalve Response Delay........................................................................... 105 

6.7 Summary............................................................................................................... 105 

CHAPTER SEVEN FACTORS THAT AFFECT THE PERFORMANCE OF EFT .... 108 

7.1 Uncertainties in Servo-System.............................................................................. 108 

7.1.1 Leakage Flow................................................................................................. 108 

7.1.2 Pressure Supply.............................................................................................. 110 

7.2 Uncertainties in Test Structure and Test Environment ......................................... 112 



 

 viii 

7.3 Effect of Servo-system on Test Structure ............................................................. 114 

7.3.1 Damping of Structure..................................................................................... 115 

7.3.2 Effect of Velocity Feedback Compensation .................................................. 116 

7.3.3 Mass of Structure ........................................................................................... 118 

7.4 Nonlinear Behavior of Structure........................................................................... 118 

7.5 Summary............................................................................................................... 119 

CHAPTER EIGHT PROOF-OF-CONCEPT TEST....................................................... 121 

8.1 Experimental Program .......................................................................................... 121 

8.2 Shake-table Test.................................................................................................... 124 

8.3 Effective Force Testing......................................................................................... 126 

8.4 Servo-system Parameters for EFT Tests............................................................... 129 

8.5 Test Results........................................................................................................... 130 

8.5.1 Tests with Dampers........................................................................................ 131 

8.5.2 Tests without Dampers .................................................................................. 132 

8.5.3 Tests with One Damper ................................................................................. 134 

8.6 Summary............................................................................................................... 135 

CHAPTER NINE CONCLUSIONS AND RECOMMENDATIONS ........................... 136 

9.1 Summary of Research Program ............................................................................ 137 

9.2 Conclusions........................................................................................................... 138 

9.2.1 Modeling of Servo-System ............................................................................ 138 

9.2.2 Velocity Feedback Compensation ................................................................. 140 

9.2.3 Experimental Study........................................................................................ 141 

9.3 Future Development of EFT ................................................................................. 143 

REFERENCES ............................................................................................................... 144 

TABLES ......................................................................................................................... 147 

FIGURES........................................................................................................................ 149 

APPENDIX 1  A TEST SYSTEM IN DISPLACEMENT CONTROL......................... 225 

APPENDIX 2  NONLINEAR NO-LOAD FLOW GAIN.............................................. 230 

APPENDIX 3  A PROCEDURE FOR THE IMPLEMENTATION OF EFT................ 233 

APPENDIX 4  DETAILS OF THE SIMPLIFED SDOF STRUCTURE....................... 242 

APPENDIX 5 SAMPLE EFFECTIVE FORCE DATA FILE ....................................... 245 

APPENDIX 6  DIGITAL VELOCITY COMPENSATION IN C LANGUAGE .......... 246 



 

 ix 

APPENDIX 7  DETAILS OF THE ONE-STORY STEEL STRUCTURE ................... 252 



 

 x 

LIST OF TABLES 

 

Table 4.1 System parameters for simulation................................................................... 147 

Table 4.2 Flow curve of the servovalve (flow value in in3/s)......................................... 147 

Table 8.1 Structural Properties of single-story structure ................................................ 148 

Table 8.2 Servovalve Flow Curve for proof-of-concept test (flow value in in3/s) ......... 148 

Table A3.1 Identified flow property of servovalve ........................................................ 240 



 

 xi 

LIST OF FIGURES 

 

Figure 1.1 Comparison of shake table test to Effective Force Testing........................... 149 

Figure 2.1 An orifice inside a cylindrical pipe ............................................................... 150 

Figure 2.2 Typical plot of discharge coefficient versus Reynolds number for flows 
through an orifice in a pipe (reproduced after Merritt)................................. 150 

Figure 2.3 A submerged sharp-edged orifice.................................................................. 151 

Figure 2.4 Typical plot of discharge coefficient versus Reynolds number for flows 
through a submerged orifice. (reproduced after Street et. al.) ...................... 151 

Figure 2.5 Impulse response associated with pole positions in the s-plane.................... 152 

Figure 2.6 Frequency response of a first-order term in denominator (τ = 0.0014 s). ..... 152 

Figure 2.7 Frequency response of a second-order term in denominator (ωn = 1.6 Hz). . 153 

Figure 2.8 Frequency response of a third-order system.................................................. 153 

Figure 2.9 Frequency responses of phase-lead networks (0.1-200 Hz). ......................... 154 

Figure 2.10 Frequency responses of phase-lead networks (0-10 Hz)............................. 154 

Figure 3.1 A schematic of a testing system in force control........................................... 155 

Figure 3.2 A schematic of a three-stage servovalve ....................................................... 155 

Figure 3.3 A block diagram of a servovalve controller .................................................. 156 

Figure 3.4 A block diagram of a three-stage servovalve ................................................ 156 

Figure 3.5 A schematic of a main stage spool ................................................................ 156 

Figure 3.6 (a) load flow orifice; (b) leakage flow orifice ............................................... 156 

Figure 3.7 A schematic of an actuator piston ................................................................. 157 

Figure 3.8 A block diagram model of the test structure ................................................. 157 

Figure 3.9 The interaction between piston (structure) velocity and actuator dynamics . 157 

Figure 3.10 A block diagram of a testing system in force control.................................. 158 

Figure 3.11 A simplified linearized block diagram of a testing system in force control 158 

Figure 4.1 Comparison of the frequency response of the first-order and the second-order 
model for the pilot-stage valve ..................................................................... 159 

Figure 4.2 The frequency response of the three-stage servovalve.................................. 159 

Figure 4.3 The frequency response of three-stage servovalve model with a 110% pilot-
stage flow gain in simulation ........................................................................ 160 

Figure 4.4 Measured spool positions vs. valve commands............................................. 160 



 

 xii 

Figure 4.5 Servovalve response delay ............................................................................ 161 

Figure 4.6 Servovalve response delay (frequency domain)............................................ 161 

Figure 4.7 A typical flow vs. spool opening curve (regenerated with MTS testing data)
....................................................................................................................... 162 

Figure 4.8 A measured flow vs. spool opening curve (no-load flow) ............................ 162 

Figure 4.9 The SDOF mass-spring-damper test structure .............................................. 163 

Figure 4.10 A measured force-displacement curve ........................................................ 163 

Figure 4.11 A free vibration test with the viscous damper ............................................. 164 

Figure 4.12 Responses of a force-controlled testing system to a 0.5-kip sinesweep input
....................................................................................................................... 164 

Figure 5.1 Pole-zero map of the test system in force control ......................................... 165 

Figure 5.2 Frequency response of a test system in force control.................................... 165 

Figure 5.3 The direct velocity feedback compensation .................................................. 166 

Figure 5.4 Root loci of the test system with the direct velocity feedback compensation166 

Figure 5.5 Frequency responses of force-controlled systems with various velocity 
feedback compensations ............................................................................... 167 

Figure 5.6 A schematic of velocity feedback compensation .......................................... 167 

Figure 5.7 Linear velocity feedback compensation design............................................. 168 

Figure 5.8 Frequency response of the servovalve dynamics and inverse dynamics....... 168 

Figure 5.9 The test system with linearized velocity feedback compensation................. 169 

Figure 5.10 Pole-zero map of the linearized system with linearized velocity feedback 
compensation (from command to force)....................................................... 169 

Figure 5.11 Frequency response of the system with linear velocity feedback 
compensation ................................................................................................ 170 

Figure 5.12 Detailed frequency response of the system with linear velocity feedback 
compensation ................................................................................................ 170 

Figure 5.13 Response of the test system with linear velocity feedback compensation 
subjected to 0.5-kip sine wave sweep (0-10 Hz) .......................................... 171 

Figure 5.14 Nonlinear velocity feedback compensation design ..................................... 171 

Figure 5.15 Test system with nonlinear velocity feedback compensation ..................... 172 

Figure 5.16 Response of the test system with nonlinear velocity feedback compensation 
subjected to 0.5-kip sine wave sweep (0-10 Hz) .......................................... 172 

Figure 5.17 Response of the test system with linear and nonlinear velocity feedback 
compensation subjected to 2.0-kip sine wave sweep (0-10 Hz) ................... 173 

Figure 5.18 Comparison of the frequency responses of the linearly compensated systems 



 

 xiii 

with different controller P gain (from command to force) ........................... 173 

Figure 5.19 Root loci of the linearly compensated systems with respect to controller P 
gain (from command to displacement) ......................................................... 174 

Figure 5.20 Root loci of the linearly compensated systems with respect to percentage 
compensation (from command to displacement).......................................... 174 

Figure 5.21 Response of the test system with nonlinear velocity feedback compensation 
subjected to 2.0-kip sine wave sweep (0-10 Hz) .......................................... 175 

Figure 5.23 Frequency response of the linearly compensated systems with various delay 
compensations (from command to force) ..................................................... 176 

Figure 5.24 Response of the test system with nonlinear velocity feedback compensation 
(w/ various delay compensations) subjected to 2.0-kip sine wave sweep .... 176 

Figure 6.1 Schematic of the test system with velocity feedback compensation............. 179 

Figure 6.2 Schematic of the SDOF structural model with the actuator .......................... 179 

Figure 6.3 The 1940 Imperial Valley earthquake recorded at El Centro (N-S).............. 180 

Figure 6.4 The 1994 Northridge earthquake recorded at Santa Monica City Hall (N-S)180 

Figure 6.5 First 25 seconds of 1940 El Centro ground acceleration record ................... 181 

Figure 6.6 First 15 seconds of 1994 Northridge earthquake ground acceleration record181 

Figure 6.7 Force velocity curve for 35 kip actuator and 90 gpm servovalve with the 
choice of the ground accelerations................................................................ 182 

Figure 6.8 System responses with direct implementation of EFT  using a 0.5k sinesweep 
input (force) .................................................................................................. 183 

Figure 6.9 Structural responses with direct implementation of EFT  using a 0.5k 
sinesweep input (displacement and velocity) ............................................... 183 

Figure 6.10 System responses with direct implementation of EFT using the El Centro 
earthquake ground acceleration, 0.17g  (force) ............................................ 184 

Figure 6.11 Structural responses with direct implementation of EFT using the El Centro 
earthquake ground acceleration, 0.17g  (displacement and velocity)........... 184 

Figure 6.12 System responses with direct implementation of EFT using the Northridge 
earthquake ground acceleration, 0.42g  (force) ............................................ 185 

Figure 6.13 Structural responses with direct implementation of EFT using the Northridge 
earthquake ground acceleration, 0.42g  (displacement and velocity)........... 185 

Figure 6.14 System responses with digital linear velocity feedback compensation using a 
0.5k sinesweep input  (force) ........................................................................ 186 

Figure 6.15 Structural responses with digital linear velocity feedback compensation using 
a 0.5k sinesweep input  (displacement and velocity).................................... 186 

Figure 6.16 System responses with digital linear velocity feedback compensation using a 



 

 xiv 

2.0k sinesweep input  (force) ........................................................................ 187 

Figure 6.17 Structural responses with digital linear velocity feedback compensation using 
a 2.0k sinesweep input  (displacement and velocity).................................... 187 

Figure 6.18 System responses with linear velocity feedback compensation using the El 
Centro earthquake ground acceleration, 0.17g  (force)................................. 188 

Figure 6.19 Structural responses with linear velocity feedback compensation using the El 
Centro earthquake ground acceleration, 0.17g  (displacement and velocity)188 

Figure 6.20 System responses with linear velocity feedback compensation using the 
Northridge earthquake ground acceleration, 0.42g  (force).......................... 189 

Figure 6.21 Structural responses with linear velocity feedback compensation using the 
Northridge earthquake ground acceleration, 0.42g  (displacement and 
velocity) ........................................................................................................ 189 

Figure 6.22 System responses with nonlinear velocity feedback compensation using a 
0.5k sinesweep input  (force) ........................................................................ 190 

Figure 6.23 Structural responses with nonlinear velocity feedback compensation using a 
0.5k sinesweep input  (displacement and velocity) ...................................... 190 

Figure 6.24 System responses with nonlinear velocity feedback compensation using a 
2.0k sinesweep input  (force) ........................................................................ 191 

Figure 6.25 Structural responses with nonlinear velocity feedback compensation using a 
2.0k sinesweep input  (displacement and velocity) ...................................... 191 

Figure 6.26 System responses with nonlinear velocity feedback compensation using the 
El Centro earthquake ground acceleration, 0.17g  (force) ............................ 192 

Figure 6.27 Structural responses with nonlinear velocity feedback compensation using 
the El Centro earthquake ground acceleration, 0.17g  (displacement and 
velocity) ........................................................................................................ 192 

Figure 6.28 System responses with nonlinear velocity feedback compensation using the 
Northridge earthquake ground acceleration, 0.42g  (force).......................... 193 

Figure 6.29 Structural responses with nonlinear velocity feedback compensation using 
the Northridge earthquake ground acceleration, 0.42g  (displacement and 
velocity) ........................................................................................................ 193 

Figure 6.30 System responses with nonlinear velocity feedback compensation using the 
El Centro earthquake ground acceleration, 0.27g  (force) ............................ 194 

Figure 6.31 Structural responses with nonlinear velocity feedback compensation using 
the El Centro earthquake ground acceleration, 0.27g  (displacement and 
velocity) ........................................................................................................ 194 

Figure 6.32 System responses with nonlinear velocity feedback compensation using the 
Northridge earthquake ground acceleration, 0.67g  (force).......................... 195 

Figure 6.34 Comparison of system responses using the El Centro earthquake ground 



 

 xv 

acceleration, 0.34g  (force) ........................................................................... 196 

Figure 6.35 Comparison of structural responses using the El Centro earthquake ground 
acceleration, 0.34g  (displacement and velocity).......................................... 196 

Figure 6.36 Comparison of system responses using the Northridge earthquake ground 
acceleration, 0.84g  (force) ........................................................................... 197 

Figure 6.37 Comparison of structural responses using the Northridge earthquake ground 
acceleration, 0.84g  (displacement and velocity).......................................... 197 

Figure 6.38 Comparison of system responses with linear velocity feedback compensation 
using a 0.5k sinesweep input (Controller P gain) ......................................... 198 

Figure 6.39 Comparison of system responses with linear velocity feedback compensation 
using a 0.5k sinesweep input (Flow gain)..................................................... 198 

Figure 6.40 Comparison of system responses with linear velocity feedback compensation 
using a 0.5k sinesweep input (Delay compensation) .................................... 199 

Figure 6.41 An example of high-frequency vibration of the test system........................ 199 

Figure 7.1 Root locus of the linearly compensated systems with respect to proportional 
leakage Cl  (from command to force) ........................................................... 198 

Figure 7.2 Maximum controller P gain vs. the proportional leakage Cl ......................... 198 

Figure 7.3 Comparison of system response with various constant leakages to a 0.5k 
sinesweep input............................................................................................. 199 

Figure 7.4 Supply pressure variation with small hydraulic power requirement ............. 199 

Figure 7.5 Supply pressure variation with large hydraulic power requirement.............. 200 

Figure 7.6 Nonlinear flow property of the servovalve with a ¼-gallon accumulator..... 200 

Figure 7.7 Simulation model for the study of the effect of reaction frames................... 201 

Figure 7.8 Root locus of the linearly compensated system with flexible reaction frame 
(m/100 + 10k) compensation for piston velocity (from command to force) 201 

Figure 7.9 Root locus of the linearly compensated system with flexible reaction frame 
(m/100 + 10k) compensation for structure velocity (from command to force)
....................................................................................................................... 202 

Figure 7.10 Root locus of the linearly compensated system with heavy, stiff reaction 
frame (10m + 100k) compensation for piston velocity (from command to 
force) ............................................................................................................. 202 

Figure 7.11 Root locus of the linearly compensated system with heavy, stiff reaction 
frame (10m + 100k) compensation for structure velocity (from command to 
force) ............................................................................................................. 203 

Figure 7.12 A schematic of a test structure with an actuator.......................................... 203 

Figure 7.13 A free vibration test setup (with additional actuator) .................................. 204 



 

 xvi 

Figure 7.14 Free vibration test and simulation with actuator attached  (correctly 
compensated) ................................................................................................ 204 

Figure 7.15 Normalized free vibration tests of the SDOF structure ............................... 205 

Figure 7.16 Actuator force input vs. structure velocity during the free vibration test with 
the actuator attached and correctly compensated.......................................... 205 

Figure 7.17 Free vibration test and simulation with actuator over-compensated ........... 206 

Figure 7.18 Actuator force input vs. structure velocity during the free vibration test  with 
the actuator attached and over-compensated ................................................ 206 

Figure 7.19 Free vibration test and simulation with actuator under-compensated ......... 207 

Figure 7.20 Actuator force input vs. structure velocity during the free vibration test  with 
the actuator attached and under-compensated .............................................. 207 

Figure 8.1 Single-story test specimen............................................................................. 208 

Figure 8.2 Location of strain gages (a) column (b) load cell for damper force 
measurements................................................................................................ 209 

Figure 8.3 The strain and stress distribution across a column section (section not in scale)
....................................................................................................................... 209 

Figure 8.4 Schematic of structure on shake table ........................................................... 210 

Figure 8.5 Structure on shake table................................................................................. 210 

Figure 8.6 Base plate and anchorage pattern for the test structure on shake table ......... 211 

Figure 8.7 Static loading test of structure on shake table ............................................... 211 

Figure 8.8 Free vibration test of structure on shake table (without dampers) ................ 212 

Figure 8.9 Free vibration test of structure on shake table (with dampers) ..................... 212 

Figure 8.10 Schematic of structure for EFT test............................................................. 213 

Figure 8.11 Structure for EFT test .................................................................................. 213 

Figure 8.12 Base plate and anchorage pattern for test structure for EFT test................. 214 

Figure 8.13 Static loading test of structure for EFT test................................................. 214 

Figure 8.14 Free vibration test of structure for EFT test (without dampers) .................. 215 

Figure 8.15 Free vibration test of structure for EFT test (with dampers) ....................... 215 

Figure 8.16 Comparison of effective forces from shake table test (mass × measured table 
acceleration) and measured forces form EFT test (0.13g sinesweep 1-10Hz)
....................................................................................................................... 216 

Figure 8.17 Comparison of global structural responses of tests with dampers  (0.13g 
sinesweep 1-10Hz)........................................................................................ 216 

Figure 8.18 Damper performances in tests with 0.13g sinesweep (1-10Hz) .................. 217 

Figure 8.19 Column behavior in tests with 0.13g sinesweep (1-10Hz).......................... 217 



 

 xvii 

Figure 8.20 Comparison of effective forces from shake table test (mass × measured table 
acceleration) and measured forces from EFT test (0.29g El Centro) ........... 218 

Figure 8.21 Comparison of global structural responses in tests with dampers  (0.29g El 
Centro) .......................................................................................................... 218 

Figure 8.22 Comparison of effective forces from shake table test (mass × measured table 
acceleration) and measured forces from EFT test (0.55g Northridge) ......... 219 

Figure 8.23 Comparison of global structural responses in tests with dampers (0.55g 
Northridge).................................................................................................... 219 

Figure 8.24 Comparison of effective forces from shake table test (mass × measured table 
acceleration) and measured forces in EFT test without dampers (0.30g El 
Centro) .......................................................................................................... 220 

Figure 8.25 Comparison of global structural responses in tests without dampers (0.30g El 
Centro) .......................................................................................................... 220 

Figure 8.26 Comparison of effective forces from shake table test (mass × measured table 
acceleration) and measured forces form EFT test with 93% correction  (0.30g 
El Centro)...................................................................................................... 221 

Figure 8.27 Comparison of global structural responses (EFT test with 93% correction) 
(0.30g El Centro) .......................................................................................... 221 

Figure 8.28 Comparison of forces from EFT test with one damper (2k sinesweep) ...... 222 

Figure 8.29 Column base shear vs. story drift in EFT test with one damper (2k 
sinesweep)..................................................................................................... 222 

Figure 8.30 Damper force vs. velocity in EFT test with one damper (2k sinesweep).... 223 

Figure 8.31 Comparison of forces from EFT test with one damper (0.29g El Centro) .. 223 

Figure 8.32 Comparison of forces from EFT test with one damper (0.55g Northridge) 224 

Figure A1.1 Linearized block diagram of test system in displacement control.............. 228 

Figure A1.2 Responses of a displacement-controlled system subjected to a 0.5-inch 
sinesweep input (0-10 Hz) ............................................................................ 228 

Figure A1.3 Frequency response of the test system in displacement control................. 229 

Figure A1.4 Root locus of the displacement-controlled system with respect to percentage 
ideal velocity feedback compensation (command to force) ......................... 229 

Figure A3.1 Frequency response of the estimated second-order servovalve model....... 241 

Figure A3.2 Test system with actuator running in the air............................................... 241 

Figure A4.1 Three steel frames filled with concrete atop four caster wheels................. 243 

Figure A4.2 A detailed spring connection ...................................................................... 243 

Figure A4.3 Connection of the actuator.......................................................................... 244 

Figure A4.4 Connection of the additional leakage passage............................................ 244 



 

 xviii 

Figure A7.1 Column end connections ............................................................................ 253 

Figure A7.2 Connection of the dampers ......................................................................... 253 

Figure A7.3 Connection of the load cell and velocity transducer (Shake table) ............ 253 

Figure A7.4 Connection of the accelerometers (a) underneath the mass in shake table;  (b) 
On top of the bottom flange of the side W section of the mass in EFT........ 254 

Figure A7.5 Connection of the velocity and displacement transducers from a reaction 
frame to the test structure (EFT)................................................................... 254 

Figure A7.6 Connection of the actuator with the structure (EFT).................................. 255 

Figure A7.7 Connection of the accumulator (EFT) ........................................................ 255 



 

 xix 

NOMENCLATURE 

 

 

Roman Symbols 

A Actuator piston area 

A, B, C, D Coefficients of the total solution of single-degree-of-freedom system 

A0 Orifice area 

A1, A2 Sectional areas of orifice flow 

Aeft Relative acceleration of structure in EFT test 

ai Coefficients of the denominator of a linear system 

AM Absolute acceleration of structure in shake table test 

AN, AS Acceleration reading in EFT test 

Astt Relative acceleration of structure in shake table test 

AT Table acceleration in shake table test 

Av Main-stage valve spool area 

c Viscous damping coefficient of single-degree-of-freedom system 

Cc ratio of Vena contracta area and orifice area 

Cd Discharge coefficient of orifice 

Cep Actuator external leakage 

CF Conversion factor from kips to volts 

CF Conversion factor from inches to volts 

Cl Total servo-system leakage coefficient (proportional) 

Clv Main-stage valve leakage 

Cip Actuator internal (cross-port) leakage 

Da Actuator displacement readings in EFT test 

Deft Relative displacement in EFT test 

DN, DM, DS, Displacement readings in shake table test 

Dstt Relative displacement in shake table test 

DT Table displacement in shake table test 



 

 xx 

DU, DD Displacement readings in EFT test 

den(s) Denominator of transfer function 

e Experiential base 

e DC error (outer loop) 

ei DC error (inner loop) 

Fc Coulomb friction of single-degree-of-freedom system 

fD Damping force of single-degree-of-freedom system  

FDeft Total damper force in EFT test 

FDstt Total damper force in shake table test 

fS Resistance force of single-degree-of-freedom system 

g Acceleration due to gravity 

GFu Transfer function of system from command to force output 

Gdi, Gpi Inner-loop controller D gain and P gain 

Gd, Gp Controller D gain and P gain 

H(s) Transfer function 

H(z) Transfer function in discrete form 

Hs Transfer function of servovalve 

Hsp Transfer function of pilot-stage servovalve 

Hsm Transfer function of main-stage servovalve 

Hst Transfer function of structure 

j Complex number 

k Stiffness of single-degree-of-freedom system 

K3 Sensitivity factor of internal LVDT 

Ka Compressibility coefficient of fluid inside actiator 

Kc Velocity feedback compensation gain 

Kv Main-stage valve flow gain 

Ks Servovalve gain 

Kvp Pilot-stage valve flow gain 

L Length of leakage orifice 

LW, LE Load cell readings 



 

 xxi 

Min, Mout Fluid mass in/out of control volume 

M Amplitude response of a linear system 

Mc Section moment of column 

m Mass of single-degree-of-freedom system 

num(s) Numerator of transfer function 

P0 External time-dependent force 

peff Effective force 

pi Poles of a system 

PL Pressure difference across the actuator piston 

P1, P2 Pressure inside actuator chambers 

Ps Pressure supply 

Q Flow rate through orifice 

Q1~Q4 Orifice flow through main-stage servovalve 

Qin, Qout Flow rate in/out of control volume 

Qvp Pilot-stage valve flow 

QL Load flow (flow to actuator) 

Qlv Leakage flow of servovalve 

R Reynolds number 

r, c, e Geometric coefficients of the leakage orifice 

RF Reduction factor due to leakage 

s Complex variable defined as σ±jω 

Sv Sensitivity factor of velocity transducer 

t Time 

T Temperature in Fahrenheit 

Td Time delay to be compensated 

Tl Lead time provided by phase-lead network 

Tld Time constant of phase-lead network 

u1, u2 Velocity of orifice flow 

u Force command 

u Average flow velocity  



 

 xxii 

u, w Velocity components of flow 

V0 Control volume of fluid 

Vt Volume of actuator piston chambers 

x, &, &&x x  Displacement, velocity, and acceleration 

x xg g, &&  Ground displacement and acceleration 

, t tx x&&  Total displacement of structure on shake table 

xv Spool opening (-1 ~ 1) 

vx~  Spool position of the main-stage valve 

xvmax Maximum spool stroke of the main-stage valve 

X, Z Body forces on control volume of fluid 

x, z Cartesian coordinates 

zi Zeros of a system 

 

Greek Symbols 

α Constant of phase-lead network 

β Bulk modulus of fluid 

βe Effective bulk modulus of fluid 

γ Weight density of fluid 

ρ Mass density of fluid 

ν Viscosity of fluid 

µ Absolute viscosity of fluid 

φ Phase response of a linear system 

τ Time constant of a first-order system 

ω Loading frequency 

ωn Natural frequency of second-order system 

ωns Equivalent frequency of pilot-stage valve 

ζ System damping ratio 

ζs Equivalent damping ratio of pilot-stage valve  



 

 1 

CHAPTER ONE 

INTRODUCTION 

 
 
1.1 General 

Experimental research remains important in earthquake engineering though nonlinear 

dynamic analysis of structures has advanced much in recent years.  This is especially true 

when the behavior of structural components, required by analytical studies, is difficult to 

model due to nonlinearities and strain-rate dependencies.  In addition, the analysis of a 

full-scale structural system based on individually proven component models needs to be 

validated experimentally before the results can be extended in practice.  Hence, 

experimental procedures that can be used to subject large-scale structures and structural 

components to seismic loading are essential to further our understanding of the effects of 

earthquakes.  When the behavior under investigation is velocity or strain-rate dependent, 

such as in cases where structures incorporate active, semi-active, or passive control 

devices, real-time dynamic testing is necessary. 

Shake table testing can simulate real-time dynamic loading on structural models.  

However, structures tested on shake tables typically have to be scaled down, and very 

few shake tables have the capacity as shown in Ogawa et al. (2001) to apply earthquake 

loads to full-scale structures.  At smaller scales, it is difficult to investigate structural 

details such as anchorage of reinforcements in concrete and resistance mechanisms such 

as shear.  Tests with small-scale models also may not accurately demonstrate the effect of 

structural control devices.  In addition to the scaling limit, table outputs may not replicate 
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the required ground motion due to the interaction between the table and the test structure, 

especially when the test structure behaves nonlinearly (Shield et al., 2001).  Shake tables 

tests are also economically constrained due to the high cost of table construction. 

Effective force testing (EFT) is a real-time dynamic testing technique that overcomes 

many of the limitations of shake tables, while using common laboratory equipment (i.e., 

servo-hydraulic actuators).  EFT is applicable to structures that can be represented by 

lumped-mass systems as in a shake table test.  With the EFT method, hydraulic actuators 

apply dynamic forces through the center of mass of the test structure attached to a fixed 

base.  Motions measured relative to the ground would be equivalent to the responses that 

the structure would develop relative to a moving base as in a shake table test or an 

earthquake event (Dimig et al., 1999; Shield et al., 2001).  

 

1.2 Effective Force Testing 

EFT is based on a transformation of coordinates (Murcek, 1996).  Consider a single-

degree-of-freedom (SDOF) system subjected to ground acceleration shown in Fig. 1.1 

(a), the structural response relative to the global reference xt is the summation of the 

relative response to the shake table x and the table motion xg.  The governing differential 

equation of the structure can be obtained by applying D’Alembert’s principle of dynamic 

equilibrium to the free-body diagram of the structure shown in Fig. 1.1 (a), 

0tmx cx kx+ + =&& & ,     (1.1) 

where m is the mass of the system, c is the equivalent viscous damping coefficient, and k 

is the system stiffness (Chopra, 1995).  Because the total structural acceleration tx&& , is 
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defined as t gx x x= +&& && && , Eq. (1.1) can be rewritten as  

g effmx cx kx mx P+ + = − =&& & && .    (1.2) 

The structure subjected to effective force testing is illustrated in Fig. 1.1 (b), in which 

hydraulic actuators are used to apply "effective forces" (Peff) to the center of the structure 

mass.  The effective forces are the product of the ground acceleration and the structure 

mass.  Hence, they are known a priori and are independent of the structural properties 

(i.e., stiffness and damping) and the changes in structural properties during a test.  If the 

actuator could apply effective forces accurately to the test structure, the responses of the 

structure in an EFT test would be same as those in the shake table test. 

 

1.3 Literature Review 

1.3.1 Effective Force Testing 

The concept of EFT was first described in papers discussing the pseudodynamic 

testing method (Mahin and Shing, 1985; Mahin et al., 1989).  These papers presented the 

possibility of conducting real-time tests using a pseudodynamic test setup with explicit 

time-varying forces imposed at the center of the lumped mass.  It was pointed out that 

this technique would eliminate the need for computing required displacements as in 

pseudodynamic testing while it would require high-quality controllers and servovalves.   

Murcek (1996) first experimentally evaluated the effective force testing method using 

a linear elastic SDOF system, which consisted of a cart and a pretensioned (to 15 kip to 

prevent possible buckling) rod that served as a spring.  The structural stiffness, natural 

frequency, and damping were found to be 67.1 kips/in., 6.2 Hz, and 2% critical damping, 

respectively.  A 77-kip actuator with a three-stage 90-gpm servovalve was used to apply 
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the required effective forces.  Both sinusoidal forces and earthquake effective forces were 

tested.  It was found that when controlled only by the feedback control coming with the 

test equipment, the actuator was unable to apply forces accurately near the natural 

frequency of the test structure.  The inability of the actuator to apply force accurately was 

attributed to the interaction between the actuator control and the structure through an 

intrinsic "natural velocity feedback" loop (Dyke et al., 1995).  

After identifying the problem and confirming it through computer simulations, 

Murcek proposed a solution: a velocity feedback correction loop added to the control of 

the actuator to negate the effect of the natural velocity feedback.  The natural velocity 

feedback was compensated by modifying the command signal to the servovalve based on 

the measured structure/piston velocity.  The solution was tested through simulations, 

based on which, Murcek further noted that the performance of the compensated system 

would depend on the accuracy of the servo-system modeling. 

This experimental verification of the solution using precorrected command signals is 

summarized in Dimig et al. (1999).  The correction to the command signals was made 

using the anticipated velocity of the test structure instead of the measured velocity in real 

time.  The expected velocity was calculated by solving the equation of motion of the 

linear elastic SDOF structure, and the modified command was generated before testing.  

Test results showed that with the precorrected command signals, the actuator was able to 

apply effective forces at all frequencies (0-10 Hz).   

Timm (1999) implemented the velocity feedback correction using the same test setup 

with a measured velocity.  It was found that when the compensation was made in real 

time instead of using the precorrection, the expected resonance at the natural frequency of 
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the structure was not excited.  This was attributed to an inevitable response delay in the 

servo-system because the implementation of EFT with the precorrected command signals 

was successful, and yet a time offset in the measured response was evident compared to 

the expected response.  Timm modified the analytical model of the servo-system to 

include a phase delay of the servovalve and proposed a phase adjustment for the velocity 

feedback compensation to negate the response delay.  Computer simulation incorporating 

the phase delay confirmed the findings and the proposed solution.  Tests with phase 

adjusted velocity feedback correction demonstrated success in applying forces near the 

natural frequency of the structure. 

Shield et al. (2001) summarized this work and pointed out that the effective force 

testing method enabled real-time dynamic tests for the linear elastic system and the 

implementation of EFT was independent of the properties of the test structure.  On the 

other hand, several mismatches in the comparison of the Fourier amplitude of the 

measured forces and the command forces were evident, such as a sharp drop at the 

natural frequency (6 Hz), a spike around 12 Hz, and a discontinuity near 4 Hz.  The 

discontinuity near 4 Hz was likely caused by an additional vibration mode of the system 

associated with a bouncing motion of the cart.  The other two mismatches were attributed 

to the 15-kip offset of the actuator force command (to keep the bar pretension) because 

simulations without the pretension did not show the drop and the spike, and simulations 

with the pretension showed the drop and the spike.   

The previous implementations of velocity feedback compensation and the validation 

of the EFT method were limited by the test setups in that the test structure needed to be 

its linear range of behavior.  In addition, the relatively large stiffness and the large natural 
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frequency prevented large velocity responses of the structure; hence the concept of the 

velocity feedback compensation could only be tested within a limited operating range of 

the servovalve.  The bar pretension also caused the servovalve to have nonlinear 

behaviors, which were not considered in the previous investigations due to the limitation 

of the analog circuits used in the studies.  A new test setup and digital implementation 

were necessary to investigate the natural velocity feedback and its compensation 

techniques at large flow demands.  

1.3.2 Natural Velocity Feedback 

The natural velocity feedback describes the interaction between the actuator control 

and actuator piston motion.  The principles for the interaction were described by Merritt 

(1967) through a continuity analysis of fluid volumes in actuator chambers.  However, 

the applications of the principles documented in Merritt (1967) were in displacement-

controlled systems; hence, the effect of the natural velocity feedback on the force 

tracking ability of actuators was not demonstrated.   

Dyke et al. (1995) studied the effect of the control-structure interaction in the design 

of active structure control strategies.  It was shown using pole-zero mapping that the 

poles of the structure attached to the actuator were also the zeros of the transfer function 

from the command to the actuator force.  Therefore, the actuator attached to a lightly 

damped structure would be greatly limited in its ability to apply forces near the natural 

frequency of the structure.  Actuators would be unable to apply a force at the natural 

frequency of undamped structures.  As part of the study, the interaction between the 

actuator control and the structure was demonstrated by a feedback loop from the structure 

velocity to the load flow of the servovalve, and the feedback loop was named "natural 
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velocity feedback."   

Alleyne et al. (1999) explained a similar force-tracking problem in the control of 

active suspension of automobiles using hydraulic actuation.  It was discussed that due to 

the intrinsic piston velocity feedback, the force tracking ability of a hydraulic actuator 

could be greatly limited near the natural frequency of the attached system.  It was further 

pointed out that simple control strategies, such as a Proportional-Integral-Derivative 

(PID) control, are not sufficient for a system in force control using servo-hydraulic 

actuation, and more advanced control algorithms are necessary.   

The interaction between the actuator and the attached structure can be found in other 

applications of hydraulic actuation under force control, such as in Niksefat et al. (2001).  

