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ABSTRACT

Restricting a representation to a principally
embedded sl2 subalgebra

by

Hassan Lhou

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Prof. Jeb Willenbring.

Throughout this exposition, the ground field is C, the field of complex numbers, and

all vector spaces and Lie algebras are finite dimensional over C. Also the two expressions

”g-module” and ”representation of g” will be used interchangeably.

Let k be a semisimple Lie subalgebra of a simple Lie algebra g.

Let V be an irreducible finite dimensional representation of g. Once the action is restricted

to k one gets a decomposition of the form:

V ∼=
∞⊕
i=1

Wi ⊕Wi ⊕ · · · ⊕Wi︸ ︷︷ ︸
mi(V )

with all Wi ’s pairwise inequivalent irreducible representations of k, and mi(V ) ≥ 0 is the

multiplicity of Wi in V .

A question one might ask is:

Does there exist an upperbound b(k, g) such that, for any irreducible g-representation V ,

there exists a Wi, an irreducible k-representation occurring in V with dimWi ≤ b(k, g) ? It

turns out that b(k, g) is not always finite, and if it is, another question one can ask is:

What is the sharpest upperbound, b(k, g), of all these b(k, g)’s ?

Our result here is the following:

For k being the principally embedded Lie subalgebra sl2 the simple Lie algebra sln with n ≥ 3

we have:

b(k, g) = n
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Chapter 1

Introduction

In this chapter we first give a summary of basic concepts, notations, terminology and results.

We first start by basic concepts of Lie theory such as such as: nilpotency, solvability, roots,

Dynkin diagrams, highest weights, fundamental representations etc.

1.1 Basic concepts of Lie theory

Throughout this work, the ground field is C, the field of complex numbers, and all vector

spaces and Lie algebras are finite dimensional over C. Also the two expressions ”g-module”

and ”representation of g” will be used interchangeably.

1.1.1 Definitions and examples.

A Lie algebra is a vector space g over a field F on which a multiplication:

g× g −→ g

(x, y) 7→ [x, y]

is defined satisfying the axioms:

a. [x, y] is linear in both x and y

b. [x, x] = 0 for all x in g

c. [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z in g

Property c. is called the Jacobi identity (cf. [3]).

Note: The multiplication is not associative since in general we do not have: [[x, y], z] =

[x, [y, z]], therefore, the inclusion of Lie brackets in products of elements is necessary in the

notation.
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We also have for any pair of elements x and y in g

[x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y]

and since [x, x] = 0 for all x in g it follows that [x, y] = −[y, x] for all x and y in g. In other

words the multiplication in a Lie algebra is anticommutative.

Example 1.1.1. Any associative algebra A can be made into a Lie algebra by taking [x, y] =

xy − yx. It is easy to see that all the Lie algebra axioms are satisfied.

Definition 1.1.2. Let g1 and g2 be Lie algebras over a field F. A homomorphism of Lie

algebras is a linear map

θ : g1 −→ g2 defined by θ[x, y] = [θ(x), θ(y)]

for all x and y in g1.

If in addition θ is a bijection, it is called an isomorphism of Lie algebras.

Definition 1.1.3. A subalgebra of g is a subspace h of g such that [h, h] ⊂ h.

An ideal of g is a subspace h of g such that [g, h] ⊂ h, which is equivalent to [h, g] ⊂ h since

[h, g] = [g, h]

Now, let h be an ideal of the Lie algebra g, and g/h be the vector space of cosets. By

introducing the Lie multiplication [x+ h, y + h] = [x, y] +h, we make g/h into a Lie algebra,

furthermore there is a natural homomorphism θ : g→ g/h defined by θ(x) = x+ h.

Conversely given any algebra homomorphism: θ : g1 −→ g2 of Lie algebras. If θ is surjective

then the factor g1/ker(θ) is isomorphic to g2.

1.1.2 Nilpotent and Solvable Lie algebras.

Definition 1.1.4. A Lie subalgebra is called abelian if [g, g] = 0.

We define the sequence of ideals g1, g2, g3. . . of g by

g1 = g, gn+1 = [gn, g]

for all n = 1, 2, 3, · · ·
We have then the descending series of ideals:

g = g1 ⊇ g2 ⊇ g3 . . .

2



Definition 1.1.5. The Lie algebra g is called nilpotent if gi = 0 for some i ≥ 2.

Notice that g is abelian if and only if i = 2.

Similarly, we define the sequence of ideals g(0), g(0), g(2). . . of g by

g(0) = g, g(n+1) = [g(n), g(n)].

for all n = 1, 2, 3, · · · .
Here again we have the descending sequence of ideals.

g = g(0) ⊇ g(1) ⊇ g(2) . . . .

This series is also called the derived series (cf. [3]).

Definition 1.1.6. The Lie algebra g is called solvable if g(i) = 0 for some i ≥ 1.

Proposition 1.1.7. Every nilpotent Lie algebra is solvable, but the converse is not true

Example 1.1.8. For any field F, let g = Fa+ Fb be the Lie algebra defined by [a, b] = b. It

is obvious that: g1 = Fb and g2 = g3 = g4 . . . = 0

Also, we have: g(1) = Fb, and g(i) = 0 for all i ≥ 2, so g is a solvable but not a

nilpotent Lie algebra. ( http://math.mit.edu/classes/18.745/Notes/)

1.1.3 Representations and modules

Let g be an algebra over a field F, a representation of g is a homomorphism:

ρ : g −→ gln(F)

for some n, where gln(F) denote the Lie algebra of n× n-matrices over the field F.

Two representations ρ and ρ
′

of g of degree n are called equivalent if there is a nonsingular

n× n-matrix T over F such that ρ
′
(x) = T−1ρ(x)T for all x in g.

A left g-module is a vector space V over F with a multiplication

g× V −→ V

(x, v) 7→ xv

satisfying the axioms:

i. xv is linear both in x and v.

ii. [x, y]v = x(yv)− y(xv) for x, y in g and all v in V .

3
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It is clear that every finite dimensional g-module gives a representation of g and vice versa.

Example 1.1.9 (Adjoint representation). Let g be Lie algebra over any field K. The Linear

map:

g→ End(g)

g 7→ adg

where adg(x) = [g, x] for all g and x in g, is a representation of g called: Adjoint represen-

tation of g. The Lie Bracket in End (g) is given by:

[adx, ady] = adxady − adyadx

for all x and y in g.

This particular representation is crucial to representation theory in many ways.

1.2 Complex semisimple Lie algebras

In this section, the notion of semisimple Lie algebras is introduced. This is a class of

Lie algebras whose irreducible representation are classified. Finite dimensional simple Lie

algebras are given explicitly.

1.2.1 Classification of simple Lie algebras over the complex num-
bers

Definition 1.2.1. The radical of a finite dimensional Lie algebra g is the largest solvable

ideal of g.

Remark 1.2.2. The radical of g contains any solvable ideal of g and is unique.

Definition 1.2.3. A non-abelian Lie algebra g whose only ideals are {0} and g is said to be

simple.

A Lie algebra that is a direct sum of simple Lie algebras is said to be semisimple.

Over a field of characteristic 0, the following conditions are equivalent:

• A finite dimensional Lie algebra g is semisimple.

• The killing form, K(x, y) = tr(ad(x)ad(y)) is nondegenerate.

• g has no nonzero solvable ideal.

4



• The radical of g is zero.

(cf. https://en.wikipedia.org/wiki/Semisimple_Lie_algebra)

Example 1.2.4. Simple Lie algebras over the field of complex numbers are classified as

follows:

An: sln+1, n ≥ 1; the special linear Lie algebra.

Bn: so2n+1, n ≥ 2; the odd dimensional special orthogonal Lie algebra.

Cn: sp2n, n ≥ 3; the symplectic Lie algebra.

Dn: so2n, n ≥ 4; the even dimensional special orthogonal Lie algebra.

The Lie algebras above together with the following exceptional Lie algebras:

E6, E7, E8, F4 and G2 are the only simple Lie algebras over the complex numbers.

This elegant result is due to both Wilhelm Killing (1888 - 90), and Elie Cartan (1894).

The dimensions of the classical complex simple Lie algebras are given below:

Lie algebra An Bn Cn Dn E6 E7 E8 F4 G2

Dimension n(n+ 1) n(2n+ 1) n(2n+ 1) n(2n− 1) 78 133 248 52 14

(cf. [7], Appendix C).

1.2.2 Cartan subalgebras, Root system and Root space decompo-
sition

Definition 1.2.5. Let g be a finite dimensional Lie algebra over C and let h be a subalgebra

of g. The set

I(h) = {x ∈ g; [y, x] ∈ h for all y ∈ h}

is a subalgebra of g containing h, and of which h is an ideal. Furthermore I(h) is the largest

subalgebra of g in which h is an ideal.

I(h) is called the idealizer of h.

Definition 1.2.6. A subalgebra h of g is called a Cartan subalgebra if h is nilpotent and

I(h) = h.

Example 1.2.7. A Cartan subalgebra of the Lie algebra n× n complex matrices gln is the

algebra of all diagonal matrices.

Theorem 1.2.8. Every finite dimensional Lie algebra g over C has a Cartan subalgebra.

Any two such subalgebras are isomorphic (as Lie algebras).

5
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Proof. The proof can be found in most of introductory books on Lie theory, such as ([4]

Appendix D, [6]).

Definition 1.2.9. Let V be a finite-dimensional euclidean vector space, with the standard

euclidean inner product denoted by (·, ·)
A root system in V is a finite set Φ of nonzero vectors (called roots) such that

i. The roots span V .

ii. If x ∈ Φ and λx ∈ Φ then λ = 1 or λ = −1.

iii. For every root x ∈ Φ, the set Φ is closed under reflection Rx through the hyperplane

perpendicular to x.

iv. (Integrality) If x and y are roots in Φ, then the projection of y onto the line through

x is a half-integral multiple of x.

(cf. [6]).

Remark 1.2.10. The conditions (iii) and (iv) of (1.2.9) can be written as:

iii)’ For all x and y in Φ, the element y − 2 (x,y)
(x,x)

x ∈ Φ.

iv)’ For all x and y in Φ, the number 2 (x,y)
(x,x)

is an integer.

