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1

Listing 1: Program charge.p
y

1 import math, pylab, mpl_tool
kits.mpl

ot3d, matplotl
ib.color

s

2

3 eps = 1e≠5 # fractional error allowed

4 L = 1.0 # half=length of each side

5 N = input(’n
umber of grid points on a side ≠> ’)

6 dz = dy = dx = 2.0*L/(N
≠1.0)

7 x = ≠L+pylab
.array(r

ange(N))*
dx

8 y = ≠L+pylab
.array(r

ange(N))*
dy

9 z = ≠L+pylab
.array(r

ange(N))*
dz

10 u = pylab.ze
ros((N,

N, N))

11 rho = pylab.ze
ros((N,

N, N))

12

13 # source

14 q = 1.0

15 rho[(N≠1
)//2,(N≠

1)//2,(N
≠1)//2]

= q/(dx*dy*
dz)

16

17 # prepare animated plot

18 pylab.io
n()

19 s = u[:,:,(N
≠1)//2]

20 image = pylab.im
show(s.T

, origin=’
lower’,

extent=(
≠L, L, ≠L, L), vmax=1.0

)

21

22 # compute over=relaxation parameter

23 omega = 2.0/(1.0
+math.si

n(math.p
i*dx/L

))

24

25 # white and black pixels: white have i+j+k even; black have i+j+k odd

26 white = [(i, j, k) for i in range(1,
N≠1) for j in range(1,

N≠1) for k in

27

range(1,
N≠1) if (i+j+k)%

2 == 0]

28 black = [(i, j, k) for i in range(1,
N≠1) for j in range(1,

N≠1) for k in

29

range(1,
N≠1) if (i+j+k)%

2 == 1]

30 n = 0 # number of iterations

31 err = 1.0 # average error per site

32 while err > eps:

33
image.se

t_data(s
.T)

34
pylab.ti

tle(’ite
ration %d’%n)

35
pylab.dr

aw()

36

37
# next iteration in refinement

38
n = n+1

39
err = 0.0

40
for (i, j, k) in white+bl

ack: # loop over white pixels then black pixels

41
du = (u[i≠1,j

,k]+u[i+
1,j,k]+u

[i,j≠1,k
]+u[i,j+

1,k]+u[i
,j,k≠1]+

u[i,j,

k+1]

42

+dx**2*r
ho[i,j,k

])/6.0≠u
[i,j,k]

43
u[i,j,k]

+= omega*du

44
err += abs(du)

45
err /= N**3

46

47 # surface plot of final solution



ii
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Chapter 1

Tutorial

This chapter is intended for those who are unfamiliar with UNIX or the Python
programming language. This is not intended to be a very comprehensive tutorial,
but I have identified some web pages where you can find more information.

1.1 Using the terminal

In this section I give a very brief introduction to common commands that you will
use with the terminal.

The first challenge is to locate the terminal. On a Mac, you use the finder to
go to the Applications folder, and then go to the Utilities folder. The terminal is
called Terminal. You can also get it by searching for ‘Terminal’ in with Spotlight
(the magnifying glass at the top right of the menu bar).

Once the terminal is open you’ll have a command line prompt. You can now
type shell commands. Table 1.1 lists some of the more common UNIX commands
and gives some examples of their usage.

The files and folders that you are used to dealing with can be accessed from the
commands you type on the terminal (folders are called directories). For example,
on a Mac, the commands� �

cd
cd Documents
ls� �

will show you all the files in your Documents folder. (The first command, cd, takes
you to your home directory, the second command, cd Documents puts you into the
directory Documents, and the third command ls lists all the files in that directory.)

That’s all the introduction to UNIX commands I am going to give here. There
are plenty of resources on the web for learning more. One tutorial for beginners,
for example, is http://www.ee.surrey.ac.uk/Teaching/Unix/.