It is evident in their derivation of the transfer function of the controlled system that the 

poles of the structure attached to the actuator are also the zeros of the overall transfer 

function.  However, the dynamics of the attached structure was stiffness-dominant (the 

system mass and damping were negligible), therefore the natural frequency of the system 

was very large, and the effect of the natural velocity feedback were neglected.  

1.3.3 Velocity Feedback Compensation 

The detrimental effect of the natural velocity feedback on a force-controlled test 

system was observed during the development of the EFT method.  As discussed 

previously, a solution, velocity feedback correction, was proposed by Murcek (1996) and 

implemented by Timm (1999) to compensate for the effect.  The experimental results 

showed success of the solution under limited conditions.  In the solution, a positive 

velocity feedback loop was added to the control of the servo-system to eliminate the 

interaction between the actuator control and the structure attached to the actuator.   
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Similar concepts can be found in other applications of servo-hydraulic actuation.  

Heintze (1997) discussed a "cascade ∆P inner-loop control" of a servo-hydraulic actuator, 

which combined with a displacement controlled outer loop, improved the position 

tracking ability of a brick-laying robot.  In the inner-loop control, a velocity feedback 

compensation, which was conceptually similar to the velocity feedback compensation, 

was used to decouple the dynamics of the actuator load (i.e., the structure attached to the 

actuator) from the actuator control.  Schothorst (1997) further explained the concept of 

the "cascade ∆P inner-loop control", and pointed out that the inner-loop control would 

make the actuator act as a force generator (i.e., the actuator would follow a force 

command).  The inner-loop control combined with a multi-fold outer-loop control 

(displacement, velocity, and acceleration) was used to control a flight simulator.   

In both applications, the structures were mass-dominant systems, thus the natural 

frequency of the structure was very small.  In addition, force tracking was not the control 

objectives, and velocity feedback compensation was treated as a means for improving the 

performance of the outer-loop control.  The compensated was based on the desired 

velocity of the flight simulator or the estimated velocity of the robot arm, resulting in 

feedforward compensation.  Consequently, the importance of the response delay of the 

servo-system was not noticed.  To avoid potential instability, undercompensation by 

using a larger servovalve flow gain in the compensation was recommended (Heintze et 

al., 1995). 

Alleyne (1996) proposed a Lyapunov-based control algorithm for force tracking of a 

servo-hydraulic actuator in applications of a machine tool axis.  The control algorithm 

was later applied to the control of an active automobile suspension system (a structure 
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with mass, damping, and stiffness) (Alleyne et al., 2000).  In the experimental study, the 

excitation frequency (1 Hz) was not close to the natural frequency of the test setup (4 

Hz), and the system damping was large (25% of critical damping).  Therefore, the effect 

of the natural velocity feedback was not clearly demonstrated.  The Lyapunov-based 

algorithm was further simplified such that the determination of the system input (desired 

valve command) included a velocity feedback compensation term.  It was further pointed 

out that if the dynamics of the actuator load were well known, the velocity feedback 

compensation could actually be replaced by a feedforward compensation as indicated by 

Heintze et al. (1995).  However, the coefficient of the velocity feedback compensation 

term was not explicitly given. 

Although aforementioned studies have provided some information regarding the 

natural velocity feedback and the velocity feedback compensation, their effects on an 

EFT system (a force-controlled system) have not been fully understood.  The EFT system 

is unique because force tracking of the actuator is the control objective, and the behavior 

and the dynamics of the test structure are typically not known before testing.  Therefore, 

it is necessary to systematically investigate the natural velocity feedback and its 

compensation.  For this purpose, detailed mathematical models of the system including 

system nonlinearities are necessary.   

1.3.4 Servo-system Modeling 

Modern servo-hydraulic control dates from World War II, when Mr. Moog invented 

the servovalve (Maskrey et al., 1978).  Ever since then, servovalves have seen numerous 

applications in transportation, machinery, missile, and robot control.  The great demand 

for this highly efficient means of power transmission has fostered the rapid development 



 

 10 

of modern hydraulic control engineering.  The text by Merritt (1967) covers the 

fundamentals, operating principles, modeling, and analysis of hydraulic control 

components and systems.  Nonlinearities in control systems briefly mentioned at the end 

of the text have been further studied by others for various applications.  In addition, the 

specification standards for servovalves (Thayer, 1965) and specifications for individual 

products, such as Moog specifications and MTS specifications have been helpful for 

people to understand and model the behavior of servovalves and actuators. 

Based on the well-documented operating principles of servovalves, various models 

with different complexity levels have been derived for individual applications.  Nikiforuk 

et al. (1969) presented a detailed analysis of a two-stage servovalve, which considered 

the dynamics and interaction of major valve components, such as a nozzle-flapper and 

spool.  Wang et al. (1995) developed a detailed nonlinear model for a two-stage MTS 

servovalve, in which the component dynamics and interactions, such as jet flow forces on 

the pilot-stage spool were considered.  Theyer (1965) provided a "simplified" model for 

two-stage Moog valves, which included armature-flapper dynamics of the first-stage 

valve.  Schothorst (1997) and Heintze (1997) considered the flapper-nozzle dynamics for 

the pilot-stage in their modeling of a three-stage servovalve.  The dynamics of the main-

stage spool was omitted; instead the main-stage spool velocity was directly related to the 

pilot-stage flow by a constant.  A nonlinear main-stage flow property was observed 

during their system identification though a single flow gain was used in the controller 

design.  A problem with these complex models is that it is difficult to accurately 

determine the model parameters.  

On the other hand, simple models have been developed and used in many engineering 
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applications of servovalves.  Newell et al. (1995) presented a model for a two-stage 

servovalve used in a small-size sliding shake table.  The dynamics of the servovalve was 

represented by a first-order transfer function, and the actuator piston friction and the load 

pressure influence on the servovalve flow property were considered.  Conte et al. (2000) 

derived a linear model for a three-stage servovalve used in controlling a uni-axial shake 

table.  The servovalve dynamics were represented by a gain and a response delay term.  

The valve flow was assumed proportional to the servovalve spool opening.  Gavin (2001) 

described a two-stage servovalve model, in which the servovalve dynamics were 

approximated by a first-order term, and the nonlinear servovalve flow property (i.e., load 

pressure influence) was linearized using Taylor's expansion as described in Merritt 

(1967).  These simple models are helpful for linear system analysis and linear controller 

design; however, simple models can be insufficient to capture the significant nonlinear 

dynamics of a servo-system.   

To implement the effective force testing method, large size servovalves are necessary 

for testing large size structural systems undergoing large velocities.  Hence, there is a 

need for accurate yet uncomplicated servo-system models that can capture the major 

dynamics and nonlinearities of a three-stage servovalve.  In the mean time, the model 

parameters should be identifiable with typical structural laboratory equipment.   

 

1.4 Objectives and Research Scope 

The purpose of the research was to extend the development and implementation of 

the EFT method to fully utilizing the capacity of test equipment and to testing nonlinear 

SDOF structural systems undergoing large deformations in real time.  The objective of 
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the research was to control the actuator to follow effective force commands accurately 

and robustly even when the servo-system was taken into its nonlinear range of behavior 

as the test required large hydraulic power (flow).  The feasibility of the EFT method was 

examined by comparing the forces applied to the test structures (measured by a load cell) 

with respect to the command forces (effective forces).  Comparison of structural 

responses provided a secondary validation of the compensation scheme designs.  

The objective of this research was accomplished in two phases.  In the first phase, 

detailed mathematical models for a test system were derived to better understand the 

system behavior and to facilitate the development of the velocity feedback compensation 

schemes.  Numerical simulations and linear system analysis were conducted to 

investigate potential stability problems.  Experimental tests on a simple SDOF (mass-

spring-damper) structure were used to validate the analytical results.  The structure was 

designed to have repeatable nonlinear structural behaviors such that the effect of 

structural nonlinearities on the test system performance could be studied.  

In the second phase of the study, a one-story steel structure was tested on a shake 

table at the University of Illinois and using EFT at the University of Minnesota.  Results 

obtained using two earthquake simulation techniques were compared to validate the EFT 

method, and to verify the feasibility of the proposed nonlinear velocity feedback 

compensation scheme.  The comparison included both global responses (effective forces, 

structure accelerations, velocities, and displacements) and local responses (damper 

forces, and column base shears).   

The dissertation is organized as follows.  Chapter 2 presents fundamentals and 

background knowledge in structural engineering, hydraulics, and control engineering, 
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which are essential to understanding and modeling the test system.  Chapter 3 contains a 

derivation of a servo-system model for the simulation of the system behavior and for the 

design of velocity feedback compensation schemes.  Chapter 4 describes the system 

identification, in which the parameters used in the models developed in Chapter 3 were 

determined with available resources and designed experiments.   

Chapter 5 presents an analysis of the natural velocity feedback and the concept of 

velocity feedback compensation.  A nonlinear velocity feedback compensation scheme 

was designed and validated analytically.  Chapter 5 also summarizes an investigation of 

the effects of three critical parameters on the performance of the velocity feedback 

compensation.  Chapter 6 presents the experimental validation of the proposed nonlinear 

velocity feedback compensation and the conclusions drawn in Chapter 5 regarding the 

critical parameters.   

Chapter 7 presents a discussion of important factors that can affect the performance 

of the EFT method and related stability problems.  Chapter 8 summarizes a proof-of 

concept test for the EFT method, in which a one-story steel structure was tested using a 

shake table and the EFT method, and test results were compared.  Finally, Chapter 9 

summarizes the conclusions drawn from the research at the University of Minnesota on 

the implementation of nonlinear velocity feedback compensation for effective force 

testing. 
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CHAPTER TWO 

BACKGROUND AND FUNDAMENTALS 

 

 

When testing structures using the EFT method, servo-hydraulic actuators are powered 

by hydraulic fluid under pressure and in force control (i.e., the command and feedback 

signals are forces).  The multidisciplinary research requires knowledge in structural 

dynamics, hydraulics, and modern feedback control.  This chapter provides some basic 

engineering concepts and methods in these fields to facilitate the understanding of the 

physical system operation, test system modeling, and control algorithm design. 

 

2.1 Dynamic Analysis of SDOF Structures 

Structures, such as highway bridges and one-story buildings can be modeled as 

single-degree-of-freedom (SDOF) systems when subjected to earthquake loadings.  The 

equation of motion for a SDOF system in Eq. (1.1) can be derived from D'Alembert's 

principle of dynamic equilibrium.  The equation in a more general form is  

D S gmx f f mx+ + = −&& &&      (2.1) 

where fD is the damping force and fS  is the resistance force.   

The damping component models the energy dissipation of the structural system.  

Although many mechanisms contribute to the energy dissipation, damping in structural 

systems is usually idealized as viscous damping (causing an exponentially decaying free 

vibration response) and Coulomb friction (causing a linearly decaying free vibration 
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response) (Chopra, 1995).  The damping can be further idealized by an equivalent 

viscous damping (i.e., Df cx= & ) to simplify system analyses. 

Force fS represents the force-deformation relation of a structural system, and is 

usually determined by structural analysis or through static loading tests.  This relationship 

is of interest because it describes the ability of the structure to resist external forces.  

Typically, the initial structural response is linear elastic (i.e., the resisting force is 

proportional to the structural deformation, fS = kx).  Beyond the linear elastic range, the 

structure can be either nonlinear elastic, such as the one shown in Chapter 3 through 

Chapter 7 or nonlinear (i.e., the resisting force is a function of the structural deformation 

history), such as the one shown in the proof-of-concept test in Chapter 8. 

The governing differential equation of a linear elastic structure subjected to sinusoidal 

force is 

0 sinmx cx kx p tω+ + =&& & .    (2.2) 

The solution of Eq. (2.2) with zero initial conditions (i.e., 0)0( =x  and 0)0( =x& ) is 

(Chopra, 1995) 
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where n k mω =  is the natural frequency, 21D nω ζ ω= − , is the damped natural 

frequency, and (2 )c mkζ =  is the damping coefficient of the structure.  The vibration 

at the forcing frequency persists (thus called steady-state response) while the transient 

response decays with time due to structural damping.  The decaying rate and pattern 

depend on the structural damping.   

If the forcing function is an earthquake ground acceleration input, numerical methods, 

such as the Newmark-β method (with γ = 1/2 and β = 1/4), were used to solve the 

equation of motion.  When the structure went into the nonlinear range of behavior, 

Newton-Raphson iteration was applied to each incremental time step to minimize 

computational errors.  The calculated structural responses (referred to as expected 

responses) were compared to measured responses.   

The effective forces were applied to the structure through an actuator, which was 

powered by hydraulic fluid under pressure.  Hence, knowledge of hydraulics is essential 

for understanding and modeling the servo-system behavior. 

 

2.2 Fluid Mechanics 

A petroleum-based fluid, Mobil DTE 25, was used in the servo-system of this study 

(MTS, 1994).  Some physical properties of hydraulic fluids such as density, viscosity, 

and bulk modulus and fluid flow such as Bernoulli's equation and Reynolds number are 

introduced in this section.  In addition, the properties of hydraulic flows through orifices 
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are discussed in detail because flow through orifices enables the hydraulic power 

transmission from the supply (hydraulic pumps) to applications. 

2.2.1 Hydraulic Fluid Properties 

Density 

The weight density, γ (in terms of lb/in3), of a Mobil DTE 25 fluid is 0.0319 lb/in3 at 

0°F (Exxonmobil, 1996).  The variation of the weight density with the temperature of the 

fluid is  

4
@ 0.0319 0.144 10 ( 60 F)T Tγ −= − × − o     (2.6) 

where T is the temperature in Fahrenheit.  The fluid temperature in the operation of the 

servo-system was typically around 120°F; therefore, the weight density of the Mobil DTE 

25 fluid under the operating condition was approximately 0.031 lb/in3. 

The mass density of the fluid ρ, in units of lb-sec2/in4, can be calculated using 

g
γρ =        (2.7) 

where g is the acceleration due to gravity, 386.1 in/s2.  For the Mobil DTE 25 fluid in the 

test system in operation, the mass density is 40.8 10−×  lb-sec2/in4. 

Viscosity 

Viscosity of the fluid represents the friction between fluid layers when relative 

motion between layers occurs (resembles the damping of a fluid in motion).  The absolute 

viscosity of a fluid µ, in units of lb-sec/in2, is directly defined as the ratio of the friction 

force to the velocity gradient.  In terms of µ the kinematic viscosity is defined by 

µν
ρ

= ,      (2.8) 
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and appears in many equations and definitions of fluid properties.   

The fluid viscosity varies with the fluid temperature.  For a Mobil DTE 25 fluid, the 

kinematic viscosity was typically 0.066 in2/sec at 104°F and 0.01 in2/sec at 212°F 

(Exxonmobil, 1996).  Through linear interpolation, the kinematic viscosity was 0.058 

in2/sec at the common operation temperature (120°F).  

Bulk Modulus 

The bulk modulus β of a fluid describes the change in the fluid volume along with the 

change in fluid pressure at a constant temperature T, and is defined as 

0

1 1
T

V
V Pβ

∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠
     (2.9) 

where V is the volume of the fluid, V0 is the initial total volume of the fluid, and P is the 

pressure to which the fluid is subjected.   

The bulk modulus of a fluid represents the “stiffness” of the fluid.  The bulk modulus 

for Mobil DTE 25 under 3000 psi pressure was 253.7 ksi at 120°F.  However, a value as 

high as this is rare in practice because entrapped air can significantly reduce the bulk 

modulus.  Because an accurate measurement of the bulk modulus is difficult to obtain, 

experience is essential in estimating the bulk modulus of the fluid in the servo-system.  

According to Merritt (1967), an effective bulk modulus (βe) of 100 ksi can yield reliable 

results for petroleum base hydraulic fluids.  The effective bulk modulus value was used 

throughout this study. 

2.2.2 Hydraulic Flow 

The analysis of a general compressible flow is not necessary for most applications of 

hydraulic actuation in structural/material testing because the typical operation pressure (3 
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ksi) of a hydraulic fluid is small compared to the bulk modulus of the fluid (βe, 100 ksi).  

In addition, the pressure variation that affects the volume of the fluid is negligible 

(typically less than 1 ksi).  Therefore, incompressible flow is a good approximation of the 

hydraulic flow in the test system, and an analysis of flow of an incompressible fluid with 

a constant density and viscosity is discussed next. 

Navier-Stokes Equations  

The equation of motion of a flow can be derived by applying Newton’s second law to 

an infinitesimal control volume (Street, 1993).  The resulting Navier-Stokes equations is 

given here for a two-dimensional incompressible flow with a constant mass density of ρ 

and an absolute viscosity of µ, 

2 2

2 2

2 2

2 2

u u u P u uu w X
t x z x x z

w w w P w wu w Z
t x z z x z

ρ ρ µ

ρ ρ µ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + = − + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + = − + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

  (2.10) 

where u and w are the velocity components of the flow in the x and z direction of 

Cartesian coordinates, respectively, t is time, X and Z are the body forces per unit volume 

in the x and z directions, respectively, and P is pressure acting on the fluid. 

Fluid motion (flow) is generally dominated by either inertia forces (mass) or friction 

forces (viscosity).  Flows dominated by inertia forces are referred to as turbulent, and are 

characterized by irregular motion of fluid particles while flows dominated by viscosity 

are referred to as laminar, and are characterized by orderly motion of fluid.  The different 

regimes of a flow can be distinguished by its Reynolds number. 

Reynolds Number  

The Reynolds number, a dimensionless quantity, is used to describe the transition 
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from inertia-dominated flows to viscosity-dominated flows (Street, 1993).  The Reynolds 

number is defined as the ratio of the inertial forces to the friction forces of a flow, 

νµ
ρ ududR ==      (2.11) 

where u is the average velocity of the flow and d is a characteristic length of the flow.  

The flow velocity can be approximated by the total flow rate divided by the cross-

sectional area of the flow while the characteristic length is different from one case to 

another, and is typically related to the geometry of the flow passage.   

The behavior of laminar flows could be obtained by solving the Navier-Stokes 

equation, while obtaining the behavior of turbulent flows is typically empirical (Merritt, 

1967).  On the other hand, solving the Navier-Stokes equations for general flow 

relationships is neither practical nor necessary for engineering practices.  In many cases, 

such as flows in pipes or through orifices, simplified analyses can be used to generate 

accurate and useful results. 

Potential Flow and Bernoulli’s Equation  

For a flow in a cylindrical pipe or through an orifice, friction forces are important 

only on boundaries, such that the flow away from the boundary is dominated by inertial 

forces, but behaves like a laminar flow.  If the boundary can be neglected, the resulting 

orderly flow dominated by inertial forces is termed potential flow (Merritt, 1967).  

Consider an incompressible potential flow subjected to a negligible body force.  In its 

steady state, the following assumptions can be made: 0u t∂ ∂ =  (steady state), 0X =  (no 

body forces), and 0µ =  (no friction forces in main body of flow).  The general Navier-

Stokes equation (2.10) reduces to  
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1u Pu
x xρ

∂ ∂
= −

∂ ∂
,     (2.12) 

and after integration to  

2

2
u P constant
g γ

+ = .     (2.13) 

Eq. (2.13) is called Bernoulli’s equation.  Note that an average velocity across the 

flow section is used in Bernoulli’s equation to simplify the analysis.  Bernoulli’s equation 

can be used to describe flow through orifices, which is the basic means of controlling 

hydraulic power in a servo-system. 

Flow through Orifices  

An orifice is a sudden change in a flow passage or a sharp-edged opening.  The flow 

through an orifice inside a cylindrical pipe shown in Fig. 2.1 is comparable to the flow in 

a servovalve.  Referring to Fig. 2.1, the application of Bernoulli’s equation at a point 

upstream (point 1) and a point a distance away from the orifice downstream (point 2, 

termed vena contracta) yields 

2 2
2 2 1 1

2 2
u P u P constant
g gγ γ

+ = + =    (2.14) 

where P1 and P2 represent the pressure upstream and downstream, and u1 and u2  are the 

average velocities of the flow at the two points, respectively. 

For an incompressible flow, the conservation of mass requires 

1 1 2 2Q Au A u= =      (2.15) 

where Q is the flow rate in in3/s, and A1 and A2 are the cross-sectional area of the flow at 

the two points under consideration.  The cross-sectional area of the pipe A1 is readily 

known while the vena contracta area A2 is usually difficult to obtain.  To facilitate the 
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analysis, the vena contracta area is replaced by the modified orifice area CcA0.  

Substituting (2.15) into (2.14) gives 

( )0 1 2
2

dQ C A P P
ρ

= −     (2.16) 

where 2 2
0 11 ( / )d c cC C C A A= −  is the discharge coefficient of the orifice flow.  The 

discharge coefficient is a function of orifice geometry and the flow properties, and is 

difficult to obtain analytically except for a few ideal cases.   

Discharge Coefficient  

The discharge coefficient of a flow is usually expressed as a function of its Reynolds 

number.  Because the Reynolds number is linked back to the flow rate to be determined, 

discharge coefficients are often estimated experimentally.  Figure 2.2 shows a discharge 

vs. Reynolds number plot for a pipe orifice flow that is closer to a laminar flow than a 

turbulent flow (Merritt, 1967).  The discharge coefficient increases rapidly with an 

increase of Reynolds number for a low Reynolds number range.  Beyond that region, the 

discharge coefficient decreases asymptotically to a constant value as the Reynolds 

number increases. 

The submerged orifice shown in Fig. 2.3 can be characterized in a similar way.  In 

this case, the upstream pressure keeps constant, and the downstream pressure varies, 

which are similar to a valve orifice with a constant pressure supply, and variable load 

pressure.  As can be demonstrated, the relationship between the flow rate Q and the 

pressure drop across the orifice (P1-P2) is similar to Eq. (2.16).  Again, the discharge 

coefficient can be treated as a function of the Reynolds number.  A typical plot of the 

discharge coefficient vs. Reynolds number for this flow case is shown in Fig. 2.4 (Street, 
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1993).  Similar observations can be made: the flow discharge increases rapidly with an 

increase in the Reynolds number at the low Reynolds number region.  After the peak, the 

flow discharge decreases asymptotically. 

Therefore, the nature of the discharge of an orifice flow is nonlinear with respect to 

the Reynolds number, which is a function of the fluid properties and orifice geometry.  

However, experience has shown that a discharge coefficient of Cd = 0.6 may be a good 

approximation for flows through small orifices (i.e., 10 AA << ) (Merritt, 1967).  

The flow through servovalve orifices enters actuator chambers to cause differential 

pressures and generate mechanical forces that are applied to test structures.  The relation 

between hydraulic flows and the resulted mechanical forces is described by the law of 

conservation of mass. 

2.2.3 Continuity Equation 

Consider a fluid with a mass density ρ in a controlled volume V0 (e.g., an actuator 

chamber), the law of the conservation of mass states that the rate of the mass change in 

the volume must be equal to the incoming flow rate minus the outgoing flow rate 

(Merritt, 1967).  Therefore, 

( )0 0
0in out

d V dV dM M V
dt dt dt
ρ ρρ− = = +∑ ∑     (2.17) 

where M=ρQ, and Q is the flow rate.  The mass density ρ is a function of pressure and 

temperature of the fluid inside the control volume.  The first-order terms Taylor's series 

expansion may be used to approximate the small variation of ρ (Merritt, 1967), 

T P

d dP dT
P T
ρ ρρ ∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

.     (2.18) 
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Because the temperature of hydraulic fluids in operation is approximately constant, 

the rate of change in density of the controlled fluid volume (i.e., ρV=constant) as a 

function of pressure is 

1 1

T T

d dP dP V dP
dt dt P dt V P dt
ρ ρ ρρ ρ

ρ β
⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞= = − =⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

.  (2.19) 

Substituting Eq. (2.19) into Eq. (2.17) and dividing both sides by ρ gives  

0 0
in out

dV V dPQ Q
dt dtβ

− = +∑ ∑ .    (2.20) 

The law of the conservation of mass shown in Eq (2.20) indicates that the net flow 

into a controlled volume (such as an actuator chamber) is consumed by the expansion of 

the volume and the compression of the fluid inside the volume due to increased pressure.  

Note that the compressibility of hydraulic fluids is small enough that the mass densities 

of the incoming fluid, the outgoing fluid, and the fluid inside the volume are assumed 

identical.  

Hydraulic power is transmitted from supply sources (e.g., a hydraulic pump) to test 

structures through controlled orifice flows described using Eqs. (2.16) and (2.20).  Such 

control of the power transmission is made in real-time automatically through actuators, 

servovalves, and their controllers.  Therefore, knowledge of general dynamic systems and 

feedback control is essential in understanding the behavior of a test system. 

 

2.3 Feedback Control of Dynamic Systems 

Dynamic systems are usually modeled by differential equations.  The response of the 

systems to an input can be obtained by solving the governing differential equations for 
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the input.  Similar to the dynamic analysis of a SDOF structure, numerical simulations 

are required to calculate the response of dynamic systems when inputs are arbitrary or 

when the system has significant nonlinearities.  On the other hand, analyzing system 

performances in general, such as stability, is essential in control engineering.  Although 

stability can be analyzed for nonlinear systems, linearization of the system about an 

equilibrium point (e.g., the system null position in this study) can greatly facilitate the 

analysis and controller design.  For a linearized system with single input and single 

output, frequency domain methods of control system design can be applied.   

2.3.1 Transfer Function  

The response of the one-story structure shown in Fig. 1.1 (a) to an earthquake input 

can be determined by solving the equations of motion ( ( )mx cx kx u t+ + =&& & ) in the time 

domain as shown in Eq. (2.1) through Eq. (2.5).  Specifically, if the input function takes 

the form of a complex exponential, ( ) stu t e= , where s is complex (i.e., s jσ ω= + ), the 

particular solution (steady-state response) of the system can be assumed as 

( ) ( ) ( ) ( ) stx t H s u t H s e= =      (2.21) 

Substituting Eq. (2.21) into the differential equation of the system gives  

2 ( ) ( ) ( )st st st stms H s e csH s e kH s e e+ + =    (2.22) 

and solving Eq. (2.22) for H(s) yields 

2

1 ( )( )
( )

x tH s
ms cs k u t

= =
+ +

     (2.23) 

Function H(s) is called the transfer function of the linear system, which directly 

relates the system output to the input est.  For a general linear system, the transfer 

function is defined as the ratio of the Laplace transform of the system output to the 
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Laplace transform of the system input, and can be formulated using Laplace transform 

theorems with zero-initial-condition assumptions (Ogata, 1997). 

A dynamic system may include multiple sub-systems, which are connected in such a 

manner that the input of one sub-system is the output of another sub-system.  The transfer 

function of each component can be placed in a box, and the input-output relationships 

between components can be represented by lines with arrow ends.  With the resulting 

block diagram, the transfer function of the overall system can be obtained following the 

rules of block diagram algebra (Franklin, 1999).   

The transfer function of a linear system provides an algebraic representation of the 

system because it is an operational expression of the governing differential equations of 

the system.  Once the transfer function of a linear dynamic system is established, 

analytical tools of modern control engineering, such as the pole-zero map, root locus, and 

frequency response method, can be used to obtain the characteristics of the system. 

2.3.2 Pole-Zero Map  

If the behavior of a dynamic system is modeled as a group of ordinary differential 

equations, its overall transfer function is a ratio of polynomials, 

1 2

1 2

( ) ( )( )( )
( ) ( )( )

num s s z s zH s K
den s s p s p

− −
= =

− −
L

L
.   (2.24) 

where zi (roots of num(s) = 0) are zeros of the system and pi (roots of den(s) = 0) are 

poles of the system, respectively.  The poles and zeros of a system can be plotted in the s-

plane (σ-axis vs. ω-axis), and the resulting plot is called a pole-zero map of the system.  

The positions of poles and zeros of a dynamic system in the s-plane indicate the system 

characteristics.  For example, vibration modes and the frequency and damping of the 
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vibration, can be obtained directly from the plot.   

Response of systems to a unit impulse input δ(t) is usually used to explain the 

correspondence between system responses and pole positions (Franklin, 1999).  The 

correspondence is summarized in Fig. 2.5.  Poles of a dynamic system decide the shape 

of the impulse response (exponential or sinusoidal function).  Poles in the left half-plane 

correspond to stable responses of the system while right half-plane poles correspond to 

unstable responses.  The stability criteria can be extended to a system subjected to other 

inputs because any input can be viewed as a sequence of impulses.  Zeros of a system 

affect the system response by limiting the magnitude of the response corresponding to 

adjacent poles.  Specifically, a zero on top of a stable pole cancels the contribution of the 

corresponding response to the total response of the system (Franklin, 1999). 

System parameters may change, thus affecting the pole and zero locations and system 

characteristics, such as the system stability.  The root locus method can be used to study 

the changing positions of the poles of a system in the s-plane with respect to the changing 

system parameters.  In some cases, especially when the coefficients are in a symbolic 

form, it is necessary to analyze the stability of a system without solving for the roots of 

the denominator of the system transfer function. 

2.3.3 Routh’s Stability Criterion  

The denominator of a system transfer function, den(s) as shown in Eq. (2.24), is 

called the characteristic equation of the system.  For an nth-order linear system, the 

characteristic equation is an nth-order polynomial: 

1 2
0 1 2 1( ) ...n n n

n nden s a s a s a s a s a− −
−= + + + + +   (2.25) 

where the coefficients a0 through an are real quantities.  The previous discussion indicates 
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that the system is stable if all the roots of this equation have negative real parts.  Routh’s 

stability criterion provides a necessary and sufficient condition for stability without 

solving for the roots of the characteristic equation.  A detailed procedure for applying 

Routh’s stability criterion can be found in many control engineering texts, such as the 

ones by Franklin et al. (1999).  An example is shown in Appendix 3 to investigate the 

stability of the test system. 

Routh’s stability criterion is a useful method for determining the ranges of parameters 

from the perspective of stability.  On the other hand, such analysis needs an accurate 

model of the system while in some cases, an accurate model of the system is not available 

due to lack of knowledge and/or unknown system parameters.  The system responses to a 

series of sinusoidal inputs with various frequencies can be measured to identify the 

system model.  The response of a linear dynamic system subjected to sinusoidal inputs is 

referred to as the system's frequency response. 

2.3.4 Frequency Response  

For a stable system such as a damped second-order system subjected to a sinusoidal 

input, the transient response vanishes after awhile.  At the steady-state, the frequency 

response of a system can be directly related to its transfer function.  For example, given 

an input, )sin()( 00 tptu ω= , the steady-state response of system shown in Eq. (2.2) is 

)sin()( 00 ϕω += tMptx  (Chopra, 1995).  It can be shown that the amplitude ratio M is 

the magnitude of the transfer function of the system shown in Eq. (2.23) evaluated at the 

input frequency,  

( ) ( )
)(1

0
2

0
22

0

ω
ωω

jH
cmk

M =
+−

= ,   (2.26a) 
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and the phase difference between the output and input is the phase angle of the transfer 

function evaluated at the input frequency, 

)()(tan 02
0

01 ω
ω

ωϕ jH
mk

c
∠=

−
= − .    (2.26b) 

The magnitude and phase angle of the transfer function of a system can be calculated 

for a range of frequencies, and plotted against the input frequencies.  The resulting plots 

(i.e., magnitude and phase versus frequency) are called Bode plots.  Magnitude plots are 

usually in logarithmic scale and the standard unit for magnitude is dB, which is equal to 

20log ( )H jω , where the base of the logarithm is 10.  The frequency responses of simple 

first and second-order systems are discussed as follows. 

First-order Term  

For a system with 1( ) ( 1)H s sτ −= + , where τ is a positive real number, the magnitude 

and phase are, 

2( ) 1 ( ) 1H jω ωτ= +      (2.27a) 

1( ) tan ( )H jω ωτ−∠ = − ,     (2.27b) 

as shown in Fig. 2.6.  The system output copies inputs with low frequencies while the 

response magnitude rolls off at high frequencies.  At the frequency ω=1/τ, the magnitude 

of the system output reduces to about 70 percent of the input (1 2 , or -3dB) and the 

phase angle is -45°.  The output always lags behind the input, and when the product of ωτ 

is small, the phase lag can be approximated as, 

1( ) tan ( )H jω ωτ ωτ−∠ = − ≈ −     (2.28) 

Similarly, for a system with 1( ) ( 1)H s sτ += + , the magnitude is the inverse of the 
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magnitude shown in Eq. (2.27a) and Fig. 2.6.  The output has a phase lead ( 1tan ( )ωτ− ).  

When the product of ωτ is small, the phase lead can be approximated as ωτ. 

Second-order Term  

For systems with ( ) ( )
12( ) 2 1n nH s s sω ζ ω

−
⎡ ⎤= + +⎣ ⎦ , such as the one in Eq. (2.2), the 

magnitude and phase, 

( )( ) ( )
22 2( ) 1 1 2n nH jω ω ω ζ ω ω= − +    (2.29a) 

( )
1

2
2( ) tan

1
n

n

H j ζ ω ωω
ω ω

−
⎡ ⎤

∠ = − ⎢ ⎥
−⎢ ⎥⎣ ⎦

,    (2.29b) 

are shown in Fig. 2.7.  The system output follows inputs with low frequencies while the 

response magnitude rolls off at a greater rate than that in a first-order system at high 

frequencies.  For systems with low damping, inputs with frequencies around the natural 

frequency of the system are amplified.   

At the system natural frequency, resonance happens and the magnitude is 

1( )
2nH jω
ζ

= .     (2.30) 

The response of a system with very small damping does not have a phase lag; rather the 

phase has a sudden change around the natural frequency of the system.  However, if the 

system damping is large, the phase delay of the system response is not negligible.  When 

2

n

ζ ω
ω

 is small, the phase lag can be approximated by  

ω
ω
ζω
n

jH 2)( −=∠   for nωω << .    (2.31) 
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For a system with ( ) ( )2( ) 2 1n nH s s sω ζ ω= + + , the frequency response is the 

inverse of the curve plotted in Fig. 2.7.  Around the natural frequency of the system, the 

response magnitude will reduce depending on the system damping.  Specifically, at the 

natural frequency of the system, the magnitude becomes 

( ) 2nH jω ζ= ,     (2.32) 

which indicates that a system with a pair of conjugate zeros will not respond well to 

sinusoidal inputs with a frequency close to its natural frequency.  When the system 

damping is zero, the magnitude of the system response to inputs with the system natural 

frequency becomes zero.   

Any system of the form (2.24) can be expanded in partial fractions with each term a 

1st or 2nd order system.  These basic terms can be used to generate frequency responses 

for the overall system (Franklin, 1999).  Fig. 2.8 presents the frequency response of a 

third-order system made of a second-order term with a natural frequency of 1.6 Hz and a 

first-order term with a time constant of 0.05s.  It can be observed that the slope of the 

magnitude response after the peak is larger than that in Fig. 2.7 though the basic shape 

does not change much.  In addition, the phase lag is evident at all frequencies.   

2.3.5 Applications of Frequency Response  

Many complicated dynamic systems or system components behave in such a way that 

they can be approximately modeled using a first-order or second-order transfer function.  

Frequency response plots are sometimes given in product specifications for small 

amplitude inputs (to keep the system in the linear range of behavior).  The frequency 

response of an unknown system can also be obtained experimentally using a series of 
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sinusoidal inputs or a sinesweep input (sine waves with linearly increased frequencies).  

An equivalent system model and the related parameters can be obtained from the 

obtained frequency responses. 