To a semisimple Lie algebra, we attach a root system from which we can read off the struc-

ture of the Lie algebra and its representations. As every root system arises from a semisimple

Lie algebra and determines it up to isomorphism, root systems classify the semisimple Lie

algebras over C.

Now let g be a complex semisimple Lie algebra, choose a Cartan subalgebra h of g, recall

that h is abelian (cf. [6]). The adjoint action of h on g leads to a root decomposition of g

with respect to h as follows:

For each λ of h?, the algebraic dual of h, we define the vector subspace of g by:

gλ = {a ∈ g : [h, a] = λ(h)a for all h ∈ h}

A nonzero λ in h? is called a root if the subspace gλ is not trivial. If this is the case, the

subspace gλ is called the root space of g.

If we denote the set of all roots by Φ then g decomposes as:

g = h⊕
⊕
λ∈Φ

gλ (1.1)
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Φ is a root system of g.

Note that since h is a Carton subalgebra h = g0, and that the subspace gλ is one-dimensional

for all nonzero λ. This decomposition of g is called the root space decomposition (cf. [2],

[5] or [4]).

Example 1.2.11. Let g = sln for n ≥ 2. g is simple (therefore semisimple). h is the

subspace of g of all diagonal matrices in g.

For each i = 1, 2, · · ·n, let ei be the element of h? defined by:

ei


h1

h2

. . .

hn

 = hi

The root space decomposition is then:

g = h⊕
⊕
i 6=j

g(ei−ej)

where

g(ei−ej) = {X ∈ g | [h,X] = (ei − ej)X for all h ∈ h}

1.2.3 Positive and simple roots, Weyl group

Definition 1.2.12. Given a root system Φ we can always choose a set of positive roots.

These are a subset Φ+ of Φ satisfying:

• For each root α ∈ Φ, exactly one of the roots α,−α is in Φ+.

• For any two distinct α, β ∈ Φ+ such that α + β is a root, α + β ∈ Φ+.

If a set of positive roots Φ+ is chosen, elements of −Φ+ are called negative roots.

• An element of Φ+ that can not be written as a sum of two elements of Φ+ is called

a simple root. Moreover, the set ∆ of simple roots forms a basis of h? and has the

property that every element in Φ is a linear combination of elements of ∆ with all

coefficients nonnegative or all coefficients nonpositive.

Now consider the (real) euclidean space h?R whose basis is ∆. In this vector space, the

lattice generated by ∆ is called the root lattice of g.

Notice that

dimRh
?
R = dimCh

This dimension is called the rank of g (cf. [3]).

7



Remark 1.2.13. The Euclidean structure of h?R needs some explanation.

The Killing form < x, y > = tr(ad(x)ad(y)) is nondegenerate on h as well, this is inherited

from its nondegeneracy on g.

By letting f(x)(y) = < x, y > for all x and y in h, the map:

h −→ h?

x 7→ f(x)

is a bijection.

If we then set < f(x), f(y) >=< x, y > for all x and y in h, we have defined a bilinear form

on h? . When this bilinear from is restricted to h?R, it gives the desired Euclidean structure.

Example 1.2.14. The case where g is the special Lie algebra sl2, a basis of g is given by:

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
and Y =

(
0 0
1 0

)

The following relations are clearly satisfied: [H,X] = 2X , [H,Y ] = −2Y and [X, Y ] = H.

Therefore there are two roots α and −α, where α(H) = 2. Thus ∆ = Φ+ = {α}.

Example 1.2.15. Let g is the special Lie algebra sl3 and h be the subalgebra made of the

diagonal matrices with zero trace. A basis of h is given by:

H1 =

1 0 0
0 −1 0
0 0 0

 and H2 =

0 0 0
0 −1 0
0 0 1


Consider the linear functionals (αi)i=1,2 defined by:

αi

λ1 0 0
0 λ2 0
0 0 λ3

 = λi − λi+1

then {α1, α2} is a basis of h?. We have then:

The rank of g is 2, ∆ = {α1, α2} and Φ = {α1, α2, α1 + α2,−α1,−α2,−α1 − α2}.

Below is the configuration of the roots.

8



Figure 1.1: Root system of A2

Definition 1.2.16. The Weyl group of a root system Φ is the group generated by reflections

through the hyperplanes orthogonal to the roots, it is a finite reflection group.

The Weyl group of a semisimple Lie algebra, is the Weyl group of the root system of that

Lie algebra.

Example 1.2.17. The Weyl group of the simple Lie algebra sl2 is isomorphic to Z/2Z. More

generally the Weyl group of sln is isomorphic to the symmetric group Sn (cf. [7] Appendix

C).

Remark 1.2.18.

i. The set of positive roots can be ordered naturally as follows:

α ≤ β if and only if β − α is a non negative linear combination of simple roots.

ii. For each α in Φ, the coroot of α is defined by

α∨ =
2

(α, α)
α.

The set of coroots form another root system Φ∨ .

Notice that α∨∨ = α, Φ∨ is called the dual root system of Φ.

iii. The lattice generated by Φ (resp. Φ∨ ) is called the root lattice (resp. coroot lattice),

also Φ and Φ∨ define the same Weyl group W (1.2.16) and if ∆ is a set of simple roots

of Φ then ∆∨ is a set of simple roots of Φ∨.

Furthermore we have: s(α)∨ = s(α∨) for all s in W .

9



1.2.4 Dynkin diagrams

Definition 1.2.19. A root system Φ is said to be irreducible if it can not be written as a

union of two proper subsets Φ1 and Φ2 satisfying (α, β) = 0 for all α in Φ1 and β in Φ2.

To each irreducible root system correspond a graph called a Dynkin diagram (cf. Figure

1.2).

The vertices of a Dynkin diagram correspond to the elements in ∆ , the set of simple roots,

in the following way:

Each pair of nonorthogonal pair of elements of ∆ are connected by:

a. An undirected simple edge if they make an (acute) angle of 2π
3

.

b. A directed double edge if they make an angle of 3π
4

.

c. A directed triple edge if they make an angle of 5π
6

.

The direction is made towards the shortest vector in the pair of vectors in question.

Dynkin diagrams are independent of the choice of simple roots.

From the discussion above, we see that the classification of root systems is the same as that

of Dynkin diagrams. For instance connected Dynkin diagrams correspond to irreducible root

systems.

The graphs below show all the possible irreducible Dynkin diagrams (cf. [7] Chapter II ).

Figure 1.2: Dynkin diagrams of all simple Lie algebras.
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1.3 Representations of simple Lie algebras

Here we shed light on irreducible representations of semisimple Lie algebras. We state a

few important concepts such as: Highest weight modules. We also introduce the notion of

fundamental representations of classical simple Lie algebras.

1.3.1 Weights and weight lattice

Let g be a semisimple Lie algebra. Choose a Cartan subalgebra h in g.

The weights of g are the linear functionals λ ∈ h?.

Let V be a g-module, α ∈ h?, let Vα be defined by:

Vα = {v ∈ V | h · v = α(h)v for all h ∈ h}

The dot ” · ” stands for the action of h on V .

An α ∈ h? for which Vα is a nonzero vector subspace of V is called a weight of V . Further-

more, if V =
⊕
α∈h?

Vα then V it is called a weight module.

The nonzero vectors of Vα ’s are called weight vectors.

Notice that, since V is a finite dimensional space, V has only finitely many weights, say

α1, α2, α3, · · ·αn.

Example 1.3.1. Let g = sl3.

By choosing the Cartan subalgebra h to be the (abelian) Lie subalgebra of diagonal matrices

with trace zero. Recall that h is spanned by:

H1 =

1 0 0
0 −1 0
0 0 0

 and H2 =

0 0 0
0 −1 0
0 0 1


The weights of C3 as a g-module are:

αi(H) = hii − hi+1,i+1 for i = 1, 2 and H =

h11 0 0
0 h22 0
0 0 h33


Note: h11 + h22 + h33 = 0

The associated decomposition is then:

C3 =< e1 > ⊕ < e2 > ⊕ < e3 >

where (e1, e2, e3) is the standard basis of the vector space C3.

The weight spaces are the one dimensional vector spaces appearing in the decomposition (cf.

( http://math.mit.edu/classes/18.745/Notes/).
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Remark 1.3.2. For a semisimple Lie algebra the weights of the adjoint representation are

the roots of the Lie algebra, and the weight space is called root space.

Definition 1.3.3. Let g be a simple Lie algebra of rank l and let

g = h⊕
⊕
λ∈Φ

gλ

be the root space decomposition of g with respect to h.

Let h1, h2, · · ·hl be the elements of h corresponding to 2αi

<αi,αi>
of h? under the bijection of

(1.2.13)

we have:

αj(hi) =
2 < αi, αj >

< αi, αi >

is an integer for all i, j = 1, 2, · · · l.
The basis elements hi, h2, · · ·hl are called: coroots or simple coroots.

An element λ ∈ h? is called integral (resp. dominant integral) if λ(hi) ∈ Z ( resp. λ(hi) ≥ 0

) for all i = 1, 2, · · · l.

Remark 1.3.4. Dominant integral weights can also be described as follows:

Let ω1, ω2, · · ·ωl be the elements of h? defined by:

ωi(hj) = δij, (Kronecker delta)

Put another way: ω1, ω2, · · ·ωl is the dual basis of the basis h1, h2, · · ·hl.
The elements {ωi}i=1,2,···l are called: fundamental weights. An immediate consequence is

that any weight λ ∈ h? is expressed as:

λ = λ(h1)ω1 + λ(h2)ω2 + · · ·+ λ(hl)ωl

The set of integral weights (resp. dominant integral weights) is denoted by P (g) (resp.

P+(g)).

P (g) is a weight lattice in h?, and P+(g) is a cone in h? (cf. [3]).

Example 1.3.5. Below are the fundamental roots and weights of the simple Lie algebra A2.

12



Figure 1.3: Fundamental roots and weights of A2

Notice that: ω1 + ω2 = α1 + α2, ω1 is orthogonal to α2 and ω2 is orthogonal to α1.

The weight ρ = ω1 + ω2 = α1 + α2 is a of combinatorial importance, it is used in both the

Weyl’s character and dimension formulas (cf. [3] or [5]).