1

http://www.ee.surrey.ac.uk/Teaching/Unix/
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cat concatenate/print files

print the contents of file1 to the screen:
cat file1

concatenate files file1 and file2 to file3:
cat file1 file2 > file3

cd change directory

change to home directory:
cd

change to subdirectory Desktop:
cd Desktop

change to parent directory:
cd ..

change to directory /usr/bin:
cd /usr/bin

cp copy files

make a copy of file1 as file2:
cp file1 file2

put a copy of file1 in directory /tmp:
cp file1 /tmp

ls list directory contents

list contents of current directory:
ls

list contents of directory /usr/bin:
ls /usr/bin

man online manual
display manual entry for the command cat

man cat

mkdir make directories
make new subdirectory subdir:

mkdir subdir

mv move files

rename oldfile as newfile:
mv oldfile newfile

move file1 to directory /tmp:
mv file1 /tmp

pico file editor
edit the file file1:

pico file1

pwd return directory name
print working directory:

pwd

rm remove file
delete the file file1:

rm file1

Table 1.1: Common UNIX commands.
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1.2 Python

Now you need to learn how to use the Python language. One good resource is http:
//www.learnpython.org/. This section also contains a few simple example Python
programs. Soon you’ll want to consult the Python documentation, http://docs.
python.org/. For scientific computing the packages Numpy and Scipy are very
helpful; documentation for these are found at http://docs.scipy.org/. Finally,
the package matplotlib, http://matplotlib.org/, is used for plotting.

Let’s start with a very basic program. This program, hello.py, will print the
words ‘hello, world’ to the screen. The file hello.py has just a single line. The
listing (in full) is given here:

Listing 1.1: Program hello.py

1 print ’hello, world’

You can run it with the command python hello.py. The output you will get is� �
hello, world� �
The Python program is an interpreter so you just run it and enter Python com-

mands from the Python command line prompt. This is a good way to try things
out and to get to know the language. Just enter the command python and you will
enter the interpreter in an interactive session. An example of such a session might
be something like� �

Python 2.7.2 (default, Jan 10 2012, 15:06:11)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> print ’hello, world’
hello, world
>>>� �

Here the input is indicated with boldface text. To exit the interpreter you type ^D
(Control-D). Within the interpreter, the command help() will enter an interactive
help session where you can get more information.

A somewhat more convenient program to use for interactive python sessions is
called ipython. It has many useful and helpful features which you can read about
at http://ipython.org/. If you run the program as ipython -pylab then you will
have access to all of the functions in the pylab module (see below); the resulting
programming environment is then similar to MATLAB.

We will give a very brief overview of the important aspects of the Python pro-
gramming language. This overview is in no way complete; rather it is intended to
give an introduction to Python programming by way of example.

Expressions and assignment There are basic mathematical operations for addi-
tion, +, subtraction, −, multiplication, *, and division, /, along with the assignment
operation, =. For example,

http://www.learnpython.org/
http://www.learnpython.org/
http://docs.python.org/
http://docs.python.org/
http://docs.scipy.org/
http://matplotlib.org/
http://ipython.org/
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� �
>>> x = 3
>>> y = x * 4 + 5
>>> print x
3
>>> print y
17� �

Some other basic operations include the power operator, **, floor-division, //, and
the modulo operator, %. Parentheses can be used to ensure that operations are
performed in the desired order. Here is an illustration:� �

>>> x = 3.14
>>> y = 0.7
>>> print x ** y
2.22766947371
>>> print x // y
4.0
>>> print x % y
0.34
>>> print (x//y)*y + (x%y)
3.14� �

An operation and an assignment can be combined with assignment operators such
as +=, −=, *=, and /=. For example, the statement i = i + 1 is the same as i += 1.

Data types Some of the basic data types in Python are integers, floating-point
numbers, complex numbers, strings, and lists. We’ve already seen some of these. A
string is indicated by an open quotation mark, either ’ or ", and continues until a
close quotation mark. Strings can be “added” together, which forms a concatena-
tion. For example:� �

>>> x = ’hello’
>>> y = ’world’
>>> print x + ’, ’ + y
hello, world� �

A list is a collection of elements contained between an open bracket, [, and a close
bracket, ], and separated by commas, ,. The elements of a list can be strings,
integers, floating-point numbers, etc. The len operator will tell you the number of
elements in a list. Like strings, lists can be added, which appends one list to another.
A list can also be multiplied by a number, which repeats the list that number of times.
Finally, the individual elements of a list can be accessed as seen in the example
below:� �

>>> a = [1, 2, 3]
>>> b = [4] * 3
>>> print a
[1, 2, 3]
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>>> print b
[4, 4, 4]
>>> print a + b
[1, 2, 3, 4, 4, 4]
>>> print len(a + b)
6
>>> print a[0]
1
>>> print a[1]
2� �

Notice that the index 0 refers to the first element in the list, 1 to the next element,
and so on. Incidentally, the index -1 refers to the last element in the list. A useful
way of generating a list of numbers is with the range function:� �

>>> a = range(10)
>>> print a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]� �

Complex numbers are obtained by multiplying a floating-point number by the com-
plex imaginary constant 1j, for example:� �

>>> x = 4
>>> y = 3
>>> z = x + 1j * y
>>> print z
(4+3j)
>>> print z.real
4.0
>>> print z.imag
3.0
>>> print abs(z)
5.0� �

Notice that the real and imaginary parts of a complex variable can be accessed as
z.real and z.imag, while the magnitude of the complex variable can be obtained
by abs(z).

Conditionals Conditionals are an example of a compound statement. A group of
statements are executed according to the boolean value of a test. In Python, the
group of statements are indicated by a certain level of indentation. For example:� �

>>> x = 3
>>> y = 4
>>> if x == y:
... print ’x is equal to y’
... elif x > y:
... print ’the larger value is x’
... print x
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... else:

... print ’the larger value is y’

... print y

...
the larger value is y
4� �

The first indented block of code is only evaluated if x is equal to y, that is, if the
boolean statement x == y is true; the second block of code is only executed if x is
greater than y, that is, if the boolean statement x > y; and the third block of code
after the else: statement is executed otherwise.

Loops A block of code can be executed repeatedly until some condition is satisfied
in a loop. The most basic loop is the while-loop:� �

>>> i = 0
>>> while i < 10:
... print i,
... i = i + 1
...
0 1 2 3 4 5 6 7 8 9� �

However, for-loops are more common. In a for-loop, a variable is set to sequential
values in, for example, a list of values. The equivalent for-loop would be� �

>>> for i in range(10):
... print i,
...
0 1 2 3 4 5 6 7 8 9� �

Here is another example:� �
>>> colors = [’red’, ’green’, ’blue’]
>>> for color in colors:
... print ’my favorite color is ’ + color
...
my favorite color is red
my favorite color is green
my favorite color is blue� �

List comprehensions In Python, lists can be created using a technique called list
comprehension, an illustration of which is given in the following example which
generates a list of the first ten powers of two:� �

>>> a = [2**n for n in range(10)]
>>> print a
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]� �
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The function sum can be used to compute the sum of the elements in a list. For
example, to compute the sum of squares of integers less than 10,� �

>>> s = sum([x**2 for x in range(10)])
>>> print s
285� �

but this can also be done slightly more concisely without actually creating the list:� �
>>> s = sum(x**2 for x in range(10))
>>> print s
285� �

Functions We have already seen some built-in functions, such as range and abs,
and we have seen how additional functions can be imported from modules, such as
the sin function in the math module. You can also create your own functions. Here
is a simple example of a factorial function:� �

>>> def factorial(n):
... ans = 1
... while n > 1:
... ans *= n
... n −= 1
... return ans
...
>>> for n in range(6):
... print n, ’factorial is’, factorial(n)
...
0 factorial is 1
1 factorial is 1
2 factorial is 2
3 factorial is 6
4 factorial is 24
5 factorial is 120� �
Having discussed some of the basic elements of Python programming, we can

consider a more complicated program. This program, cosine.py, prints out the
values of the function cosθ for θ in the range 0 ≤ θ < 20 radians with steps of
∆θ = 0.1 radians.

Listing 1.2: Program cosine.py

1 import math
2

3 # set values for the parameters
4 nsteps = 200
5 dtheta = 0.1
6

7 # loop incrementing i from 0 to nsteps − 1
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8 for i in range(nsteps):
9 theta = i*dtheta

10 print theta, math.cos(theta)

Line 2 of this program imports the math module, which is needed for the cosine
function. Then lines 9–11 are a loop in which the variable i is incremented from 0
to 199: The function range(n) returns the list [0, 1, 2, ..., n−1], and with
each iteration of the loop the variable i takes on the next value of this list. Line 11
contains the actual call to the cosine function: because it is contained in the module
math, the function call is math.cos(theta).