On the other hand, the applicability of the theories always needs check.  For example, 

in the study of an EFT system, transient responses are significant in total responses.  

Hence, the frequency response method might not be fully applicable in explaining the 

system behavior with an earthquake input.  On the other hand, transient responses of a 

dynamic system are related to their steady-state responses as revealed in Section 2.1.  

Specifically, the coefficients of complementary solution of the governing differential 

equation are algebraic functions of the coefficients of its particular solution, from which 

the frequency response is derived.  Therefore, the frequency response method combined 

with computer simulation, which includes both transient and steady-state responses, were 

used in the study. 

First-order model identification 

If a system is represented using a first-order transfer function, the required time 

constant τ can be determined by  

1τ ω=      (2.33) 

where ω is the frequency in rad/s, at which the magnitude response reduces to 1 2  (or 

roughly 70%) of input. 

Second-order model identification 

For a second-order approximation, two parameters are to be determined (ζ and ωn).  

When the frequency response of a system is obtained experimentally with sinusoidal 

inputs, the system damping can be estimated by 
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1
2 ( )nH j

ζ
ω

= .     (2.34) 

The natural frequency of the system is the frequency, at which the phase of the system is 

90° (π/2).  

Phase-lead network 

Another example of a first-order system can be found in a phase-lead network,  

1( )
1

ld

ld

T sH s
T sα

+
=

+
     (2.35) 

where Tld is the time constant to be designated, and α is a constant smaller than unity. 

The frequency responses, 

( ) ( )2 2( ) 1 1ld ldH j T Tω ω αω= + +    (2.36a) 

( ) ( )1 1( ) tan tanld ldH j T Tω ω αω− −∠ = −    (2.36b) 

are shown in Fig. 2.9 for two time constants (50 ms and 10 ms) and α equal to 0.1.  When 

ωTld is small, the resulting phase lead can be approximated by 

( )( ) 1 ldH j Tω α ω∠ = − .     (2.37) 

Figure 2.10 shows the phase responses in regular scale.  A frequency range exists for 

both given systems depending on the time constant Tld, in which the phase angle is 

approximately proportional to input frequency.  Within the linear range, the phase lead 

can be represented by the slope of the curve, Tl, determined by  

( ) ldl TT α−= 1 .      (2.38) 

The slope has a unit of time, thus called lead-time, which represents the phase lead the 

network can provide.   
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The effectiveness of a phase-lead network can be affected by the constant α for a 

given time constant Tld.  On the other hand, a phase-lead network also amplifies signals 

as shown in the amplitude response in Fig. 2.9.  The amplification is determined by the 

constant α because the magnitude of the frequency response becomes 1/α as the input 

frequency goes to infinity.  A range of values for the constant α may be appropriate for 

an application, and a value of 0.1 was chosen for this study.   

 

2.4 Summary  

This chapter presents a brief review of fundamentals in structural dynamics, 

hydraulics and control engineering, applications of which can be found throughout the 

thesis, from system identification/analysis to controller design.  The next chapter presents 

the system modeling. 
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CHAPTER THREE 

MODELING OF TEST SYSTEM 

 

 

It is necessary to establish mathematical models for the test system before system 

analysis and control design.  The derivation of mathematical models may take many 

paths depending on particular situations.  Some equations can be obtained by applying 

physical principles while others may be approximated from analyzing experimental data.  

Both of these techniques were employed in this chapter. 

 

3.1 Description of the Test System  

A schematic of the test system is presented in Fig. 3.1, in which a 35 kip MTS 244.52 

actuator is attached to a SDOF structure model.  The actuator was controlled by a 90 gpm 

MTS 256.09 servovalve, which was in turn controlled by an MTS 407 analog controller.  

During a test, force command signals were sent from a personal computer to the 

servovalve controller, which compared the command signal to a feedback signal and sent 

a current proportional to the difference between these two signals to the servovalve to 

drive the valve spool.  The spool regulated the hydraulic flow entering the actuator, 

causing differential fluid pressure across the actuator piston.  The pressure difference 

multiplied by the piston area was approximately the force applied to the test structure.  

The force was sensed by a load cell on the actuator piston, and was fed back to the 

servovalve controller to close the control loop. 

The servovalve is the key component of the servo-system because it converts 
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electronic command signals into physical motion of valve spools, which makes the 

regulation of hydraulic flow possible.  As schematically shown in Fig. 3.2, the servovalve 

contains three stages.  The first stage is a torque motor armature, and the second stage is a 

spool-type valve.  The first two stages form a two-stage servovalve that can be used as a 

functional unit.  In a three-stage servovalve, a larger size spool-type valve is used to 

increase the ability of the servovalve to control flows.  In this case, the two-stage valve is 

called the pilot-stage valve, and the larger valve is called the main-stage valve. 

 

3.2 Mathematical Models 

3.2.1 Servovalve Controller  

The control of the system starts from a command signal, which can be generated by 

the internal function generator of the MTS 407 controller or an external program input, 

such as the effective force inputs in this study.  The external input was converted into a 

voltage signal by a factor (CF), which is same as the sensitivity factor of the feedback 

sensor (i.e., the load cell for the actuator).  The command signal was adjusted by a dither 

signal (i.e., a small sine wave with a high frequency (500 Hz)), and then compared with a 

feedback signal.  The difference between these two voltage signals is called the DC error 

(e).  The error signal was modified by a Proportional-Integral-Derivative (PID) 

controller, and then sent to the valve driver module inside the controller as a valve 

command (v).  The process is schematically shown in the block diagram of Fig. 3.3, in 

which the limit check block represents the ±10 volts limit of the electrical signals.  

The valve command signal was expressed as 

( )F p dv C G e G e= + & ,     (3.1) 
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where Gp and Gd are the proportional and derivative gain setting of the PID controller, 

respectively (Note that the integral gain was always set as zero in this study).  The DC 

error and its derivative are  

e u F= − , e u F= − && &      (3.2) 

where u is the command signal (effective force), F is the force feedback measured by the 

actuator load cell, and u&  and F&  are the time derivatives of these signals. 

The valve command signal is the input to the inner feedback control loop shown by 

the dashed lines of Fig. 3.1.  The inner loop controls the position of the main-stage valve 

spool, which is measured by an internal Linear Variable Differential Transformer 

(LVDT), and is fed back to the valve driver to close the inner control loop. 

3.2.2 Valve Driver Module 

The valve driver module inside the servovalve controller functioned similarly to the 

outer loop controller except that the valve command signal indicated the desired spool 

position, and the feedback signal measured by an LVDT indicated the actual spool 

position.  A block diagram is presented in Fig. 3.4 to illustrate the inner control loop.  

The the DC error of the inner loop, ei is  

vi xKve ~
3−= ,      (3.3) 

where K3 is the equivalent sensitivity factor of the LVDT and vx~  is the main-stage spool 

position.   

A PD controller was built into the valve control module to adjust the inner loop error 

signal before sending it to the pilot-stage valve.  Following the tuning procedure of the 

servovalve by the manufacturer, a unity proportional gain and a zero derivative gain were 

found suitable for the control of the servovalve; therefore, the dynamics of the inner PD 
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controller was neglected (i.e., the pilot-stage valve command equals the inner loop error 

ii ev = ).  The dynamics of other components of the servovalve shown in Fig. 3.4 are 

described individually in the following sections. 

3.2.3 Servovalve (Pilot-Stage) 

The pilot-stage valve was a 1 gpm MTS 252.21 servovalve custom manufactured by 

Moog, Inc.  The first stage was a torque motor armature.  Electrical current applied to 

coils wound around the armature generated torque, causing the rotation of the armature 

and a flapper connected with the armature.  The offset of the flapper from its neutral 

position caused differential flow/pressure acting on the ends of the spool of the second-

stage valve.  The position of the spool was sensed by a center spring, which was an 

extension of the flapper.  The position of the second-stage spool, in turn, controlled 

hydraulic flows to the main-stage valve. 

Although it is possible to derive high-order models for the pilot-stage valve including 

the dynamics of individual valve components, such as in Nikiforuk (1969), simple 

models can be enough to capture the behavioral characteristics of Moog valves (Thayer, 

1965).  Because the frequency range of interest is typically limited for seismic 

applications (e.g., 0-10 Hz in this study), it is only necessary for a model to represent the 

servovalve response up to a certain frequency (e.g., 20 Hz).  Therefore, a first-order 

differential equation is usually sufficient to approximate the flow (Qvp) controlled by the 

pilot-stage valve corresponding to an inner-loop command signal (vi).  The pilot-stage 

valve dynamics was described as 

ivpvpvp vKQQ =+&τ ,     (3.4) 

where Kvp is the flow gain of the pilot-stage valve and τ is the equivalent time constant of 
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the pilot-stage valve. The subscription vp stands for "pilot-stage valve." 

If the response at high frequencies is under investigation, a second-order model can 

be necessary (Thayer, 1965)  

ivpvpvp
ns

s
vp

ns

vKQQQ =++ &&&
ω
ζ

ω
21

2 ,   (3.5) 

where ωns and ζs are the apparent natural frequency and the equivalent damping ratio of 

the pilot-stage valve, respectively.  The second-order model was used to validate the 

parameter identification of the first-order model in the next chapter.  Note that an 

assumption has been embedded in these models that the pilot-stage flow is proportional 

to the position of the pilot-stage spool position.  This assumption will also be validated in 

the next chapter.   

3.2.4 Servovalve (Main-Stage) 

The pilot-stage flow controls the movement of the main-stage spool by causing 

differential pressures acting on the spool ends.  It can be shown that the forces acting on 

the main-stage spool, such as the force required to move the spool (the load pressure) is 

typically small compared with the available driving force (the pressure supply), and the 

motion of the spool is small (on the order of a tenth of an inch) (Chen, 2003).  Therefore, 

the effects of spool mass, friction, and other forces acting on the spool as well as the 

compressibility of hydraulic fluid are negligible (Thayer, 1965).  These assumptions 

resulted in the following relationship between the pilot-stage flow (Qvp) and the main-

stage spool position ( vx~ ) 

vpvv QxA =&~ ,     (3.6) 

where Av is the main-stage spool area, and vx&~  is the time derivative of the main-stage 
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spool position (velocity of the spool). 

The relationship between the valve command signal (v) and the main-stage spool 

position ( vx~ ) can now be formulated by combining Eqs. (3.3), (3.4), and (3.6) and 

regrouping 

vKxKKxAxA vpvvpvvvv =++ ~~~
3

&&&τ .    (3.7) 

Note that the spool position of the main-stage valve ( vx~ ) has a unit of length.  It is often 

convenient to normalize the spool position by the maximum spool stroke maxvx , as shown 

in Fig. 3.4.  The normalized spool position is named spool opening (xv, -1 < xv < 1), and 

used throughout the thesis.  The main-stage spool regulates the direction and flow of 

hydraulic fluid to an actuator. 

3.2.5 Main-stage flow 

The actuator piston is driven by hydraulic flow under pressure.  As the actuator 

applies variable loads to the test structure, the pressure inside the two chambers of the 

actuator may vary significantly.  The pressure change in turn affects the behavior of the 

flow through the main-stage valve, thus a detailed analysis is necessary to formulate the 

relationship between the main-stage spool opening and the flow to the actuator.  

As shown schematically in Fig. 3.5, the main-stage valve is a symmetric spool-type 

valve.  When the spool is at its null position, there is no flow through the valve because 

both load ports are closed to both the supply line and return lines though leakage flows 

exist due to the matching tolerance between the spool and its sleeve.  When the spool 

moves away from its null position (to the right as shown in Fig. 3.5), two similar sharp-

edged orifices are formed, as shown in Fig. 3.6 (a), to allow hydraulic flow into the right 
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load port (Q1) and hydraulic flow out of the left load port (Q2).  Two other flow passages 

are formed as shown in Fig. 3.6 (b) to allow leakage flows into the return lines.  The 

pressure (P1) inside the right load port rises because of the incoming flow, while the 

pressure (P2) inside the left load port drops because of the outgoing flow.  The resulting 

differential pressure across the actuator piston is defined as the load pressure (PL), 

1 2LP P P= − .      (3.8) 

Flows through the load flow orifices can be described by Eq. (2.16).  Therefore 

( )1 1
2

d vs sQ C A P P
ρ

= −     (3.9) 

2 2
2

d vsQ C A P
ρ

=      (3.10) 

where Cd is the orifice discharge coefficient, Avs is the orifice area, Ps is the hydraulic 

pressure supply, and ρ is the mass density of the hydraulic fluid.  Note that the return 

pressure was assumed zero in the above derivation.  The orifice area is related to the 

spool opening by 

max
~

vvvvs xxwxwA == ,    (3.11) 

where w is the area gradient (perimeter) of the valve spool. 

When the spool moves away from its null position, the resulting leakage orifices are 

small annular orifices, which are greatly different from the load flow orifices.  Therefore, 

instead of using Eq. (2.16), the leakage flows was approximated by (Merritt, 1967) 

( )
23

3 2
31

6 2 s
rc eQ P P

L c
π

µ
⎡ ⎤⎛ ⎞= + −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
   (3.12) 
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23

4 1
31

6 2
rc eQ P

L c
π

µ
⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
    (3.13) 

where r, c, and e are servovalve geometric coefficients as illustrated in Fig. 3.6 (b), µ is 

the fluid viscosity, and L is flow passage length ( vx~ in this case). Again, the return 

pressure was assumed zero.  As can be seen, leakage flows are proportional to 1/xv for a 

given valve (i.e., fixed geometric coefficients); therefore, the valve leakage reduces as the 

spool opening increases (Merritt, 1967).   

For a symmetrical critically centered valve,  

1 2Q Q=      (3.14) 

3 4Q Q=      (3.15) 

Substituting Eqs. (3.9) and (3.10) into Eq. (3.14) yields 

1 2sP P P= + .     (3.16) 

Note that the same result can be obtained by substituting Eqs. (3.12) and (3.13) into Eq. 

(3.15).  Solving Eq. (3.8) and Eq. (3.16) simultaneously gives 

1 2
s LP PP +

=      (3.17) 

2 2
s LP PP −

=      (3.18) 

Finally, the load flow (QL) (the flow into/out of the actuator chambers) can be 

determined by  

1 4LQ Q Q= −      (3.19) 

2 3LQ Q Q= −      (3.20) 

By substituting Eqs. (3.9), (3.13), and (3.17), into Eq. (3.19), the load flow equation 
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becomes 

22
31~6

)(1 23
Ls

v
LsvsdL

PP
c
e

x
rcPPACQ +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+−−=

µ
π

ρ
  (3.21) 

Because the leakage flow can be viewed as part of the flow leaving a control volume (i.e., 

an actuator chamber), it is neglected in determining the flow property of the valve to 

simplify the system analysis.  Its effect is considered in the analysis of the actuator 

dynamics in the next section.  Therefore  

( )1
L d vs s LQ C A P P

ρ
= −     (3.22) 

When the spool moves in the opposite direction (to the left), the resulting load 

pressure would be -PL, and the load flow can be determined by 

( )1
L d vs s LQ C A P P

ρ
= − +     (3.23) 

where the minus sign indicates the direction of the flow is opposite to that of the previous 

case.  Combining Eqs. (3.22) and (3.23) and applying Eq. (3.11) gives  

1 v L
L v v

v s

x PQ K x
x P

= −      (3.24) 

where ( ) svdv PwxCK ρ1max=  is called the flow gain of the servovalve.  Note that the 

flow gain is proportional to sP .  This relation is used to calculate the flow gain of the 

main-stage valve in the next chapter.  

Hydraulic fluid flows into one actuator chamber and out of the other chamber, thus 

raising the pressure on one side of the actuator piston while reducing the pressure on the 

other side by roughly the same amount.  It is now necessary to formulate the relationship 
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between the load flow (QL) and the resulting load pressure (PL). 

3.2.6 Actuator 

The actuator piston for a double acting actuator is schematically shown in Fig. 3.6.  

The servovalve spool opening is assumed positive as shown in Fig. 3.5, which causes 

hydraulic fluid flow into the right chamber of the actuator.  The resulting pressure 

difference causes a tension force of the actuator piston, which is defined as a positive 

force herein.  The law of conservation of mass shown in Eq. (2.20) can be used to relate 

the load pressure to the load flow. 

It is necessary to first define the leakage flows shown in Fig. 3.6.  The clearance 

between circular actuator piston rings and their sleeves forms an annular flow passage 

that allows a leakage flow.  Similar to Eq. (3.12), the cross-port leakage (i.e., leakage 

from one chamber of the actuator to the other) is  

( )1 2ip ipQ C P P= −      (3.25) 

where 
23 31

6 2ip
rc eC

L c
π

µ
⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 is the internal leakage coefficient.  The external leakage 

flows (i.e., leakage from actuator chambers to the drain ports) are approximated by  

epi ep iQ C P= , 1,2i =      (3.26) 

where Cep (similar to Cip) is the external leakage coefficient and Pi is the pressure inside 

the actuator chambers. 

Applying the continuity equation (2.20) to both chambers yields 

1 1 1
1 1 2 1( )ip ep

e

dV V dPQ C P P C P
dt dtβ

− − − = +    (3.27) 
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2 2 2
1 2 2 2( )ip ep

e

dV V dPC P P C P Q
dt dtβ

− − − = +    (3.28) 

where Q1 and Q2 are flows into/out of the actuator chambers, V1 and V2 are the chamber 

volumes, P1 and P2 are the chamber pressures, respectively, and t is time.   

It is appropriate to assume that the volume of the pressure side chamber increases 

while the volume of the return side chamber decreases simultaneously.  The volume 

change equals the piston area times the piston stroke, therefore 

1 01V V Ax= + , 1dV Ax
dt

= &     (3.29) 

2 02V V Ax= − , 2dV Ax
dt

= − &     (3.30) 

where V01 and V02 are the initial volumes of the chambers including the connecting lines, 

A is the actuator piston area, and x is the actuator piston movement.  Because the actuator 

piston is rigidly connected between the test structure and an assumed rigid support, x is 

also the structural displacement response.  Similarly, the actuator piston velocity x&  is 

also the structural velocity response. 

Differentiating Eq. (3.17) and Eq. (3.18) once with respect to time gives (assuming 

that the variation of the pressure supply is negligible)  

1 1
2

LdP dP
dt dt

=       (3.31) 

2 1
2

LdP dP
dt dt

= −       (3.32) 

Substituting Eqs. (3.29) through (3.32) into Eq. (3.27) and Eq. (3.28) and subtracting Eq. 

(3.28) from Eq. (3.27) yields 
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( ) ( ) ( )1 2 1 2 1 22 2
2

t L
ip ep

e

V dPQ Q C P P C P P Ax
dtβ

+ − − − − = +&   (3.33) 

where 1 2tV V V= +  is the total contained volume of both chambers. 

Recall that Q1 and Q2 are slightly different from the load flow QL determined by Eq. 

(3.22) due to the neglected servovalve leakage.  The leakage flow is now considered in 

determining the flow (Q1 and Q2) to the actuator chambers, 

1 2, L lvQ Q Q Q= − .     (3.34) 

The valve leakage flow Qlv is 

22
31~6

23
Ls

v
lv

PP
c
e

x
rcQ +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=

µ
π     (3.35) 

It can be seen that the leakage flow can be treated as two parts: a "constant leakage" 

(related to Ps) and a "proportional leakage" (related to PL).  The proportional leakage is 

considered here while the effect of the constant leakage will be investigated in Chapter 7 

through computer simulations.  In order to the facilitate the system analysis, the 

complicated servovalve leakage was further approximated by  

lv lv LQ C P= ,      (3.36) 

Substituting Eqs. (3.8), (3.34), and (3.36) into Eq. (3.33) yields 

L a L l LQ K P C P Ax= + +& &     (3.37) 

where 4a t eK V β=  is the compressibility coefficient of the hydraulic fluid inside both 

actuator chambers, and 2l lv ip epC C C C= + +  is the total leakage coefficient of the 

servovalve/actuator combination.   

Eq. (3.37) indicates that the load pressure is affected by the velocity of the actuator 
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piston/test structure.  The load pressure multiplied by the piston area (PLA) gives the 

force (F) applied to the test structure; therefore, the applied force is affected by the 

structural velocity response.  The effect will be discussed in detail later in the system 

analysis. 

3.2.7 Test Structure 

The test structure was modeled as a SDOF system.  Both viscous damping and 

Coulomb friction were considered in the following equation of motion, 

cF F mx cx kx− = + +&& & ,    (3.38) 

where Fc is the Coulomb friction of the test structure, m, c, and k are the structural mass, 

damping, and stiffness, respectively.  When implementing the structural model in 

computer simulations, a situation must be considered where a total driving force is 

smaller than the designated Coulomb friction.  In the block diagram model shown in Fig. 

3.8, the total driving force ( )F mx cx kx− + +&& &  is compared with the designated friction 

force; then, the real friction takes the smaller value between these two forces.  

If the friction is small enough such that the structure is able to move smoothly, the 

friction effect can be approximated using an equivalent viscous damping (Chopra, 1995).  

The dynamics of the test structure can then be described by 

F mx cx kx= + +&& & ,     (3.39) 

where the same notation c is used to represent the total equivalent viscous damping.   

In summary, the major function of the servovalve controller (a PID controller) is 

described by Eq. (3.1).  The dynamics of the three-stage servovalve within a certain range 

of frequencies (0-10 Hz) can be represented by Eq. (3.7).  The flow property of the 

servovalve is defined by Eq. (3.24).  The dynamics of the actuator described by Eq. 
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(3.37) relates the hydraulic flow to the actuator to the force acting on the test structure.  

These equations along with structural models given in Eq. (3.38) or (3.39) can be solved 

simultaneously to simulate the dynamic response of the test structure subjected to 

effective forces applied by a servo-hydraulic actuator.  Computer simulations can be used 

to obtain the system responses. 

 

3.3 Computer Simulation Models  

Block diagrams are often more convenient for revealing relationships between 

individual components, such as the effect of the piston/structure velocity on the actuator 

dynamics shown in Eq. (3.37).  To construct a block diagram, the dynamics of the system 

components in terms of transfer functions are formulated as follows. 

In the frequency domain, the transfer function corresponding to Eq. (3.1) is  

( )c F p dH C G G s= + .     (3.40) 

The first-order model of the pilot-stage valve, Eq. (3.4) is 

1
vp

sp

K
H

sτ
=

+
,     (3.41) 

and the dynamics of the main-stage spool, Eq. (3.6) is  

1
sm

v

H
A s

= .     (3.42) 

By applying principles of operational algebra to the block diagram model of the inner 

loop control shown in Fig. 3.4, the transfer function for the three-stage servovalve can be 

derived as 
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The flow property of the main-stage valve remains the same as Eq. (3.24).  The 

transfer function for the actuator dynamics is cross-linked with the dynamics of the test 

structure, for which the transfer function is formulated by 

2st
AH

ms cs k
=

+ +
.     (3.44) 

The block diagram model portion shown in Fig. 3.9 was used to demonstrate the 

interaction between the piston (structure) velocity and actuator dynamics.  The summing 

point represents the law of the conversation of mass: the flow driven into the actuator 

chamber needs to counteract the compressibility of the hydraulic fluid, the leakage flow, 

and the chamber volume variation represented by Ax& .  The corresponding loop from the 

structural velocity to the summing point is the natural velocity feedback loop discussed in 

Dyke et al. (1995). 

The block diagram model of the overall test system is shown in Fig. 3.10, in which 

masked blocks are used to represent the dynamics of the analog controller, servovalve, 

and the SDOF structure.  Computer simulations were conducted with SIMULINK® 3.0, a 

dynamic system simulation package for MATLAB® version 5.3.  In addition to computer 

simulations using the nonlinear high-order models, linear system analysis was used to 

provide closed form derivations and solutions for the linearized systems within a limited 

range of system parameters.  Linear system analysis was also used to study the stability 

of the test system. 
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3.4 Models for Linear System Analysis 

Nonlinear models were approximated within a useful, though limited, range as linear 

systems, and high-order transfer functions were approximated using low-order transfer 

functions within a certain range of frequency.  For example, the nonlinearity, load 

pressure influence in the servovalve flow property, states that the load flow is 

proportional to the square root of the supply pressure minus the load pressure.  When the 

load pressure is small, such that the square root term is close to unity, the nonlinear flow 

model shown in Eq. (3.24) can be simplified to a linearized approximation,  

vv xKQ = .     (3.45) 

The derivative gain of the servovalve controller is usually very small (on the order of 

a tenth of millisecond), thus for low frequencies, the PID controller was approximated by 

pv G e= .     (3.46) 

In addition, for low frequencies (i.e., well below the roll-off frequency of the servovalve), 

such as frequencies below 10 Hz in this study, the servovalve dynamics shown in Eq. 

(3.7) were represented by the linear relation, 

v sx K v= ,     (3.47) 

where 
3 max

1
s

v

K
K x

=  is the valve gain.  

With the linearized system models, control engineering techniques such as pole-zero 

mapping and the frequency response method shown in Chapter 2 was used to provide 

insight to the system behavior including system stability.  Preliminary system analysis 

was conducted to study the interaction between system components and to form the 

transfer function of the test system. 
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3.5 Linear System Analysis 

With the linearized component models shown in Eq. (3.45) through (3.47), the block 

diagram model of the test system shown in Fig. 3.10 was used to formulate a transfer 

function (GFu) from the force command to the force output, 

2

2 2 2

( )
( )

( )( ) ( )
v F s p

Fu
a l v F s p

AK C K G ms cs k
G s

A s K s C ms cs k AK C K G ms cs k
+ +

=
+ + + + + + +

.  (3.48) 

The numerator polynomial includes the denominator of the structure transfer function 

( 2ms cs k+ + ); therefore, the poles of the structure are also zeros of the overall transfer 

function.  The second-order term in the numerator indicates that the force output of the 

system will not respond well to command forces that have frequencies near the natural 

frequency of the second-order term (i.e., the natural frequency of the test structure). 

Note that the natural velocity feedback exists in every test system using servo-

hydraulic actuation.  However, it causes control problems when a test system is in force 

control while it does not affect the performance of a test system in displacement control 

(see Appendix 1 for detailed derivation). 

 

3.6 Summary 

Mathematical models for a test system using servo-hydraulic actuation were derived 

in this chapter.  Preliminary system analysis was conducted to derive an overall system 

model, from which general characteristics of the test system (natural velocity feedback 

problem) was obtained.  Parameters for the proposed models need to be identified to 

facilitate the detailed analysis and computer simulation. 
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CHAPTER FOUR  

SYSTEM IDENTIFICATION 

 

 

 The parameters of the system models to be determined are listed in Table 4.1.  

Among these parameters, the servovalve response delay and servovalve flow property 

were critical because they have a significant impact on the performance of the test 

system.  Other servo-system parameters and structural properties are important to the 

understanding of the system behavior through computer simulations.  The parameter 

identification roughly follows the order in which they were introduced in the last chapter. 

 

4.1 Pilot-Stage Servovalve 

4.1.1 Valve Dynamics 

The performance curve of the MTS 252.21 valve indicated that its frequency response 

(magnitude) was constant for frequencies below 30 Hz, and rolled off as the command 

frequency increased.  To approximate the valve performance at low frequencies using the 

first-order model shown in Eq. (3.4) and Eq. (3.41), a time constant (τ ) was needed.  It 

was estimated from the performance curve that the response reached 70% of its full 

capacity at a frequency of 115 Hz, hence the time constant was  

1 0.0014 s
2 (115)

τ
π

= = .    (4.1) 

This estimation is very close to the suggested value (0.0013 s) for a Moog series 30 

servovalve (Thayer, 1965), which roughly has the same capacity as an MTS 252.21 
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servovalve. 

The product specification also states that the frequency corresponding to the 90°-

phase point for the servovalve is 230 Hz.  This indicated that the servovalve dynamics 

over a wider range of frequency could be represented by the second-order model shown 

in Eq. (3.5), in which two parameters, the apparent natural frequency (ωn) and the 

equivalent damping ratio (ζ), were needed.  By the definition of the 90°-phase point of a 

second-order system, the apparent natural frequency was 230 Hz, at which the magnitude 

was found to be 45% of the full capacity from the performance curve.  Hence, the 

equivalent damping ratio was estimated following Eq. (2.30) 

1 1.11
2(0.45)

ζ = ≈ .     (4.2) 

As indicated in the last chapter, both the first-order and second-order model should 

provide similar frequency response for low frequencies.  The frequency responses of the 

two models are compared in Fig. 4.1.  Both magnitude and phase responses are well 

matched in the low frequency range (< 10 Hz), and a close match can be observed at 

higher frequencies (< 30 Hz) with reasonable accuracy.  At a frequency around the 

apparent natural frequency of the valve, the magnitude responses are still close though 

the phase responses have deviated.  Hence, the first-order model with a time constant of 

0.0014 s was adequate and used for representing the dynamics of the pilot-stage valve for 

frequencies up to 30 Hz. 

4.1.2 Valve Flow Property 

The hydraulic flow through the pilot-stage valve was controlled by a spool-type 

valve, thus the flow property of the valve could be described using Eq. (3.24).  Similar to 
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the main-stage spool, the force acting on the pilot-stage valve was negligible compared to 

the pressure supply.  Therefore, a similar linear relation as Eq. (3.45) was used for the 

pilot-stage valve.  

The rated flow capacity of the MTS 252.21 servovalve is 1 gpm (3.85 in.3/s) under 

1000 psi pressure drop across the valve.  Meanwhile, the supply pressure was roughly 

2800 psi, and the return pressure was negligible.  Thus, after considering the real pressure 

drop as shown in Eq. (3.24), the flow gain of the pilot-stage valve was approximately  

3
33.85 in. s 2.8 0.644 in. s volt

10 voltvpK = = .   (4.3) 

Note that the pilot-stage flow gain was defined as the flow per volt referring to Eq. (3.4). 

 

4.2 Main-Stage Servovalve 

4.2.1 Valve Dynamics 

The main-stage spool position is related to the pilot-stage flow by Eq. (3.6), in which 

the spool area Av needs to be determined.  The resulting spool position is normalized by 

the maximum spool stroke xvmax, such that the main-stage spool opening is expressed in 

terms of percentage of spool opening ( 1 1vx− < < + ) as shown in Fig. 3.4.  These two 

parameters may be measured, and yet are proprietary to the servovalve manufacture.  The 

sensitivity factor of the spool LVDT was estimated as  

3 max10 vK x= ,     (4.4) 

such that a 10-volt LVDT signal indicates the maximum spool stroke. 

An experimental procedure was used to validate the valve model and the parameters.  

The actuator was in displacement control, and the actuator piston was kept in its neutral 
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position by shutting of the hydraulic supply to the main-stage valve.  Therefore, the DC 

error signal was equal to the command signal.  In addition, the proportional gain of the 

servovalve controller was set to unity and the derivative gain set to zero, such that the 

valve command signal was equal to the DC error signal.  With this procedure, the 

command signal to the servovalve could be controlled without additional equipment.  A 

sinesweep input (0-100 Hz in 100 seconds) with constant amplitude of 2 volt was chosen 

as the command signal.   

The MTS 407 controller allowed the monitoring of the valve command signal and 

inner loop feedback signal that represented the spool position.  By plotting the magnitude 

ratio and the phase difference of these two signals in the frequency domain, the frequency 

response of the servovalve was obtained.  The measured frequency response is compared 

in Fig. 4.2 to simulation results.  The proposed servovalve model with a first-order pilot-

stage model matched well with the experimental results at low frequencies (below 10 

Hz), while it deviated from the measured response at higher frequencies.  The fast 

descending pattern of the phase response shown in Fig. 4.2 at high frequencies indicates 

that the servovalve might have higher-order dynamics.  This was explained by a better 

match of the calculated response with the second-order pilot-stage model shown in 

dashed lines.  

The discrepancy of the magnitude response at high frequencies was attributed to an 

underestimation of the pilot-stage flow gain (Kvp).  The flow gain was determined as the 

slope of a straight line connecting the maximum spool opening point and the origin while 

the flow property of a spool-type valve (i.e., a curve of flow vs. spool opening) can be 

nonlinear.  During the above test, the spool opening was kept small (within 10%), at 
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which the flow gain is typically higher.  Simulation results with a larger flow gain 

(arbitrarily 10% greater than the identified flow gain) better matched the experimental 

results as shown in Fig. 4.3.  Especially, the phase responses matched the experimental 

results well up to 50 Hz.  

The flow gain typically reduces as the spool moves away from its neutral position 

(can be smaller than the secant flow gain).  Therefore, the identified flow gain was 

deemed as a better representation of the servovalve flow property on an average base 

across the whole operating range of the pilot-stage valve.  In addition, frequencies below 

10 Hz were of interest; hence the first-order pilot-stage model was chosen for the rest of 

the study.  

4.2.2 Simplified Valve Dynamics (Valve gain) 

Experimental results shown in Figs. 4.2 and 4.3 also indicated that the magnitude 

response was constant for low frequencies (below 10 Hz); therefore, it was appropriate to 

further simplify the servovalve dynamics to a gain shown in Eq. (3.47), and the valve 

gain was  

1.0=sK       (4.5) 

To further validate this parameter for large amplitude and low frequency inputs, the 

same experimental procedure was followed with another sinesweep input (0-10 Hz).  A 

phase-lead network shown in Eq. (2.35) was used to amplify the command signal such 

that a larger command signal was obtained and tested.  A plot of the spool opening versus 

the valve command is presented in Fig. 4.4, in which the thick dashed line represents the 

linear curve fit of the experimental result.  The servovalve gain was roughly 0.1 across 

almost the whole operating range of the servovalve.  In addition, a hysteretic behavior 
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was evident as shown in Fig. 4.4. 

4.2.3 Servovalve Response Delay 

The hysteresis was due to the response delay of the servovalve, which is elucidated in 

Fig. 4.5 that the spool position lags behind the valve command.  With the second-order 

servovalve model shown in Eq. (3.7) and the parameters identified above, the servovalve 

phase delay was estimated using Eq. (2.31) for low frequencies as 

3

2 v
d

n vp

AT
K K

ζ
ω

= = .     (4.6) 

The apparent natural frequency of the system was calculated as 59 Hz, the equivalent 

damping was determined to be 96.4% of critical damping, and the time delay was 5.2 ms. 

Note that the inner-loop controller P gain setting can have an impact on the servovalve 

response delay if it not unity as in this study.       

The calculated response delay was verified using the measured phase response of the 

system shown in Fig. 4.6.  A linear regression was made to approximate the phase delay 

as a linear function of input frequency (Hz).  The response delay was the slope of the 

regression line divided by 2π, resulting a response delay of 4.7 ms.  

The small inconstancy in these estimations is inevitable due to uncertainties in the 

servo-system and modeling errors.  Fine tuning of the parameter was made based on 

observations in Chapter 7, and a response delay of 5 ms was used in the implementation.  

The servovalve flow property was another parameter that was affected by servo-system 

nonlinearities and uncertainties. 

4.2.4 Initial Flow Gain 

A servovalve flow curve relates the flow into the actuator to the main-stage spool 
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opening.  The initial flow gain vK  is defined as the slope of the flow curve at the origin.  

According to the product specification, the initial flow gain for the servovalve is 1.6 gpm 

(6.16 in.3/s) per percentage of spool opening with a pressure drop of 1000 psi across the 

servovalve.  Because the spool opening in this study was defined between -1 and 1, the 

flow gain was determined as 160 gpm (6.16 in.3/s) with a pressure drop of 1000 psi.  The 

real pressure drop needs to be considered to determine the flow gain of the servovalve in 

operation. 