Remark 1.3.6. We recall that in (1.2.18), the set of simple roots has been ordered. In a

similar way, the weights can be ordered as follows:

For λ, µ ∈ h?R, λ ≤ µ if and only if µ−λ if a nonnegative linear combination of simple roots.

The convex hull of dominant weights of h?R is known as the Weyl fundamental chamber.

1.3.2 Highest weight modules

Definition 1.3.7. Let V be a representation of Lie algebra g.

a). A weight λ of V is called a highest weight if for every weight µ of V , µ ≤ λ.

b). A weight vector vλ of weight λ is called a highest weight vector if λ is a highest weight

of V .

For a complex Lie algebra g, choose a Cartan subalgebra h and a set positive roots Φ+.

One has:

g = h⊕ n+ ⊕ n−

where

n+ =
⊕
α∈Φ+

gα and n− =
⊕
α∈Φ+

g−α
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Definition 1.3.8. A representation V of a Lie algebra g is called highest weight module if

V is generated by a weight vector v such that:

n+v = 0

where n+ is defined as above.

There is a bijective correspondence between irreducible finite dimensional representation

of a simple Lie algebra g (up to isomorphism) and the set of dominant integral weights λ.

The simple g-module corresponding to λ is denoted by L(λ). Thus we have:

Theorem 1.3.9 (Highest weight theorem). Every finite dimensional irreducible representa-

tion of a complex semisimple Lie algebra g is of the form L(λ) for some dominant integral

weight λ.

Proof. The proof of this theorem as well as the definition of the g-module L(λ) for λ ∈ h?

can be found in any standard book of representation theory (e.g [3]).

This result is due to E. Cartan, back in 1894.

Remark 1.3.10. The construction of L(λ), for any weight λ, uses the theory of Verma

Modules (cf. [4], [3]).

1.3.3 Exterior and symmetric algebras

We start here with a complex vector space V .

Definition 1.3.11. The tensor algebra of V is defined by:

T (V ) = C1⊕ V ⊕ V ⊗ V ⊕ V ⊗ V ⊗ V ⊕ · · ·

Let I be the two sided ideal of T (V ) generated by all elements of the form u ⊗ v − v ⊗ u
where u and v are in V . The symmetric algebra S(V ) in defined by:

S(V ) = T (V )/I

14



For each i = 0, 1, 2, · · · , let T i(V ) be the n-fold tensor product of V with itself. Let Si(V )

be the space of all symmetric tensors of order i defined on V . In other words

Si(V ) = T i(V )/(I ∩ T i(V ))

We have:

T (V ) =
∞⊕
i=0

T i(V ) and S(V ) =
∞⊕
i=0

Si(V )

We note that S(V ) is then a graded associative algebra.

If dim(V ) 6= 0, the dimension of the vector space S(V ) if infinite. However, the dimension

of each subspace Si(V ) (the ith symmetric power of V ) is give by:

dim Si(V ) =

(
n+ i− 1

i

)
(1.2)

S(V ) is also denoted by S(V ), and Si(V ) is called the ith- symmetric power of V .

With a similar construction, we define the exterior algebra
∧

(V ) of an n-dimensional vector

space V over the field C by letting the two sided ideal I ′ of T (V ) in 1.3.11) be generated by

the elements elements v ⊗ v, with v ∈ V .

The exterior algebra of V is defined by∧
(V ) = T (V )/I ′

We also have: ∧
(V ) =

n⊕
i=0

∧i(V ) where ∧i (V ) = T i(V )/(I ′ ∩ T i(V ))

The dimension of each subspace
∧i(V ) (ith exterior power of V ) and that of the exterior

algebra are give by:

dim ∧i (V ) =

(
n

i

)
and dim

∧
(V ) = 2n (1.3)

∧
(V ) becomes an algebra with the wedge product a ∧ b.

If {v1, v2, · · · vn} is a basis of V then a basis for
∧k(V ) is:

{vi1 ∧ vi2 ∧ · · · ∧ vik | 1 ≤ i1<i2 · · ·<in−1 ≤ n}

For more details about tensors, symmetric and exterior algebras (cf. [7] Appendix A, [3]).

The symmetric and exterior algebras of the defining representation are extremely crucial to
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representation theory, in that, if V be the defining representation of a semisimple Lie algebra

g, then both these vector spaces are g-modules, the action of g on each is given by:

g(vi1 ∧ vi2 ∧ · · · vik) = gvi1 ∧ vi2 ∧ · · · ∧ vik + vi1 ∧ gvi2 ∧ · · · ∧ vik + · · · · · · vi1 ∧ vi2 ∧ · · · ∧ gvik

and

g(vi1 · vi2 · · · · vik) = gvi1 · vi2 · · · · · vik + vi1 · gvi2 · · · · · vik + · · · · · · vi1 · vi2 · · · · · gvik

1.3.4 Fundamental representations:

The highest weights representations of a semisimple Lie algebra g corresponding to the

fundamental weights: ω1, ω2, · · ·ωl, are called fundamental representations.

It is a fundamental fact in representation theory that if g is a semisimple Lie algebra with

fundamental weights ω1, ω2, · · ·ωl then:

For any weight: λ = m1ω1 +m2ω2 + · · ·mlωl, L(λ) is a submodule of :

L(ω1)⊗ · · · ⊗ L(ω1)︸ ︷︷ ︸
m1

⊕L(ω2)⊗ · · · ⊗ L(ω2)︸ ︷︷ ︸
m2

⊕ · · · ⊕ L(ωl)⊗ · · · ⊗ L(ωl)︸ ︷︷ ︸
ml

for some nonnegative integers m1,m2, · · ·ml (cf. [3]).

L(ω1) is called: the defining (or standard) representation.

The fundamental representations of exceptional simple Lie algebras, which are not essential

here, can be found in ([3] chap 3.5).

For classical simple Lie algebras Al, Bl, Cl and Dl, the table below gives the dimensions

of the fundamental representations L(ω1), L(ω2), · · ·  L(ωl), each corresponding to a node in

associated Dynkin diagram (Figure 1.2).
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L(ω1) L(ω2) L(ω3) · · · · · · L(ωl−1) L(ωl)

Al l + 1
(
l+1
2

) (
l+1
3

)
· · · · · ·

(
l+1
2

)
l + 1

Bl 2l + 1
(

2l+1
2

) (
2l+1

3

)
· · · · · ·

(
2l+1
l−1

)
2l

Cl 2l
(

2l
2

)
− 1

(
2l
3

)
− 2l · · · · · ·

(
2l
l−1

)
−
(

2l
l−3

) (
2l
l−1

)
−
(

2l
l−2

)

Dl 2l
(

2l
2

) (
2l
3

)
· · · · · ·

(
2l
l−2

)
2l − 1

Figure 1.4: Dimensions of fundamental representations of Al, Bl, Cl andDl.

1.4 Simple modules for sl2

Here we focus on the simple Lie algebra sl2, its finite dimensional irreducible representations

and their characters. We provide an explicit description of these.

1.4.1 Simple modules for sl2

We recall here the fixed sl2 basis X, H and Y (of 1.2.14) satisfying:

[H,X] = 2X, [H,Y ] = −2Y and [X, Y ] = H

Let V be an irreducible finite dimensional representation of sl2, V has the decomposition:

V =
⊕

Vα

where each Vα is non trivial and H(v) = α · v for all v in Vα.

Now we need to explicitly describe how X and Y above act on V , or equivalently, on each

Vα.

Assume v in a vector in Vα, we get:

H(X(v)) = X(H(v)) + [H,X](v)

= X(α · v) + 2X(v)

= (α + 2)X(v)
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Therefore if v ∈ Vα then X(v) ∈ Vα+2. Similarly, if v ∈ Vα then Y (v) ∈ Vα−2

The action of H, X and Y which summarize the action of sl2 on V show that:

V =
⊕
n∈Z

Vα0+2n (1.4)

where α0 is any complex number such that Vα0 is non trivial.

Since V =
⊕
n∈Z

Vα0+2n is invariant under sl2 it must be the whole space V .

dimV <∞ implies that the set of complex numbers (actually integers) {vα0 + 2n}n is finite.

Let n be the maximum of these integers. The subspaces of (1.4) are:

· · · , Vn−4, Vn−2, Vn

Let now v be any nonzero vector in the subspace Vn, we must have:

X(v) ∈ Vn+2 = (0) thus X(v) = 0

Proposition 1.4.1. The vectors v, Y (v), Y 2(v), · · · span the space V .

Proof. (cf. [4], chap 11).

It is not difficult to show by induction (cf. [4], chap 11), that the action of X on an

element of the form Y m(v) is given by:

X(Y m(v) = m(n−m+ 1) · Y m−1(v) (1.5)

Furthermore since V is finite dimensional, let m be the smallest power of Y such that

Y m(v) = 0 We have then:

m(n−m+ 1) · Y m−1(v) = X(Y m)(v) = 0

Thus n = m− 1, which shows that n must be a nonnegative integer.

Moreover, if we use the notation V n in lieu of V , we have: dim(V n) = m = n+ 1.

Finally for each non negative integer n, the eigenvalues of H are −n,−n + 2, · · · , n − 2, n.

Also, each of the Vα for α = −n,−n + 2, · · · , n − 2, n, is a one dimensional subspace of V .

As a consequence

dim(V ) = n+ 1 (1.6)

Example 1.4.2. Let V = C2 as vector space over C with standard basis x = (1, 0) and

y = (0, 1).
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Consider the vector space S2(V ) with the basis {x2, xy, y2}. The action of H is given by:

H(x · x) = 2x · x,

H(x · y) = 0,

H(y · y) = −2y · y

thus the decomposition of V2 as an sl2- representation is:

V2 = Cx2 ⊕ C · xy ⊕ Cy2

The eigenvalues of H are −2, 0 and 2.

This result can be generalized to Sn(V ), the nth symmetric tensor of V = C2.

We take the basis {xn, xn−1y, xn−2y2, · · · yn} as in the case of n = 2 above.