Now to run the program. The command python cosine.py > cosine.out
redirects the output to the file cosine.out. The command head cosine.out will
show you the first few lines� �

0.0 1.0
0.1 0.995004165278
0.2 0.980066577841
0.3 0.955336489126
0.4 0.921060994003
0.5 0.87758256189
0.6 0.82533561491
0.7 0.764842187284
0.8 0.696706709347
0.9 0.621609968271� �

(the first column is the value of θ and the second column is the value of cosθ) while
the command tail cosine.out shows you the last few lines� �

19.0 0.988704618187
19.1 0.968802459407
19.2 0.939220346697
19.3 0.900253854747
19.4 0.852292323865
19.5 0.795814969814
19.6 0.731386095645
19.7 0.659649453373
19.8 0.581321811814
19.9 0.497185794871� �
What if we want to plot the output? The program plotcos.py is a modification

that produces a plot of the cosine function.

Listing 1.3: Program plotcos.py

1 import math, pylab
2

3 nsteps = 200
4 dtheta = 0.1
5

6 # create lists of length nsteps for the values of theta and cosine



1.2. PYTHON 9

7 # initially the values are set to zero
8 theta = [0.0]*nsteps
9 cosine = [0.0]*nsteps

10

11 # loop to fill in the values of theta and cosine
12 for i in range(nsteps):
13 theta[i] = i*dtheta
14 cosine[i] = math.cos(theta[i])
15

16 # show a plot
17 pylab.plot(theta, cosine)
18 pylab.show()

When this program is run, a plot will pop up on the screen that looks like Fig. 1.1.
There are several differences here. First, on line 2 the program imports the mod-
ule pylab which contains (among other things) the functions required to make
plots. Second, the program creates two lists named theta and cosine, each with
nsteps elements: this is done on lines 9 and 10. (Note that the Python command
[0.0] * 3 produces [0.0, 0.0, 0.0].) In lines 14 and 15 the elements of these
lists are assigned to the correct values. Finally, line 18 produces the plot and line 19
displays it on the screen.

There are many ways to embellish the plot (e.g., adding a grid, axis labels, a
title, a legend, etc.) and we’ll see examples of these in the example programs to
follow. The best way to learn a programming language is to experiment with it by
writing your own programs and by looking at other programs to figure out what
they do. Here is a somewhat fancier program that introduces a few more features
that we have discussed. Try it.

Listing 1.4: Program plottrig.py

1 import math, pylab
2

3 # input the parameters
4 nsteps = input(’enter number of steps −> ’)
5 dtheta = input(’enter step size (rad) −> ’)
6

7 # these are ’list comprehensions’
8 theta = [i*dtheta for i in range(nsteps)]
9 sine = [math.sin(x) for x in theta]

10 cosine = [math.cos(x) for x in theta]
11 pylab.plot(theta, sine, ’o−b’, label=’sin’) # blue circle symbols with line
12 pylab.plot(theta, cosine, ’o−r’, label=’cos’) # red circle symbols with line
13 pylab.xlabel(’theta (rad)’)
14 pylab.ylabel(’sin(theta) and cos(theta)’)
15 pylab.legend()
16 pylab.title(’the sine and cosine functions’)
17 pylab.grid()
18 pylab.show()
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Figure 1.1: A screen-shot of the plot produced by the program plotcos.py
(Listing 1.3).

Exercise 1.1 Produce a program that is similar to plotcos.py but do not
use the cos function from the math module (or any other module). Instead,
compute it using ordinary multiplication and additions. Consult some of the
references in the next section if you need help finding an algorithm for com-
puting the cosine function.

1.3 References

These notes are being compiled from material from a variety of sources. In partic-
ular, I am drawing heavily from the following references:

• Computational Physics (second edition) by Nicholas J. Giordano and Hisao
Nakanishi (Pearson Prentice Hall, 2006) ISBN 0-13-146990-8.