Although the pressure supply of the test system is about 2800 psi as indicated by a 

pressure gage on the hydraulic service manifold, and the pressure in the return line is 

usually negligible, a smaller pressure drop was more realistic because of supply pressure 

variations during a test.  Therefore, a pressure drop of 2650 psi, as to be shown in Section 

7.1.2, was used to consider the real pressure drop across the servovalve.  According to 

Eq. (3.24), the initial no-load flow gain was determined as  

3 3616  in. s 2.65 1003 in. svK = = .    (4.7) 

If the servovalve flow property were linear, the maximum flow through the valve 

would be 260 gpm (1003 in.3/s).  However, an MTS 256.09 servovalve is capable of 

regulating 90 gpm with a fully opened spool and 1000 psi pressure drop across the 

servovalve.  After taking the effect of the pressure drop into account, the maximum flow 

rate through the servovalve was calculated as 147 gpm (564 in.3/s).  The difference 

between the linearly predicted maximum flow and the maximum flow capacity indicates 

a nonlinear relationship between the spool opening and the regulated flow.  A hydraulics 

explanation of the nonlinear no-load flow property of the servovalve can be found in 

Appendix 2. 
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A typical flow curve of an MTS 256.09 servovalve with a pressure drop of 1000 psi 

and zero load pressure is shown in Fig. 4.7 (Chen, 2001).  It can be seen that the flow 

gain decreases with an increase in spool opening.  Because the testing condition (e.g., 

hydraulic supply) was different from the one, under which the typical flow curve was 

constructed, an experimental procedure was necessary for the flow property identification 

of the servovalve.  

4.2.5 Nonlinear Servovalve Flow Property 

In the designed test procedure, the actuator was under displacement control with a 

sinusoidal input, the frequency and amplitude of which could be determined according to 

Appendix 3.  The test was conducted under no load condition (without a structure 

connected to the actuator) such that the pressure difference across the actuator piston 

(load pressure) was negligible.  The spool opening was obtained directly by measuring 

the inner-loop feedback while the corresponding flow was calculated using Eq. (3.37).  

Because the load pressure was negligible and its derivative was deemed (and proved 

during the test) negligible, the flow calculation was further simplified as the piston 

velocity multiplied by the piston area.  The piston velocity was calculated using the 

central difference method from the measured piston displacement.   

The result of a typical test is presented by dots in Fig. 4.8.  Although a curve fitting 

can be used to determine a flow curve that best represent the flow property, it was not 

used the error of the resulting curve, especially near the origin, can be large enough to 

deteriorate the performance of EFT.  In addition, the difference between the obtained 

flow curve and the inverse flow curve (another curve fitting) was large enough to ruin 

computer simulations.  Therefore, as shown by the solid lines in Fig. 4.8, a piecewise 
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linear curve that connected 21 control points at an interval of 10% spool opening was 

constructed to represent the flow property of the servovalve.  The flow values at the 

control points were calculated as the mean of the experimental results.  The values of a 

typical flow curve are listed in Table 4.2, in which a linear extrapolation was used to 

generate the points beyond the 80% spool opening.   

Within a certain range of spool opening (10 % in this study), the measured servovalve 

vs. spool opening curve is linear as shown in Figure 4.8; hence, the linear velocity 

feedback compensation might be viable.  On the other hand, the slope of the flow curve 

decreases significantly at 80% spool opening, indicating reduced controllability of the 

servovalve.  A spool opening of 60% was deemed a good upper limit for practice because 

the corresponding flow gain would not be significantly reduced.   

 

4.3 Actuator Dynamics 

Actuator dynamics include the fluid compressibility and leakage of the system.  To 

estimate the compressibility coefficient of the actuator, the total chamber volume was 

determined by the piston area multiplied by the total stroke of the actuator (10 in.).  

According to the product specification, the piston area was 12.73 in.2.  Therefore, 

30.3182 in. ksi
4

t
a

e

VK
β

= =     (4.7) 

It was difficult to determine the leakage coefficient Cl of the servo-system in practice 

because the leakage was related to the level of wornness of the equipment such as the 

piston sealing.  The product specification indicated that the null flow (mainly leakage 

when the spools are at their neutral position) of the three-stage valve was 3.5 gpm and the 
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null flow of the pilot-stage valve was 0.29 gpm under a 3000 psi pressure drop across the 

servovalve.  Hence, the leakage coefficient was estimated to be 1.1 gpm (4.2 in.3/s) per 

ksi pressure drop for the valve ((3.5-0.29) gpm/(3 ksi)).  Significant uncertainties exist in 

the above estimation such that a leakage coefficient within the following range  

3 34 in. s ksi 8 in. s ksilC≤ ≤     (4.8) 

could be a good estimation for the whole servo-system.  Fortunately, the system leakage 

does not affect the implementation of the velocity feedback compensation though it may 

affect the system stability (i.e., the determination of the maximum allowable controller P 

gain (Gp) as shown in Section 4.5, in which a leakage coefficient of 5.5 in.3/s/ksi was 

used. 

 

4.4 Test Structure 

Two structures were used in this study to validate the EFT method: A simplified 

structure that could be modeled as an SDOF system was used in the development of 

various velocity feedback compensation algorithms for EFT, and a one-story building 

structure was used in the proof-of-concept tests discussed in Chapter 8.  The simplified 

structure described by Eq. (3.48) is considered in this section.  

The structural model consisted of a concrete mass atop four caster wheels with two 

springs on each side of the structure in the direction of motion as shown in Fig. 4.9.  The 

springs, which had a rated stiffness of 1 kip/in. each, were designed to have one-inch 

precompression.  The springs on either side of the mass were designed to lose contact 

with the mass at displacements exceeding the precompression, resulting in a reduced 

stiffness.  Thus, the structure was a linear elastic structure when the displacement 
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response was within the precompression, while it acted as a nonlinear elastic structure 

when the displacement response exceeded the precompression.  

A measured force-displacement relation for the experimental setup is shown in Fig. 

4.10.  The initial stiffness was found to be 3.96 kip/in., and the stiffness reduced to 2.0 

kip/in. beyond precompression based on a linear curve fit.  The concrete mass weighed 

approximately 15.5 kips.  A fluid viscous damper provided damping to the structure. 

To determine the damping and the friction force of the structure, a free vibration test 

was conducted, and results are presented in Fig. 4.11.  Simulations (dashed lines) based 

on Eq. (3.38) and the block diagram model shown in Fig. 3.7 were made to determine the 

combination of viscous damping and friction force that minimized the error between the 

measured displacements and simulation results based on a least square technique.  The 

resulting damping ratio and friction force were 3.0% of critical damping and 6 lbs, 

respectively.   

 

4.5 Controller Gains 

The major function of the servovalve controller was a PID controller.  A large P gain 

typically improves the system performance while it may cause instability.  A proper 

amount of D gain reduces overshoot caused by a high P gain in a feedback-controlled 

system.  However, the derivative term would amplify signals with high frequencies, such 

as noise signals.  The integral gain reduces the steady-state tracking error while it may 

cause a wind-up problem when a constant offset exists in feedback signals or command 

signals.  Appropriate gain settings were found such that the system would be the most 

responsive yet with enough margins for stability. 
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It was appropriate to consider the system stability at the null operating point of the 

servovalve because system operation usually occurred near this region, and the valve 

flow gain took its maximum value at this position.  In addition, the load pressure was 

typically small when the servovalve spool was at its null position such that the load 

pressure influence was negligible, and the linear analysis was valid.  As shown in 

Appendix 3, Routh’s stability criterion was applied to a linearized system model to 

determine the maximum allowable P-gain as  

0.71pG ≤ .     (4.9) 

A slightly larger proportional gain (e.g., 0.8) was used in practice without causing serious 

instability because the leakage flow might have taken the upper limit of the range shown 

in Eq. (4.8) instead of 5.5 in3/s/ksi as used in the derivation of Eq. (4.9).   

With a P gain 0f 0.8, a small D gain (e.g., 0.2 ms) was found to be appropriate for the 

system through trial and error.  In addition, controller I gain is to reduce steady-state 

tracking errors while the purpose of this study was to investigate time-dependent 

responses of structural systems.  Hence, the controller I gain was set as zero. 

 

4.6 Parameter Verification 

In order to verify the identified system parameters and the system models proposed in 

Chapter 3, computer simulations of the test system were conducted, and the results were 

compared to the experimental results.  A frequency range of 0 to 10 Hz was of interest to 

this study because the frequency contents of typical earthquake ground accelerations 

corresponding to larger frequencies are small.  A sine wave sweep (i.e., a sine wave 

function with a constant amplitude and a linearly increasing frequency generated by 
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21sin 2
2

t
T
ωπ⎛ ⎞

⎜ ⎟
⎝ ⎠

, where ω = 10 Hz, T = 32 s, and 0 t T≤ ≤ ) for frequencies between 0 

and 10 Hz enables the investigation of the system response at every frequency within the 

sweep.  Fig. 4.12 presents the experimental and the simulation results of the system with 

a 0.5-kip sinesweep input.  The close match between the test results and the simulation 

indicates the accuracy of the proposed models and identified parameters. 

 

4.7 Summary 

System parameters in the mathematical models developed in Chapter 3 were 

identified in this chapter, and listed in Table 4.1.  The system model and the identified 

parameters were used to analyze the test system and its response.  Various velocity 

feedback compensation schemes for the implementation of the EFT method are 

investigated in the next chapter. 
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CHAPTER FIVE 

VELOCITY FEEDBACK COMPENSATION 

 

 

This chapter presents an analysis of the natural velocity feedback in detail, and then 

extends the implementation of velocity feedback compensation to consider servo-system 

nonlinearities.  In addition, critical parameters in the implementation of the proposed 

compensation scheme are discussed, including controller P gain, the servovalve flow 

gain, and the response delay of the servovalve.  Classical control engineering methods, 

such as pole-zero map, root locus, and frequency response were the major tools used for 

both analysis and design of the velocity feedback compensation.  Computer simulations 

were used for the analysis of the test system with nonlinear compensation schemes.  

 

5.1 Natural Velocity Feedback 

The implementation of the EFT method without any velocity feedback compensation 

was shown to be unsuccessful with a simplified SDOF structural model (Murcek, 1996).  

A similar phenomenon was observed in both the experiment and simulation of a different 

test system (including the test structure) shown in Fig. 4.12.  The magnitude of the 

measured force was below that of the command force across the whole frequency range 

(0-10 Hz).  At the natural frequency of the test structure (1.56 Hz), the force amplitude 

approached zero.  The actuator could not accurately apply forces near the natural 

frequency of the test structure due to the interaction between the actuator control and 

actuator piston velocity.  
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5.1.1 Control-Structure Interaction 

Referring to the test system models shown in Figs. 3.9 and 3.10, the objective of 

actuator control is to minimize the error between the command signal (effective force) 

and the feedback signal (applied force to the test structure).  The control is realized 

through the control of the fluid pressures inside the actuator chambers, which are 

regulated by the hydraulic flow into/out of the chambers.  When the system is in 

operation, hydraulic flow is driven into one actuator chamber (roughly the same amount 

of flow is driven out of the other chamber) to generate forces applied to the test structure.  

Meanwhile, the structure moves under the applied forces, as does the actuator piston, 

which is rigidly attached to the structure.  The resulting motion (i.e., the velocity) of the 

piston changes the volume of both chambers, thus affecting the fluid pressures inside the 

chambers.   

Mathematically, the phenomenon is described by the principle of conservation of 

mass shown in Eq. 3.37, where the chamber volume change is represented by the piston 

velocity multiplied by the piston area ( Ax& ).  The natural velocity feedback loop is 

indicated in Fig. 3.9, and its effect is represented by a flow "deduction" from the load 

flow regulated by the servovalve.   

5.1.2 Effect of the Natural Velocity Feedback  

For a system in force control, a force feedback loop incorporated in the servovalve 

controller helps the actuator track force commands.  The natural velocity feedback affects 

the actuator in applying forces accurately because the aforementioned chamber volume 

variation could not be directly sensed by the servovalve controller.   

For the linearized system shown in Fig. 3.11 but with the second-order servovalve 
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model, the transfer function from force command (u) to the applied force (F) is 

2

2 2 2 2
3 max

( )
( )

[ ( )( )]( ) ( )
v F vp p
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a l v v vp v v F vp p

AK C K G ms cs k
G s

A s K s C ms cs k A s A s K K x AK C K G ms cs kτ
+ +

=
+ + + + + + + + +

. (5.1) 

Because the dynamics of the servovalve are unlikely the same as those of the test 

structure, the numerator and the denominator of the transfer function do not have 

components in common.  Therefore, the numerator includes the denominator of the test 

structure, and the transfer function has zeros that are the poles of the structure as shown 

in the pole-zero map of the test system in Fig. 5.1. 

The frequency response of the system is shown in Fig. 5.2.  Corresponding to the 

conjugate zeros shown in Fig. 5.1, there is a dip in magnitude at the natural frequency of 

the test structure, for which the frequency response is shown by the dashed line in Fig. 

5.2.  The dip indicates that at steady state the ability of the actuator to apply forces with a 

frequency near the natural frequency of the test structure is greatly limited.  As indicated 

in Section 2.3.4, the amplitude of the force output of the test system with a sinusoidal 

input can be estimated by the norm of the transfer function evaluated at the natural 

frequency of the test structure.  Because the norm of a second-order term is 2ζ, the 

amplitude of the force output would be proportional to the damping of the test structure.  

When the structure damping is zero, the actuator is unable to apply any force at the 

natural frequency of the test structure.   

The test system had two pairs of conjugate poles as shown in Fig. 5.1, corresponding 

to two vibration modes.  The low frequency poles should represent the dynamics of the 

test structure.  However, the poles were displaced due the natural velocity feedback.  In 

addition, the damping of the vibration mode was large, indicating that force inputs at that 
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frequency would not be amplified.  The poles with a higher frequency (61 Hz) were 

related to the dynamics of the servovalve because they would disappear if the system 

were represented by Eq. (3.48), in which the servovalve dynamics was simplified as a 

valve gain.   

The high-frequency poles correspond to the amplitude spike in solid line as shown in 

Fig. 5.2.  This vibration mode can be excited when the system becomes instantaneously 

unstable due to uncertainties in the system.  In this case, electrical noise, which usually 

has a frequency of 60 Hz, would be amplified, and the force output would be noisy.  In 

addition, this lightly damped vibration mode also amplifies forces with frequencies above 

20 Hz as shown in the frequency response.  This amplification may be a potential 

problem for tests with high-frequency excitations.   

 

5.2 Direct Velocity Feedback Compensation 

Understanding the natural velocity feedback leads to a direct solution shown in Fig. 

5.3.  In this solution, the chamber volume variation to be compensated was determined by 

the product of the piston area and the piston/structure velocity, and the compensation was 

made directly to the actuator to cancel the effect of natural velocity feedback.  The 

solution was not readily viable because the ports to the actuator were usually not 

accessible, and the implementation required a special valve and its controller that were 

not available.  Nevertheless, the concept was used to explore the potential of velocity 

feedback compensation and the properties of the compensated system. 

With the direct velocity feedback compensation, the transfer function GFu becomes  
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if the servovalve dynamics is simplified as a servovalve gain (Ks).  Comparison of the 

transfer functions to Eq. (5.1) or Eq. (3.51) shows that poles of the test structure are no 

longer zeros of the overall system.  A stable pole-zero cancellation removes the conjugate 

zeros from the transfer functions such that the system output (force) would not be 

affected by the dynamics of the test structure.   

The roots of the system are plotted relative to the various levels of velocity feedback 

compensation in Fig. 5.4.  The motion of the roots with increasing compensation level 

(from zero compensation to full compensation) is shown by arrows.  As the conjugate 

poles approach the zeros, the effect of the zeros is reduced as shown in the frequency 

response of the system in Fig. 5.5 (i.e., the affected frequency range decreases, and the 

depth of the dip at the natural frequency of the test structure reduces).  With a full 

compensation, the poles are on top of the zeros, indicating a total cancellation of the 

effect of the natural velocity feedback.   

On the other hand, when the natural velocity feedback is over compensated, the poles 

that cancel the zeros move towards the right-hand side of the s-plane, indicating a 

reduced stability margin or even instability.  In addition, with the velocity feedback 

compensation, the conjugate poles corresponding to the high-frequency vibration mode 

(lightly damped as discussed previously) move to the left, indicating a more stable 

vibration with a smaller frequency and a faster decaying rate once the vibration mode is 
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excited.   

The frequency responses with different compensation levels shown in Fig. 5.5 

indicate that a slight undercompensation can significantly deviate the effect of the 

compensation.  For example, the response magnitude at the natural frequency of the test 

structure corresponding to 95% compensation is about -10 dB or the amplitude of the 

force output is about 32% of the force command.  Therefore, the acceptable range of 

compensation is very narrow. 

The compensated system behaves as a first-order system at low frequencies as shown 

in Eq. (5.3) with a high roll-off frequency, hence the actuator should be able to follow the 

command closely within the frequency range of interest.  However, the numerator and 

denominator of the transfer function do not have the same zero-order coefficient, 

indicating an amplitude reduction in the force output for low frequency inputs.  The 

tracking error is due to the leakage of the servo-system, and the amplitude reduction (RF) 

can be estimated by  

1 v F s p

l v F s p

AK C K G
RF

C AK C K G
= −

+
.    (5.4) 

With the parameters identified in Chapter 4 (listed in Table 4.1), RF was calculated as 

2%.   

Therefore, the velocity feedback compensation can improve the ability of the actuator 

to track force commands.  In practice, the velocity feedback compensation was made by 

modifying the command signal to the servovalve (Murcek, 1996). 
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5.3 Velocity Feedback Compensation 

The velocity feedback compensation is schematically shown in Fig. 5.6.  Instead of a 

positive feedback loop (a)-(b)-(c) as in the direct compensation, a positive feedback loop 

(a)-(d)-(e)-(f) was added to the actuator control to cancel the effect of the natural velocity 

feedback (a negative loop (a)-(b)-(c)).  Comparing to the direct compensation, the 

chamber volume variation to be compensated ( Ax& ) must be multiplied by the inverse 

dynamics of the servovalve and its controller before the compensation signal is added to 

the command signal.  In addition, it is only necessary to consider the dynamics of the 

servovalve and its controller in the velocity feedback compensation loop.  Therefore, the 

success of the velocity feedback compensation depends on how accurate the servovalve 

model defines the real system performance and how well the compensation scheme is 

implemented. 

 

5.4 Linear Velocity Feedback Compensation 

5.4.1 Linear Compensation Design 

The design of the velocity feedback compensation is presented in Fig. 5.7.  The path 

from point (f) to point (c) shows the forward dynamics formed by three components: the 

dynamics of the servovalve controller described by Eqs. (3.1) and (3.40), the servovalve 

dynamics by Eqs. (3.7) and (3.43), and the servovalve flow property by Eq. (3.24).  In 

order to implement the velocity feedback compensation, the inverse of the dynamics of 

these components is needed.   

The inverse flow relationship determines the required spool opening that allows a 

certain amount of flow (i.e., a compensation flow for Ax& ) to the actuator.  The 
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servovalve flow model shown in Eq. (3.24) contains two major nonlinearities of the 

servo-hydraulic system: nonlinear flow gain and load pressure influence.  If the spool 

opening and the applied forces are within a limited range (i.e., 0.1vx ≤  and 

0.05L sP P≤ ) such that the nonlinearities are negligible, the servovalve flow can be 

simplified to be proportional to the spool opening as shown in Eq. (3.45).  Therefore 

within a limited range, the inverse flow relationship is  

c
v

v

Qx
K

= .     (5.5) 

where Kv is the initial no-load flow gain determined by Eq. (4.6). 

The inverse servovalve dynamics relate the required spool opening determined by Eq. 

(5.5) to a valve command.  The direct inverse of the servovalve dynamics results in a 

transfer function with a second-order term in the numerator, which is inherently unstable 

because it can greatly amplify signals with high frequencies, such as an electrical noise.  

On the other hand, the inverse of the simplified relation shown in Eq. (3.47) (1 sK ) is not 

good enough because it omits the response delay of the servovalve included in Eq. (3.43), 

while the response delay of the servo system is significant to the performance of the 

velocity feedback compensation (Timm, 1999).  Hence in the compensation design, a 

first-order term ( 1
1s

d

K
T s +

) with a time constant (Td) of 5 ms was used to represent the 

servovalve dynamics for frequencies of interest (0-10 Hz), and the first-order phase-lead 

network shown in Eq. (2.34) multiplied by 1 sK  was used to invert the valve dynamics.  

The required time constant was determined by 
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−
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where the constant α was taken as 0.1 because it could provide both good phase-lead 

performance (the performance would be reduced if α is too large) and acceptable noise 

amplification (noises would be greatly amplified if α is too small).  Fig. 5.8 presents the 

frequency response of the second-order servovalve model, the simplified first-order 

model, and the phase-lead network (inverse dynamics).  The responses (amplitude and 

phase) of the combined dynamics (i.e., the second-order servovalve model followed by 

the phase-lead network divided by Ks) shown in dark solid lines are flat up to 20 Hz, 

indicating effective inverse dynamics for a wide range of frequencies. 

PID controls with a zero I gain introduce some phase lead into the DC error signal if 

the derivative gain (controller D gain) is not zero.  The derivative gain  was usually set to 

a small value (a few tenths of a millisecond such as 0.2 ms) in this study; hence, the 

controller dynamics was simplified as a gain.  To inverse the dynamics, the resultant 

phase lead (the lead-time d pG G ) was considered by reducing the time delay determined 

by Eq. (5.6), and the inverse relation was simply 1 pG . 

5.4.2 Analysis of the linearized compensation scheme 

The test system with linearized velocity feedback compensation is shown in Fig. 5.9, 

in which the velocity feedback compensation is represented by shaded blocks.  Because 

the transfer function of the system is cumbersome to present, the pole-zero map of the 

compensated system shown in Fig. 5.10 is instead used to demonstrate the system 

performance.  A stable pole-zero cancellation is evident near the imaginary axis, 

indicating that the actuator would be able to apply force at the natural frequency of the 
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test structure.  Correspondingly, in the frequency response of the compensated system 

shown in Fig. 5.11, the amplitude dip around the natural frequency has been removed.  In 

addition, compared to the pole-zero map of the uncompensated system in Fig. 5.1, the 

high-frequency mode in the compensated system has higher damping (from 0.4% to 

1.6%).   

However, the poles and zeros are not exactly the same as in the directly compensated 

system.  This is because the phase-lead network is not an exact inverse of the dynamics 

of the servovalve and its controller.  Consequently, both magnitude and phase responses 

of the compensated system are not perfectly smooth around the natural frequency of the 

test structure due to the close but incomplete pole-zero compensation, as indicated by two 

pointers in Fig. 5.11.  The frequency response near the structural natural frequency is 

enlarged in Fig. 5.12.  Although the bump can be reduced (not removed) through fine-

tuning of the time constant of the phase-lead network, it is not practical because it is 

impossible to determine the exact response delay of the servovalve in practice.   

Similar to the directly compensated system, the linearly compensated system has a 

steady-state tracking error at low frequencies as shown in Fig. 5.12.  The close match 

between the responses of the linearly compensated system and the directly compensated 

system indicates that the error can be estimated using Eq. (5.4).  With the parameters 

identified in Chapter 4, the tracking error was found to be 2%.  In addition, the system 

output (applied forces) approaches the command as the frequency increases, and the 

output is roughly equal to the command at 10 Hz.  Beyond 20 Hz, the system output is 

significantly affected by the lightly damped vibration mode of the system such that the 

force output grows rapidly with an increase of the forcing frequency.   
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A computer simulation of the system subjected to a 0.5 kip sine wave sweep was 

conducted and the result is presented in Fig. 5.13.  A portion of the simulation result 

(from 4s to 8s) is shown in the time domain to make the plot more readable.  The force 

tracking of the actuator is greatly improved compared to the case without compensation. 

On the other hand, the following problems can be identified: the force output does not 

match the force command between 5s and 7s in the time domain.  Correspondingly, the 

FFT amplitude of the force output does not match very well that of the command forces 

from 1.5 Hz to 2.5 Hz.  The reason is that the maximum spool opening in the simulation 

was about 13%, which slightly exceeded the linear range of the servovalve flow property 

when the forcing frequency was between 1.5 and 2.5 Hz (between 5s and 7s in the time 

domain).  In addition, the load pressure influence was not considered in the linear 

velocity feedback compensation.  Hence, A nonlinear compensation scheme is necessary 

in order to remove these discrepancies.  

 

5.5 Nonlinear Velocity Feedback Compensation 

In the linear compensation design, the servovalve was assumed to perform near its 

null position, and the applied force was assumed much smaller than the capacity of the 

actuator.  However, it is likely that the limit would be breached during the application of 

the EFT method.  In tests that require large flow demands (represented by large spool 

openings), caused by either large force command or large structural velocity response, 

nonlinearities in the servo-system become significant and must be addressed in the 

velocity feedback compensation.   
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5.5.1 Nonlinearities in Servovalve 

Equation (3.24) describes the servovalve flow property, which contains two major 

nonlinearities, load pressure influence and nonlinear flow gain.  The load pressure 

influence is explicitly represented by the square root term in Eq. (3.24).  It reflects the 

nonlinear relation between the flow through an orifice and the pressure drop across the 

orifice: the larger the chamber inside pressure, the smaller the pressure drop across the 

load flow orifice, and the harder it is for the servovalve to drive hydraulic fluid into the 

actuator chamber.   

The nonlinear flow gain is typically not obvious because servovalves are typically 

deemed proportional, meaning the controlled flow is proportional to valve commands if 

the load pressure is negligible.  As discussed in Appendix 2, the nonlinearity is caused by 

the nature of hydraulic flow through a variable sharp-edged orifice: the flow discharge 

rate decreases with an increase of the orifice area (spool opening).  Other factors that 

affect the flow property of a servovalve are the variation of supply pressure and return 

pressure.  This factor was lumped into the nonlinear flow gain because the flow curve 

was determined under the working conditions of the servovalve.  A piecewise linear 

curve based on test (identification) results was used to represent the nonlinear no-load 

flow gain of the servovalve.  

5.5.2 Nonlinear Compensation Design 

The design of the nonlinear velocity feedback compensation is presented in Fig. 5.14.  

The objective of the design was to incorporate in the compensation path (from point (d) 

to point (e)) the inverse of the dynamics including nonlinear relations in the forward path 

(from point (f) to point (c)).  Because the controller remains the same, and the servovalve 
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dynamics model has been proven accurate for frequencies up to 20 Hz and throughout the 

operation range of the servovalve, the inverse dynamics of the servovalve and its 

controller remained the same in the nonlinear compensation design. 

The inverse of the nonlinear servovalve flow property was based on the nonlinear 

characteristic of the servovalve identified in Chapter 4.  Once the nonlinear flow model 

was verified through simulation and experiment, the nonlinear velocity feedback 

compensation was straightforward.  The compensation signal ( Ax& ) was first multiplied 

by 1 1 v L

v s

x P
x P

−  to consider the effect of large forces being applied to the structure.  

Then a linear interpolation based on the piece-wise linear flow curve was used to find the 

required spool opening to provide the compensation flow to the actuator.  The inverse of 

the load pressure influence requires two more inputs, the spool opening and the load 

pressure.  The spool opening was obtained directly from the servovalve controller, and 

the load pressure was approximated by the measured force divided by the piston area.   

5.5.3 Evaluation of Nonlinear Compensation Scheme 

The test system with the nonlinear velocity feedback compensation is shown in Fig. 

5.15.  To evaluate the efficiency of the nonlinear velocity feedback compensation design, 

a computer simulation was conducted for the system subjected to a 0.5-kip sine wave 

sweep.  Figure 5.16 compares the simulation forces to the command forces in both the 

time domain and the frequency domain.  Again only a portion of the response in the time 

domain (from 4s to 8s) is presented to facilitate the comparison.  With the nonlinear 

compensation, which incorporated the exact inverse of the nonlinear flow relation of the 

servovalve, the discrepancies shown in Fig. 5.16 (with linear compensation) were almost 
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completely removed.   

The effect of the nonlinear compensation is further demonstrated in the response of 

the system subjected to a 2-kip sine wave sweep shown in Fig. 5.17.  In this simulation, 

the maximum required spool opening was around 55%, which was way beyond the linear 

range of the servovalve flow property (10%).  No obvious difference between force 

output and command can be identified in the time domain.  In the frequency domain, the 

force output follows the command throughout the whole frequency range (0-10 Hz).  A 

small spike exists at the natural frequency of the test structure, reflecting the incomplete 

pole-zero compensation.  As predicted by Eq. (5.4), the amplitude of the force output is a 

bit less than that of the command at low frequencies.  

The simulation results of the test system with linear compensation and without 

compensation are also shown in Fig. 5.17 for comparison.  A sharp drop of the FFT 

amplitude of the force output around 1.6 Hz is evident for the linearly compensated 

system in the frequency domain.  This can be explained as follows:  because the initial 

flow gain used in the linear compensation scheme is the largest slope of a typical flow 

curve, using the reciprocal of the initial flow gain in the compensation loop causes 

undercompensation when the spool opening is large.  Meanwhile the force tracking 

ability of the actuator can be greatly affected by a slight undercompensation (e.g., 5%) as 

indicated in Fig. 5.5.   

In summary, to negate the effect of the natural velocity feedback, the compensation 

was made by modifying the command signal to the servovalve controller.  The proposed 

compensation scheme requires an accurate knowledge (model) of the dynamics and the 

flow property of the servovalve.  The physical system may have uncertainties such that 
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the identified models may deviate from the physical properties of the system.  Therefore, 

it is necessary to investigate the ability of the compensation scheme and the compensated 

system to accommodate variation in system parameters. 

 

5.6 Critical Parameters in Velocity Feedback Compensation 

The design of velocity feedback compensation schemes require the determination of 

the following parameters: controller P gain (Gp), controller D gain (Gd), servovalve gain 

(Ks), servovalve response delay (Td), and servovalve flow property including the initial 

no-load flow gain (Kv).  Among these parameters, the controller D gain was considered 

with the overall response delay of the servovalve, and the servovalve gain identified in 

Chapter 4 was deemed accurate.  The remaining three parameters are discussed in this 

section, and the discussion includes their effects on the overall system stability.   

5.6.1 Controller P Gain  

As indicated in Figs. 5.4 and 5.10, a compensated test system has two second-order 

components: one represents the vibration of the test structure, and the other represents the 

dynamics of the servovalve (typically with a high frequency).  With the velocity feedback 

compensation, the dynamics of the first component approaches that of the test structure, 

which is the goal of the test system.  Meanwhile, the damping of the high-frequency 

mode increases.  Therefore, any P gain below the maximum P gain determined in Chapter 

4 for the purpose of the stability of the uncompensated system should be appropriate for 

use in the compensated system.   

Generally, relatively larger P gains should be used in a test system because they 

usually improve the overall performance of a stable system.  Figure 5.18 compares the 
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frequency response of the compensated system with various controller P gains.  A higher 

P gain corresponds to smaller distortion caused by the incomplete pole-zero cancellation 

in both amplitude and phase responses around the natural frequency of the test structure.  

In the last case shown in Figure 5.18, a P gain of 0.8 was used while the maximum 

allowable P gain for the uncompensated system was 0.71 according to Routh’s stability 

analysis because a larger P gain would usually cause an unstable high-frequency 

vibration.  A larger P gain than the predicted limit would be expected in general in 

practice due to a larger system leakage than the assumed leakage as to be discussed in 

Section 7.1.1. 

Increasing the controller P gain may slightly increase the damping of the vibration of 

the test structure as shown in Fig. 5.19, the root loci of the test system.  On the other 

hand, larger controller P gains (e.g., 1.0 for this test system, which is way beyond the 

maximum allowable value) may cause instability as indicated by the two poles at the 

right-hand side of the s-plane in Fig. 5.19.  It should be noted that the resulting unstable 

poles correspond to a component of the force output at a frequency around 65 Hz, which 

usually does not cause damage of the test structure because the structure does not respond 

to excitations at such high frequencies.   

Based on these observations, the laboratory implementation of the EFT method, 

which will be discussed in the next chapter, started with a P gain that could keep the 

uncompensated system stable (0.7), and proceeded with larger P gains (0.8 and 1.0 with 

an additional leakage path) to improve the overall system performance. 

5.6.2 Servovalve Flow Gain  

The velocity feedback compensation is based on an estimation of the flow property 
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including the initial flow gain, which may vary during a test due to uncertainties of the 

test system and test environment (i.e., hydraulic supply, etc.).  Therefore, the natural 

velocity feedback may be instantly either under- or over-compensated when the 

compensation is based on a predetermined flow curve.   

The initial flow gain (Kv) is an important representative property of the servovalve 

flow.  The root loci of the linearly compensated system with respect to various initial 

flow gains are shown in Fig. 5.20.  Two conjugate poles that represent the SDOF test 

structure shown in larger crosses are expected if there is no problem in applying forces to 

the structure.  Slight over- or under-compensation may change the damping of the 

vibration mode that represents the test structure.  Although overcompensation appears 

helpful in stabilizing the high-frequency vibration, an overcompensated system may 

become unstable.  Unlike the instability caused by a large controller P gain, the unstable 

vibration at a frequency close to the structural resonant frequency can cause unwanted 

damage to the test structure.  The stability margin of the system, indicating the maximum 

tolerable overcompensation, was related to the structural damping.  A high structural 

damping helps the system tolerate system identification errors.   

Compared to the rest of the flow curve, a relatively accurate initial flow gain may be 

readily obtained because tests with small amplitude excitations can be conducted to 

optimize the estimation.  The effect of the whole flow curve of the servovalve is shown in 

Fig 5.21, which compares the simulation results of a nonlinear system subjected to a 2-

kip sine wave sweep (0-10 Hz) with different compensation levels.  The flow curve was 

modified by a factor of 1 or 2 percent while the initial flow gain was kept the same.  As 

can be seen, 2% undercompensation resulted in large reduction in force amplitude at the 
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natural frequency while 1% overcompensation might cause unpredictable force output 

such as the spikes in the time domain.   

It should be noted that the spike at the natural frequency in the frequency domain 

does not necessarily correspond to the spikes in the time domain.  Instead, the spike at the 

natural frequency was attributed to the fact that the overcompensation contaminated the 

valve command signal with small signals at the resonant frequencies of the structure 

(from the structural velocity response).  The accumulating process of the FFT calculation 

builds up a spike at the frequency. 

It can be anticipated that the results of a real test would lie in between these two cases 

because both under- and over-compensation may happen in a single test at different 

instances.  Noisy force output is likely to happen when the required spool opening is 

large because the system uncertainties usually increase with flow demands. 

5.6.3 Servovalve Response Delay  

Another system parameter that cannot be determined exactly prior to testing is the 

response delay of the servovalve.  Similar to the main-stage valve flow property, the 

pilot-stage valve can be affected by the variation of the hydraulic supply, which in turn 

may affect the response delay of the three-stage servovalve.  Therefore, slight under- or 

over-compensation of the servovalve response delay is likely to happen when the delay 

compensation is based on a predetermined delay time. 