The action of H on an element xn−kyk is:

H(xn−kyk) = (n− k) ·H(x) · xn−k−1yk + k ·H(y) · xn−kyk − 1

= (n− 2k) · xn−kyk

Thus the action of H on sn(V ) has eigenvalues −n,−n + 2, · · ·n − 2, n , the same as its

eigenvalues on V (n). since both Sn(V ) and V (n) are irreducible, it follows that:

V (n) = Sn(V )

In other words, Every irreducible sl2- representation is of the form Sn(V ) where V ∼= C2 (cf.

[4], chap 11).

1.4.2 Important properties

A few important results, one of which describes the decomposition of the tensor product of

two irreducible sl2- representations, are given below: (cf. [4], chap 11).

As above, V = C2, is the defining representation of sl2.

Proposition 1.4.3. For any nonnegative integers a and b, a ≥ b:

SaV ⊗ SbV = Sa+bV ⊕ Sa+b−2V ⊕ · · · ⊕ Sa−bV

Proposition 1.4.4. For any non negative integer n,

Sn(S2V ) =

[n
2

]⊕
α=0

S2n−4αV

19



Example 1.4.5. We have the following decompositions:

S4V ⊗ S3V = S7V ⊕ S5V ⊕ S3V ⊕ S1V

S4(S2V ) = S8V ⊕ S4V ⊕ S0V

We also will use the following property in the proof of our result:

Proposition 1.4.6.

∧m(SnV ) ∼= Sm(Sn+1−mV )

(cf. [4] chap 11, Ex 35).

1.4.3 Characters of sl2

Let (Fk, ρ) be the irreducible representation of the group SL2 with dim Fk = k + 1. We

know that every diagonalizable element in SL2 is conjugate to an element of the form

d(q) =

[
q 0
0 q−1

]
for some q ∈ C×. Hence the character ch(Fk) is uniquely determined by

chFk(d(q)) = qk + qk−2 + · · ·+ q−k+2 + q−k = [k + 1]q

where by definition:

[n]q = qn−1 + qn−3 + · · ·+ q−n+3 + q−n+1.

Furthermore, we define the q-factorial as follows:

[0]q = 1, and [n]q! =
n∏
j=0

[n− j]q for n ≥ 1

and the q-binomial coefficient as [
n+m
n

]
q

=
[n+m]q!
[m]q![n]q!

Theorem 1.4.7. For all q ∈ C×

chSm(Fk)(d(q)) =

[
k +m
k

]
q

Where Sm(Fk) is the mth symmetric power of Fk. The latter being the kth-symmetric power

of V = C2 or Fk = Sk(C2).
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Proof. Details of the proof can be found in numerous sources like ([5], chap 4).

Corollary 1.4.8. We do have the following isomorphism:

Sn(SmV ) ∼= Sm(SnV )

as sl2- representations. Here again V = C2.

This corollary is known as Hermite reciprocity and will be used in the proof of our result.
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Chapter 2

Our result and its proof

In this chapter our result and its proof are exposed.

2.1 Introduction

Key words: Principal embedding, small subalgebra, Cartan-Helgason theorem, Pieri rules,

Hermite reciprocity theorem, branching algebra.

2.1.1 Definitions, examples and notations

Definition 2.1.1. Let k be a nonnegative integer. Using the same notation as in (1.4.3),

let Fk be the complex irreducible sl2- representation of dimension n = k + 1. We then have

the following Lie algebra homomorphism:

π : sl2 → End(Fk)

If a basis is fixed in Fk, End(Fk) is identified with gln.

For k ≥ 1 The kernel of π is trivial since sl2 is simple. Therefore sl2 ∼= π(sl2).

Under this isomorphism , sl2 intersects the center of gln trivially, therefore sl2 is embedded

in sln. It is called the principal sl2 subalgebra of sln.

Other embeddings, not needed for our purpose, are possible. For instance, there are (up to

conjugation) three nonisomorphic sl2 maximal Lie subalgebras embedded in the exceptional

Lie algebra E8, only one of which is principal. The LiE software can be used to quickly check

this fact (cf. [10]).

We recall here some standard assumptions and notations used: The ground field is C,

the field of complex numbers. Unless explicitly stated, all Lie algebras and representations

are assumed to be finite dimensional and over C.
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If m is a positive integer and V is a vector space then we write,

mV = V ⊕ V ⊕ · · · ⊕ V︸ ︷︷ ︸
m copies.

If m = 0 then mV = (0).

If G is a group (resp. Lie algebra), which acts on a vector space V , we will denote the

subspace of pointwise fixed vectors (i.e. invariant vectors) by V G.

If G acts on both V1 and V2 then G acts on Hom(V1, V2) by

g · T := gTg−1

The G-invariant vectors in Hom(V1, V2) are exactly the the G-equivariant homomorphisms,

denoted HomG(V1, V2).

We define multG(V1 : V2) by:

multG (V1 : V2) = dim HomG(V1, V2).

If G (resp. g ) is understood, it will be dropped from notation.

Note that in the case that V1 (resp. V2) is irreducible and V2 (resp. V1) is completely

reducible then mult(V1, V2) is the multiplicity of V1 (resp. V2) in V2 ( resp. V1).

Fix {Vλ : λ ∈ Ĝ} to be the set of distinct representatives of the equivalence classes

of irreducible representations of G , with index set Ĝ. Then, for an arbitrary completely

reducible G-representation, V we have:

V ∼=
⊕
λ∈Ĝ

mλVλ

where the nonnegative integers mλ are the multiplicities, that is mλ = mult(Vλ : V ).

If G is a subgroup of a larger group H, and V is an irreducible H-representation then V

becomes a G-representation under the restricted action, which we denote by ResHGV .

The numbers multG(Vλ : ResH
G V ) are sometimes called the branching multiplicities (cf. [5]).

2.1.2 Invariant theory

Proposition 2.1.2. Let V and W be finite dimensional representations of a semi simple

Lie algebra g. Then we have the natural isomorphism:

Hom(V,W ) ∼= W ⊗ V ?
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(cf. [5] Appendix B 2.2).

The g-representation Hom(V,W ) is afforded by the action

g · T = gT − Tg

for all g in g and T in Hom(V,W ).

Corollary 2.1.3. Let V and W be as in (2.1.2), we have:

Homg (V,W ) ∼= [W ⊗ V ?]g

Induced representation

The process of constructing a representation of a Lie group G by starting by a representation

of a subgroup H of G is called induction.

Definition 2.1.4. Let V be a representation of a group G and Let H be a subgroup of

G. The restricted representation of V to H is the representation obtained by restricting the

action of G to H. It is denoted by, ResGH(V ).

Now let us reverse this process, in other words, one can construct a representation of G

given a representation V of a subgroup H of G.

Definition 2.1.5. Let V be a representation of a subgroup H of a group G. The induced

representation IndGH(V ) is defined by:

IndGH(V ) = {f : G→ V | f regular and f(hx) = h · f(x) for all x in G and h in H}

where the ”·” stands for the action of H on V .

Note: The action of G on IndGH(V ) is given by:

g(f)(x) = f(xg) for all g in G

It is easy to check that this action in fact makes of IndGH(V ) a G-representation.

In the language of category theory, the functor ”Res” is the functor right adjoint to the

functor ”Ind”.

Remark 2.1.6. Induced representations can be constructed using tensor products as follows:

A representation V of the subgroup H of a group G is also a module over the group ring

C[H], the induced representation is then:

IndGHV = C[G]⊗C[H] V
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Theorem 2.1.7 (Frobenius reciprocity). Let H be a subgroup of G and V and W be repre-

sentations of G and H respectively. We have

HomG(V , IndGHW ) ∼= HomH(ResGHV , W )

Proof. (cf. [4], chap 3).

Example 2.1.8. IndGH1 = C[G]H .

2.1.3 Lie theoretic setup

Now let g denote a rank l simple Lie algebra, and fix a Cartan subalgebra h.

Denote the set of roots (resp. positive roots) determined by (g, h) by Φ and Φ+ as in ( 1.3.6).

Let ω1, ω2, · · ·ωl be the fundamental weights of (g, h).

Also, let P (g) be the lattice of integral weights and P+(g) be the cone of dominant weights

of g (1.3.4). We have:

P (g) =
l∑

j=1

Zωj

where Z is the set of integers and

P+(g) =
l∑

j=1

Nωj

where N is the set of non-negative integers. Set b = h⊕ n+, the semi direct sum of h and n+

(cf. 1.3.2).

Let G be the unique (up to isomorphism) simply connected algebraic group whose Lie al-

gebra is g; TG be the maximal torus in G with Lie algebra h; and UK denote the maximal

unipotent group with Lie algebra n+.

The coordinate ring of the regular functions on G is denoted , as usual, by C[G].

The group G acts on itself by left and right multiplication. Thus, C[G] is an infinite dimen-

sional representation of G×G with respect to the action defined by:

[(g, g′) · f ](x) = f(g−1xg′)

The algebraic version of the Peter-Weyl is given by the decomposition:

C[G] ∼=
⊕

λ∈P+(g)

LG(λ)∗ ⊗ LG(λ).

where LG(λ)∗ stands for the dual (irreducible) representation of the (irreducible) represen-

tation LG(λ).
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2.1.4 A branching algebra

If we fix a simple Lie subalgebra s of g, there exists a connected, Zariski closed, subgroup S

of G with Lie algebra s. Let TS (resp. US) denote the corresponding maximal torus (resp.

unipotent subgroup) in S.

We will restrict the action of G×G on C[G] to the subgroup S ×G, that is, we restrict

the left translation by K to that of S.

Define

BGS = C[G]US×UG

For each of the groups S and G, the maximal torus normalizes the unipotent group.

TS × TG acts on these unipotent invariants. As a consequence, we obtain a gradation by the

lattice cone P+(s)× P+(g).

BGS consists of the highest weight vectors for the S ×G- action on C[G].

Let BG,λS,µ denote the TS × TG-eigenspaces. We have

BGS =
⊕
BG,λS,µ

where the sum is over (λ, µ) ∈ P+(s)× P+(g), this is a graded algebra.

Proposition 2.1.9. Let λ1, λ2 ∈ P+(g) and µ1, µ2 ∈ P+(s).