• Computational Physics (revised and expanded) by Mark Newmann (2013)
ISBN 978-148014551-1.
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• Numerical Recipes: The Art of Scientific Computing (third edition) by
William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery (Cambridge University Press, 2007) ISBN 978-0-521-88068-8.

• Handbook of Mathematical Functions with Formulas, Graphs, and Mathemati-
cal Tables by Milton Abramowitz and Irene Stegun (Dover, 1964) ISBN 0-486-
61272-4.
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Chapter 2

Ordinary differential equations

2.1 Radioactive decay

Consider the radioactive decay of nuclei. The number of nuclei, N , follows the
ordinary differential equation

dN
d t
= −

N
τ

(2.1)

where τ is the decay time constant. This equation can be integrated directly, with
the solution

N(t) = N0e−t/τ (2.2)

but we want to attempt to solve the equation numerically.

The straightforward approach is to express the number of nuclei at time t+∆t
in terms of the number at time t as

N(t +∆t) = N(t) +
dN(t)

d t
∆t +O(∆t2). (2.3)

Combining this equation with Eq. (2.1) we have

N(t +∆t) = N(t)−
N(t)
τ
∆t +O(∆t2). (2.4)

If we start with N0 nuclei at time t = 0, then at t = ∆t we will have N(∆t) ≈
N0 − (N0/τ)∆t; at t = 2∆t we will have N(2∆t) ≈ N(∆t)− [N(∆t)/τ]∆t, and
so on. The truncation error is O(∆t2) so if the step size ∆t is small then we expect
that our numerical solution should be close to the true solution. This method of
integration of an ordinary differential equation is known as Euler’s method.

Here is a program that will implement this method of integrating the differen-
tial equation for radioactive decay:

13
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Listing 2.1: Program decay.py

1 import pylab
2

3 nuclei0 = input(’initial number of nuclei −> ’)
4 tau = input(’decay time constant −> ’)
5 dt = input(’time step −> ’)
6 tmax = input(’time to end of simulation −> ’)
7 nsteps = int(tmax/dt)
8 nuclei = [0.0]*nsteps
9 t = [0.0]*nsteps

10

11 # use Euler’s method to integrate equation for radioactive decay
12 t[0] = 0.0
13 nuclei[0] = nuclei0
14 for i in range(nsteps−1):
15 t[i+1] = t[i]+dt
16 nuclei[i+1] = nuclei[i]−nuclei[i]/tau*dt
17 pylab.plot(t, nuclei, ’o−b’)
18 pylab.xlabel(’time’)
19 pylab.ylabel(’nuclei’)
20 pylab.title(’radioactive decay’)
21 pylab.grid()
22 pylab.show()

The program requests the initial number of nuclei, N0, the decay time constant τ,
the time step∆t, and the total duration of the integration tmax. When this program
is run with the input values N0 = 100, τ= 1,∆t = 0.04, and tmax = 5, the program
produces the plot shown in Fig. 2.1.

Exercise 2.1 Write a program that computes the radioactive decay of two
types of nuclei, A and B, where A nuclei decay into B nuclei. The system of
differential equations is

dNA

d t
= −

NA

τA
(2.5a)

dNB

d t
=

NA

τA
−

NB

τB
(2.5b)

where τA and τB are the decay time constants for type A and type B nuclei
respectively. Investigate how the behavior of NA(t) and NB(t) at early times
and at late times for various values of the ratio τA/τB. Obtain analytic solutions
for NA(t) and NB(t) and compare your numerical results to these solutions.

Let’s now investigate how close to the exact answer our program is. Presumably
when the step size ∆t is large the error will be worse; also presumably errors grow
with time. To see this, consider a modified version of our program decay.py which
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Figure 2.1: Results from running the program decay.py (Listing 2.1) with
input N0 = 100, τ= 1, ∆t = 0.04, and tmax = 5.

plots the fractional difference between the numerical result and the exact result
given by Eq. (2.2). Our new program will perform numerical evolutions at a number
of different values of the step size so that we can see how the error depends on the
degree of refinement of ∆t.