The effect of the delay compensation to the root loci of the compensated system is 

illustrated in Fig. 5.22.  The system with more delay compensation has larger damping 

for both vibration modes than that of a less compensated system.  Specifically, the high-

frequency mode can be unstable if the response delay is not compensated.  In addition, 
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incorrect delay compensation alters both the frequency and the damping of the mode that 

represents the test structure, which is unwanted.  Compared to the case of the flow gain, 

the system has a wider stability margin with respect to the response delay compensation.   

The frequency responses of the system with various delay compensation schemes are 

shown in Fig. 5.23.  As identified in Chapter 4, 5 ms is a good estimate of the total 

response delay of the servovalve and its controller in this study.  If the response delay is 

undercompensated, the amplitude response shows a peak at a frequency smaller than the 

natural frequency and a valley at a frequency larger than the natural frequency.  The 

system response with overcompensation shows a reversed pattern, a valley before a peak.  

For the test system with the nonlinear velocity feedback compensation, a series of 

simulations were conducted, and the results are presented in Fig. 5.24.  Similar 

observations can be made regarding the correspondence between the delay compensation 

and the pattern of the force amplitude in the frequency domain.  This information is 

useful when searching for the optimal time constant for the phase-lead network. 

 

5.7 Summary 

In this chapter, the natural velocity feedback loop intrinsic to the servo-system was 

discussed along with a solution, velocity feedback compensation.  Linear velocity 

feedback compensation is limited because significant nonlinearities exist in the 

servovalve when large flow demands are required during a test.  The servo-system 

nonlinearities must be considered in the velocity feedback compensation to assure the 

force tracking ability of the actuator.  A nonlinear compensation scheme was designed 

and discussed using computer simulations along with three critical parameters (i.e., the 
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controller P gain, the servovalve flow property, and the servovalve response delay).  

These compensation schemes were experimentally investigated using a SDOF structural 

model. 
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CHAPTER SIX 

EXPERIMENTAL IMPLEMENTATION OF EFT 

 

 

The feasibility of EFT with velocity feedback compensation is experimentally 

evaluated using a SDOF structure.  Details of the experimental program are first 

described.  Test results with both sinesweep inputs and earthquake effective forces are 

then presented to evaluate the performance of the test system with the velocity feedback 

compensation schemes.  Experimental studies are also used to verify the conclusions 

drawn in Chapter 5 regarding the effect of the critical parameters.   

 

6.1 Experimental Program  

6.1.1 Test Setup 

A schematic of the test system is shown in Fig. 6.1, in which the velocity feedback 

compensation was applied using an additional controller shown as the dashed block.  The 

investigation was conducted using an SDOF mass-spring-damper structural model.  A 

schematic of the test setup is illustrated in Fig. 6.2, and the laboratory realization of the 

test setup is shown in Fig. 4.12.  The structural properties (i.e., m, c, and k) are listed in 

Table 4.1, and details of the test structure are given in Section 4.4 and Appendix 4.  

Six linear variable differential transformers (LVDTs) were used to monitor the 

displacement response of the cart in the beginning.  After concerns about possible torsion 

of the cart and slip between layers of the concrete mass were cleared, the LVDT housed 

within the actuator was the only displacement sensor used.  The range of the internal 



 

 86 

LVDT was ±5 inch.  A positive displacement corresponded to a displacement of the 

actuator piston towards the actuator reaction frame, which is also the positive force 

direction. 

The velocity response of the structure was monitored with a P510 series tachometer-

type velocity transducer by Unimeasure Inc.  The velocity transducer was placed on the 

side of the mass opposite the actuator, and aligned with the center of the mass.  The 

velocity sensor had a sensitivity factor of 0.196 volt/in/s, and a travel length of 10 inch.  

A positive velocity corresponded to an extension of the sensor cable (a motion towards 

the actuator reaction frame), thus a displacement increase would cause a positive velocity 

signal.   

Actuator forces were measured using a load cell mounted on the actuator piston.  The 

load cell signal as well as the actuator LVDT signal was conditioned by two conditioning 

modules installed in the servovalve controller.  The outputs were available through two 

BNC connectors on the rear panel of the controller.  The servovalve spool opening (spool 

position) was measured by an LVDT inside the main-stage servovalve house.  The signal 

along with other internal control signals, such as the valve command signal and DC error 

signal were available through two BNC connectors on the front panel of the servovalve 

controller. 

Data was collected by an Optim MEGADAC 3008AC data acquisition system.  A 

sample rate of 200 samples per second was chosen for most of the experimental program.  

Four channels of data were typically read, including the actuator position, the actuator 

force, the structural velocity, and the spool opening of the servovalve.  The Optim data 

acquisition system had a sample-and-hold mechanism, which locked the voltage signals 
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in all channels simultaneously before they were sampled and converted into digital 

signals.   

The velocity feedback compensation schemes were implemented using a dSpace 

DS1102 DSP controller.  The hardware consisted of a DSP Controller Board based on a 

Texas Instruments TMS320C31 floating-point digital signal processor (DSP) built as a 

standard PC/AT card.  The DS1102 contained two 16-bit 250KHz sampling A/D 

converters (ADCs) and two 12-bit 800KHz sampling A/D converters.  Each ADC had a 

sample/hold circuit (i.e., no delay between signals).  All ADCs take single-ended bipolar 

inputs with ±10 volt input span.  The DS1102 also contained four 12-bit D/A converters 

(DACs).  All DACs had single-ended voltage outputs with ±10 volt span.  The DS1102 

hardware was managed by ControlDesk®, software installed in the host computer of the 

DS1102.   

6.1.2 Ground Accelerations 

Command signals were sent to the servovalve controller from a National Instruments 

digital-to-analog (D/A) card, which was installed in a Windows NT workstation.  A 

computer program read the values from a user-defined data file, and sent the digital 

signal to the D/A card, which produced an output voltage that was proportional to the 

data values.  The scale factor was the conversion factor (CF) pre-determined for the 

program according to the type of input units (control variable) chosen in the servovalve 

controller.  An example data file is shown in Appendix 5 to demonstrate the format of the 

data file.  Earthquake ground acceleration records are typically defined at 0.02-second 

intervals while in this study, the data was refined by linearly interpolating nine points 

between each data point such that the signals sent to the servovalve controller were 
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updated every 0.002 seconds. 

The input functions used in the experimental investigations included sinesweep (0-10 

Hz) and earthquake effective forces.  The ground acceleration records chosen for the 

experimental program were the Imperial Valley earthquake of May 18, 1940, recorded at 

El Centro at 270 degrees, with a peak ground acceleration of 0.34 g and the Northridge 

earthquake of January 17, 1994, recorded at Santa Monica City Hall ground at 90 

degrees, with a peak ground acceleration of 0.84 g.  These earthquake records were 

obtained from the strong motion database of the Pacific Earthquake Engineering 

Research Center (PEER) at http://peer.berkeley.edu/smcat/search.html.  

The ground acceleration records for these earthquakes are shown in Figs. 6.3 and 6.4 

along with their FFT amplitudes.  In order to reduce the amount of data to be collected, 

segments of these earthquake records were used that represented the most demanding 

portion of the records and had frequency content similar to the entire records.  These 

ground acceleration records and their FFT amplitudes are shown in Figs. 6.5 and 6.6, 

respectively. 

The earthquake records were chosen based on their frequency contents.  Fig. 6.7 

shows a force-velocity curve for the servovalve-actuator combination generated based on 

Eq. (3.24) and Eq. (3.37).  The fluid compressibility and leakage were omitted, thus the 

piston velocity was directly related to the load flow of the servovalve by 

( ) 1 v L
L v

v s

x P AAx Q Q x
x P A

= = −& .    (6.1) 

For a given spool opening (from -1 to 1 with an interval of 0.2 in the plot), the 

maximum achievable velocity can be calculated using Eq. (6.1) for any given load 



 

 89 

pressure (applied force divided by the piston area).  The nonlinear no-load flow property 

of the servovalve was included in the calculation of ( )vQ x .   

With sine wave sweep inputs, the structure would be excited with small amplitude 

forces.  Therefore, the horizontal shaded area in the force-velocity plot in Fig. 6.7 would 

be tested for the system.  The Northridge earthquake ground acceleration record has small 

frequency content around the resonant frequency of the structure, but has large 

acceleration peaks at 9s as shown in Fig. 6.5.  Therefore, the vertical shaded region in 

Fig. 6.7, which represents conditions with large forces and small velocities, could be 

tested.  Tests with El Centro earthquake effective force inputs could demonstrate the 

system performance for the blank regions inside the ±60% spool opening curve because 

large force and large velocity might happen at the same time during the tests.  

In the following sections, the performances of the system are demonstrated through 

comparing test results (i.e., force output and structural responses).  In the comparison of 

forces, "commands" are effective force commands ( gmx− && ) sent to the servovalve 

controller.  "Measurements" are the forces measured by the actuator load cell, that is, the 

forces physically applied to the structure.  "Simulations" are the simulated forces to the 

structure.  When comparing structural responses.  "Expected responses" are the results of 

the numerical integration of the governing differential equation shown in Eq. (3.38) with 

the effective force inputs.  "Measured responses" are the structural displacements and 

velocities measured by the actuator LVDT and the velocity transducer.  "Simulation 

responses" are the results of the numerical simulation of the whole test system with the 

effective force inputs.   
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6.2 Direct Implementation of EFT 

The first objective of the experimental study was to demonstrate the natural velocity 

feedback problem using a different test system than that of previous studies at the 

University of Minnesota (Murcek, 1996 and Timm, 1999).  The system response was first 

evaluated over a range of frequencies (0-10 Hz) of interest by applying sinesweep input 

functions, and then by applying effective force input functions to the test system without 

velocity feedback compensation.  

Sinusoidal Input Function  

Figure 6.8 compares command forces, simulation forces, and measured forces and the 

FFT amplitude of these forces using a 0.5 kip sine wave sweep input function.  The 

actuator had difficulties applying forces throughout the test.  Correspondingly, in the 

frequency domain, the ability of the system to apply forces around the natural frequency 

of the structure (1.6 Hz) was greatly limited due to the effect of the natural velocity 

feedback.  The comparison of the expected, simulation, and measured structural 

responses is shown in Fig. 6.9.  The resonant frequency of the structure was not excited 

because of the missing forcing content around the natural frequency, and the structural 

responses were significantly smaller than the desired responses.  Computer simulations 

correctly predicted the performance of the test system.  

The applied force was noisy, especially at the beginning of the test.  This was due in 

part to the static friction, which the actuator had to overcome to move the structure.  The 

noisy system response (force) was also due to a lightly damped vibration mode of the 

system with a frequency around 61 Hz as shown in Fig. 5.3.  On the other hand, the force 

content at this frequency (61 Hz) could not excite the structure, and the structural 
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responses were smooth as shown in Fig. 6.9. 

Earthquake Effective Force Inputs 

Tests were also performed in which effective forces based on the ground acceleration 

of the earthquakes described in the previous section were input to the system.  Figs. 6.10 

and 6.11 present the test results using the El Centro earthquake record, and Figs. 6.12 and 

6.13 present the test results using the Northridge earthquake record.  The El Centro 

earthquake contained significant frequency content around the natural frequency of the 

test structure, thus the actuator had difficult in following the command signal, especially 

in catching the force peak at 2s.  On the contrary, the Northridge earthquake contained 

little frequency content at the structural resonant frequency, and the actuator seemed to be 

able to better follow the force command and catch the force peak around 9s.   

In the frequency domain, there was a range of frequencies for both tests around the 

natural frequency of the structure, where the amplitude of the force outputs was 

significantly below that of the force commands.  Due to the missing frequency content in 

the applied forces, the resonant frequency of the structure was not excited as shown in the 

displacement and velocity responses of the structure in Figs. 6.11 and 6.13.  Toward the 

end of the tests with zero force commands, aftershock free vibrations were expected as 

shown in grey lines, while they were not obtained during the tests or in the simulation.   

These test results indicated that with the direct application of the EFT method, the 

hydraulic actuator could not apply forces accurately around the resonant frequency of the 

structure, which was rigidly connected to the actuator piston.  This confirmed the 

observations made in previous studies by Murcek (1996) and Timm (1999).  The effect 

can be compensated by modifying the command signal to the servovalve controller based 
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on measured piston velocities. 

 

6.3 Linear Velocity Feedback Compensation 

In the laboratory implementation of the velocity feedback compensation, the chamber 

volume change due to the piston motion was determined by the measured structural 

velocity multiplied by the piston area.  The compensation signal was modified by the 

inverse of the forward dynamics and then added to the command signal.  The linear 

compensation scheme had been implemented using analog circuits (Timm 1999).  A 

digital implementation of the linear compensation is presented in this section to illustrate 

some conclusions drawn in Chapter 5. 

Laboratory Implementation 

In the digital implementation, analog signals (e.g., command signals from the 

National Instruments D/A card, and voltage signals from the velocity transducer, etc.) 

were converted into digital signals by the A/D converter of the DSP board.  The digital 

signals were then processed by the control algorithm to generate the modified command 

signals.  The new command signals were converted back to voltage signals and sent to 

the servovalve controller.  The control algorithms were coded in C language with 

functions provided by dSpace and compiled by the C language compiler for TMS320C31 

DSP hardware provided by Texas Instruments.  An example of the compensation 

schemes in C language can be found in Appendix 6. 

The velocity transducers used in this study did not have signal conditioning, hence, a 

unit buffer (a unity-gain circuit) was closely coupled to the transducer to avoid signal 

attenuation over a long distance of the signal transmit.  A buffer circuit can be found in 
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texts such as the one by Horowitz and Hill (1990).  Note that the voltage signal generated 

by the velocity transducer should be divided by the sensitivity factor to get the velocity 

signal shown in the compensation schemes in terms of simulation models. 

Figure 5.9 shows the test system with the linear velocity feedback compensation.  In 

the laboratory implementation, all constants in the compensation loop were combined 

into a single factor determined by,  

c
v v s p

AK
S K K G

= ,     (6.2) 

where Sv is the sensitivity factor of the velocity transducer.  For example, when the 

solution was first tried, a Trans-Tek Model 0114-0000 velocity transducer was used with 

a range of ±2 in., and a sensitivity factor of 0.582 volt/in./s.  The gain was calculated as 

0.271 with the parameters identified in Chapter 4 (Kv=1003 in.3/s. Ks=0.1, and Gp=0.81).  

A discrete equivalent of the phase-lead network shown in Eq. (2.35) was used in the 

digital implementation.  By applying the trapezoid-rule substitution for the frequency 

variable s (Franklin 1994), the phase-lead network can be rewritten as 

( )
( )

( 2 ) ( 2 )( )
( 2 ) ( 2 )

ld ld

ld ld

X z T T z T TH z
U z T T z T Tα α

+ + −
= =

+ + −
.    (6.3) 

In the time domain, the current output was calculated using the current input and past 

input and output by 

( ) ( ) ( ) ( )1 ( 2 ) ( 2 ) ( 2 )
2 ld ld ld

ld

x t T T u t T T u t T T aT x t T
T aT

= + + − − − − −⎡ ⎤⎣ ⎦+
 (6.4) 

where ( )u t  and ( )x t  are the current input and output signal samples, ( )u t T−  and 

( )x t T−  are the last input and output signal samples, Tld is the lead time (Tld=Td/(1-α), 
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where Td is the response delay to be compensated) and α is 0.1 as in the simulation 

studies, and t=kT , where k is an integer and T is the sampling period.  With a sampling 

rate of 2 kHz in this study, T was 0.5ms.   

Sinusoidal Input Functions  

The system response (i.e., force output) to a 0.5k sinesweep input function is shown 

in Fig. 6.14 along with the FFT amplitudes of the forces.  The measured force followed 

the command force in the time domain except the noisy force peaks and valleys between 

5s and 7s, which could have been due to the lightly damped high-frequency vibration in 

the system.  Comparison in the frequency domain indicates that the actuator was able to 

apply forces at all frequencies within 10 Hz.  A small amplitude spike at 1.6 Hz is evident 

in the frequency domain due to the aforementioned accumulative process of the FFT 

amplitude calculation.   

The amplitude of the applied force was slightly below that of the command force over 

the whole frequency range in Fig. 6.14.  It was in part attributed to the proportional 

leakage of the servo-system shown in Eq. (5.8).  The force tracking error should be 

reduced at high frequencies as indicated by the simulation results shown by the dashed 

lines in Fig. 6.14.  However, the servovalve leakage was not constant throughout the 

whole range of its operation.  When the actuator tried to track the high frequency signals, 

the spool was near its null position, where the leakage coefficient was larger.  The 

increased leakage flow at small spool openings in turn affected the tracking ability of the 

actuator at high frequencies.  Another factor was the constant leakage in the system to be 

discussed in Chapter 7.  

Figure 6.15 compares the measured structural responses with the expected and 
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simulation results.  The displacement and velocity responses show that the measured 

response generally matched the expected response but did not achieve the magnitude of 

the expected response.  The reason that the structure was not fully excited might have 

been that the applied force was low at frequencies near the natural frequency of the 

structure due to incomplete velocity feedback compensation.   

The simulation was generally able to predict the force output and the structural 

responses, indicating that the analysis of the system model in Chapter 5 was applicable to 

the physical test system.  On the other hand, because the simulation could not capture the 

real-time variation of the servovalve flow property, the amplitude spike at the natural 

frequency and the shallow drop around 2 Hz were not captured by the simulation.  In 

addition, the simulation did not match well the experimental responses after 15s when the 

structural responses were small in Fig. 6.15.  The reason may have been that the 

mechanism of the energy dissipation could not be modeled well with a combination of 

viscous damping and friction when the structure moved within a small range as shown in 

the analysis of the free vibration results in Fig. 4.12.   

The system response to a 2.0 kip sinesweep input function is shown in Fig. 6.16.  The 

applied force was able to follow the sinesweep input except over the time range from 4s 

to 7s, when the desired velocity was large (as shown in Fig. 6.17).  The large velocity 

caused a large hydraulic demand (55% spool opening should have been required if the 

actuator had had no problem in tracking forces) because the modified command signal to 

the servovalve was dominated by the velocity compensation signal, which was based on 

the structural velocity.  The servovalve exhibited nonlinear flow properties at large spool 

openings; hence, the linear velocity feedback compensation was not sufficient.  In the 
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frequency domain, the FFT of the applied force shows a sharp drop around the natural 

frequency of the test structure.   

Due the lack of the frequency content in the force applied to the structure, the 

structural responses were significantly below the expected responses as shown in Fig. 

6.17.  Again, the simulation accurately predicted both the force output of the test system 

and the structural response under the incorrect excitation, indicating that the models 

developed in Chapters 3 and 4 could accurately represent the physical test system.  Both 

the experimental and simulation results demonstrated that the linear velocity feedback 

compensation was not able to negate the natural velocity feedback when large hydraulic 

power was required (expressed as large spool openings). 

Earthquake Effective Force Inputs 

The digital implementation of the linear velocity feedback compensation was also 

tested with earthquake effective force inputs.  The system response to the El Centro 

earthquake (0.17g) shown in Fig. 6.18 indicates that the actuator was generally able to 

follow the command force.  The comparison in the frequency domain shows a good 

match over the entire frequency range of interest.  However, the force peak at 2s was not 

fully reached, and the FFT amplitude of the applied force around the natural frequency of 

the structure (1.6 Hz) was slightly less than that of the effective force input.   

The required spool opening in the first 4s of the test was larger than 10% (16% 

around 2s), thus the system was under-compensated with the linear compensation.  As a 

result, the measured displacement and velocity response shown in Fig. 6.19 were smaller 

than the expected responses during the first 8s.  The influence of the under-compensation 

near 2s was spread out because the structure went into the nonlinear range of its behavior, 
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and the structural responses after the peak at 2s were dependent on the response history.  

Around 8s, both the effective force and the structural responses were small, which 

resembled a new test starting point; hence during the rest of the test, the linear 

compensation was adequate, and the experimental results matched the expected responses 

well. 

The system response for the Northridge earthquake (0.42g) in Fig. 6.20 closely 

matched the effective force input in both the time domain and the frequency domain, and 

the structural responses in Fig. 6.21 closely matched the expected responses.  This was 

because the Northridge effective force input contained only a small amount of frequency 

content around the natural frequency of the structure, thus the velocity response and the 

required spool opening were small (< 10%), and the linear velocity feedback 

compensation worked well in this case.  Especially, when the effective force peak hit the 

structure at 9s, the structural velocity was around 5 in./s, and the required spool opening 

was small; hence, the force peak was reached in the test.  In addition, the free vibration 

after 15s when the force command stopped was realized though the experimental 

response decayed slightly faster.   

Therefore, the linear velocity feedback compensation can be used to negate the effect 

of natural velocity feedback under limited conditions: the structural velocity and the 

applied force remain small, corresponding to a small hydraulic demand (the maximum 

spool opening remains below 10%) during a test.  Beyond this limit, nonlinear velocity 

feedback compensation is necessary. 
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6.4 Nonlinear Velocity Feedback Compensation 

Laboratory Implementation 

According to the nonlinear velocity feedback compensation design shown in section 

5.5.2, the compensation flow ( Ax& ) needs to be multiplied by 1 1 v L

v s

x P
x P

−  to consider 

the load pressure influence.  Three new measurements were required for this process, the 

current spool opening (xv), load pressure (PL), and pressure supply (Ps).  Because the 

instant pressure measurements were difficult to obtain, the pressure supply was assumed 

constant (2.65 ksi), and the load pressure was approximated by the measured force 

divided by the piston area.  The spool opening was read directly from the servovalve 

controller, which always contained offsets.  In order to remove the effect of the initial 

offset on the determination of the sign of the spool opening ( v vx x ), the average of the 

inputs during the first ten-second operation of the DSP controller (with zero force input) 

were calculated and subtracted from spool opening signals.  The same process was used 

for other measurements, such as the piston velocity and the measured force, to remove 

their initial offsets. 

The modified compensation flow was then used to determine the required spool 

opening based on the identified piece-wise linear flow curve.  The curve was defined by 

flow values at 21 control points within the whole servovalve operation range (-1 ~ 1) 

with an interval of 0.1; hence linear interpolation was used between control points in the 

process.  The required spool-opening signal was then multiplied by the inverse 

servovalve gain to obtain the corresponding valve command signal (voltage), and was 

modified in phase using the same phase-lead network as in the linear compensation.  
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After being divided by the controller P gain, the phase-adjusted voltage signal was finally 

added to the effective force command signal. 

Sinusoidal Input Functions  

With the flow curve identified in Chapter 4, tests were conducted with sinesweep 

input functions.  Fig. 6.22 presents the system response to a 0.5 kip sine sweep input.  

Compared to the test with the linear velocity feedback compensation, the amplitude drop 

around 2 Hz in Fig. 6.14 was removed, indicating an improved ability of the actuator to 

follow force commands within the frequency range.  With an improved force input near 

the resonant frequency, the structural responses shown in Fig. 6.23 better matched the 

expected responses.  In addition, the expected peaks in both the displacement and 

velocity response were reached.  The noisy force output from 5s to 8s and the 

discrepancy in the displacement and velocity responses after 10s were attributed to 

uncertainties in the system (i.e., hydraulic supply variation) that the nonlinear 

compensation was not able to model and include.   

Figure 6.24 presents the test results for a 2.0 kip sine sweep input.  The FFT of the 

measured force does not show any obvious drop across the whole frequency range, 

indicating that the actuator was able to apply forces correctly at all frequencies.  

Compared to the test with the linear velocity feedback compensation, the ability of the 

actuator to follow force commands was greatly improved.  Small discrepancies can be 

seen in the frequency domain from 1.5 Hz to 2.5 Hz, which corresponds to 4s to 8s in the 

time domain, where the force output was noisy.  As shown in Fig. 6.25, the structural 

velocity response between 4s to 8s was large, which indicates large required spool 

openings (55% maximum) during the test.  At large spool openings, the system 
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uncertainties become significant as indicated by the larger variation in the servovalve 

flow property as shown in Fig. 4.9.  Hence, the velocity feedback compensation based on 

the piece-wise linear flow curve might instantly incomplete.  The inaccurate force applied 

to the structure might have been responsible for the discrepancy in the structural 

responses in Fig. 6.25.  The structural responses after their peaks were also affected 

because nonlinear structural responses are dependent on the loading history. 

Earthquake Effective Force Input 

The responses of the system to the same earthquake effective force input functions as 

in the linearly compensated tests are shown in Figs. 6.26 - 6.29.  The measured 

displacement and velocity response generally followed and were in phase with the 

expected responses.  Compared to Figs. 6.18 - 6.21, both the system response (force 

output of the actuator) and the structural responses were improved.  In the test with the El 

Centro earthquake, the force peak at 2s was better reached as shown in Fig 6.26, and the 

structural responses were better matched between 1s and 8s as evident in Fig 6.27.  In the 

test with the Northridge earthquake, a better match between the measured force and 

command force can be observed in the frequency domain from 1 Hz to 2 Hz, and the 

velocity peak around 9s was better reached.   

The test results with increased effective force input functions (from 50% of the full 

scale to 80% of the full scale) are presented in Figs. 6.30 - 6.33.  The actuator had no 

problem in following force commands that contained relatively small frequency content 

at the structural resonant frequency such that the structural velocity was small when the 

force peak was applied to the structure, as in the case with the Northridge earthquake 

effective force input.  On the other hand, the actuator showed some difficulties in 
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catching force peaks when a large velocity occurred at the same time as in the case of the 

El Centro earthquake effective force input.   

In the test with the 0.27 g El Centro earthquake effective force input, the structural 

responses showed some large discrepancies from the expected responses.  The measured 

responses were smaller than the expected responses before 12s and larger after 17s.  This 

was attributed to the fact that the incomplete velocity feedback compensation might have 

changed the loading history to some extent, which in turn resulted in a different response 

history because the nonlinear structural response depended on the loading history. 

Simulation results match the effective forces and expected structural responses better 

than the measured responses because the exact inverse of the forward dynamics including 

servovalve nonlinearities were incorporated in the compensation loop of the simulation.  

The simulation results indicate that the performance of the proposed nonlinear velocity 

feedback compensation depends on the accuracy of the model of the servovalve and its 

controller.   

 

6.5 Comparison of Compensation Schemes 

To further demonstrate the nonlinear velocity feedback compensation, tests were 

conducted with the full-scale El Centro earthquake (0.34g) and the full-scale Northridge 

earthquake (0.84g).  The test results are compared to those of the tests with the linear 

velocity feedback compensation scheme and without velocity feedback compensation in 

Figs. 6.34 - 6.37.   

The tests with the El Centro earthquake are shown in Figs. 6.34 and 6.35.  With the 

nonlinear compensation, the measured force in general better followed the command 
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force than that of the test with the linear compensation.  For example, the force peak at 2s 

was better (yet not fully) reached with the nonlinear compensation.  The measured 

structural responses generally follow the expected responses though there is some phase 

shift between 6s and 11s.  On the other hand, with the linear compensation, the structural 

responses were significantly smaller than the expected responses. 

In the tests with the Northridge earthquake shown in Figs. 6.36 and 6.37, the 

measured forces showed a good match with the command force in both cases.  However, 

the structure in the test with the linear compensation developed a very different 

deformation pattern after 11s, and the response amplitudes were significantly smaller 

than the expected response and that of the test with the nonlinear compensation. 

These comparisons demonstrate the superiority of the nonlinear compensation 

scheme over the linear compensation scheme.  Meanwhile, the comparisons also reveal 

the limitation of the current nonlinear compensation scheme: the natural velocity 

feedback compensation is based on a predetermined servovalve flow curve while at large 

spool openings, the variations in the servovalve flow property become important, and 

may deteriorate the system performance.  The ability of the test system to tolerate 

uncertainties is explored in the following section. 

 

6.6 Effect of Critical Parameters 

Tests with a 0.5 kip sine sweep input function and the linear velocity feedback 

compensation were conducted to demonstrate the effect of three parameters on the 

performance of the compensated system discussed in Chapter 5.  These parameters were 

the controller P gain (Gp), servovalve flow gain (Kv), and servovalve response delay (Tld).  
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It should be noted that although it was intended to consider these parameters individually, 

their effects are usually combined.  

6.6.1 Controller P Gain 

Large controller P gain generally improves the overall system performance; however, 

the increase of the controller P gain is limited due to potential stability problems.  Linear 

analysis by applying Routh's stability criterion indicates that the maximum allowable P 

gain is closely related to the servo-system leakage, which was hardly a fixed value.  A P 

gain of 0.81 was initially used though the predicted maximum P gain was 0.71 as shown 

in Appendix 3.   

During the course of the study, the actuator developed problems and required new 

seals and a recharge of the piston.  This repair significantly reduced the actuator leakage; 

consequently, a P gain of 0.68 had to be applied to keep the uncompensated system 

stable.  The small P gain caused large force tracking errors of the actuator across the 

whole frequency range of interest.  Therefore, a needle valve was connected to the 

actuator ports to create additional "cross-port leakage".  With the increased proportional 

leakage, the maximum allowable P gain was increased to 1.0.   

Figure 6.38 compares the performance of the linearly compensated system with three 

controller P gains.  The additional "cross-port leakage" was engaged in all the tests.  The 

force tracking error of the test with the smaller P gain (0.61) was significantly greater 

than that of the other cases (i.e., Gp of 0.81 and 1.0).  Although the system performance 

with a P gain of 1.0 looked similar to that of the test with a P gain of 0.81, the structural 

response was indeed improved with a larger P gain because of the improved force 

tracking ability of the actuator. 



 

 104 

On the other hand, a large P gain may drive the high-frequency mode of the test 

system into the unstable range as shown in Fig. 5.22.  This situation (i.e., unstable high-

frequency mode) happened many times when tests were conducted to determine the 

maximum allowable P gain beyond the predicted one in Appendix 3 before the additional 

leakage flow passage was installed.  An example of the unstable high frequency vibration 

is shown in Section 6.6.3, where a P gain of 1.0 was used, and the servovalve response 

delay compensation was purposely set incorrectly. 

6.6.2 Servovalve Flow Gain 

Because of the uncertainties in the servo-system, such as hydraulic supply variation, 

the predetermined flow property is unlikely able to reflect the physical condition all of 

the time, thus causing under- or over-compensation during a test.  Fig. 6.39 compares the 

system response with linear velocity feedback compensation based on various initial flow 

gains.  Similar to the simulation results shown in Fig. 5.24, under-compensation 

weakened the ability of the actuator to track forces around the natural frequency of the 

structure while over-compensation contaminated the command signal with a signal at the 

structural resonant frequency.   

The conclusion can be extended to tests that required the nonlinear velocity feedback 

compensation.  The actuator in an under-compensated system would have problems in 

tracking force commands, such as reaching force peaks, while an over-compensated 

system would cause incorrect structural responses and even instability.  Both situations 

were observed experimentally during the process of the development of the nonlinear 

velocity feedback compensation scheme. 
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6.6.3 Servovalve Response Delay  

Uncertainties in the determination of the servovalve response delay may affect the 

system response as shown in Figs. 5.26 and 5.27.  The simulation results were confirmed 

by experiments shown in Fig. 6.40.  As indicated in Chapter 4, a time delay of 5 ms was 

optimal for the servovalve in this study while tests with 3-ms and 7-ms compensation 

were conducted to investigate the effect of the variation of the compensated time delay.  

With insufficient delay compensation, a peak before a valley appeared in the FFT of the 

measured force while a peak after a valley appeared in the frequency domain when the 

delay was over-compensated. 

As indicated in Section 5.6, a combination of high P gain and insufficient delay 

compensation might cause an unstable high-frequency vibration of the actuator piston.  

On the other hand, the unstable vibration would not grow unbounded due to physical 

limits of the test system.  An example of the system response with a P gain of 1.0 and the 

compensated delay of 2ms is shown in Fig. 6.41.  Towards the end of the test when the 

force command was zero, the actuator applied a force with 1-kip amplitude and 64 Hz 

frequency to the structure.  The force vibration might have started by some random input 

(i.e., noise), and would go on until the hydraulics were shut down or the controller P gain 

was turned down such that the high-frequency mode moved back to the stable range.  

Meanwhile, the disturbance in the applied force was not able to excite the structure 

because the forcing frequency was far away from the resonant frequency of the structure. 

 

6.7 Summary 

In the direct implementation of the EFT method, the interaction between the actuator 
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control and the actuator piston velocity, termed "natural velocity feedback", affected the 

actuator's ability to apply forces accurately around the natural frequency of the test 

structure.  The concept of velocity feedback correction proposed by Murcek, termed 

"velocity feedback compensation" herein, was implemented using a physical SDOF 

structural model and a digital controller.  The effect of the natural velocity feedback was 

compensated by modifying the command signal to the servovalve controller.  This 

process required that the compensation loop incorporate the inverse of the dynamics of 

the servovalve and its controller.   

Servovalves have high-order dynamics and nonlinear flow properties.  In the 

laboratory implementation of the velocity feedback compensation, the servovalve 

dynamics were simplified as a first-order delay with a valve gain; the servovalve flow 

property was first linearized around the null position of the servovalve spool.  The above 

linearization resulted in a linear compensation scheme, which can be implemented using 

either analog circuits (Timm, 1999) or a digital signal processor.  Test results showed that 

within a certain operating range of the servovalve (±10% spool opening as indicated in 

Section 4.2.5), the linear compensation could be used to negate the effect of the natural 

velocity feedback.  Beyond the linear range, caused by a large hydraulic demand (large 

spool opening), nonlinearities in the servovalve must be considered in the velocity 

feedback compensation. 

Two major nonlinearities, nonlinear flow gain and load pressure influence, were 

identified in Chapter 4.  The identified piece-wise linear flow curve was used to invert the 

servovalve flow relation.  An estimation of the supply pressure and two additional inputs, 

the spool position and the applied force were needed to invert the load pressure influence.  
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The experimental results showed that with the nonlinear velocity feedback compensation, 

EFT could be used to apply larger forces at all frequencies to the structure in tests that 

required large flow demands.   

The proposed nonlinear velocity feedback compensation scheme required an accurate 

model (knowledge) of the servovalve.  Critical system parameters affected by servo-

system uncertainties were studied experimentally to investigate their effect on the 

implementation of the EFT method.  The test results correlated with those obtained 

analytically in Chapter 5.  Other factors that can affect the performance of the EFT 

method are discussed in the next chapter.  
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CHAPTER SEVEN 

FACTORS THAT AFFECT THE PERFORMANCE OF EFT 

 

 

The methodology of velocity feedback compensation has been shown through both 

experiment and simulation to be able to negate the effect of natural velocity feedback and 

make the implementation of EFT success.  The implementation of velocity feedback 

compensation requires an accurate knowledge of the servo-system.  Uncertainties of the 

servo-system that could affect the laboratory implementation of the EFT method are 

discussed in this chapter.   

 

7.1 Uncertainties in Servo-System 

The performance of the proposed nonlinear velocity feedback compensation depends 

on an accurate servovalve flow curve and accurate delay estimation.  Uncertainties in the 

servo-system, such as leakage and pressure supply variation, reduce the accuracy of the 

system identification.  Leakage in the system may affect the system stability and the 

controllability of the actuator, while variation in the supply pressure affects the flow 

property and response delay of the servovalve.   

7.1.1 Leakage Flow 

Servo-system leakage includes the main-stage valve leakage described by Eq. (3.21) 

and actuator leakages described by Eqs. (3.25) and (3.26).  The proportional leakage Cl 

used in the analytical study represents the actuator cross-port leakage, part of the actuator 

external leakage, and part of the servovalve leakage.  Because leakage passages are 
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caused by hardware wear and imperfection, which are difficult to evaluate, the leakage 

coefficient is difficult to determine accurately.  Controller gain setting based on incorrect 

leakage estimation may affect the system performance and stability.  