If for j = 1 and j = 2,

multS(LS(µj) : ResGS LG(λj)) > 0

then

multS(L(µ1 + µ2) : ResGS L(λ1 + λ2)) > 0.

Proof. The dimension of the graded components of the branching algebra are equal to the

branching multiplicities. Since G is connected, the branching algebra is a subalgebra of the

integral domain C[G], and therefore has no zero divisors.

It is worth pointing out that the proposition is particularly useful when we write µ1 = µ

and consider the special case µ2 = 0.

Corollary 2.1.10. For λ1, λ2 ∈ P+(g) and µ ∈ P+(s). Assume LG(λ2)S 6= (0). Then if

LS(µ) occurs in LG(λ1), as an S-representation, then LS(µ) occurs in

LG(λ1 + λ2), LG(λ1 + 2λ2),  LG(λ1 + 3λ2), · · · ,  LG(λ1 + nλ2), · · ·

26



2.1.5 Young diagrams and Pieri rules

Definition 2.1.11. A Young diagram is a finite collection of boxes, arranged in left justified

rows, with the row lengths weakly decreasing. Listing the number of boxes in each row gives

a partition λ = (λ1, λ2, · · · , λl) of a non-negative integer n, the total number of boxes of the

diagram.

The Young diagram is said to be of shape λ, and it carries the same information as the

associated partition.

Example 2.1.12.

(2.1)

and

(2.2)

are two Young diagrams of shape (8, 4, 3, 2) and (5, 3, 2, 2), these correspond to two partitions

of n = 17 and n = 12 respectively.

Young diagrams (and Young tableaux) have their original application to representations of

the symmetric group (cf. [2] and [4]).

Young diagrams will serve in this work together with the Pieri rules to exhibit a symmet-

ric power spn- representation Sd(Cn) in any sln- representation, when the action is restricted

to spn. Similarly we will exhibit an exterior power son -representation ∧k(Cn) in any (irre-

ducible) sln- representation, when restricted to the spn (here n must positive and even).

Example 2.1.13. let F λ
4 be the sl4-module associated with the Young diagram below of

shape λ = (3, 2, 2, 0).

(2.3)

Question: How does the representation F λ
4 ⊗ ∧2C4 decompose as a sum of sl4- modules?

For each i = 1, 2, 3, 4, let εi be the linear functional:

εi :


d1

d2

. . .

dn

 7→ di
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Since sl4 is comprised of 4× 4 trace zero matrices, we have then, ε1 + ε2 + ε3 + ε4 = 0.

If ω1, ω2, ω3 are the fundamental weights of sl4 then λ = 3ε1 + 2ε2 + 2ε3 = ω1 + 2ω3.

Here are the four different Young diagrams obtained by adding two boxes to the initial

diagram with no two boxes in the same row.

X
X

X
X

X

X

X

X (2.4)

Figure 2.1: Young diagrams corresponding to irreducible constituents in the decomposition
of F λ

4 ⊗ ∧2C4.

Thus the decomposition sought is:

F λ
4 ⊗ ∧2C4 ∼= L(ω3)⊕ L(ω1 + ω2 + 2ω3)⊕ L(2ω1 + ω3)⊕ L(ω2 + ω3)

Example 2.1.14. Considering the irreducible sl4-representation F λ
4 of the previous example

(2.1.6), the F λ
4 ⊗ S3(C4) decomposes as a sum of simple sl4- modules.

These simple modules correspond to all different Young diagrams obtained by adding three

boxes to the initial diagram with no three boxes in the same column.

The six Young tableaux obtained this way are below and they correspond to the irreducible

components L(2ω1 + ω2 + 2ω3), L(3ω1 + ω3), L(4ω1 + 2ω3), L(ω1 + ω2 + ω3), L(2ω1) and

L(ω2) (form left to right).

X X
X

X X

X

X X X
X X

X (2.5)
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X

X X

X

X X

Figure 2.2: Young diagrams corresponding to irreducible constituents in the decomposition
of F λ

4 ⊗ S3(C4).

We have then:

F λ
4 ⊗S3(C4) ∼= L(2ω1+ω2+2ω3)⊕L(3ω1+ω3)⊕L(4ω1+2ω3)⊕(ω1+ω2+ω3)⊕L(2ω1)⊕L(ω2)

2.1.6 Schur polynomials

Schur polynomials are introduced as well as their relationship with representation theory.

These are homogeneous polynomials in n indeterminates with integer coefficients. They form

a linear basis of the vector space of symmetric polynomials.

In representation theory, they are the characters of polynomial irreducible representations

of GLn(C). Schur polynomials in n variables are indexed by partition of the integer n.

Definition 2.1.15. A partition of a positive integer d is a sequence λ = (λ1, λ2, · · ·λn) of a

weakly decreasing positive integers such that
∑n

i=1 λi = d.

The size of λ is denoted by |λ| and is defined to be d.

Associated with the partition λ = (λ1, λ2, · · ·λn) is the (homogeneous) polynomial:

aλ(x1, x2, · · · , xn) = det


xλ1+n−1

1 xλ1+n−1
2 . . . xλ1+n−1

n

xλ2+n−2
1 xλ2+n−2

2 . . . xλ2+n−2
n

...
...

. . .
...

xλn1 xλn2 . . . xλnn


This polynomial is alternating (antisymmetric), meaning that:

aλ(xσ(1), xσ(2), · · · , xσ(n)) = sign(σ)(x1, x2, · · · , xn)

Therefore it is divisible by the polynomial

D(x1, x2, · · · , xn) = det


xn−1

1 xn−1
2 . . . xn−1

n

xn−2
1 xn−2

2 . . . xn−2
n

...
...

. . .
...

1 1 . . . 1

 .
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Recall that:

D(x1, x2, · · · , xn) =
∏

1≤ i< j≤n

(xi − xj)

This alternating polynomial is called the Vandermonde polynomial of (x1, x2, · · · , xn).

Definition 2.1.16. The polynomial

sλ(x1, x2, · · · , xn) =
aλ(x1, x2, · · · , xn)

D(x1, x2, · · · , xn)

is called the Schur polynomial associated to the partition λ.

Note: sλ(x1, x2, · · · , xn) is a symmetric polynomial with integer coefficients. More pre-

cisely, it is a homogeneous, symmetric polynomial of degree |λ| = d.

Schur polynomials and representation theory

There is a strong relationship between Schur polynomials and semistandard Young Tableaux,

which we expose here:

Definition 2.1.17. A Young Tableau T of shape λ = (λ1, λ2, · · · , λl) is said to be standard

if all the filling are increasing across each row and strictly increasing across each column. A

Young Tableau T of shape λ is said to be semistandard if all the filling are weakly increasing

across each row and strictly increasing across each column.

Example 2.1.18. The Young tableau T1 below of shape λ = (3, 2, 2, 1) is standard, while

the Young tableau T2 is semistandard.

1 2 3
4 5
6 7
8

1 2 2
5 5
6 7
8

Figure 2.3: From left to right: T1 standard and T2 semistandard.

One of the important properties relating Schur polynomials and semistandard tableaux

is:

Proposition 2.1.19. Let λ be a partition of n and let N be a bound on the size of entries

in each semistandard tableau T os shape λ. Let xT =
∏N

i=1 x
j
i , where j is the number of i′s
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in T .

The Schur polynomial associated with λ is:

sλ(x1, x2, · · · , xn) =
∑

semistatard T

xT =
∑

semistatard T

xt11 x
t2
2 · · ·xtnn

where each t1 is the number of the number i in T

Example 2.1.20. Let λ = (2, 1) and fix a bound on the size entries to be N = 3.

For this bound N , the list of semi standard tableaux of shape λ are given below:

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

Figure 2.4: List of all semistandard tableaux of shape λ = (2, 1) and using the numbers 1, 2
and 3 only.

The corresponding Schur polynomial is :

s(2,1)(x1, x2, x3) = x2
1x2 + x2

1x3 + x1x
2
2 + x1x2x3 + x1x3x2 + x1x

2
3 + x2

2x3 + x2x
2
3

Note: This is a homogeneous symmetric polynomial of degree 3 where each term corresponds

to one tableau from the list above.

For more details about Schur polynomials (cf. [9]).

2.2 Our original problem

First, let us provide a definition of a semisimple Lie subalgebra of a semisimple Lie algebra

being small. A concept introduced first by Willenbring and Zuckermman (cf. [11]).

2.2.1 Small subalgebras

Definition 2.2.1. Let g be a semisimple Lie algebra.

A semisimple Lie subalgebra k of g is said to be small in g if there exists a positive integer

b(k, g), such that for every irreducible finite dimensional g-module V , there exists an injection

of k-modules W ↪→ V, where W is an irreducible k-module of dimension less than or equal

to b(k, g).

In other words, if we let {Wi}i=1,2,3.... denote the semigroup of irreducible finite dimensional
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representations of k, if V is an irreducible finite dimensional representation of g then upon

restriction to k, V decomposes as:

V ∼=
∞⊕
i=1

Wi ⊕Wi ⊕ · · · ⊕Wi︸ ︷︷ ︸
mi(V )

where Wi ’s are pairwise inequivalent representations of k and mi(V ) ≥ 0 is the multiplicity

of Wi in V for each i = 1, 2, 3.... (cf. [11]).

The definition above can be stated as:

Definition 2.2.2. A Lie algebra k is said to be small in g if:

max

{
min

mi(V )6=0
(i) | V irreducible finite dimensional representation of g

}
is finite.

Example 2.2.3. Below are a few examples.

i. Upon restriction to an sl2-subalgebra, every irreducible representation of sl3 has an

irreducible sl3-representation of dimension at most 3 (cf. [11]).

ii. Let n be even and n ≥ 2. Under the standard embedding, the rank n/2 symplectic

Lie subalgebra spn is not small in sln because the symmetric powers of the defining

representation of sln are irreducible as spn- representations.

In this exposition, we consider the Lie subalgebra k being the principally embedded sl2 in

sln as in (2.1.1). We will determine the sharpest bound b(k, g) of definition (2.2.1).

The theory describing the multiplicity with which an irreducible representation (σ, k) of k

occurs in a representation (π, g) for a pair of classical Lie algebras k ⊂ g is known as:

Branching rules (cf. [5]).