Listing 2.2: Program decayerr.py

1 import math, pylab
2

3 nuclei0 = input(’initial number of nuclei −> ’)
4 tau = input(’decay time constant −> ’)
5 dtlow = input(’lowest resolution time step −> ’)
6 nres = input(’number of resolution refinements −> ’)
7 tmax = input(’time to end of simulation −> ’)
8 for n in range(nres):
9 refine = 10**n

10 dt = dtlow/refine
11 nsteps = int(tmax/dt)
12 nuclei = nuclei0
13 err = [0.0]*nsteps
14 t = [0.0]*nsteps
15

16 # use Euler’s method to integrate equation for radioactive decay compute
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Figure 2.2: Results from running the program decay.py (Listing 2.2) with
input N0 = 100, τ= 1, ∆t = 0.1, Nres = 4, and tmax = 10.

17 # error relative to exact solution
18 for i in range(nsteps−1):
19 t[i+1] = t[i]+dt
20 nuclei = nuclei−nuclei/tau*dt
21 exact = nuclei0*math.exp(−t[i+1]/tau)
22 err[i+1] = abs((nuclei−exact)/exact)
23

24 # plot the error at this resolution
25 pylab.loglog(t[refine::refine], err[refine::refine], ’.−’, label=’dt

= ’
26 +str(dt))
27 pylab.legend(loc=4)
28 pylab.xlabel(’time’)
29 pylab.ylabel(’fractional error’)
30 pylab.title(’radioactive decay integration error’)
31 pylab.grid(linestyle=’−’, which=’major’)
32 pylab.grid(which=’minor’)
33 pylab.show()

This program produces the results shown in Figure 2.2.

The errors grow close to linearly with time (the lines in the log-plot have ap-
proximately unit slope) and each factor of 10 in refinement decreases the fractional
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error by a factor of 10. To understand this, note that the term that we threw away in
the Taylor expansion of our ordinary differential equation was the d2N/d t2 term,
so each step introduces an error of

ei ≈
1
2

d2N(t i)
d t2

∆t2 =
N(t i)
2τ2

∆t2. (2.6)

This is known as the local error. If the local error of a numerical integration scheme
is O(∆t p+1) as ∆t → 0 then we say it is order p. Euler’s method is therefore a
first order integration scheme. The global error is the error accumulated when the
integration is performed for some duration T . The number of steps required is
n = T/∆t, and each step i = 1 . . . n accumulates an error ei , so we would expect
the global error to be

En ≤
n
∑

i=1

ei ≤ T
N0

2τ2
∆t (2.7)

since ei ≤ [N0/(2τ2)]∆t2. Note that for an order p integration scheme, the global
error will be O(∆t p); furthermore, the error grows with time T . For the Euler
method, the error grows approximately linearly with T and with∆t, which is what
we see in Fig. 2.2.

The Euler method is not a recommended method for solving ordinary differ-
ential equations. Being merely first order, a desired accuracy is achieved only for
very small values of∆t, and therefore many integration steps are required in order
to evolve the system for a given duration T . But the computational cost of Euler’s
method is not its only shortfall: it is not particularly stable either, as we will see in
the Sec. 2.3.

2.2 Projectile motion

Another example ordinary differential equation is that of projectile motion, for
which the equations of motion are

d x
d t
= vx ,

dvx

d t
= 0, (2.8a)

d y
d t
= vy ,

dvy

d t
= −g, (2.8b)

where g is the acceleration due to gravity. We can use the Euler method to write
each derivative in a finite difference form that is suitable for numerical integration:

x i+1 = x i + vx ,i∆t, vx ,i+1 = vx ,i , (2.9a)

yi+1 = yi + vy,i∆t, vy,i+1 = vy,i − g∆t. (2.9b)

The trajectories of a projectile launched with velocity v0 = 10m s−1 at various angles
are plotted by the program projectile.py and are plotted in Fig. 2.3.
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Listing 2.3: Program projectile.py

1 import math, pylab
2

3 g = 9.8 # standard freefall (m/s^2)
4 v0 = 10.0 # initial velocity (m/s)
5 angles = [30.0, 35.0, 40.0, 45.0, 50.0, 55.0] # launch angles (degrees)
6 dt = 0.01 # time step (s)
7 for theta in angles:
8 x = [0.0]
9 y = [0.0]