The effect of the proportional leakage is shown in the root loci of a linearly 

compensated system with respect to various proportional leakages in Fig. 7.1.  If the 

leakage were zero instead of 5.5 in.3/s/ksi, which was used in determining Gp for the 

design of the linear compensation scheme, the compensated system would have an 

unstable vibration mode related to the valve dynamics.  Large proportional leakage 

increases the damping of the high-frequency mode, and thus allows a larger controller P 

gain (Gp).  This is shown in Fig. 7.2, in which the maximum achievable P gain calculated 

following Routh's stability criteria is plotted against the proportional leakage.  The 

observation was the base of the addition of the cross-port leakage passage mentioned in 

Chapter 6.  Meanwhile, it should be noted that large leakage increases the force-tracking 

error of the actuator as shown in Section 5.2. 

The proportional leakage cannot fully represent the total leakage of the system.  For 

example, the servovalve leakage described by 
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related to half of the supply pressure.  In addition, part of the actuator external leakage 

shown in Eq. (3.26) is proportional to the supply pressure because 
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part of the leakage (termed constant leakage) represents a physical phenomenon that the 

leakage exists whenever the hydraulic pressure is applied to the system.  Because of the 

constant leakage, the force output of the actuator would be below the command force 



 

110 

across the whole frequency range as shown in the simulation results in Fig. 7.3.  The 

simulation with a constant leakage of 0.5 in.3/s matched well the system response to a 0.5 

kip sinesweep input function with linear velocity feedback compensation (also shown in 

Fig. 6.22), indicating that the force tracking error could be in part attributed to the 

constant leakage of the system.  In addition, simulation results indicated that the tracking 

error of the actuator would increase with an increase of constant leakage.  For example, a 

constant leakage of 2.0 in.3/s would result in an unacceptable system tracking error as 

shown by the dark dashed lines in Fig. 7.3.   

Although a feedforward compensation of the constant leakage was theoretically 

possible, such compensation was not further explored because the test system was 

sensitive to incomplete compensation, and the leakage parameter was difficult to 

accurately identify.  Instead, increasing the effective force command signals was used to 

offset the effect of small constant leakages.  If the constant leakage is large, the servo-

system should be sent to the factory for repair. 

7.1.2 Pressure Supply 

Two hydraulic pumps provided 150 gpm oil flow at 3000 psi pressure to the entire 

laboratory at the University of Minnesota.  When an actuator in the laboratory took 

hydraulic flow from the supply line and drove the same amount of flow into the return 

line (work was done during the process), the flow consumption caused a pressure drop in 

the supply line.  The pressure reduction in the supply line was sensed and compensated 

by the hydraulic pumps.  Because the hydraulic pumps had their own dynamics and 

response delay, the pressure supply to the servovalves varied while other tests were 

underway in the laboratory.  The pressure supply variation caused by the other tests was 
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generally small and dependent on their relative positions to the EFT system on the supply 

line while the pressure supply variation caused by an EFT test itself was significant.   

Figure 7.4 shows the supply pressure variation during a test with a small amplitude 

sinesweep input, in which the peak spool opening increased from zero to 15% and then 

decreased at a similar rate to zero.  The supply pressure was 2860 psi in the beginning 

and returned to the same value at the end.  During the test, the supply pressure dropped 

when the spool opened in either direction, and pressure regained roughly its initial value 

when the spool moved back to its null position.  When the pressure drop was large (due 

to a large spool opening), the regained pressure in the supply line had a small overshoot 

(i.e., the supply pressure could have been instantaneously greater than the initial value, 

2860 psi).  

The result of a similar test, in which the maximum spool opening reached 80%, is 

presented in Fig. 7.5.  A similar observation can be made regarding the pressure variation 

along with the variation of the hydraulic demand (represented by the spool opening).  The 

instantaneous supply pressure overshoot was greater but was capped by an upper limit.  

In addition, a sudden pressure drop and regain were evident at 18s and 52s respectively, 

roughly corresponding to a 45% spool opening, indicating some unknown dynamics of 

the hydraulic system.   

The unknown pump dynamics and related response delay were also believed to be 

responsible for the unsymmetrical supply pressure history corresponding to a 

symmetrical spool opening history shown in Figs. 7.4 and 7.5.  The asymmetrical 

pressure variation pattern indicates nonlinearity in the hydraulic supply, meaning that the 

supply pressure variation is dependent on the hydraulic demand history.  The nonlinearity 
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increases the difficulty in determining the servovalve flow property.   

The supply pressure variation was not compensated in the laboratory because it was 

difficult to model the pressure variation and the relation between the supply pressure and 

the servovalve flow.  The modeling error might be significant enough to result in a poor 

response of the test system.  A roughly average value in the second test (2650 psi) was 

used as the supply pressure in the compensation of the load pressure influence. 

An accumulator with a capacity of ¼ gallon closely coupled to the servovalve was 

used to reduce the uncertainty of the servovalve flow property.  The nonlinear flow curve 

of the servovalve with the accumulator is presented in Fig. 7.6.  Compared to a previous 

flow curve shown in Fig. 4.8, the scattering of the experimental data is reduced.  In 

addition, the slopes of the curve at ±80% spool openings are increased, indicating better 

controllability of the servovalve. 

 

7.2 Uncertainties in Test Structure and Test Environment 

The velocity feedback compensation was based on a measured piston velocity.  The 

velocity measurement might include other vibration components in the test structure such 

as the rotation of the cart in Timm (2001).  Results of both experiment and simulation 

indicated that the velocity feedback compensation could compensate for the effect of 

some secondary vibration modes in the test structure.  This section explores potential 

problems in testing structures against a flexible reaction frame, in which the piston 

velocity would not be the same as the structure velocity.   

When the actuator applies forces to the test structure (represented by m, c, and k), the 

same forces are applied to the reaction frame (represented by m1, c1, and k1).  As shown 
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in Fig. 7.7, the piston velocity with respect to the actuator house, which affects the 

actuator control, is the summation of the velocity responses of the structure and the 

reaction frame because the actuator house moves with the reaction frame.  Fig. 7.8 

presents the root locus of a test system with a flexible reaction system, which was 

assumed to have a 150 lb equivalent weight and 40 kip/in. stiffness.  The system without 

velocity feedback compensation has two pairs of zeros corresponding to the natural 

frequency of the test structure and the reaction frame such that the actuator would not be 

able to apply forces at both frequencies.  When the piston velocity is compensated, two 

conjugate poles move towards the zeros that represent the structure and eventually cancel 

them.  On the other hand, two other conjugate poles that are supposed to cancel the zeros 

corresponding to the reaction frame instead move into the unstable region.  Therefore, if 

the compensation were based on a piston velocity relative to a light flexible reaction 

frame (e.g., an A-frame), the system might become unstable.   

If the compensation were based on the structure velocity instead, the effect of the 

zeros corresponding to the structure would be cancelled while the zeros corresponding to 

the flexible reaction frame would not be affected as shown by simulation in Fig. 7.9.  The 

effect of the remaining zeros on the force tracking ability of the actuator within the 

frequency range of interest would be reduced if the reaction system had either large 

damping or a large resonant frequency (a frequency away from the frequency range of 

interest). 

The root locus of another assumed test system with a heavy stiff reaction system, 

which is represented by a 150 kip equivalent weight and 400 kip/in. stiffness, is shown in 

Figs. 7.10 and 7.11.  It seems that the stable pole-zero cancellation is achieved without 
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any problem if the velocity feedback compensation is based on the piston velocity.  

However, the simulation results cannot be extended to other reaction systems blindly.  

Computer simulations should be conducted for the individual test system to avoid 

potential stability problems.  When the compensation is based on the structural velocity, 

the effect of the remaining zeros depends on the damping and the resonant frequency of 

the reaction system.  A slightly damped vibration mode close to the natural frequency of 

the test structure might still significantly affect the ability of the actuator to excite the test 

structure correctly, and the compensation based on the piston velocity would be required. 

 

7.3 Effect of Servo-system on Test Structure  

Effective forces are applied to the test structure by a hydraulic actuator, which is not 

an exact replacement of the force vector acting on the structure shown in the free body 

diagram in Fig. 1.1 (b).  A close examination of the test system shown in Fig. 7.12 

reveals that the piston rod moves with the structure.  Hence, friction and viscous damping 

(caused by the shear of the hydraulic fluid between the piston and actuator house) might 

affect the test structure though the actuator control is based on load cell reading, which 

does not include the above friction and damping forces.  The effect of the servo-system 

on the test structure was evaluated by comparing the results of free vibration tests with 

the actuator attached to those identified in Chapter 4, where the actuator was unattached.  

In the parametric simulations shown below, a stiffness of 3.96 kips/in. was used though 

static loading tests shown in Fig. 4.10 indicated some variations (less than 1%) in the 

structural stiffness. 
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7.3.1 Damping of Structure 

In the free vibration tests with the actuator attached, another actuator on the opposite 

side of the structure as shown in Fig. 7.13 was used to pull away the structure.  The 

structure was released when a steel coupon attaching the structure to the second actuator 

fractured.  The structure then had an initial offset prior to release.  The velocity feedback 

compensation was applied to the attached actuator, which had a zero force command.   

The test result with a -0.69 in. initial offset is shown in Fig. 7.14 along with 

simulation results that best fit the test results.  The simulation result in grey dashed lines 

indicates that the system had a damping coefficient of 0.008 and a friction force of 35 lbs.  

Although the damping properties are different from those identified in Chapter 4 (0.024 

and 6 lbs), test results normalized by the initial offsets shown in Fig. 7.15 indicate that 

the vibrations were dampened to similar amplitude at 7s after the same number of cycles.  

Therefore, the test system with proper velocity feedback compensation would have 

equivalent energy dissipation to the structure on a shake table though the dissipation 

mechanism may be different. 

The change in the energy dissipation mechanism was attributed to actuator force 

(energy) input.  Because the actuator was controlled with zero force command, it tried to 

cancel the resistant force (sensed by the actuator load cell) caused by the actuator 

chamber volume variation and friction and damping forces of the actuator during the free 

vibration test.  Due to inevitable incomplete compensation, the actuator force was not 

zero as indicated by the load cell readings.  The force measurement was plotted versus 

the structural velocity in Fig. 7.16.  A linear curve fitting was made to characterize the 

relation between the resistant force and the structure velocity (i.e., the slope and the 
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intercept of the regression line).  The slope represents an equivalent viscous damping 

coefficient and the intercept represents the friction of the actuator.  The curve fit indicates 

that the actuator input was equivalent to a negative viscous damping (-0.022) and a 

positive friction (38 lbs).   

If the actuator force measured by the load cell was used as the input (F) in the 

simulation based on Eq. (3.38), a damping coefficient of 0.028 and a friction of 2 lbs best 

fit the test results as shown by the dark dashed lines in Fig. 7.14.  This simulation 

considers only the structure; hence, the identified damping properties are similar to those 

in Chapter 4.  A simple relation can be found between the two identified damping 

properties: The structure viscous damping (friction force) plus the damping (friction 

force) provided by the actuator gives the system viscous damping (friction force).  The 

negative viscous damping and positive friction indicate that the actuator did both positive 

and negative work.  With proper velocity feedback compensation, the energy input was 

similar to the energy takeout such that the structural behavior was not affected 

significantly though the exponentially decayed response became a linearly decayed 

response.  Two more free vibration tests were conducted, one with slight over-

compensation and another with under-compensation, to investigate the effect of velocity 

feedback compensation on the energy dissipation of the test system. 

7.3.2 Effect of Velocity Feedback Compensation 

The free vibration test with the over-compensation of the natural velocity feedback is 

presented in Fig. 7.17.  Compared to the case with the roughly correct compensation, 

more negative damping occurred (a viscous damping of -0.003 and a friction force of 37 

lbs) because the actuator was commanded to apply additional forces to the structure due 
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to the incomplete cancellation of the natural velocity feedback.  The additional force was 

proportional to the structure velocity because the modification of the actuator command 

was based on the structure velocity.  On the other hand, if the actuator force was used as 

the input (F) in the simulation based on Eq. (3.38), the identified parameters (0.026 and 1 

lbs) were very close to those in Chapter 4.  The actuator force is plotted against the 

structure velocity in Fig. 7.18.  Again, the structure damping (friction) plus the damping 

(friction) provided by the actuator is close to the damping (friction) of the test system, 

indicating that over-compensation caused additional energy input to the test structure.  

On the contrary, the free vibration test with under-compensation of the natural 

velocity feedback shown in Fig. 7.19 indicates high damping in the system (0.026 and 38 

lbs).  If the actuator force was considered as the input in the simulation, the identified 

parameters were 0.027 and 3 lbs, respectively, which are again very close to the structure 

damping properties identified in Chapter 4.  The plot of the actuator force vs. structure 

velocity shown in Fig. 7.20 indicates that the actuator caused a damping of -0.003 and a 

friction force of 29 lbs.  The aforementioned relation between the system damping and 

the actuator/structure damping holds for this case, indicating that the actuator input less 

energy than it should to the system if the velocity feedback is under-compensated.   

Therefore, the structural behavior related to damping is sensitive to the level of the 

velocity feedback compensation.  The apparent damping properties depend on whether 

the natural velocity feedback is over- or under- compensated.  Generally, the actuator 

input more energy into the system with over-compensation for the natural velocity 

feedback, while the actuator dissipated more energy in the under-compensated system.  

As a result, the test structure would show smaller damping in an over-compensated 
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system and larger damping in an under-compensated system.  This correlates with the 

conclusions drawn in the root locus analysis of the system in Fig. 5.20. 

7.3.3 Mass of Structure 

The actuator piston moves with the test structure, thus the system mass includes the 

mass of the actuator piston.  The piston in this study weighed approximately 120 lbs, 

which represented less than 1% of the mass of the test structure.  This would be expected 

in general for EFT because the actuator would typically be sized according to the 

structural mass and the peak ground acceleration (Spink 2002).  The effect of the addition 

of the mass on the natural frequency of the test structure was deemed negligible.   

 

7.4 Nonlinear Behavior of Structure 

Theoretically, a successful implementation of the EFT method is independent of the 

nonlinear behavior of a test structure.  However, testing a nonlinear structure might 

require large hydraulic flow demand due to large structural velocity response during the 

test.  In these cases, the implementation (not the methodology) of the velocity feedback 

compensation would be affected because the current nonlinear compensation scheme 

requires an accurate knowledge of the servo-system, which is difficult to obtain due to 

system uncertainties, especially at large spool openings.  Consequently, the velocity 

feedback compensation might be instantaneously incomplete, and the test results would 

be different from the expected results if the structural response is sensitive to loading 

histories.  

For example, in the test with a 2.0 sine sweep input function and nonlinear velocity 

feedback compensation shown in Fig. 6.25, the measured structural responses matched 
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well with the expected responses even though the maximum spool opening was 55%.  

During the test, the structure was well into the nonlinear range of its behavior (the 

structural stiffness reduced by half when the displacement was beyond 1 in.).  Other 

examples include the test with full-scale Northridge earthquake effective force input 

shown in Figs. 6.36 and 6.37 and the nonlinear velocity feedback compensation.  The 

structure was correctly excited such that the nonlinear structural behavior was captured 

during the test.  

On the other hand, in another nonlinear test with 0.27g El Centro earthquake effective 

force input shown in Figs. 6.30 and 6.31, a smaller response was obtained in the test 

before 11s while the measured response was larger than the expected response after 18s.  

The reason might have been that the structural response was sensitive to the force peak 

around 2s, which the actuator did not fully reach at due to instantaneous under-

compensation.  

 

7.5 Summary 

Many factors can affect the performance of the proposed nonlinear velocity feedback 

compensation and the EFT method.  The effects may come from uncertainties in the 

servo-system, such as leakage flow and pressure supply variation, or from uncertainties in 

the test environment such as a flexible reaction frame and/or large flow demands.  

Compared with a structure subjected to a shake table test or an earthquake event, the 

structural response in a test using the EFT method can be slightly affected by the actuator 

attached to the test structure.  The actuator physically adds a small mass to the structure 

and alters the energy dissipation of the structure through additional energy input to the 



 

120 

test system.  The energy input can be positive or negative (dissipation) depending on the 

performance of the velocity feedback compensation.  Nevertheless, with a correct 

implementation of the velocity feedback compensation, the EFT method can be used to 

apply real-time seismic simulation to nonlinear structures.  This is further validated using 

a single-story steel structure in the next chapter. 
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CHAPTER EIGHT 

PROOF-OF-CONCEPT TEST 

 

 

To verify that the EFT method would produce results equivalent to those produced in 

a shake table study, a proof-of-concept test was conducted by subjecting the same 

structure to both test methods and comparing the results. 

 

8.1 Experimental Program 

A simple one-story structure was selected for the proof-of-concept test.  The structure 

consisted of a rigid diaphragm (two rectangular steel frames filled with reinforced 

concrete) supported at its corners on four replaceable steel columns as shown in Fig. 8.1.  

The shake table study was conducted using the shake table at the University of Illinois at 

Urbana-Champaign, and the EFT study was conducted at the University of Minnesota.  

The concrete mass weighed approximately 10 kips to fit the load capacity of the table, 

and the column spacing was 60×72 in. to fit the hole-pattern of the base plate of the table.  

The column spacing also fit the size of the diaphragm, which was made for the previous 

SDOF structure.  Four plates with tapped holes were welded on the steel frame of the 

diaphragm to provide connections for the columns. 

The columns were made of W10x15 sections with A572 grade 50 steel, which had a 

measured yield stress of 62.5 ksi.  The columns were 72 in. high and oriented in weak-

axis bending such that the resonant frequency of the structure was approximately 3 Hz. 

The structure stiffness in the orthogonal direction was approximately 23 times larger than 
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that in the direction of motion; hence the out-of-plane motion was prevented without 

additional diagonal braces.  Because the results of the shake table study showed 

repeatable structural behavior even after major yielding of the columns, the same 

columns were used in the companion EFT tests.  In order to minimize the effects of the 

connections on the comparison of the dynamic responses of the structure, the column 

ends were welded to a 1.5-in. thick plate at the bottom and a 1-in. thick plate at the top, 

and the plates were bolted to the diaphragm and the foundation using four ½-in. diameter 

A490 bolts.  

Two fluid dampers were connected between the middle chevron brace and the 

foundation.  The dampers were used to keep the structure from extensive damage for 

most of the tests while tests both with the dampers and without the dampers were 

conducted.  The behavior of the dampers was found to be nonlinear; hence, the structural 

behavior was difficult to predict even when the columns were in the linear elastic range.   

Both global and local responses of the structure were monitored.  The measured 

global responses included acceleration (A), velocity (V), and displacement (D) of the 

mass.  In the shake table tests, the structural velocity was measured directly relative to the 

table while the structural acceleration and displacement were measured relative to the 

global reference frame.  The table displacement and acceleration were subtracted from 

these measured responses to calculate the relative responses to the table, and the relative 

responses were compared to the measured responses in the EFT study. 

The monitored local responses included column flange strains and damper forces.  

The column moment and shear (Q) were calculated from strain measurements.  Strain 

gages were placed on each column 8 in. from both column ends as shown in Fig. 8.2 (a).  
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It was assumed that plane sections remained plane after deformation at the gage sections 

(i.e., linear strain distribution across the section as shown in Fig. 8.3).  Hence, the strains 

at the flange tips were calculated using a linear extrapolation (strain gages were not right 

at the flange tips).  The moment at a gaged section was calculated by ESε before the 

section yielded (ε≤εy), where ε was the average strain at the four flange tips of the 

section.  The stress-strain relationship was assumed elastic-perfectly plastic.  When 

yielding occurred at a gaged section, the corresponding moments were approximated by 

2
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where E is the modulus of elasticity of steel (29,000 ksi), S is the section modulus of the 

column with respect to the weak axis (1.45 in.3) , and εy is the yield strain of the steel 

(σy/E=0.0021).  The second term in the bracket estimates the contribution of the shaded 

blocks in Fig. 8.3 that need to be subtracted from a moment calculated by ESε.   

The base shear for each column was calculated by dividing the sum of the two end 

moments by the distance between the gaged sections.  The total base shear was the 

summation of the base shears of the four columns.  The total base shear (kx) was also 

calculated by subtracting the damper force ( cx& ), measured by two load cells in line with 

the dampers, from the total inertial force, ( )gm x x− +&& && , where gx x+&& &&  was the measured 

acceleration relative to the global reference.  In the EFT study the total inertial force was 

replaced by the measured actuator force (should be gmx− && , where gx&&  is the measured 

shake table acceleration) plus the relative inertial force ( mx− &&). 

The load cells were made of a 1-in. diameter threaded rod.  The gage placement on 
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the threaded rod is shown in Fig. 8.2 (b), including two gages measuring the axial strain 

and the other two measuring the Poisson strain.  The load cells were calibrated with the 

signal conditioner, a 2100 system by Measurement Group Inc.  The conditioner excitation 

was 5 volts, and the gain was set such that the output was ±1 volt when using shunt 

calibration.  With the above conditioner setup, the sensitivity factor of the load cells was 

found to be 2.0 kips/volt by static loading tests. 

The input functions used in the shake table study included a sine wave sweep (1-10 

Hz), the El Centro earthquake ground acceleration, and the Northridge earthquake ground 

acceleration.  The frequency of the sinesweep inputs started from 1 Hz because the shake 

table actuator was under displacement control.  The ground acceleration signals were 

transformed into required displacement signals by the actuator controller through double 

integration.  For low frequency accelerations, the above process could cause a large 

displacement command, which might exceed the table stroke limit (-2in. to 2in.).  The 

maximum peak ground accelerations for the El Centro and Northridge earthquake records 

used in the shake table study were limited (0.30g and 0.55g, respectively) for this reason. 

 

8.2 Shake-table Test 

A schematic of the test structure on the shake table is shown in Fig. 8.4, and the 

laboratory realization is shown in Fig. 8.5.  More details regarding the connections can be 

found in Appendix 7.  The relative responses were calculated using  

( )2 4stt N M S TD D D D D= + + −     (8.2) 

stt M TA A A= −        (8.3) 
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( )Dstt W EF L L= − −       (8.4) 

where Dstt, Vstt, and Astt are the displacement, velocity, and acceleration of the structure 

relative to the table, and FDstt is the damper force.  As labeled in Figs. 8.4 and 8.5, there 

were four potentiometers, three at the structural mass level (DN, DM, DS) and one on the 

shake table (DT), two accelerometers, one on the mass (AM) and the other on the table 

(AT), and two load cells (LW and LE), one for each damper.  The sign conventions for 

positive global responses and positive column moment and shear are shown in Fig. 8.4. 

The columns were bolted to a ½ in. thick base plate, which was bolted to the table 

using ½-in. diameter bolts shown as the dots in Fig. 8.6.  The bending of the base plate 

during testing was prevented by one bolt located 5 in. away from the column base plate in 

the direction of motion.  Experimental results have shown that more than 97% of the 

structural displacement was due to the shear deformation of the columns and the rest of 

the displacement was from the overturning of the structure due to the bending of the table 

base plate. 

The load displacement relationship for a static loading test of the structure on the 

shake table is shown in Fig. 8.7, from which the structural stiffness was found to be 8.65 

kips/in. using a linear curve fit.  Due to the physical limitation of the test equipment, the 

static loading test was conducted in one direction (positive displacement direction) with a 

maximum offset of ¼ in.  Free vibration tests with and without the fluid dampers were 

conducted to determine the structural properties, and the test results are shown in Figs. 

8.8 and 8.9, respectively.  Because the measured table displacement was too noisy to be 

used in determining the structural displacement relative to the table, the measured 

structural velocity was used in the parameter identification.   
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The parametric simulation was based on Eq. (3.38), where the structural stiffness k 

was obtained through the static loading test, while the structural damping (i.e., viscous 

damping c and Coulomb friction Fc) and the structural mass were determined based on a 

least square technique.  The structural mass was considered in the process because it may 

affect the period of the simulation response, which in turn may affect the error evaluation 

of the process of the parameter identification.   

In the test without dampers, the structural velocity relative to the table remained 

constant after 4s because the shake table could not stay stationary during the tests.  

Hence, the measured table acceleration multiplied by the structural mass was considered 

as the input force F in Eq. (3.38).  The results of the simulation with 10.1 kip mass, 0.3% 

viscous damping, and 1 lb. friction force best matched the experimental results.   

In the case with the fluid dampers, the dampers were found to have a complicated 

nonlinear damping characteristic, which slightly affected the natural frequency of the 

structure.  Hence, the structural mass (9.3 kips) obtained in this test was deemed incorrect 

due to the inaccurate damping characterization (using a combination of viscous damping 

and Coulomb friction to model the complex behavior).  In addition, the structural 

response would be difficult to predict analytically due to the difference between the 

modeled and the actual structural damping .   

 

8.3 Effective Force Testing 

A schematic of the structure used during the EFT study is shown in Fig. 8.10, and the 

laboratory realization is shown in Fig. 8.11.  The same columns as in the shake table 

study were used in the EFT study because the shake table tests had good repeatability of 
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the column behavior even after major yielding.  More details regarding the connections 

are documented in Appendix 7.  The structural responses were calculated using  

( )2 4eft a U DD D D D= + +     (8.5) 

( ) 2eft N SA A A= +      (8.6) 

Deft W EF L L= −      (8.7) 

where Deft and Aeft are the displacement, velocity, and acceleration of the structure and 

FDeft is the damper force.  As labeled in Figs. 8.10 and 8.11, the sensors used in EFT tests 

included two potentiometers, one at the structural mass level (DU) and one at the damper 

level (DD) in addition to the actuator LVDT (Da), two accelerometers (AN and AS), one on 

each side of the mass, and same two load cells (LW and LE).  The sign conventions for 

positive global responses and positive column moment and shear are shown in Fig. 8.10.   

The columns were bolted to a ¾-in. thick base plate, which was bolted to the strong 

floor using 1-in. diameter threaded rods (36 in. long) shown as dots in Fig. 8.12.  

Although the base plate and the anchorage of the base plate were different from those in 

the shake table study, experimental results have shown that the structural stiffness was 

close to that in the shake table study.  The load displacement relationship for a static 

loading test of the structure is shown in Fig. 8.13, from which the structural stiffness was 

found to be 8.77 kips/in. through a linear curve fit.   

The structural stiffness of the structure in the EFT test was 1.4% greater than that 

obtained in the shake table study due to a slight change in column boundary conditions.  

The structural mass changed by 2%, which was in part due to the addition of a thick plate 

for connecting the actuator in the EFT test.  With the above structural properties, the 
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natural frequency of the structure changed approximately by 1% between the two tests 

(from 2.89 Hz in the shake table study to 2.87 Hz in the EFT study).   

The measured displacements obtained in free vibration tests with and without the 

fluid dampers are shown in Figs. 8.14 and 8.15, respectively.  The structural damping and 

mass were determined using the same procedure as in the shake table study, and the 

structural displacement was used in the process.  The structure without the dampers had 

very small damping (0.2% viscous damping plus 1 lb friction).  In addition, the 

simulation with 8.2% viscous damping best fit the test results with the dampers.  The 

identified structural properties are listed in Table 8.1 along with those in the shake table 

study. 

Compared to the shake table study, the structural damping properties had a greater 

change than the stiffness.  For the case without the dampers, the structural viscous 

damping in the EFT test reduced by 33% though the damping was very small such that 

test and/or simulation errors might have been responsible for the difference.  For the 

structure with the dampers, the damping decreased by approximately 10% (from 9.2% in 

the shake table test to 8.2% in the EFT test) in addition to the disappearance of the 

friction force in the EFT test.  The force velocity curve of the damper shown later 

indicated that the damper performed differently, which was attributed to an unknown 

change in the damper fluid and a change in the working environment of the dampers.  

With a reduced damping, it was anticipated that the structural responses observed in EFT 

tests would be slightly greater than those in the shake table study.    
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8.4 Servo-system Parameters for EFT Tests 

The procedure in Appendix 3 was followed to identify the parameters required by the 

EFT tests.  The structural mass was limited by the shake table capacity, and the peak 

ground accelerations for the two selected earthquake records (El Centro earthquake and 

Northridge earthquake) were limited by the shake table stroke.  With the structural 

properties identified in the last section, the capacity of the servo-system was checked 

using nonlinear numerical analysis.  The servo-system used in this study (a 35-kip 

actuator controlled by a 90-gpm servovalve) was found to be capable of applying the 

effective forces to the test structure based on measured table acceleration in the shake 

table tests.   

With the second-order model obtained in Chapter 3 and the parameters identified in 

Chapter 4, the servovalve response delay was found to be 5.2 ms. In addition, the 

controller P gain was empirically determined as 1.0 and the controller D gain 0.2 ms in 

the EFT tests.  After considering the 0.2 ms phase lead caused by the PID controller,  the 

response delay Td to be compensated was found to be 5.0 ms. Similar to the tests on the 

SDOF structural model, the constant α was empirically chosen as 0.1 for the phase-lead 

network (Eq. (2.35) and Eq. (6.4)).  The valve gain was 0.1 (10 volts command signal 

corresponds to 100% spool opening) as in the tests discussed in the previous chapters. 

The servovalve flow curve was identified following the procedure in Appendix 3.  

The test results are listed in Table 8.2, and the mean curve defined in the shaded blocks 

was used in the EFT tests.  One noteworthy observation is that the flow values, especially 

those corresponding to small spool openings, are larger in the tests with smaller 

amplitude commands (i.e., smaller peak hydraulic demand or spool opening).  Hence, 
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using the average flow curve in the EFT tests that require only small spool openings, 

would cause slight over-compensation.  There was no attempt made to optimize the flow 

curve for individual tests to get the best correlation between shake table test and EFT test 

results, and the identified flow curve was used in all EFT tests. 

Other required parameters are as follows.  The sensitivity factor of the tachometer-

type velocity transducer was 0.196 volt/in./s (specified by manufacturer); the actuator 

piston area was 12.73 in.2 (specified by manufacturer); and the pressure supply was 2650 

psi (empirically measured).  With these parameters, tests were conducted with both 

sinusoidal and earthquake effective force inputs.  Because the shake table was not able to 

apply the specific ground acceleration perfectly, the measured table acceleration in the 

shake table tests multiplied by the identified structural mass was used for the force 

command signals in the EFT tests. 

 

8.5 Test Results 

The EFT tests were conducted with the measured table acceleration of selected shake 

table tests.  In the following comparisons, "Shake table test" represents the measured 

table acceleration times the estimated structural mass, which is also the effective force 

command for EFT tests.  "EFT test" represents the force applied to the structure measured 

by the actuator load cell.  The forces are compared in both the time domain and the 

frequency domain.  The structural responses (i.e., displacement and velocity) measure 

relative to the shake table or the strong floor and local responses such as column base 

shear calculated from strain gage readings are then compared in the time domain.  Results 

obtained in the EFT tests are shown by dashed lines while the shake table results are 
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shown by gray solid lines. 

 

8.5.1 Tests with Dampers 

When the two dampers were attached to the structure, the columns were kept in their 

linear elastic range of behavior during the shake table study.  Hence, the EFT tests 

corresponding to the shake table tests with large excitations are presented.  Figure 8.16 

compares the forces of the tests with a 0.13g sinesweep (1-10 Hz) acceleration input.  

Due to the dynamics of the shake table and its servo-hydraulic system, the table output 

overshot low frequency signals (≤ 5 Hz) while the table output was smaller than the 

command at larger frequencies.  The effective force command based on the measured 

table acceleration was followed closely in the EFT test except that the force applied to the 

structure by the actuator was slightly greater than the force command from 6s to 9s in the 

time domain.  This was attributed to a slight over-compensation of the natural velocity 

feedback because the maximum spool opening during the test was about 20%, and the 

identified flow curve slightly underestimated the real flow property of the servovalve in 

this case.  The relatively larger discrepancy near 2.8 Hz (i.e., the natural frequency of the 

test structure) in the frequency domain was in part attributed to the accumulative nature 

of the FFT algorithm.   

Both the global response and local response of the EFT test agreed well with those of 

the shake table test as shown in Figs. 8.17 though the structural responses in the EFT test 

were slightly greater than the shake table results.  The difference in the structural 

responses was attributed to the slight over-compensation of the natural velocity feedback 

and the aforementioned decrease in structural damping.  The damper behavior is 
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examined by comparing the force-velocity curves in Fig. 8.18.  As can be seen, the 

resistant forces provided by the dampers in the EFT test were smaller that those in the 

shake table test.  The columns in both tests had a slight hysteretic behavior as shown in 

Fig. 8.19 though the static loading tests shown in Fig. 8.13 indicated that the structure 

was still linear elastic.   

The results of tests with a 0.29g El Centro earthquake input are compared in Figs. 

8.20 through 8.21, and the tests with a 0.55g Northridge earthquake input are compared 

in Figs. 8.22 through 8.23.  Close matches in both forces and structural responses are 

evident indicating that with the nonlinear velocity feedback compensation, the actuator 

was able to apply forces accurately.  On the other hand, the maximum spool opening in 

the 0.29g El Centro earthquake test was 16%, and the maximum spool opening was about 

30% in the 0.55g Northridge earthquake test.  As a result, slight force discrepancies in the 

frequency domain near the natural frequency of the test structure indicate a slight over-

compensation of the natural velocity feedback, which correlated to the observations made 

in the tests with the sinesweep input shown Fig. 8.16.   

8.5.2 Tests without Dampers 

The EFT tests without dampers were problematic due to the narrow stability margin 

of the system as a result of the small structural damping.  Test results with a 0.3g El 

Centro earthquake are presented here to illustrate the problem encountered.  Figure 8.24 

shows a comparison of the measured force in the EFT test with the effective force 

command (i.e., the measured shake table acceleration times the structural mass).  

Although the actuator seemed able to apply forces at all frequencies within 10 Hz, large 

force overshoots around 3s are evident.  The force overshoots caused large piston 
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velocities, which in turn caused large hydraulic demands.  As indicated in Section 7.1.2, 

the uncertainties (i.e., primarily the variation in the servovalve flow property) of the 

servo-system typically increased with an increase in hydraulic demand.  Hence, the 

implementation of the EFT method based on a predetermined flow curve might have 

caused under- or over-compensation of the natural velocity feedback.   

In this case, the over-compensated system was slightly driven into the unstable region 

after 3s, and the structural responses were much larger than those in the shake table test 

as shown in Fig. 8.25.  Because the test structure without dampers had little damping 

(0.25%), the test system could not tolerate the instantaneous instability.  In addition, 

although the command force was zero after 25s, the actuator applied a small amplitude 

force to the structure due to the incomplete compensation of the piston velocity.  The 

frequency of the force input was identical to the resonant frequency of the test structure, 

and the force input was in phase with the structural response, thus resulting in a small 

energy input.  The energy input at this frequency maintained a constant amplitude 

oscillation, which did not die down until the program was shut down.   

Tests with under-compensation of the natural velocity feedback were conducted to 

eliminate the instability.  A test with 93% velocity compensation is shown in Figs. 8.26 

an 8.27 for the same 0.3g El Centro earthquake input.  Although the system was able to 

maintain stability and the actuator force seemed able to follow the force command, the 

structural responses were much smaller than those in the shake table study due to the 

increase in the system damping caused by the under-compensation of the natural velocity 

feedback (Section 7.3.1). 