2.2.2 Our main result

We will in fact prove that:

For all positive integer n ≥ 3, the principally embedded Lie subalgebra sl2 is small in sln

and a sharp bound of (2.2.1) is:

b(k, g) = n

This result has been proved for n = 3 (cf. [5]). Also, this same result implies the following:

Theorem 2.2.4. Let k be the principally embedded sl2-subalgebra of sln.

For any integer n ≥ 3, and any complex representation V of sln, there exists 0 ≤ d ≤ n− 1,

such that Fd ↪→ V as sl2-representations.
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2.3 Proof: step one

The first step is to examine the symmetric powers (of all order) of the defining representation

Cn of sln, when the action is restricted to the principally embedded sl2.

By setting d = n− 1 we have Sd(C2) ∼= Cn.

Obviously the mth symmetric powers of Sd(C2) are irreducible representations of sln. When

the action of sln is restricted to sl2 we get a decomposition of the form:

Sm[Sd(C2)] ∼= k0F0 ⊕ k1F1 ⊕ k2F2 ⊕ · · ·

where dim Fk = k + 1 for all k = 0, 1, 2, 3 · · ·
and ki ≥ 0 for all i = 0, 1, 2, · · ·
Define

`(m, d) := min {dim Fi | ki ≥ 1}

Our golden table below, gives the bound `(m, d) of for all nonnegative integers m, d =

0, 1, 2, · · · , 20.

As a consequence of Hermite reciprocity (1.4.8), we have:

`(m, d) = `(d,m), for allm and d.

Thus all information are encoded in the upper (or lower) triangle of the table. For conve-

nience we will let m denote the order of the row and d that of the column.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1

3 1 4 3 4 1 4 3 4 1 4 3 4 1 4 3 4 1 4 3 4 1

4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 6 3 4 1 2 3 2 1 2 3 2 1 2 3 2 1 2 1 2 1

6 1 7 1 3 1 3 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1

7 1 8 3 4 1 2 3 2 1 2 3 2 1 2 1 2 1 2 1 2 1

8 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 1 10 3 4 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1

10 1 11 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1

11 1 12 3 4 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1

12 1 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13 1 14 3 4 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1

14 1 15 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15 1 16 3 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

16 1 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

17 1 18 3 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

18 1 19 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

19 1 20 3 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

20 1 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2.5: Values of `(m, d) as m, d = 0, 1, 2...20.

From the table, the following results are immediate:

`(0, d) = 1

for all d since S0[Sd(C2)] ∼= C.

`(1, d) = d+ 1

for all d since S1[Sd(C2)] ∼= Cd+1.
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This last relation shows that the sharp bound b(k, g) of (2.2.2) is at least n.

Now we need to show that b(k, g) is at most n. We investigate case by case:

Case 1: l = 2

For all d = 0, 1, 2 · · · ,

`(2, d) =

{
1 if d even;
3 if d odd.

Proof. `(2, 0) = 1 is a special case of `(d, 0).

If d is even then `(2, d) = 1 by taking α = d
2

in the proposition (1.4.4).

If d is odd then `(2, d) = 1 by taking α = d+1
2

in the proposition (1.4.4).

Case 2: l = 3

For all d = 0, 1, 2 · · · ,

`(3, d) =


1 if d = 0,
3 if d = 2,
4 if d ∈ {1, 3}.

Proof. Taking d = 3 in `(2, d) together with (1.4.8), we have (3, 2) = `(2, 3) = 3

`(3, 3) = 4 is a consequence of the following relation (cf. [4], Chap 11 ).

S3(S3V ) ∼= S9V ⊕ S5V ⊕ S3V

Case 3: l = 4

`(4, d) =

{
5 if d = 1,
1 if d = 0, 2, 3.

Proof. d = 0 and d = 1 are trivial.

`(4, 2) = `(2, 4) = 1 ( from case 1).

`(4, 3) = 1 because of the decomposition:

S4(S3V ) = S12V ⊕ S8V ⊕ S6V ⊕ S4V ⊕ S0V

Finally the whole left upper-corner 5×5 subtable of our golden table is fully understood.

In other words l(l, d) is known for l, d = 0, 1, 2, 3, 4.

Now `(4, 2) = `(4, 3) = 1 and `(4, 0) = 1 implies that: `(4, d) = 1 for all d = 0, 2, 3, 4, · · ·
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This is because there are invariants in S4(SdV ) for all d ≥ 2, these are obtained by taking

the sum and/or products of those invariants in S4(S2V ) and S4(S3V ).

Using the corollary (2.1.10), together with ( (2.3) of case 3), we can provide an explicit

upperbound of `(m, d) for all m ∈ {0, 1, 2, 3, 4} and all d = 0, 1, 2, 3, · · · as follows.

Proposition 2.3.1. For all nonnegative integer d

• `(0, d) = 1 for all d = 0, 1, 2 · · ·

• `(1, d) = d+ 1 for all d = 0, 1, 2 · · ·

• `(2, d) =

{
1 if d ≡ 0 or 2 mod 4,
3 if d ≡ 1 or 3 mod 4.

• `(3, d) =


1 if d ≡ 0 mod 4,
3 if d ≡ 2 mod 4,
4 if d ≡ 1 or 3 mod 4.

• `(4, d) =

{
5 if d = 1,
1 if d 6= 1.

By applying again the corollary (2.1.10) and the Hermite reciprocity (property (1.4.8))

to the upper left corner five by five subtable, we extend the previous results to all m, d =

0, 1, 2 · · · . Here is how:

Proposition 2.3.2. For all nonnegative integers m and d

• If m ≡ 0mod 4, then

`(m, d) = 1 for all d 6= 1 and `(m, 1) = m+ 1

• If m ≡ 1mod 4, then

`(m, d) =


d+ 1 if m = 1,
m+ 1 if d = 1,
≤ 4 otherwise.

• If m ≡ 2mod 4, then

`(m, d) =

{
m+ 1 if d = 1,
≤ 3 otherwise.

• If m ≡ 3mod 4, then

`(m, d) =

{
m+ 1 if d = 1,
≤ 4 otherwise.
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As a consequence of the last two propositions, we have:

Proposition 2.3.3. For all nonnegative integers m and d ≥ 2,

`(m, d) ≤ d+ 1

Which is to say, For all nonnegative integers m and n ≥ 3,

`(m,n− 1) = `(m, d) ≤ n

2.4 Proof: step two

In this section we are still considering the principally embedded sl2 in sln for n ≥ 3

As usual, we identify P+(sl2) with nonnegative integers and let {Fi} i=0,1,2,··· be the corre-

sponding irreducible representations such that dim Fi = i+ 1.

Fix n ≥ 3, let λ be in P+(sln), and let L(λ) be the irreducible sln- representation with

highest weight λ.

The proof of the two propositions (2.4.8) and (2.4.9) uses the famous Cartan-Helgason

theorem (cf. [7], chap 8), which we will state here, but first some review.

Definition 2.4.1. Let g be a semisimple Lie algebra. An automorphism θ of g is called

involution on g if θ2 = 1g.

Any semisimple Lie algebra has an involution.

Example 2.4.2. we have

i. The identity map is an involution.

ii. For g = sln, the map defined by θ(X) = X∗ is an involution. Here X∗ stands for the

complex conjugation.

Definition 2.4.3. Let θ be an involution on a Lie algebra g.

Since θ2 = 1g we have:

g = k + p

where k is Lie subalgebra and p is a vector subspace whose Lie subalgebras are all commu-

tative.

It is obvious that:

[k, k] ⊂ k; [k, p] ⊂ p and [p, p] ⊂ k
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The pair (k, p) is called a Cartan pair and the pair (g, k) is called a symetric pair (cf. [7]).

One has similar definitions at the level of Lie groups.

Let G be a compact semisimple connected and simply connected Lie group and τ an involu-

tion of G.

Define

Gτ = {g ∈ G | τg = g} and P = {g ∈ G | τg = g−1}

Let T be a maximal torus of G invariant under τ , such that T ∩ P is a maximal torus in P ,

and let S = K ∩ T where K = Gτ . Also, notice that S = T τ .

The Cartan-Helgason theorem states.

Theorem 2.4.4. The irreducible representation of G admitting a nonzero vector fixed by

K are precisely those with highest weights corresponding to homomorphisms from T to C∗

trivial on S.

Proof. (cf. [7], chap 8).

One of the consequences of the theorem above (2.4.4) is the following:

Theorem 2.4.5. Every symmetric pair (G,K) of algebraic groups is spherical, that is, the

affine variety G/K has a multiplicity free coordinate ring. in other words, for any irreducible

representation, V , of G, the dimension of the K-invariant subspace, V K, is at most one

dimensional.

Recall that: V K = {x ∈ V | gx = x for all g ∈ K}
Tow classes of symmetric pairs (SLn, SOn) and (SLn, Spn) are needed for the proof of our

result.

Proposition 2.4.6. Let λ be in P+(sln).

dim L(λ)SOn = 1

if and only if the number of boxes in each row of the Young diagram associated with λ is

even. In other words:

λ ∈ 2Nω1 ⊕ 2Nω2 ⊕ · · · ⊕ 2Nωn−1

In a similar way, when considering the symmetric pair (SLn, Spn) and n even.

Proposition 2.4.7. Let λ be in P+(sln).

dim L(λ)Spn = 1
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if and only if all the number of boxes in each column of the Young diagram associated with

λ is even. In other words:

λ ∈ Nω2 ⊕ Nω4 ⊕ · · · ⊕ Nωn−2

Proof. (cf. [5], chap 12).

Suppose n ≥ 3 and let L(λ) be an irreducible representation of sln, we will prove the two

following propositions.

Proposition 2.4.8. If n is even then there exists a unique nonnegative integer d such that

∧d(Cn) ↪→ ResslnsonL(λ)

that is to say,

mult (∧d(Cn) : ResslnsonL(λ)) = 1

for some nonnegative integer d.

Proof. Let n ≥ 3, n odd.