10 vx = [v0*math.cos(theta*math.pi/180.0)]
11 vy = [v0*math.sin(theta*math.pi/180.0)]
12

13 # use Euler’s method to integrate projectile equations of motion
14 i = 0
15 while y[i] >= 0.0:
16

17 # extend the lists by appending another point
18 x += [0.0]
19 y += [0.0]
20 vx += [0.0]
21 vy += [0.0]
22

23 # apply finite difference approx to equations of motion
24 x[i+1] = x[i]+vx[i]*dt
25 y[i+1] = y[i]+vy[i]*dt
26 vx[i+1] = vx[i]
27 vy[i+1] = vy[i]−g*dt
28 i = i+1
29

30 # plot the trajectory
31 pylab.plot(x, y, label=str(theta)+’ degrees’)
32

33 pylab.title(’trajectory of a projectile’)
34 pylab.xlabel(’x (m)’)
35 pylab.ylabel(’y (m)’)
36 pylab.ylim(ymin=0.0)
37 pylab.legend()
38 pylab.show()

We see, as expected, that the greatest range is achieved for a launch angle of 45◦.
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Figure 2.3: Results from running the program projectile.py (Listing 2.3).
It is seen that the greatest range is achieved with a launch angle of θ = 45◦.

Exercise 2.2 When air friction is included there is an additional drag force
that is predominantly proportional to the velocity of the projectile squared; the
equations of motion become

d x
d t
= vx ,

dvx

d t
= −bvvx , (2.10a)

d y
d t
= vy ,

dvy

d t
= −g − bvvy , (2.10b)

where b is a drag constant and v =
q

v2
x + v2

y is the velocity of the projectile.
Modify the program projectile.py to include a drag force and plot the tra-
jectories for various launch angles when b = 0.04m−1. Find the launch angle
that has the greatest range, θmax, for fixed launch velocity v0 = 10 ms−1. How
does θmax vary with b for 0m−1 ≤ b ≤ 0.1m−1?

Finding the trajectory of a projectile given its initial conditions, vx ,0 and vy,0
or equivalently v0 and θ , is relatively simple. However, suppose that we want to
find the launch angle θ required to hit a target at a given distance with a given
initial velocity v0. This is an example of a two point boundary value problem. One
approach to solving such a problem is known (aptly) as the shooting method.
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The idea is straightforward: make a guess at the value of θ , perform the inte-
gration, determine how much you miss your mark, and then iteratively refine your
guess until you are close enough to the target. If ∆x(θ ) is the amount that you
miss the target with the launch angle θ then the goal is to solve the equation

∆x(θ ) = 0 (2.11)

for θ . This general problem is called root finding. Here we’ll employ a rather simple
method for solving for a root known as the bisection method. Suppose that we know
that the root of Eq. (2.11) lies somewhere in the range θ1 < θ < θ2 and ∆x(θ1)
has the opposite sign of ∆x(θ2) (that is, if ∆x(θ1) < 0 then ∆x(θ2) > 0, or vice
versa). Then we say that θ1 and θ2 bracket the root. We begin by evaluating∆x(θ1),
∆x(θ2), and ∆x(θguess) with θguess midway between θ1 and θ2, θguess =

1
2 (θ1+θ2).

If the sign of ∆x(θguess) is the same as the sign of ∆x(θ1) then we know that the
root must be between θguess and θ2, so we assign θ1 to θguess, and make a new guess
midway between the new θ1 and θ2. Otherwise, if the sign of∆x(θguess) is the same
as the sign of ∆x(θ2) then we know that the root must be between θ1 and θguess,
so we assign θ2 to θguess, and make a new guess midway between θ1 and the new
θ2. We continue this iteration until we are “close enough,” i.e., |∆x(θguess)|< ε for
some small value of ε.