Because the proposed nonlinear velocity feedback compensation was based on a 
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predetermined flow curve, which did not consider the uncertainties of the hydraulic 

supply system, EFT testing with the current velocity compensation should be limited to 

structures with some damping (e.g., 2% based on experiences from this study) to prevent 

instantaneous instability.   

8.5.3 Tests with One Damper 

The two fluid dampers provided roughly 8.2% critical damping to the test structure.  

Tests with one damper were conducted with EFT to simulate more typical structural 

damping.  The feasibility of the EFT method was examined by comparing the measured 

actuator force to the effective force command because shake table tests with the single 

damper were not conducted.  Figure 8.28 presents the test results with a 2kip sinesweep 

input.  The actuator closely followed the force command as shown in both the time 

domain and the frequency domain plots.  The maximum spool opening during the test 

was 55%, which was close to that in the parameter identification tests.  Hence, the natural 

velocity feedback was properly compensated with the identified flow curve shown in 

Table 8.2.  In addition, the force tracking ability was not affected by the hysteretic 

column behavior (i.e., columns yielded during the test) shown in Fig. 8.29 and the highly 

nonlinear damper performance shown in Fig. 8.30. 

Similar observations can be made for the test with a 0.29g El Centro earthquake input 

shown in Fig. 8.31, and the test with a 0.55g Northridge earthquake input shown in Fig. 

8.32.  A better match is evident for the El Centro test because the earthquake effective 

force had a small frequency content at the resonant frequency of the test structure, hence 

peak forces were unlikely to happen simultaneously with peak velocities.  These results 

indicate that the EFT method with the nonlinear velocity feedback compensation can be 
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used to apply real-time seismic simulations to structures.  More advanced adaptive 

velocity compensation is necessary for testing structures with little damping. 

 

8.6 Summary 

The feasibility of the EFT method was examined by comparing the test results 

obtained from shake table studies to those obtained from the companion EFT tests on a 

single-story steel structure.  The comparison of the test results showed that with the 

nonlinear velocity feedback compensation, forces can be applied to the structure 

satisfactorily at all frequencies of interest, and the EFT method can be used to apply real-

time seismic simulation to structures.  On the other hand, with the current nonlinear 

velocity compensation scheme, there is a structural damping requirement of 

approximately 2% to avoid possible instantaneous instabilities due to variations in 

hydraulic supply pressure and uncertainties in the parameters used in the nonlinear 

velocity feedback compensation scheme.   
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CHAPTER NINE 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

Real-time dynamic testing is necessary for studying structures with strain-rate critical 

components and structures utilizing velocity dependent devices (e.g., active or passive 

damping devices).  Effective force testing (EFT) is a dynamic testing procedure to apply 

real-time simulated earthquake loads to large-scale structures that can be simplified as 

lumped mass systems.  In an EFT test, the test structure is anchored to a stationary base, 

and dynamic forces are applied by hydraulic actuators to the center of structural mass.  

The force to be imposed (effective force) is the product of the structural mass and the 

ground acceleration record, and thus is independent of the structural properties such as 

stiffness and damping, and their changes during the test.  Motions measured relative to 

the ground are equivalent to the response that a structure would develop relative to a 

moving base as in a shake table test or an earthquake event. 

The development and implementation of EFT has been underway at the University of 

Minnesota since 1996.  The purpose of this research was to extend the development and 

implementation of the EFT method to fully utilizing the capacity of the test equipment 

and testing nonlinear SDOF structural systems.  The implementation of EFT requires 

velocity feedback compensation in order for the actuators to apply forces accurately to 

structures.  Nonlinearities of the servo-system become significant to the performance of 

the EFT method and must be considered when a test requires large hydraulic demands. 
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9.1 Summary of Research Program 

The objective of the research was to control the actuator to follow effective force 

commands accurately even in the nonlinear range of performance of the servo-system.  

The feasibility of the EFT method was first examined by comparing the applied forces 

measured by the actuator load cell with command forces (effective forces) and secondly 

by comparing the measured structural responses relative to the calculated responses of a 

simple SDOF structure (mass-spring-damper system).  To further verify the EFT method, 

a one-story steel structure was tested on a shake table and using the EFT method, and the 

measured responses were compared.  The comparison included both global responses 

(effective force, structural acceleration, velocity, and displacement) and local responses 

(damper force and column base shear).   

The servo-system in this study consisted of a 35 kip actuator, a 90 gpm servovalve 

and an analog servovalve controller.  Detailed mathematical models for the servo-system 

were derived to better understand the system behavior and to facilitate the velocity 

feedback compensation design.  Computer simulation and linear system analysis were 

conducted to investigate potential stability problems.  The conclusions of analytical 

studies were validated experimentally using the simple SDOF structure and the one-story 

steel structure.   

The implementation of the EFT method should be independent of the nonlinear 

behavior of test structures as long as the natural velocity feedback can be properly 

compensated.  To verify the independency, the simple SDOF structure was designed such 

that nonlinear elastic structural behaviors could be obtained repeatedly.  In addition, in 

the tests of the one-story steel structure, the dampers were highly nonlinear though the 
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columns were only partly yielded. 

 

9.2 Conclusions 

9.2.1 Modeling of Servo-System 

A mathematical model of the test system was developed, which describes the 

relations between the system components (i.e., servovalve, actuator, controller, and test 

structure).  The system model was derived from the fundamental physics and the 

mathematical formulations by Merritt (1967), while detailed models for the individual 

components were proposed to better represent the physical system.  

The servovalve controller primarily functions as a proportional-integral-derivative 

(PID) controller.  A large P gain usually improves the system performance (i.e., better 

force tracking of the system); however too large of P gain may cause an unstable high-

frequency vibration mode in the test system.  A small controller D gain (i.e., a couple of 

tenths of milliseconds) can help stabilize the aforementioned vibration.  The controller I 

gain was always set to zero to avoid wind-up problems caused by the integration of 

signals having constant offsets. In this case (i.e., PID control with a zero I gain and a 

nonzero D gain), the PID controller also causes a small phase lead.   

The dynamics of the servovalve were modeled as a second-order system, and the 

required parameters were determined based on the physical operation of the valve (e.g., 

the spool area and the flow gain) and verified through experiments.  The second-order 

valve model facilitated the determination of servovalve response delay and the stability 

analysis of the test system regarding the high-frequency vibration mode.  Experimental 

results indicated that the second-order model could accurately represent the servovalve 
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dynamics across a wide range of frequencies (0-20 Hz). 

The relation between the hydraulic flow through the servovalve and the main-stage 

spool opening was found to be nonlinear.  Two types of nonlinearities were identified for 

the servovalve: load pressure influence and nonlinear flow gain.  The load pressure 

influence described the nonlinear flow through a fixed orifice with a variable pressure 

difference across the orifice.  Bernoulli's equation was used to relate the flow to the load 

pressure, and the nonlinear relation was explicitly expressed by a square root term.  On 

the other hand, the nonlinear flow gain, which was found to reflect the nonlinear flow 

discharge through a variable orifice, was difficult to describe mathematically.  Hence a 

testing procedure was proposed to determine the no-load flow property of the servovalve.  

The actuator dynamics was derived based on the continuity analysis of the hydraulic 

fluid volumes inside the actuator chambers, in which the leakage flow was further 

studied.  The system leakage flow includes the valve leakage, actuator cross-port leakage, 

and actuator external leakage.  The system leakage was modeled by a combination of a 

proportional leakage and a constant leakage.  The proportional leakage, which represents 

the leakage related to the load pressure across the actuator piston, was found to stabilize 

the high-frequency vibration mode.  On the other hand, the constant leakage represented 

the leakage that existed whenever the system was loaded by hydraulic pressure.  The 

constant leakage could significantly deteriorate the force tracking ability of the actuator at 

all frequencies of interest.  

Parameters for the proposed models were identified based on experiments and 

product specifications.  The system was tested with sinesweep force and displacement 

commands to validate the overall system model and the identified parameters.  The close 
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match between the simulation results and the experimental results indicated the accuracy 

of the model.  Various velocity feedback compensation schemes were then investigated 

with computer simulation before their laboratory implementation. 

9.2.2 Velocity Feedback Compensation 

During a test directly implementing the EFT method, the servovalve controls 

hydraulic fluid into and out of the chambers of the actuator to generate forces applied to 

the structure.  Meanwhile the resultant motion of the structure/piston changes the volume 

of the chambers.  A standard Proportional-Integral-Derivative (PID) controller coming 

with the servovalve was unable to compensate for the chamber volume variation, thus 

causing force-tracking errors of the actuator. 

The direct compensation for the interaction between the actuator control and the 

actuator piston velocity requires an access to the ports connecting the actuator chambers 

and a special servovalve, which are not easily available.  Hence, the effect of the natural 

velocity feedback was compensated by modifying the command signal to the servovalve.  

Compared to the direct compensation, the proposed velocity feedback compensation 

(previously the velocity feedback correction) needs to incorporate the inverse of the 

dynamics of the servovalve and its controller.  Furthermore, only the dynamics of the 

servovalve and its controller needs to be considered in the velocity feedback 

compensation. 

Although servovalves have high-order dynamics, the dynamics could be accurately 

represented by a first-order delay with a valve gain for the frequency range of interest (0-

10 Hz).  Hence, a first order phase-lead network with a constant was used to invert the 

valve dynamics.  The dynamics of the PID controller with a zero I gain was simplified as 
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a constant and a small phase lead, which was considered in determining the response 

delay of the servovalve.   

The servovalve would behave nonlinearly when large flow demands are required 

during a test.  Hence, the nonlinearities must be considered in the velocity feedback 

compensation if the servovalve capacity is to be fully utilized.  Large flow demands 

could be caused by large structural velocity responses and/or large effective forces.  

These situations could happen even in linear elastic tests though structural nonlinearities 

could be a cause of large structural velocities.  An estimation of the supply pressure and 

two additional inputs, the spool position and the applied force were used to compensate 

for the load pressure influence, and the identified flow curve (i.e., the piecewise linear 

curve connecting 21 control points across the operating range of the servovalve) was used 

to invert the nonlinear flow gain of the servovalve. 

The velocity feedback compensation schemes were verified experimentally using the 

simple SDOF structure and the one-story steel structure.  

9.2.3 Experimental Study 

The velocity feedback correction proposed in the previous studies (linear velocity 

feedback compensation) was found effective but limited (i.e., the maximum spool 

opening must be within 10%, the linear range of the servovalve behavior).  With the 

nonlinear velocity feedback compensation, effective forces were applied to the simple 

SDOF structure at all frequencies in tests with a variety of hydraulic demands (maximum 

60% spool opening).  In some demanding yet successful tests, the structure was taken 

well into its nonlinear range of behavior, indicating that the structural nonlinearities 

would not affect the implementation of the EFT method.  
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The feasibility of the nonlinear velocity feedback compensation and the EFT method 

was further evaluated by testing a one-story steel structure with a shake table and EFT 

and comparing the results.  The comparison of the test results with the two test techniques 

showed that with proper velocity feedback compensation, the EFT method could be used 

to apply real-time seismic simulation to a structure that has complex damping properties 

and hysteretic behaviors.  

To completely compensate the natural velocity feedback, accurate model of the servo-

system is necessary.  Uncertainties in the servo-system may affect the performance of 

velocity feedback compensation because the nonlinear compensation scheme was based 

on a single flow curve, and a fixed servovalve response delay.  The uncertainties in 

servovalve flow properties may cause instantaneous under- or over-compensation of the 

natural velocity feedback.  The under-compensation might affect reaching force peaks, 

especially when the effective force command contains large frequency content at the 

resonant frequency of the test structure.  On the other hand, the over-compensation might 

cause instability in testing a lightly damped structure; hence, it is recommended to use 

EFT to test structures with at least 2% critical damping to avoid possible instantaneous 

instability.   

An incomplete (either over- or under-) compensation of the natural velocity feedback 

may slightly change the loads applied to the test structure.  Similar to shake table testing, 

the effect of the slight inaccurate loading may be significant when testing a nonlinear 

structure because the structural responses could be load-history dependent.   
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9.3 Future Development of EFT 

With the proposed nonlinear velocity feedback compensation and the testing 

procedure shown in Appendix 3, the EFT method can be used in the laboratory to apply 

real-time simulated seismic loads to large-scale structures.  As the EFT method becomes 

available to researchers, the testing capability of existing laboratory equipment will 

expand from quasi-static testing to real-time dynamic testing of large-scale structures.  

The further development of the EFT method may focus on the following directions: 

• A better understanding of the uncertainties in the servo-system including the 

hydraulic supply and accumulation system.  New velocity feedback compensation can 

be designed based on a better model of the servo-hydraulic system.  

• Adaptive velocity feedback compensation algorithms to improve the performance of 

EFT, especially the stability of a system testing structures with small damping. 

• Direct compensation of the natural velocity feedback by directly modifying the flow 

into/out of the actuator chambers.  

• Effective force testing with substructuring techniques for testing structural 

subassemblages. 

• Multi-degree-of-freedom (MDOF) implementation of the EFT method.   

• Bi-directional implementation of the EFT method for testing non-planar structures. 
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TABLES 

 

Table 4.1 System parameters for simulation 

Parameter Value Parameter Value 

A 12.73 in.2 Ka 0.3182 in.3/ksi 

Av 0.3044 in.2 Ks 0.1 

c 0.024 kips/in/s Kv 1003 in.3/s 

Cl 5.5in.3/s/ksi Kvp 0.644 in.3/s/volt 

CF 0.25 volt/kip m 15.5 kips 

CF 2.0 volt/in. Ps 2.65 ksi 

Fc 6 lbs Td 5.0 ms 

Gp 0.8059 ~1.0 Tld 5.6 ms 

Gd 0.002 s xvmax 0.11 in. 

k 3.96 kips/in. a 0.1 

K3 90.91 volt/in. τ 0.0014 s 

 
 
 
Table 4.2 Flow curve of the servovalve (flow value in in3/s) 

xv 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

QL + 102.2 187.2 260.4 321.1 369.8 411.2 441.0 468.3 495.7 523.0 

QL - -101.0 -188.2 -260.9 -324.2 -377.1 -419.9 -452.3 -480.2 -508.2 -536.2 
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Table 8.1 Structural Properties of single-story structure 

Shake table study Effective force testing 

 
m 

kip-s2/in. 
c 

kip-s/in.
Fc 

kips 
k 

kips/in. 
m 

kip-s2/in.
c 

kip-s/in. 
Fc 

kips 
k 

kips/in.

no damper 0.0262 0.003 0.001 8.62 0.0267 0.002 0.001 8.75 

w/ damper 0.0241 0.088 0.008 8.59 0.0249 0.079 0 8.70 

 
 

Table 8.2 Servovalve Flow Curve for proof-of-concept test (flow value in in3/s) 

Spool 4.5 in. 4.0 in. 3.5 in. 3.0 in. 2.5 in. 2.0 in. 1.5 in. 1.0 in. Average

-1.0 0.0        -515.9 
-0.9 0.0        -496.2 
-0.8 -476.4        -476.4 

-0.7 -455.0 -450.3       -452.6 
-0.6 -418.5 -420.6 -417.9      -419.0 
-0.5 -369.7 -374.1 -377.0 -374.7     -373.9 
-0.4 -315.7 -317.5 -320.8 -323.9 -327.9    -321.2 
-0.3 -253.2 -254.0 -255.1 -257.9 -264.1 -264.3   -258.1 

-0.2 -183.1 -183.7 -184.6 -184.6 -189.3 -190.0 -190.7  -186.6 
-0.1 -98.4 -98.8 -99.1 -99.2 -100.9 -102.3 -102.3 -102.6 -100.5 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.1 99.2 99.5 100.0 100.2 102.0 103.2 103.9 104.5 101.6 

0.2 182.7 182.9 183.5 183.4 188.0 188.7 188.5  185.4 
0.3 253.3 253.9 254.9 257.0 263.1 262.6   257.5 

0.4 313.0 314.4 317.2 319.6 322.3    317.3 

0.5 364.2 367.8 370.0 365.8     366.9 
0.6 408.7 411.1 405.1      408.3 
0.7 444.7 438.4       441.6 

0.8 464.4        464.4 
0.9 0.0        481.5 

1.0 0.0        498.7 
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Figure 1.1 Comparison of shake table test to Effective Force Testing 
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Figure 2.1 An orifice inside a cylindrical pipe 
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Figure 2.2 Typical plot of discharge coefficient versus Reynolds number for flows 
through an orifice in a pipe (reproduced after Merritt) 
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Figure 2.3 A submerged sharp-edged orifice 
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Figure 2.4 Typical plot of discharge coefficient versus Reynolds number for flows 
through a submerged orifice. (reproduced after Street et. al.) 
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Figure 2.5 Impulse response associated with pole positions in the s-plane 
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Figure 2.6 Frequency response of a first-order term in denominator (τ = 0.0014 s) 
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Figure 2.7 Frequency response of a second-order term in denominator (ωn = 1.6 Hz) 
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Figure 2.8 Frequency response of a third-order system 
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Figure 2.9 Frequency responses of phase-lead networks (0.1-200 Hz) 
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Figure 2.10 Frequency responses of phase-lead networks (0-10 Hz) 
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Figure 3.1 A schematic of a testing system in force control 
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Figure 3.2 A schematic of a three-stage servovalve 
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Figure 3.3 A block diagram of a servovalve controller 
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Figure 3.4 A block diagram of a three-stage servovalve (Hs) 
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Figure 3.5 A schematic of a main stage spool 
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Figure 3.7 A schematic of an actuator piston 
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Figure 3.8 A block diagram model of the test structure 
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Figure 3.9 The interaction between piston (structure) velocity and actuator dynamics 
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Figure 3.10 A block diagram of a testing system in force control 
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Figure 3.11 A simplified linearized block diagram of a testing system in force control 
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Figure 4.1 Comparison of the frequency response of the first-order and the second-order 

model for the pilot-stage valve 
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Figure 4.2 The frequency response of the three-stage servovalve  
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Figure 4.3 The frequency response of three-stage servovalve model with a 110% pilot-

stage flow gain in simulation 
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Figure 4.4 Measured spool positions vs. valve commands 
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Figure 4.5 Servovalve response delay 
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Figure 4.6 Servovalve response delay (frequency domain) 
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Figure 4.7 A typical flow vs. spool opening curve (regenerated with MTS testing data) 

 

-1 -0.5 0 0.5 1
-500

0

500

Spool opening

fl
ow

 (i
n3 /s

)

Max. flow= 422.7 @ spool= 0.81 

Min. flow= -433.0 @ spool= -0.81

 
Figure 4.8 A measured flow vs. spool opening curve (no-load flow) 
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Figure 4.9 The SDOF mass-spring-damper test structure 
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Figure 4.10 A measured force-displacement curve 
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Figure 4.11 A free vibration test with the viscous damper 
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Figure 4.12 Responses of a force-controlled testing system to a 0.5-kip sinesweep input 
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Figure 5.1 Pole-zero map of the test system in force control 
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Figure 5.2 Frequency response of a test system in force control 
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Figure 5.3 The direct velocity feedback compensation 
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Figure 5.4 Root loci of the test system with the direct velocity feedback compensation 
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Figure 5.5 Frequency responses of force-controlled systems with various velocity 

feedback compensations 
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Figure 5.6 A schematic of velocity feedback compensation 
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Figure 5.7 Linear velocity feedback compensation design 
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Figure 5.8 Frequency response of the servovalve dynamics and inverse dynamics 
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Figure 5.9 The test system with linearized velocity feedback compensation 
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Figure 5.10 Pole-zero map of the linearized system with linearized velocity feedback 

compensation (from command to force) 
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Figure 5.11 Frequency response of the system with linear velocity feedback 

compensation 
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Figure 5.12 Detailed frequency response of the system with linear velocity feedback 

compensation 
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Figure 5.13 Response of the test system with linear velocity feedback compensation 

subjected to 0.5-kip sine wave sweep (0-10 Hz) 
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Figure 5.14 Nonlinear velocity feedback compensation design 
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Figure 5.15 Test system with nonlinear velocity feedback compensation 
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Figure 5.16 Response of the test system with nonlinear velocity feedback compensation 

subjected to 0.5-kip sine wave sweep (0-10 Hz) 
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Figure 5.17 Response of the test system with linear and nonlinear velocity feedback 

compensation subjected to 2.0-kip sine wave sweep (0-10 Hz) 
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Figure 5.18 Comparison of the frequency responses of the linearly compensated systems 

with different controller P gain (from command to force) 



 

174 

-2000 -1500 -1000 -500 0 500
-500

0

500

Real axis

Im
ag

in
ar

y 
ax

is

-0.4 -0.3 -0.2 -0.1 0 0.1
-10

-5

0

5

10

Real axis

Im
ag

in
ar

y 
ax

is
Gp=0.1 

Gp=1.0 

Gp=0.1 Gp=1.0 

 
Figure 5.19 Root loci of the linearly compensated systems with respect to controller P 

gain (from command to displacement) 
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Figure 5.20 Root loci of the linearly compensated systems with respect to percentage 

compensation (from command to displacement) 
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Figure 5.21 Response of the test system with nonlinear velocity feedback compensation 

subjected to 2.0-kip sine wave sweep (0-10 Hz) 
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Figure 5.22 Root loci of the linearly compensated systems with respect to delay 

compensation (from command to displacement) 
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Figure 5.23 Frequency response of the linearly compensated systems with various delay 

compensations (from command to force) 
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Figure 5.24 Response of the test system with nonlinear velocity feedback compensation 

(w/ various delay compensations) subjected to 2.0-kip sine wave sweep 
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Figure 6.1 Schematic of the test system with velocity feedback compensation 
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Figure 6.2 Schematic of the SDOF structural model with the actuator 
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Figure 6.3 The 1940 Imperial Valley earthquake recorded at El Centro (N-S) 
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Figure 6.4 The 1994 Northridge earthquake recorded at Santa Monica City Hall (N-S) 
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Figure 6.5 First 25 seconds of 1940 El Centro ground acceleration record 

 

0 2 4 6 8 10 12 14 16
-1

0

1

Time (s)

A
cc

el
er

at
io

n 
(g

)

0 5 10 15 20 25
0

0.005

0.01

0.015

Frequency (Hz)

FF
T 

am
pl

itu
de

 
Figure 6.6 First 15 seconds of 1994 Northridge earthquake ground acceleration record 
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Figure 6.7 Force velocity curve for 35 kip actuator and 90 gpm servovalve with the 

choice of the ground accelerations 
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Figure 6.8 System responses with direct implementation of EFT  

using a 0.5k sinesweep input (force) 
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Figure 6.9 Structural responses with direct implementation of EFT  

using a 0.5k sinesweep input (displacement and velocity) 
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Figure 6.10 System responses with direct implementation of EFT using the El Centro 

earthquake ground acceleration, 0.17g  (force) 
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Figure 6.11 Structural responses with direct implementation of EFT using the El Centro 

earthquake ground acceleration, 0.17g  (displacement and velocity) 
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Figure 6.12 System responses with direct implementation of EFT using the Northridge 

earthquake ground acceleration, 0.42g  (force) 

-1

-0.5

0

0.5

1

D
isp

la
ce

m
en

t (
in

.)

0 5 10 15 20
-10

-5

0

5

10

Time (s)

V
el

oc
ity

 (i
n.

/s)

Expected
Simulation
Measured

 
Figure 6.13 Structural responses with direct implementation of EFT using the Northridge 

earthquake ground acceleration, 0.42g  (displacement and velocity) 
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Figure 6.14 System responses with digital linear velocity feedback compensation using a 

0.5k sinesweep input  (force) 
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Figure 6.15 Structural responses with digital linear velocity feedback compensation using 

a 0.5k sinesweep input  (displacement and velocity) 
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Figure 6.16 System responses with digital linear velocity feedback compensation using a 

2.0k sinesweep input  (force) 

-2

0

2

D
isp

la
ce

m
en

t (
in

.)

0 2 4 6 8 10

-20

0

20

Time (s)

V
el

oc
ity

 (i
n.

/s)

Expected
Simulation
Measured

 
Figure 6.17 Structural responses with digital linear velocity feedback compensation using 

a 2.0k sinesweep input  (displacement and velocity) 
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Figure 6.18 System responses with linear velocity feedback compensation using the El 

Centro earthquake ground acceleration, 0.17g  (force) 
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Figure 6.19 Structural responses with linear velocity feedback compensation using the El 

Centro earthquake ground acceleration, 0.17g  (displacement and velocity) 
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Figure 6.20 System responses with linear velocity feedback compensation using the 

Northridge earthquake ground acceleration, 0.42g  (force) 
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Figure 6.21 Structural responses with linear velocity feedback compensation using the 

Northridge earthquake ground acceleration, 0.42g  (displacement and velocity) 
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Figure 6.22 System responses with nonlinear velocity feedback compensation using a 

0.5k sinesweep input  (force) 
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Figure 6.23 Structural responses with nonlinear velocity feedback compensation using a 

0.5k sinesweep input  (displacement and velocity) 
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Figure 6.24 System responses with nonlinear velocity feedback compensation using a 

2.0k sinesweep input  (force) 
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Figure 6.25 Structural responses with nonlinear velocity feedback compensation using a 

2.0k sinesweep input  (displacement and velocity) 
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Figure 6.26 System responses with nonlinear velocity feedback compensation using the 

El Centro earthquake ground acceleration, 0.17g  (force) 
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Figure 6.27 Structural responses with nonlinear velocity feedback compensation using 

the El Centro earthquake ground acceleration, 0.17g  (displacement and velocity) 
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Figure 6.28 System responses with nonlinear velocity feedback compensation using the 

Northridge earthquake ground acceleration, 0.42g  (force) 
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Figure 6.29 Structural responses with nonlinear velocity feedback compensation using 

the Northridge earthquake ground acceleration, 0.42g  (displacement and velocity) 
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Figure 6.30 System responses with nonlinear velocity feedback compensation using the 

El Centro earthquake ground acceleration, 0.27g  (force) 
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Figure 6.31 Structural responses with nonlinear velocity feedback compensation using 

the El Centro earthquake ground acceleration, 0.27g  (displacement and velocity) 
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Figure 6.32 System responses with nonlinear velocity feedback compensation using the 

Northridge earthquake ground acceleration, 0.67g  (force) 

-2

-1

0

1

2

D
isp

la
ce

m
en

t (
in

.)

5 10 15 20
-20

-10

0

10

20

Time (s)

V
el

oc
ity

 (i
n.

/s)

Expected
Simulation
Measured

 
Figure 6.33 Structural responses with nonlinear velocity feedback compensation using 

the Northridge earthquake ground acceleration, 0.67g  (displacement and velocity) 
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Figure 6.34 Comparison of system responses using the El Centro earthquake ground 

acceleration, 0.34g  (force) 

-4

-2

0

2

4

D
isp

la
ce

m
en

t (
in

.)

0 5 10 15 20 25

-20

0

20

Time (s)

V
el

oc
ity

 (i
n.

/s)

Expected responses
Measured (nonlinear comp.)
Measured (linear comp.)
Measured (no comp.)

 
Figure 6.35 Comparison of structural responses using the El Centro earthquake ground 

acceleration, 0.34g  (displacement and velocity) 
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Figure 6.36 Comparison of system responses using the Northridge earthquake ground 

acceleration, 0.84g  (force) 
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Figure 6.37 Comparison of structural responses using the Northridge earthquake ground 

acceleration, 0.84g  (displacement and velocity) 
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Figure 6.38 Comparison of system responses with linear velocity feedback compensation 

using a 0.5k sinesweep input (Controller P gain) 
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Figure 6.39 Comparison of system responses with linear velocity feedback compensation 

using a 0.5k sinesweep input (Flow gain) 
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Figure 6.40 Comparison of system responses with linear velocity feedback compensation 

using a 0.5k sinesweep input (Delay compensation) 
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Figure 6.41 An example of high-frequency vibration of the test system 
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Figure 7.1 Root locus of the linearly compensated systems with respect to proportional 

leakage Cl  (from command to force) 
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Figure 7.2 Maximum controller P gain vs. the proportional leakage Cl 
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Figure 7.3 Comparison of system response with various constant leakages to a 0.5k 

sinesweep input 
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Figure 7.4 Supply pressure variation with small hydraulic power requirement 
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Figure 7.5 Supply pressure variation with large hydraulic power requirement 
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Figure 7.6 Nonlinear flow property of the servovalve with a ¼-gallon accumulator 
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Figure 7.7 Simulation model for the study of the effect of reaction frames 
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Figure 7.8 Root locus of the linearly compensated system with flexible reaction frame 

(m/100 + 10k) compensation for piston velocity (from command to force) 
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Figure 7.9 Root locus of the linearly compensated system with flexible reaction frame 

(m/100 + 10k) compensation for structure velocity (from command to force) 
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Figure 7.10 Root locus of the linearly compensated system with heavy, stiff reaction 

frame (10m + 100k) compensation for piston velocity (from command to force) 
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Figure 7.11 Root locus of the linearly compensated system with heavy, stiff reaction 
frame (10m + 100k) compensation for structure velocity (from command to force) 
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Figure 7.12 A schematic of a test structure with an actuator 
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Figure 7.13 A free vibration test setup (with additional actuator) 
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Figure 7.14 Free vibration test and simulation with actuator attached  

(correctly compensated) 
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Figure 7.15 Normalized free vibration tests of the SDOF structure 
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Figure 7.16 Actuator force input vs. structure velocity during the free vibration test with 

the actuator attached and correctly compensated 
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Figure 7.17 Free vibration test and simulation with actuator over-compensated 
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Figure 7.18 Actuator force input vs. structure velocity during the free vibration test  

with the actuator attached and over-compensated 
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Figure 7.19 Free vibration test and simulation with actuator under-compensated 
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Figure 7.20 Actuator force input vs. structure velocity during the free vibration test  

with the actuator attached and under-compensated
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Figure 8.1 Single-story test specimen 
 
 
 
 
 
 
 



 

209 

 
 
 
 
 

(a) (b)

8"

8"

1"

0.8"

72"

Gages

A

A

Section A-A

 
Figure 8.2 Location of strain gages (a) column (b) load cell for damper force 

measurements 
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Figure 8.3 The strain and stress distribution across a column section (section not in scale) 
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Figure 8.4 Schematic of structure on shake table 

 
 
 

 
Figure 8.5 Structure on shake table 
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Figure 8.6 Base plate and anchorage pattern for the test structure on shake table 
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Figure 8.7 Static loading test of structure on shake table 
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Figure 8.8 Free vibration test of structure on shake table (without dampers) 
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Figure 8.9 Free vibration test of structure on shake table (with dampers) 
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Figure 8.10 Schematic of structure for EFT test 

 
 
 

 
 

Figure 8.11 Structure for EFT test 
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Figure 8.12 Base plate and anchorage pattern for test structure for EFT test 
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Figure 8.13 Static loading test of structure for EFT test 



 

215 

 

0 5 10 15
-0.5

0

0.5

Time (s)

D
isp

la
ce

m
en

t (
in

.)
Experiment
Simulation

 
Figure 8.14 Free vibration test of structure for EFT test (without dampers) 
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Figure 8.15 Free vibration test of structure for EFT test (with dampers) 
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Figure 8.16 Comparison of effective forces from shake table test (mass × measured table 

acceleration) and measured forces form EFT test (0.13g sinesweep 1-10Hz) 
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Figure 8.17 Comparison of global structural responses of tests with dampers  

(0.13g sinesweep 1-10Hz) 
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Figure 8.18 Damper performances in tests with 0.13g sinesweep (1-10Hz) 
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Figure 8.19 Column behavior in tests with 0.13g sinesweep (1-10Hz) 

 



 

218 

0 5 10 15
-4

-2

0

2

4

Time (s)

Fo
rc

es
 (k

ip
s)

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

Frequency (Hz)

FF
T 

am
pl

itu
de

Shake table test
EFT test

 
Figure 8.20 Comparison of effective forces from shake table test (mass × measured table 

acceleration) and measured forces from EFT test (0.29g El Centro) 
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Figure 8.21 Comparison of global structural responses in tests with dampers  

(0.29g El Centro) 
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Figure 8.22 Comparison of effective forces from shake table test (mass × measured table 

acceleration) and measured forces from EFT test (0.55g Northridge) 
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Figure 8.23 Comparison of global structural responses in tests with dampers 

(0.55g Northridge) 
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Figure 8.24 Comparison of effective forces from shake table test (mass × measured table 

acceleration) and measured forces in EFT test without dampers (0.30g El Centro) 
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Figure 8.25 Comparison of global structural responses in tests without dampers 

(0.30g El Centro) 



 

221 

0 5 10 15
-4

-2

0

2

4

Time (s)

Fo
rc

es
 (k

ip
s)

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

Frequency (Hz)

FF
T 

am
pl

itu
de

Shake table test
EFT test

 
Figure 8.26 Comparison of effective forces from shake table test (mass × measured table 
acceleration) and measured forces form EFT test with 93% correction  (0.30g El Centro) 
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Figure 8.27 Comparison of global structural responses (EFT test with 93% correction) 

(0.30g El Centro) 
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Figure 8.28 Comparison of forces from EFT test with one damper (2k sinesweep) 
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Figure 8.29 Column base shear vs. story drift in EFT test with one damper (2k 

sinesweep) 
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Figure 8.30 Damper force vs. velocity in EFT test with one damper (2k sinesweep) 
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Figure 8.31 Comparison of forces from EFT test with one damper (0.29g El Centro) 
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Figure 8.32 Comparison of forces from EFT test with one damper (0.55g Northridge) 
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APPENDIX 1  

A TEST SYSTEM IN DISPLACEMENT CONTROL 

 

To validate the system model developed in Chapter 3 and parameters identified in 

Chapter 4, the test system was switched to displacement control and analyzed.  Figure 

A1.1 illustrates a block diagram for the system, in which the servovalve/actuator, the 

structure, and the interaction between them are the same as those of the force-controlled 

system while the system control is based on the actuator piston displacement instead of 

the actuator force.  The system was tested with a 0.5-inch sinesweep input, and the 

measured displacement is compared with the displacement command in Fig. A1.2 along 

with the simulation results.  The close match between the simulation and experimental 

results indicates great accuracy of the models and parameters. 

It is of interest to see the effect of the natural velocity feedback and velocity feedback 

compensation on the displacement-controlled system.  The transfer function (Gxu) from 

the command to the displacement output for the system can be derived as 

2 2 2
3 max

( )
[( )( ) ]( )

v F vp p
xu

a l v v vp v v F vp p

AK C K G
G s

K s C ms cs k A s A s A s K K x AK C K Gτ
=

+ + + + + + +
. (A1.1) 

The system does not have a second-order term corresponding to the structure in the 

numerator, indicating that the system does not have problems in tracking displacement 

commands around the natural frequency of the test structure.  On the other hand, the 

transfer function from the command (u) to the applied force (F) is 

2

2 2 2
3 max

( )
( )

[( )( ) ]( )
v F vp p

Fu
a l v v vp v v F vp p

AK C K G ms cs k
G s

K s C ms cs k A s A s A s K K x AK C K Gτ
+ +

=
+ + + + + + +

. (A1.2) 
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The numerator of GFu includes the denominator of the test structure, such that the 

poles of the structure are the zeros of the transfer function.  Hence, similar to the force-

controlled system, the natural velocity feedback limits the ability of the actuator to apply 

forces around the natural frequency of the test structure.  The inability is demonstrated by 

a dip at the natural frequency of the test structure in the frequency response of the system 

shown in Fig. A1.3.  