Given L(λ), using Pieri rules (2.1.5) (if needed) with the appropriate number of boxes,

k ≥ 1, will produce one diagram with all rows having an even number of boxes. This

diagram correspond to the constituent in the decomposition of ∧k(Cn)⊗L(λ) which has an

invariant nonzero vector under the action of SOn. Therefore,

dim [∧k(Cn)⊗ L(λ)∗]SOn = 1

and thus, using the corollary (2.1.3) we get:

dim HomSOn (∧k(Cn), L(λ)) = 1

Finally, an SLn- representation of the form ∧k(Cn) occurs in the decomposition of any given

sln (resp. SLn) irreducible representation L(λ) when the action is restricted to son (resp.

SOn).

Proposition 2.4.9. If n is even then there exists a unique nonnegative integer d such that

Sd(Cn) ↪→ Resslnspn
L(λ)

that is to say,

mult (Sd(Cn) : Resslnspn
L(λ)) = 1

for some nonnegative integer d.
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Proof. First, it is worth to mention that the irreducible sln- representations are the same as

the irreducible gln- representations, where the center of gln acts trivially. Let n ≥ 3, n even

Again, once L(λ) is given, using Pieri rules of (2.1.5) (if needed) with the appropriate number

of boxes, d ≥ 1 we will produce one diagram with all columns have an even number of boxes.

This diagram correspond to the constituent in the decomposition of Sd(Cn) ⊗ L(λ) which

has an a nonzero invariant vector under the action of Spn. and this implies that:

dim [Sd(Cn)⊗ L(λ)∗]Spn = 1

and therefore using (2.1.3) we get:

dim HomSpn (Sd(Cn), L(λ)) = 1

therefore an Sd(Cn) occurs in the decomposition of any sln (resp. SLn) irreducible repre-

sentation L(λ) when the action is restricted to spn (resp. Spn).

Remark 2.4.10. It is important to note that in both (2.4.8) and (2.4.9) the corresponding

nonnegative integers k and d associated with ∧k(Cn) and Sd(Cn) are unique.

2.5 Proof: step three

In this last part of the proof, we consider an integer n ≥ 3 and we will, as we should, use

propositions (2.4.9 and 2.4.8) to discuss two separate cases as follows.

Case 1: n even

By considering the double embedding:

sl2 ↪→ spn ↪→ sln.

Let L(λ) be an irreducible sln-representation. By reducing the action to spn and using

(2.4.9), we know that there exits d = 0, 1, 2 · · · such that the irreducible spn-representation

Sd(Cn) occurs in Resslnspn
L(λ).

For this same Sd(Cn), when the action is restricted to the principally embedded sl2.

Our previous result (2.3.3) implies the existence of an sl2 representation Fk occurring in

Sd(Cn) where k ≤ n.
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Case 2: n odd

By considering the double embedding:

sl2 ↪→ son ↪→ sln

Let L(λ) be an irreducible sln-representation.

From (2.4.8), there exists a k = 0, 1, 2 · · · , n. such that ∧k(Cn) occurs in L(λ) as an irre-

ducible son-representation.

For that same k and from proposition (1.4.6) we have:

∧k[Sn(C2)] ∼= Sk[Sn+1−k(C2)]

Here again, from (2.3.3), there exits a k′ ∈ {0, 1, 2 · · · , n−k} such that the sl2- representation

Fk′ occurs in Sk[Sn+1−k(C2)]. Therefore that same Fk′ is a constituent of ∧k[Sn(C2) as

representations of sl2.

If k = 0 then k′ = 0 ≤ n.

If k ≥ 1, we need to justify why n+ 1− k ≥ 2. Here is why!

We have k ≤ n−1
2
≤ n− 1 thus n− k + 1 ≥ 2.

From the previous case (n even) we know k′ ≤ n − k + 1, therefore k′ ≤ n (since k ≥ 1).

This concludes our proof.

2.5.1 More readings from our golden table

Although a sharp bound for the lowest dimension of sl2- type occurring in the sl2 represen-

tation Sm(Sd(C2)) has been proven to be `(m, d) = d + 1. For more subtle reading, let us

consider the golden table again (see below).

Proposition 2.5.1. For all m odd and d odd we have:

`(m, d) ≥ 1

Proof. The sl2-representation Sm(Sd(C2)) has weights:

mdd+md−2(d− 2) + · · ·m−d(−d)

with md + md−2 + · · ·m−d = m thus the trivial representation does not occur since it has

zero weight.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
3 1 4 3 4 1 4 3 4 1 4 3 4 1 4 3 4 1 4 3 4 1
4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 6 3 4 1 2 3 2 1 2 3 2 1 2 3 2 1 2 1 2 1
6 1 7 1 3 1 3 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1
7 1 8 3 4 1 2 3 2 1 2 3 2 1 2 1 2 1 2 1 2 1
8 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 10 3 4 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1
10 1 11 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 12 3 4 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1
12 1 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 14 3 4 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1
14 1 15 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 16 3 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
16 1 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 1 18 3 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
18 1 19 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 20 3 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
20 1 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2.6: Values of `(m, d) for m, d = 0, 1, 2...20.

From the table above we also have the following lemmas corresponding to m = 5, 6 and

7

Lemma 2.5.2.

`(5, d) =


2 if d odd and d ≥ 5,
3 if d ∈ {2, 6, 10, 14},
1 if d even and d 6∈ {2, 6, 10, 14},
4 if d = 3,
1 if d = 1.

Proof. (cf. http://arxiv.org/abs/1603.04935).

Lemma 2.5.3.

`(6, d) =


1 for all d 6∈ {1, 3, , 5, 7, 9, 11, 13},
3 if d ∈ {3, , 5, 7, 9, 11, 13},
7 if d = 1.

42

h


Proof. (cf. http://arxiv.org/abs/1603.04935).

Lemma 2.5.4.

`(7, d) =


2 if d odd and d 6∈ {1, 3},
4 if d = 3,
3 if d ∈ {2, 6, 10},
8 if d = 1,
1 if d is even and d 6∈ {2, 6, 10}.

Proof. (cf. http://arxiv.org/abs/1603.04935).

Because of the symmetry of our table, we will assume here that d ≥ m.

First, notice the four matrix: 
1 1 1 1

1 2 1 2

1 1 1 1

1 2 1 2


corresponding to the rows 8 through 11 and columns 8 through 11, combined with the

corollary (2.1.10), will repeat itself (mod 4) to the right, downward and/or both, indefinitely

many times.

Remark 2.5.5. For all m ≥ 8 and all d ≥ 8

`(m, d) ∈ {1, 2}

even more precisely,

For all m ≥ 8 and for all d ≥ m

`(m, d) =

{
2 for all m and d odd ,
1 otherwise.

It is also worth to note the same four by four matrix of 1’s and 2’s corresponding to the

the rows 4 through 7 and columns 16 through 19. This matrix will, as well, repeat itself

(mod 4) to the right, downward and/or both indefinitely many times.

2.6 Motivation and new directions

2.6.1 Motivation

One of the sources of motivation of our work is the generalization of the results of BGG’s

paper (cf. [1]).
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Another motivation stems from a study of generalized Harish-Chandra modules (cf. [8]) as

follows:

Let k denote a reductive subalgebra of a semisimple Lie algebra g. A (g, k)-module M is a

g-module such that k acts locally finitely. That is, for all v ∈ M , dim U(k)v < ∞ (U(k)

being the universal enveloping algebra of k).

We say that the (g, k)-module is admissible if every irreducible finite dimensional represen-

tation of k occurs with finite multiplicity in M . We then have the following proposition:

Proposition 2.6.1. Given an infinite dimensional, admissible (g, k)-module M . For every

semisimple small subalgebra k′ ⊂ k, if k′ is small in k, then M can not be an admissible

(g, k′)-module.

Proof. (cf. [11])

An important special case is worth mentioning:

When the action of sln on the adjoint representation is restricted to sl2, one obtains that the

special unitary group SU(n) has the same homology as the product of spheres of dimension

3, 5, 7, · · · 2n− 1 (cf. http://www.ams.org/mathscinet/pdf/974333.pdf).

2.6.2 New directions

• The result stated here is classified in the area of branching, our hope is to extend it to

a large family of pairs (g, k).

• In our case of the pair (sln, sl2), although a the sharp bound b(k, g) of (2.2.1) has been

determined to be n, the multiplicities of the smallest occurring sl2-type remains an

open question, which we hope to solve in the future.
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Chapter 3

Computational data

3.1 Maple Data

We have used both Maple and LiE software to produce data used to conjecture our result.

Data using Maple:

> restart: # Clear the Maple RAM

with(LinearAlgebra): # load LinearAlgebra package

> # We express sl(2) characters on the diagonal matrices of SL(2,C)

> Matrix(2,2, [[q,0],[0,1/q]]); [
q 0
0 1/q

]
# Exterior powers (i.e. alternating tensors)

# Compute the sl(2) character: \wedge^k(F_n), where F_n = S^n(C^2)

# Here k and n are nonnegative integers

wkn := proc(k,n)

local i, pd: pd := 1:

for i from 0 to n do

pd := pd*(1+q^(n-2*i)*t)

od:

sort(expand(coeff(expand(pd), t, k)));

end:

> # Example: What is the sl(2) character of \wedge^2 F_3 ?

wkn(2, 3);

q4 + q2 +
1

q2
+

1

q4
+ 2
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> # Symmetric powers (i.e. symmetric tensors)

# Compute the sl(2) character: S^d(F_n)

# Here d and n are nonnegative integers

sdn := proc(d,n)

local i, pd: pd := 1:

for i from 0 to n do

pd := pd/(1-q^(n-2*i)*t)

od: pd := series(pd, t=0, d+1):

sort(expand(coeff(pd, t, d)));

end:

> # Example: What is the sl(2) character of S^2(F_3) ?

sdn(2, 3);

q6 + q4 + 2q2 +
2

q2
+

1

q4
+

1

q6
+ 2

> # Example: What is the sl(2) character of S^2 F_2 ?

ch := sdn(2, 2);

ch := q4 + q2 +
1

q2
+

1

q4
+ 2

# Decompose an sl(2) character into irreps.

# f is a character

# X^d denotes the irrep. F_d

exf := proc(f)

local F,i,sm: F:=expand((q-1/q)*f):

if f<>0 then

sm := 0:

for i from 0 to degree(f)+1 do

sm := sm + coeff(F, q, i+1)*X^i

od: sm;

else 0 fi;

end:

> # Example: decompose ch into irreps.

exf(ch);

1 +X4
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# We see X^0 (an sl(2) invariant), and

# We see X^4, the 5-dim. sl(2)-irrep.

> # What is the decomposition of \wedge^4 of the septic (i.e. F_7) ?

exf( wkn(4,7) );

1 + 2X4 + 2X8 +X10 +X12 +X16

> # We see irreps. of dimension 1, 5, 9, 11, 13, and 17,

# with the irreps. of dimension 5 and 9 occuring twice.

> # The order to which a polynomial vanishes at the origin.

# f is a polynomail in X

ord := proc(f)

if f=0 then 0 else

if subs(X=0, f)<>0 then 0 else 1+ord(simplify(f/X)) fi:

fi;

end:

> ord( 3*X^5 + 4*X^10 + X^100 );

5

> ord( X^2);

2

> ord( X);

1

> ord( 1);

0

> # What is the minimal sl(2) type occuring in \wedge^3(F_7) ?

ord( exf( wkn(3,7) ) );

3

> # What is the full decomposition of \wedge^3(F_7) ?

exf( wkn(3,7) );

X3 +X5 +X7 +X9 +X11 +X15

# What is the character of \wedge^3(F_7) ?

wkn(3,7);

q15 + q13 + 2q11 + 3q9 + 4q7 + 5q5 + 6q3 + 6q +
6

q
+

6

q3
+

5

q5
+

4

q7
+

3

q9
+

2

q11
+

1

q13
+

1

q15
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# Golden table

Matrix(10,10, (i,j) -> 1+ord( exf(sdn(i-1,j-1) ) ) );

1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10

1 3 1 3 1 3 1 3 1 3

1 4 3 4 1 4 3 4 1 4

1 5 1 1 1 1 1 1 1 1

1 6 3 4 1 2 3 2 1 2

1 7 1 3 1 3 1 3 1 3

1 8 3 4 1 2 3 2 1 2

1 9 1 1 1 1 1 1 1 1

1 10 3 4 1 2 3 2 1 2


> Schur polynomials

# The character of an irrep. of GL(n,C) indexed by a partition

\la,

# can be expressed in terms of a ratio of alternating

polynomials,

# which is called a "Schur polynomail.

# Here: la is a partition. (i.e. weakly degreesing sequence of

# nonnegative integers.

# The numerator of the Schur polynomial

s_num := proc(la)

local n: n := nops(la):

Determinant(Matrix( n,n, (i,j) -> x[i]^(n-j+la[j])));

end:

# The Schur polynomial

schur := proc(la)

sort(simplify(

s_num(la)/s_num([seq(0,i=1..nops(la))])));

end:

> # Character of the defining rep. of GL(4,C), denoted

V=L([1,0,0,0])

schur( [1,0,0,0] );
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x1 + x2 + x3 + x4

> # Character of the symmetric square of V.

schur( [2,0,0,0] );

x2
1 + x1x2 + x1x3 + x1x4 + x2

2 + x2x3 + x2x4 + x2
3 + x3x4 + x2

4

> # Character of the alternating square of V.

schur( [1,1,0,0] );

x3
1x

2
2x3+x3

1x
2
2x4+x3

1x2x
2
3+2x3

1x2x3x4+x3
1x2x

2
4+x3

1x
2
3x4+x3

1x3x
2
4+x2

1x
3
2x3+x2

1x
3
2x4+2x2

1x
2
2x

2
3+

4x2
1x

2
2x3x4+2x2

1x
2
2x

2
4+x2

1x2x
3
3+4x2

1x2x
2
3x4+4x2

1x2x3x
2
4+x2

1x2x
3
4+x2

1x
3
3x4+2x2

1x
2
3x

2
4+x2

1x3x
3
4+

x1x
3
2x

2
3 + 2x1x

3
2x3x4 + x1x

3
2x

2
4 + x1x

2
2x

3
3 + 4x1x

2
2x

2
3x4 + 4x1x

2
2x3x

2
4 + x1x

2
2x

3
4 + 2x1x2x

3
3x4 +

4x1x2x
2
3x

2
4 + 2x1x2x3x

3
4 + x1x

3
3x

2
4 + x1x

2
3x

3
4 + x3

2x
2
3x4 + x3

2x3x
2
4 + x2

2x
3
3x4 + 2x2

2x
2
3x

2
4 + x2

2x3x
3
4 +

x2x
3
3x

2
4 + x2x

2
3x

3
4

> # We restrict the Schur polynomials to the principal SL(2) torus:

# As before, la is a partition

sq := proc(la)

local ply,n,i: n := nops(la): ply := schur(la):

for i from 0 to n-1 do

ply := subs( x[i+1]=q^(n-1-2*i), ply)

od: ply;

end:

> # sl(2) character of rho

ch_rho := sq([3,2,1,0]);

chrho := 8q4 + 5q6 + 10q2 +
10

q2
+

3

q8
+

5

q6
+ 10 +

8

q4
+ 3q8 +

1

q10
+ q10

> # Decompose into irreducibles.

exf( ch_rho );

2X2 + 3X4 + 2X6 + 2X8 +X10

> # The order of zero is the minimal sl(2) type:

ord( exf( ch_rho ) );

2

> # We decompose the restricted Schur polynomials,

# and find the minimal sl(2) type.
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sl2 := la -> ord(exf(sq(la))):

> # Example: rho

sl2( [3,2,1,0] );

2

> # How many sl4 irreps. have a given dimension

# of a lowest sl(2)-irrep.

# Bound the fundamental coefficients by N.

N := 1:

counts_sl4 := [0,0,0,0,0,0,0,0,0,0]:

for i from 0 to N do

for j from 0 to N do

for k from 0 to N do

ans := 1+sl2( [i+j+k, i+j, i, 0] ):

counts_sl4[ans] := counts_sl4[ans]+1

od od od:

counts_sl4;

[2, 2, 2, 2, 0, 0, 0, 0, 0, 0]

> sl2( [0,0,0,0] );

0

> sl2( [1,1,0,0] );

0

> sl2( [2,1,0,0] );

1

> sl2( [2,2,1,0] );

1

> sl2( [3,2,1,0] );

2

> sl2( [2,1,1,0] );

2

> sl2( [1,0,0,0] );

3

> sl2( [1,1,1,0] );

3
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> N := 2:

counts_sl4 := [0,0,0,0,0,0,0,0,0,0]:

for i from 0 to N do

for j from 0 to N do

for k from 0 to N do

ans := 1+sl2( [i+j+k, i+j, i, 0] ):

counts_sl4[ans] := counts_sl4[ans]+1

od od od:

counts_sl4;

[7, 10, 8, 2, 0, 0, 0, 0, 0, 0]

> N := 3:

counts_sl4 := [0,0,0,0,0,0,0,0,0,0]:

for i from 0 to N do

for j from 0 to N do

for k from 0 to N do

ans := 1+sl2( [i+j+k, i+j, i, 0] ):

counts_sl4[ans] := counts_sl4[ans]+1

od od od:

counts_sl4;

[22, 28, 10, 4, 0, 0, 0, 0, 0, 0]

> N := 4:

counts_sl4 := [0,0,0,0,0,0,0,0,0,0]:

for i from 0 to N do

for j from 0 to N do

for k from 0 to N do

ans := 1+sl2( [i+j+k, i+j, i, 0] ):

counts_sl4[ans] := counts_sl4[ans]+1

od od od:

counts_sl4;

[51, 56, 14, 4, 0, 0, 0, 0, 0, 0]

> N := 5:

counts_sl4 := [0,0,0,0,0,0,0,0,0,0]:

for i from 0 to N do
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for j from 0 to N do

for k from 0 to N do

ans := 1+sl2( [i+j+k, i+j, i, 0] ):

counts_sl4[ans] := counts_sl4[ans]+1

od od od:

counts_sl4;

[90, 102, 18, 6, 0, 0, 0, 0, 0, 0]

> N := 6:

counts_sl4 := [0,0,0,0,0,0,0,0,0,0]:

for i from 0 to N do

for j from 0 to N do

for k from 0 to N do

ans := 1+sl2( [i+j+k, i+j, i, 0] ):

counts_sl4[ans] := counts_sl4[ans]+1

od od od:

counts_sl4;

[149, 162, 26, 6, 0, 0, 0, 0, 0, 0]

> N := 7:

counts_sl4 := [0,0,0,0,0,0,0,0,0,0]:

for i from 0 to N do

for j from 0 to N do

for k from 0 to N do

ans := 1+sl2( [i+j+k, i+j, i, 0] ):

counts_sl4[ans] := counts_sl4[ans]+1

od od od:

counts_sl4;

[228, 248, 28, 8, 0, 0, 0, 0, 0, 0]

> N := 8:

counts_sl4 := [0,0,0,0,0,0,0,0,0,0]:

for i from 0 to N do

for j from 0 to N do

for k from 0 to N do

ans := 1+sl2( [i+j+k, i+j, i, 0] ):

counts_sl4[ans] := counts_sl4[ans]+1:
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od od od:

counts_sl4;

[337, 352, 32, 8, 0, 0, 0, 0, 0, 0]

> N := 9:

counts_sl4 := [0,0,0,0,0,0,0,0,0,0]:

for i from 0 to N do

for j from 0 to N do

for k from 0 to N do

ans := 1+sl2( [i+j+k, i+j, i, 0] ):

counts_sl4[ans] := counts_sl4[ans]+1:

od od od:

counts_sl4;

[464, 490, 36, 10, 0, 0, 0, 0, 0, 0]

> # Of the 1000 irreps. with fundamental coordinates bounded by 9,

# 464 contain the trivial representation

# 490 contain the 2-dim representation (i.e. defining)

# 36 contain the 3-dim representation (i.e. quadratic)

# 10 contain the 4-dim representation (i.e. cubic)

> # Compute the multiplicity of the lowest sl(2)-type

# FUTURE WORK!

low_mult := proc(la)

local lt, ans:

ans := exf(sq(la)):

ans := coeff(ans, X, ord(ans) );

end:
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