Unlike force-controlled systems, the natural velocity feedback destabilizes the overall 

system in displacement control.  When the displacement command has significant 

frequency content near the natural frequency of the structure (i.e., the test structure is in 

resonance), little force is needed for the actuator to follow the displacement command.  

The natural velocity feedback loop causes the actuator to reduce the force applied to the 

structure accordingly.  In this case, an attempt to compensate for the velocity feedback 

might destabilize the overall system.   

To validate the statement, the system with the natural velocity feedback compensated 

in a similar way to that discussed in Section 5.2 (direct compensation) was investigated.  

With a complete compensation, the transfer function GFu becomes  

2

2 2
3 max

( )
( )

( )( )( )
v F vp p

Fu
a l v v vp v v F vp p

AK C K G ms cs k
G s

ms cs k K s C A s A s K K x AK C K Gτ
+ +

=
+ + + + + +

, (A1.3) 

and the transfer function Gxu becomes 

2 2
3 max

( )
( )( )( )

v F vp p
xu

a l v v vp v v F vp p

AK C K G
G s

ms cs k K s C A s A s K K x AK C K Gτ
=

+ + + + + +
. (A1.4) 

The velocity feedback compensation does not change the zeros of GFu, indicating that 

the actuator cannot apply forces at the natural frequency of the structure even with the 
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velocity feedback compensation.  Correspondingly, conjugate zeros at the natural 

frequency of the structure remain in the compensated system in Fig. A1.4.  

An analysis of the denominators of Eqs. (A1.3) and (A1.4) also indicates that the 

compensated system has two conjugate poles at 17.8 Hz near the imaginary axis as 

shown in Fig. A1.4.  It can be shown that the slightly damped vibration corresponds to 

the so-called oil-column resonance.  The root locus of the system (GFu) shows that the 

velocity compensation drives this vibration mode into the unstable region (right-hand 

side of the s-plane).  Hence, complete velocity feedback compensation may not be 

applicable to a system in displacement control. 
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Figure A1.1 Linearized block diagram of test system in displacement control 
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Figure A1.2 Responses of a displacement-controlled system subjected to a 0.5-inch 

sinesweep input (0-10 Hz) 
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Figure A1.3 Frequency response of the test system in displacement control 
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Figure A1.4 Root locus of the displacement-controlled system with respect to percentage 

ideal velocity feedback compensation (command to force)
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APPENDIX 2  

NONLINEAR NO-LOAD FLOW GAIN 

 

A typical flow vs. spool opening curve with a pressure drop of 1000 psi across the 

servovalve and zero load pressure is shown in Fig. 4.8.  It can be seen that the flow gain 

(i.e. the slope of the curve), decreases with an increase in spool opening.  Because the no-

load flow gain is defined by ( ) svdv PwxCK ρ1max= , and w, xvmax, and ρ are fixed 

quantities, the nonlinearity was attributed to a nonlinear discharge coefficient (Cd).  

Theoretical solutions for discharge coefficients are impossible to obtain due to the 

complex nature of the orifice flow.  Experimental results for a submerged orifice (Fig. 

2.3) under constant pressure drop across the orifice were chosen to approximate the 

servovalve orifice flow.  As can be seen from Fig. 2.4, the discharge coefficient is a 

function of the Reynolds number, which in turn is dependent of the orifice geometry and 

the flow characteristics. 

An estimation of the range of Reynolds number is necessary to determine the 

discharge coefficient for the servovalve orifice in this study.  Because the orifices are 

sharp-edged orifices, it is appropriate to estimate the flow velocity through the orifice by 

v

L

vs

L

xw
Q

A
Qu ~== .     (A2.1) 

In addition, the spool opening vx~  was chosen as the characteristic length of the 

orifice because the characteristic length is often related to the area of the orifice.  Hence, 

vxd ~= .     (A2.2) 
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Substituting Eqs. (A2.1) and (A2.2) into Eq. (2.11) yields 

LQR
wν

= .      (A2.3) 

where w is the area gradient of the main-stage valve spool and ν is the kinematic 

viscosity of the fluid.   

The area gradient of the spool w was estimated using the initial flow gain under a 

1000 psi pressure drop across the servovalve.  The flow gain was defined in Eq. (3.24) as, 

sd
xv

L
v PwC

x
QK

v
ρ
1

~
0~

==
→

.    (A2.4) 

Therefore,   

4

(1.6gpm 3.85) (0.11 0.01) 2.6 .
0.61 1000psi 0.8 10

v

d s

Kw in
C P ρ −

× ×
= = ≈

×
  (A2.5) 

In the above calculation, the flow gain had units of in.3/s/in., the pressure supply was 

the pressure difference across the valve.  A discharge coefficient of 0.61 was used 

because it can be a good approximation for any sharp-edged orifice (Merritt 1967). 

It was assumed that the initial flow gain was valid up to 10% spool opening, which 

corresponds to a flow of 26 gpm (100 in.3/s) under a 3000 psi pressure drop.  In addition, 

a flow rate of 120 gpm (462 in.3/s) was the maximum that could be obtained with the 

servo-system in this study as shown in the identified flow curve in Chapter 4.  Therefore, 

the flow through the servovalve orifice was estimated between 

3 3100 . / 462 . /Lin s Q in s< < .    (A2.6) 

Using Eqs. (A2.5) and (A2.6) in Eq. (A2.3), the range of the Reynolds number was 

estimated using Eq. (A2.3) as: 665 3064eR< < .  Based on Fig. 2.4, the discharge 
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coefficient was estimated between  

0.74 0.65dC> > .     (A2.7) 

Because the discharge coefficient was larger than the assumed average value (0.61), 

an upgraded average value of the discharge coefficient (0.7) was plugged into Eq. (A2.5) 

to estimate the area gradient.  The new value, 2.27 in., was very close to the actual spool 

perimeter obtained from the servovalve manufacturer.  Following the same procedure 

shown above, the range of Reynolds number was determined as 

760 3509eR< < ,     (A2.8) 

which slightly changed the range of discharge coefficient shown in Eq. (A2.7).   

Therefore, the discharge coefficient of the servovalve orifice decreases with an 

increase in servovalve flow.  The reduced discharge coefficient results in a decreased 

servovalve flow gain for an increase in spool opening.  In addition, the flow property of a 

servovalve can be affected by other uncertainties in the system, such as the hydraulic 

supply pressure drop as the hydraulic demand (consumption) increases.  Therefore, it is 

not practical to derive a closed-form solution of the discharge coefficients as a function of 

spool opening, and the actual servovalve flow property (the no-load flow gain) must be 

determined experimentally. 
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APPENDIX 3  

A PROCEDURE FOR THE IMPLEMENTATION OF EFT 

 

To implement the effective force testing method, in addition to a servo-hydraulic 

controlled actuator and a data acquisition system, the following hardware is required: a 

velocity transducer for velocity feedback compensation (cable extension type), a unit 

buffer (analog circuit) for powering the velocity signal, a Digital Signal Processor (DSP) 

and its host computer.  This section presents a typical procedure for testing structures 

using the EFT method.  Note that the discussion shown below includes some quantities 

based on experiences gained in this study.   

The implementation of the velocity feedback compensation requires the identification 

of the forward dynamics of the servovalve and its controller, which contains three major 

components: the PID control with a zero I gain described by,  

1
c

d p

H
G s G

=
+

,     (A3.1) 

where Gp and Gd are the proportional and derivative gain of controller, respectively; the 

second-order servovalve dynamics by,  

2
3 max

1vp
s

v v vp v

K
H

A s A s K K xτ
=

+ +
,    (A3.2) 

where τ is the equivalent time constant of the pilot-stage valve, Kvp is the pilot-stage 

valve flow gain, Av is the main-stage spool area, K3 is the sensitivity factor of the internal 

LVDT, and xvmax is the maximum spool stroke;  and the nonlinear servovalve flow 

property stated by  
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1 v L
L v v

v s

x PQ K x
x P

= −       (A3.3) 

where Kv is the no-load flow gain of the servovalve, xv is the spool opening of the 

servovalve,  PL is the load pressure (PLA is approximately the force applied to the 

structure, and A is the actuator piston area), and Ps is the supply pressure. 

Match Test and Equipment Capacity 

Equipment capacity includes the load capacity of an actuator and the flow capacity of 

its servovalve.  The load capacity of an actuator can be found in its product specification 

(e.g., 35 kips for the MTS 244.23 actuator), or estimated by 90% of the supply pressure 

times the actuator piston area.  The servovalve flow capacity can be estimated as 

rated rated0.9 s sQ P P , where Qrated is the rated flow of the servovalve at a pressure drop of 

Psrated across the servovalve (e.g., 90 gpm for the MTS 256.09 three-stage servovalve 

under 1000 psi) and Ps is the supply pressure (roughly 3000 psi in this study).  The 

calculated flow capacity is limited by other factors in the hydraulic system, such as the 

capacity of the pump and service manifold, and the diameter of hydraulic supply hoses.  

Accurate flow capacity of a servovalve can be obtained as presented later. 

During an EFT test, the maximum structural velocity should be smaller than 80% of 

the servovalve flow capacity divided by the actuator piston area, and the maximum 

effective force should be smaller than 50% of the actuator load capacity.  If the maximum 

force likely happens at the same moment as the maximum velocity (i.e., the effective 

force input has significant content near the resonant frequency of the test structure), the 

maximum spool opening should be smaller than 60%.  Refer to Spink (2002) for an 

actuator/servovalve sizing technique.   
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Identify Structural Properties 

Static loading tests and free vibration tests can be used for structure identification.  

Note that the effective force command is directly related to the structure mass, and errors 

in the estimation would affect the force applied to the structure and potentially the 

nonlinear structural behavior.  In addition, the stability of the test system is related to the 

structural damping.  Testing of a structure with a minimum of 2% critical damping using 

EFT can be conducted with reasonable confidence.  The identified structural properties 

can be used to estimate the peak structural responses for the capacity check of equipment 

and sensors.   

Identify Servovalve Dynamics 

To invert the servovalve dynamics for the velocity feedback compensation, the valve 

gain (Ks) and the response delay (Td) are required.  The second-order servovalve model 

shown by Eq. (A3.2) requires many valve parameters such as valve spool area and the 

maximum spool stroke.  If the parameters were not available, a measured frequency 

response could be used to estimate the parameters for an equivalent second-order model,  

2
2

1 2 1
s

s
v

v v

KH
s sζ

ω ω

=
+ +

.    (A3.4) 

A test was conducted to generate a frequency response plot, in which the actuator was 

in displacement control, and the actuator piston was kept in its neutral position (the 

hydraulic supply to the main-stage valve was turned off).  The proportional gain of the 

servovalve controller was set to unity and the derivative gain set to zero, such that the 

valve command signal could be controlled without additional equipment.  A small 

amplitude (20% spool opening) sinesweep input (0-100 Hz in 100 seconds) was chosen 
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as the command signal. 

Matlab® function fft(x) was used to calculate the Fourier transform (FFT) of the 

measured input and output signals.  For a series of samples x with a length N and a 

sample frequency h (Hz), function fft(x) results in a series of complex numbers with the 

same length.  The first half of the transformed data corresponds to frequencies from zero 

to h/2 with an interval of h/N.  The magnitude response of the system can be constructed 

by plotting the ratio of the magnitude of the FFT of the output signal to the magnitude of 

the FFT of the input signal against the frequency; the phase response of the system can be 

constructed by plotting the phase difference between the two transformed signals against 

the frequency.   

Figure A3.1 presents a measured frequency response of the servovalve.  The 

amplitude corresponding to the asymptotical line of the magnitude response gave a valve 

gain (Ks) of 0.1.  The frequency corresponding to the 90°-phase point indicated an 

equivalent natural frequency (ωv) of 58 Hz.  The corresponding amplitude is 63%, 

indicating an equivalent damping (ζv) of 80% (1 (2 0.63)× ).  The frequency response of 

the identified second-order model was compared with the experimental results and that of 

Eq. (A3.2) in Fig. A3.1.  Although a better match is evident with the identified system 

across the whole frequency range (0-100 Hz), it can be shown that Eq. (A3.2) better fit 

the experimental frequency response at low frequencies (0-20 Hz).  The time delay was 

usually underestimated using 2 (2 )v vζ πω  (e.g., 4.4 ms in this case), because pilot-stage 

valve flow gain may reduce with an increase in hydraulic demand (spool opening).  

Nevertheless, the obtained delay time can be a good approximation, and the obtained 



 

237 

servovalve model can be used in the system stability analysis.  

Identify Servovalve Flow Property 

With an estimated pressure supply (0.9 Ps), the initial flow gain (Kv) was estimated 

based on the related initial flow gain, which is usually documented in the product 

specification.  The nonlinear flow curve was identified experimentally using a series of 

tests with sinusoidal commands, in which the actuator was in displacement control.  The 

structure was detached form the actuator such that the pressure difference across the 

actuator piston (load pressure) was negligible.  The spool opening was obtained directly 

by measuring the inner-loop feedback while the corresponding flow was calculated by the 

piston velocity multiplied by the piston area.  The piston velocity was calculated using 

the central difference method from the measured piston displacement. 

Although the frequency of the sinusoidal displacement command can be determined 

through trial and error, the following discussion provides a guideline for selecting the 

frequency such that the valve command can be controllable.  A block diagram of a 

linearized model of the test system with the actuator running in the air is presented in Fig. 

A3.2.  The transfer function of the system from command (u) to DC error (e) is 

eu
F p s v

AsG
As C G K K

=
+

.    (A3.5) 

As can be seen, the error (valve command) increases with an increase in the input 

frequency.  A frequency, at which the error is 90% of the command was chosen as the 

frequency of the sinusoidal command.  Hence, the frequency ω was obtained by solving  

( ) ( )22
0.9eu

F p s v

AG
A C G K K

ω

ω
= =

+
.   (A3.6) 
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The frequency was calculated as 5.2 Hz with the previously obtained initial flow gain 

(1003 in3/s).  On the other hand, the servovalve flow gain decreases as the spool opening 

increases; hence, the slope of the line connecting the origin and the related flow point 

(600 in3/s) was used to re-calculate the frequency.  The estimation resulted in a frequency 

of 3.1 Hz, and 3 Hz was used in the tests. 

Tests with 90% (4.5 in.), 80% (4 in.), 60% (3 in.), 40% (2 in.), and 20% (1 in.) full 

stroke were conducted, and the flow curve up to 80% spool opening were obtained as the 

average of these individual curves.  The result of the identification process is shown in 

Table A3.1, in which linear extrapolation was used to generate the points beyond the 80% 

spool opening. 

Determine the Maximum Controller P Gain 

A large P gain improves the overall performance of the test system, while it may 

render the system into unstable region.  The maximum controller P gain was obtained 

through by analyzing the system stability as shown below (Mathematica® 4.0 was used).   

Linearized system model: 
Gs@s_D = Kvp

τAvs2+Avs+ Kvp K3
1

xv2  
G1@s_D = CFGpGs@sD Kv 
Ga@s_D = AHm s2+ cs +kL

HKas+ClL Hm s2+ cs +kL+A2 s

Gload=
G1@sD Ga@sD

1+G1@sD Ga@sD  

la CsK +
1

A
_

_FC

A

Gp KvGs

2
s

ms cs k+ +
G1(s)

Ga(s)

 
Coefficient of characteristic function: 

a5= Coefficient@Denominator@Simplify@GloadDD, s, 5D
a4= Coefficient@Denominator@Simplify@GloadDD, s, 4D
a3= Coefficient@Denominator@Simplify@GloadDD, s, 3D
a2= Coefficient@Denominator@Simplify@GloadDD, s, 2D
a1= Coefficient@Denominator@Simplify@GloadDD, s, 1D
a0= Coefficient@Denominator@Simplify@GloadDD, s, 0D

5
5 3 1

4
4 2 0

3
1 2

2
1 2

1
1

0

s a a a
s a a a
s b b
s c c
s d

 Routh's 
stability 
array 

Av Ka m xv2τ  
Av Ka m xv2+ Av c Ka xv2τ + Av Cl m xv2τ  
Av c Ka xv2+ Av Cl m xv2+ K3 Ka Kvp m xv2+A2 Av xv2τ + Av c Cl xv2τ+ Av k Ka xv2τ  
A CF Gp Kv Kvp m+ A2 Av xv2+ Av c Cl xv2+ Av k Ka xv2+ c K3 Ka Kvp xv2+ Cl K3 Kvp m xv2+ Av Cl k xv2τ  
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A c CF Gp Kv Kvp+ Av Cl k xv2+ A2K3 Kvp xv2+ c Cl K3 Kvp xv2+ k K3 Ka Kvp xv2 
A CF Gp k Kv Kvp+ Cl k K3 Kvp xv2  

System parameters: 
CF= 0.25; Kv =1003; Ka= 0.3182;A =12.73; Ks= 0.1;Cl =5.5;  
τ= .0014; Kvp =0.644; Av= 0.3044; K3 =90.91; xv2= 0.11; m = 0.0399;c =0.027; k= 3.9518; 

Determine maximum controller P gain (Gp) 
b1= Expand@Ha4a3−a5a2Lêa4D
b2= Expand@Ha4a1−a5a0Lêa4D;  
Solve@b1m 0, GpD  
88Gp→ 0.781878<<  
c1= Expand@Hb1a2− b2a4LD
c2= a0;  
Solve@c1m 0, GpD  
88Gp→ −0.0226048<, 8Gp → 0.717729<<  
d1= Expand@c1 b2− b1c2D  
Solve@d1m 0, GpD  
88Gp→ −21.4791<, 8Gp → −0.0232171<, 8Gp → 0.711336<<  
 
Therefore, the controller P gain (Gp) needs to be smaller than 0.71.  Note that the 

theoretical limit was calculated based on a 5.5 in.3/s/ksi leakage.  A larger controller P 

gain might be applicable if the system leakage were greater than the assumed value. 

Tests with Small Amplitude Sinesweep Input 

Small amplitude tests with linearized velocity feedback compensation before real 

tests were conducted to find out if the identified parameters were accurate.  If the P gain 

were too large, a high frequency vibration would be excited even with zero command.  If 

the flow curve underestimates the real flow property of the servovalve, a large amplitude 

spike would result at the natural frequency of the test structure or the system might 

become unstable with vibration at the resonant frequency of the structure.  On the other 

hand, tests based on an underestimated flow curve would have a sharp amplitude drop at 

the natural frequency of the structure.  With insufficient delay compensation, a peak 

before a valley appeared in the FFT of the measured force while a peak after a valley 

appeared in the frequency domain when the delay was overcompensated.  In addition, if 
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the test results indicated that the measured force was below the command across the 

whole frequency range (due to constant leakage), a factor greater than unity could be 

applied to the effective force command to compensate for the effect. 

 

Table A3.1 Identified flow property of servovalve 

spool 4.5 in. 4.0 in. 3.0 in. 2.0 in. 1.0 in. Average 

-1.0      -536.17 

-0.9      -508.20 

-0.8 -480.23     -480.23 

-0.7 -451.58 -452.95    -452.26 

-0.6 -421.14 -418.66    -419.90 

-0.5 -377.87 -378.40 -374.90   -377.05 

-0.4 -324.33 -324.78 -323.40   -324.17 

-0.3 -258.76 -260.20 -262.71 -262.04  -260.93 

-0.2 -185.68 -186.82 -187.78 -192.67  -188.24 

-0.1 -98.81 -99.43 -100.05 -102.97 -103.62 -100.98 

0.0 0.00 0.00 0.00 0.00 0.00 0.00 

0.1 100.17 100.68 101.20 103.87 105.28 102.24 

0.2 185.17 185.85 186.45 191.19  187.16 

0.3 258.73 260.02 262.02 261.00  260.44 

0.4 321.32 322.19 319.87   321.13 

0.5 372.72 372.50 364.29   369.83 

0.6 412.53 409.88    411.20 

0.7 441.91 440.00    440.96 

0.8 468.31     468.31 

0.9      495.67 

1.0      523.02 
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Figure A3.1 Frequency response of the estimated second-order servovalve model  
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Figure A3.2 Test system with actuator running in the air  
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APPENDIX 4  

DETAILS OF THE SIMPLIFED SDOF STRUCTURE 

 

The SDOF structure consisted of a cart (mass) and four springs, two on each side of 

the mass.  The cart consisted of three rectangular steel frames filled with reinforced 

concrete and bolted on the top of four caster wheels as shown in Fig. A4.1.  Springs were 

type UM-1000 from Belts Spring Company, San Leandro, CA with a nominal stiffness of 

1 kip/in. and 6-inch travel length.  The connection between the springs and the reaction 

frames is shown in Fig. A4.2.  The springs were precompressed by 1 in.  The 

precompression was enacted as follows: starting from the null position of the actuator 

piston, the actuator was commanded to have positive 1 inch offset (the cart was pulled 

back by 1 inch).  The connections of the springs on the opposite side were adjusted such 

that the springs touched the mass.  Then the actuator was commanded to have negative 1 

inch offset, and the connections of the springs at the actuator side were adjust such that 

that the springs touched the mass.  Finally, when the actuator went back to its null 

position, all springs were compressed by 1 inch.  A maximum cart (mass) displacement 

of 4 in. was set in the servovalve controller to avoid damage of the springs due to 

extensive deformation. 

Load was applied to the SDOF model with a 35 kip actuator controlled by a 90 gpm 

three-stage servovalve.  The actuator reacted against a loading frame bolted to the 

laboratory strong floor.  The connections of the actuator swivel heads with the mass and 

the reaction frame are shown in Fig. A4.3.  Finally, the configuration of the "additional 

leakage passage" discussed in Section 6.6.1 is illustrated by dashed lines in Fig. A4.4. 
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Figure A4.1 Three steel frames filled with concrete atop four caster wheels 

 
 

 
Figure A4.2 A detailed spring connection  



 

244 

 

        
Figure A4.3 Connection of the actuator  

 
 
 

 
Figure A4.4 Connection of the additional leakage passage  

Needle Valve
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APPENDIX 5 

SAMPLE EFFECTIVE FORCE DATA FILE 

 
The data file for the signal generation at the University of Minnesota has the 

following structure:  

 
Line #1 # sinesweep … Notes.  A '#' in the beginning is needed 
Line #2 5001 Total data points 
Line #3 0.002 Time step 
Line #4   
Line #5   
Line #6   
Line #7  Blank lines are necessary,  
Line #8  and data should start from line #11 
Line #9   
Line #10   
Line #11 0 Start command data 
Line #12 3.92699E-06  
Line #13 1.5708E-05  
Line #14 3.53429E-05  
Line #15 6.28319E-05  
… …  
… …  
Line #5009 -0.248674673  
Line #5010 -0.125329338  
Line #5011 0 End of command data 
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APPENDIX 6  

DIGITAL VELOCITY COMPENSATION IN C LANGUAGE 

 
The digital implementation of the nonlinear velocity feedback compensation is shown 

below in C language.  The sample C program includes all necessary functions and 

commands for a real-time operation of the Digital Signal Processor (DSP).  The italic 

lines are related to the velocity feedback compensation algorithm, while the normal lines 

are functions and commands defined by the manufacturer for the operation of the DSP.  

 
/******************************************* 
*  FILE:  eft_nonlinear.c 
* 
*  RELATED FILES:  brtenv.h, eft_nonlinear.h 
* 
*  DESCRIPTION: 
*    DSP implementation of nonlinear velocity feedback compensation 
* 
*  INPUT: 
*    effective force command (v), velocity (v), spool position (v), and load (v)  
* 
*  OUTPUT: 
*    compensated command (v) 
* 
*  (C) 2001-2003 Jian Zhao, University of Minnesota 
**********************************************/ 
#include <brtenv.h>    /* basic real-time environment */ 
#include <math.h> 
#include "eft_nonlinear.h"   /* variable and constant definition */ 
 
void isr_t1(); 
void lead_coeffcients_transferfunction(); /* phase lead network coefficients */ 
double lead();     /* adjust phase */ 
double lookup();    /* nonlinear flow property */ 
 
void main() 
{ 
  init();      /* initialize hardware system */ 
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  msg_info_set(MSG_SM_RTLIB, 0, "System (EFT) started."); 
 
// define constants  
  Tl = Tl_DEF/(1-ALPHA);  /* lead time constant */ 
  Ks = 0.1;    /* valve gain */ 
  Gp = 1.0012;    /* controller P gain */ 
  A = 12.73;    /* piston area */ 
  CF = 0.25;     /* sensitivity factor (load) */ 
  Ps = 2.65;     /* pressure supply */ 
  Kfix = 1/Ks/Gp;    /* correction gain (temporary) */ 
 
// reset virables  
  In_prev = 0.0;    /* the first input to the phase lead */ 
  Out_prev = 0.0;    /* the first output of the phase lead */ 
  ii = 0;     /* counter */ 
  adc_1 = 0.0;     /* input #1 command */ 
  adc_2 = 0.0;      /* input #2 velocity */ 
  adc_3 = 0.0;      /* input #3 spool */ 
  adc_4 = 0.0;      /* input #4 load */ 
  adc_1_i = 0.0;    /* initial offset input #1 command */ 
  adc_2_i = 0.0;     /* initial offset input #2 velocity */ 
  adc_3_i = 0.0;     /* initial offset input #3 spool */ 
  adc_4_i = 0.0;     /* initial offset input #4 load */ 
 
  dac_1 = 0.0;      /* output #1 command */ 
   
  RTLIB_TIC_INIT();    /* enable execution time measurement */ 
  RTLIB_SRT_START(DT, isr_t1);  /* enable sampling clock timer */ 
 
  while(1) 
  {      /* background process */ 
    while (msg_last_error_number() == DS1102_NO_ERROR) 
    { 
      RTLIB_BACKGROUND_SERVICE() ; 
    } /* while NO_ERROR */ 
 
    RTLIB_SRT_DISABLE();                  /* disable sampling clock timer */ 
 
    while (msg_last_error_number() != DS1102_NO_ERROR) 
    { 
      RTLIB_BACKGROUND_SERVICE() ; 
    } /* while ERROR */ 
 
    RTLIB_SRT_ENABLE(); 
  } /* while(1) */ 
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} /* main() */ 
 
/*------------------------------------------------------------------------- 
* timer1 interrupt service routine  
*------------------------------------------------------------------------*/ 
void isr_t1()     /* timer1 interrupt service routine */ 
{ 
  ii=ii+1;     /* count for 10 sec */ 
  RTLIB_SRT_ISR_BEGIN();  /* overload check */ 
 
  host_service(1,0); 
  RTLIB_TIC_START();   /* start execution time measurement */ 
  ds1102_ad_start();    /* start ADC's */ 
  adc_1 = ds1102_ad(ADC1);  /* command read in */ 
  adc_2 = ds1102_ad(ADC2);  /* velocity read in */ 
  adc_3 = ds1102_ad(ADC3);  /* spool opening read in */ 
  adc_4 = ds1102_ad(ADC4);  /* load pressure read in */ 
   
  if (ii > 10/DT)    /* operation */ 
  { 
    cmd = (adc_1-adc_1_i)*IO_MAX; /* Convert input_1 to command */ 
    vel = (adc_2-adc_2_i)*IO_MAX/V_SENS; /* Convert input_2 to velocity */ 
    spo = (adc_3-adc_3_i)*IO_MAX; /* Convert input_3 to spool position */ 
    lpres = (adc_4-adc_4_i)*IO_MAX/CF/A; /* Convert input_4 to pressure */ 
     
    flow = vel*A;    /* Compensation flow */ 
 
    if (spo > 0.0)    /* positive spool opening */ 
    {     
        flow = flow/sqrt(1-lpres/Ps);  /* load pressure influence*/ 
    } 
    else      /* negative spool opening */ 
    {     
        flow = flow/sqrt(1+lpres/Ps);  /* load pressure influence*/ 
    } 
 
    In_cur = lookup();    /* nonlinear flow gain*/ 
 
    spool = lead();    /* adjust phase */ 
 
    dac_1 = spool*Kfix+cmd*1.02;  /* generate command */ 
    dac_1 = dac_1/IO_MAX;    /* convert it to [-1~1] for output */ 
  } 
  else      /* find initial offsets */ 
  { 
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    adc_1_i = adc_1_i+adc_1; 
    adc_2_i = adc_2_i+adc_2; 
    adc_3_i = adc_3_i+adc_3; 
    adc_4_i = adc_4_i+adc_4; 
    if (ii > 10/DT-1) 
    { 
    adc_1_i = adc_1_i/ii; 
    adc_2_i = adc_2_i/ii; 
    adc_3_i = adc_3_i/ii; 
    adc_4_i = adc_4_i/ii; 
    } /* end while */ 
  } /* one step finishes */ 
 
  ds1102_da(DAC1,dac_1);   /* output result to DAC1 */ 
  exec_time = RTLIB_TIC_READ();  /* calculate execution time */ 
  RTLIB_SRT_ISR_END();   /* end of interrupt service routine */ 
} 
 
/*------------------------------------------------------------------------ 
* Coeffcients used in phase lead network from transfer function  
*------------------------------------------------------------------------*/ 
void lead_coeffcients_transferfunction() 
{ 
  C_in = (1-2*Tl/DT)/(1+2*ALPHA*Tl/DT); 
  C_out = -(1-2*ALPHA*Tl/DT)/(1+2*ALPHA*Tl/DT); 
  C_cur = (1+2*Tl/DT)/(1+2*ALPHA*Tl/DT); 
} 
 
/*------------------------------------------------------------------------- 
* phase lead network  
*------------------------------------------------------------------------*/ 
double lead() 
{ 
  double yk1; 
  int i; 
  lead_coeffcients_transferfunction();  
 
/* lead computation */ 
  yk1 = C_in*In_prev+C_out*Out_prev+C_cur*In_cur; 
 
/* save previous results */ 
  In_prev = In_cur; 
  Out_prev = yk1; 
 
  return yk1; 
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} 
 
/*------------------------------------------------------------------------- 
* lookup table of nonlinear inverse of flow curve  
*------------------------------------------------------------------------*/ 
double lookup() 
{ 
  double spool; 
  int i; 
   
  spool = 0.0; 
  for (i = 1; i<MAXPTS; i++) 
  { 
    if (flow < Xflow[i]) 
    { 

       spool = Yspool[i-1] + (flow-Xflow[i-1])*(Yspool[i]-Yspool[i-1])/(Xflow[i]-
Xflow[i-1]); 

       goto FOUNDOK; 
    } 
  } 
FOUNDOK: 
  return spool; 
} 
 
/******************************************** 
*  FILE:  eft_nonlinear.h 
* 
*  DESCRIPTION:  Head file for eft_nonlinear.c 
*********************************************/ 
#define DT 5.0e-4    /* .5 ms simulation step size */ 
#define IO_MAX 10.0F   /* maximum I/O voltage */ 
#define V_SENS 0.195672   /* sensitivity factor of velocity transducer */ 
#define MAXPTS 21    /* maximum data points of the flow curve */ 
 
double In_prev;    /* previous input for phase lead */ 
double Out_prev;    /* previous output for phase lead */ 
double In_cur, Out_cur;   /* current input and output for phase lead */ 
double C_in, C_out, C_cur;   /* coefficients used in phase lead */ 
 
#define Tl_DEF 0.005    /* leading time */ 
#define ALPHA 0.1    /* leading coef. */ 
volatile double Tl;    /* leading time and coef. */ 
double Kfix;     /* Fixed feedforward gain */ 
double Ks;     /* Servovalve gain */ 
double Gp;     /* MTS controller P gain */ 
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double A;     /* Actuator piston area */ 
double Ps;     /* pressure supply */ 
double CF;     /* Actuator load conversion factor */ 
double cmd;     /* Command signal read-in */ 
double vel;     /* Velocity signal read-in */ 
double spo;     /* Current spool opening read-in */ 
double lpres;     /* load pressure read-in */ 
double flow;     /* flow to be compensated */ 
double spool;     /* spool opening in compensation */ 
 
 
/* variables for I/O of the board */ 
double adc_1, adc_2, adc_3, adc_4;  /* input channels */ 
double adc_1_i, adc_2_i, adc_3_i, adc_4_i; 
double dac_1, dac_2, dac_3, dac_4;  /* output channels */ 
 
/* variables for execution time profiling */ 
double exec_time;    /* execution time */ 
 
/* coefficients of nonlinear flow aeftb01.p0# on 04/28/2003 w/ an accumulator */ 

double Xflow[MAXPTS] = {-515.2, -500.2, -480.2, -452.3, -419.9, -377.1, -324.2,  
-260.9, -188.2, -101.0, 0.0, 102.2, 187.2, 260.4, 321.1, 
369.8, 411.2, 441.0, 468.3, 488.3, 503.3};   

double Yspool[MAXPTS] = {-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0};   

 
#define ADC1 1    /* Input channel 1 */ 
#define ADC2 2    /* Input channel 2 */ 
#define ADC3 3    /* Input channel 3 */ 
#define ADC4 4    /* Input channel 4 */ 
 
#define DAC1 1    /* Output channel 1 */ 
#define DAC2 2    /* Output channel 2 */ 
#define DAC3 3    /* Output channel 3 */ 
#define DAC4 4    /* Output channel 4 */ 
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APPENDIX 7  

DETAILS OF THE ONE-STORY STEEL STRUCTURE 

 

The one-story structure consisted of a mass and four columns at its corners as shown 

in Figs. 8.5 and 8.11.  The mass consisted of two rectangular steel frames filled with 

reinforced concrete.  The columns were bolted at both ends as shown in Fig. A7.1.  A V-

shape brace made of tube 3×3×¼ was used to engage two fluid dampers.  The connection 

between the brace and the dampers is shown in Fig. A7.2.  The damper forces were 

monitored using two load cells as shown in Fig. A7.3.   

During the shake table study, the velocity transducer was installed close to the 

dampers as shown in Fig. A7.3 because the velocity at the brace tip was slightly larger 

(approximately 3%) than that at the story mass due to a slight overturning of the 

structure.  Fig. A7.4 (a) shows two accelerometers in the shake table study mounted on 

the bottom of the mass, one of which monitored the out of plane response of the structure.   

During the EFT study, the structural configuration remained the same, while the 

instrumentation for global responses is different as shown in Fig. 8.11.  Test results 

indicated that the contribution of the overturning of the structure to the structural 

response was negligible.  Hence, the velocity transducer was installed at the actuator 

height but at the opposite side of the structure from the actuator as shown in Fig. A7.5.  

The connection of the actuator with the structure, including a 2-inch thick plate is shown 

in Fig. A7.6.  Two LCA-100-2 accelerometers by Jewell Instruments were used in the 

EFT test, the mounting of which is shown in Fig. A7.4 (b).  Finally, Fig. A7.7 shows the 

configuration of the ¼ gallon accumulator mentioned in Chapter 7.  
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Figure A7.1 Column end connections 
 
 

 
Figure A7.2 Connection of the dampers 

 
 

Figure A7.3 Connection of the load cell and velocity transducer (Shake table) 
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Figure A7.4 Connection of the accelerometers (a) underneath the mass in shake table;  
(b) On top of the bottom flange of the side W section of the mass in EFT 

 
 

 

 
Figure A7.5 Connection of the velocity and displacement transducers from a reaction 

frame to the test structure (EFT)  
 
 

(a) (b) 
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Figure A7.6 Connection of the actuator with the structure (EFT)  

 

 
Figure A7.7 Connection of the accumulator (EFT)  
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