For the problem at hand, let the target be located at a distance xtarget and let the
point where the projectile hits the ground when launched at angle θ be xground(θ ).
Define ∆x(θ ) = xground(θ ) − xtarget so that ∆x(θ ) > 0 if we’ve shot too far and
∆x(θ ) < 0 if we’ve shot too near. Then, if 0 < xtarget < xmax where we know
xground(0◦) = 0 and xground(45◦) = xmax, then we know θ1 = 0◦ and θ2 = 45◦

bracket the root. The program shoot.py uses the shooting method to compute the
trajectory of a projectile that is launched from x = 0 with a fixed velocity and lands
at point x = xground. The results from this program run with an initial velocity
v0 = 10m s−1 and target location xtarget = 8 m are shown in Fig. 2.4.

Listing 2.4: Program shoot.py

1 import math, pylab
2

3 g = 9.8 # standard freefall (m/s^2)
4 v0 = input(’initial velocity (m/s) −> ’)
5 xtarget = input(’target range (m) −> ’)
6 eps = 0.01 # how close we must get (m)
7 dt = 0.001 # time step (s)
8 theta1 = 0.0 # bracketing angle (degrees) that falls too short
9 theta2 = 45.0 # bracketing angle (degrees) that falls too far

10 dx = 2*eps # some initial value > eps
11 while abs(dx) > eps:
12 # guess at the value of theta
13 theta = (theta1+theta2)/2.0
14 x = [0.0]
15 y = [0.0]
16 vx = [v0*math.cos(theta*math.pi/180.0)]
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17 vy = [v0*math.sin(theta*math.pi/180.0)]
18

19 # use Euler’s method to integrate projectile equations of motion
20 i = 0
21 while y[i] >= 0.0:
22

23 # apply finite difference approx to equations of motion
24 x += [x[i]+vx[i]*dt]
25 y += [y[i]+vy[i]*dt]
26 vx += [vx[i]]
27 vy += [vy[i]−g*dt]
28 i = i+1
29

30 # we hit the ground somewhere between step i−1 and i interpolate to find
31 # this location
32 xground = x[i−1]+y[i−1]*(x[i]−x[i−1])/(y[i]−y[i−1])
33

34 # update the bounds bracketing the root
35 dx = xground−xtarget
36 if dx < 0.0: # too short: update smaller angle
37 theta1 = theta
38 else: # too far: update larger angle
39 theta2 = theta
40

41 # plot the correct trajectory
42 pylab.plot(x, y)
43 pylab.plot([xtarget], [0.0], ’o’)
44 pylab.annotate(’target’, xy=(xtarget, 0), xycoords=’data’, xytext=(5, 5)

,
45 textcoords=’offset points’)
46 pylab.title(’trajectory of a projectile with theta = %.2f degrees’%theta

)
47 pylab.xlabel(’x (m)’)
48 pylab.ylabel(’y (m)’)
49 pylab.ylim(ymin=0.0)
50 pylab.show()

Exercise 2.3 A pig and a farmer are both in a square pigpen. The farmer is in
the southeast corner while the pig is in the southwest corner. In the northwest
corner (directly north of the pig) is an open gate. The pig runs toward the gate
at a constant speed. The farmer chases the pig, also at constant speed, but
always so that the farmer is running directly toward where the pig is at that
instant. Numerically determine how many times faster than the pig the farmer
must be running in order to just catch the pig before it escapes.

If you can derive an exact closed-form solution to this problem, compare the
exact solution to the numerical solution that you obtained.
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Figure 2.4: Results from running the program shoot.py (Listing 2.4) with ini-
tial velocity v0 = 10 ms−1 and target location xtarget = 8 m. The angle required
to hit the target is θ = 25.84◦.

2.3 Pendulum

A pendulum of length ` has the equation of motion

d2θ

d t2
= −

g
`

sinθ . (2.12)

For small amplitudes of oscillation, θ � 1, we can make the approximation
sinθ ≈ θ , and the ordinary differential equation becomes one of a simple harmonic
oscillator:

d2θ

d t2
= −

g
`
θ . (2.13)

The solution to this equation is simply

θ (t) = θ0 cosω0 t (2.14)

whereω2
0 = g/` and we have assumed the pendulum starts from rest with an initial

displacement θ0.

To obtain a numerical solution, the second order ordinary differential equation
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is converted to a coupled system of first order ordinary differential equations

dω
d t
= −

g
`
θ (2.15a)

dθ
d t
=ω. (2.15b)

Using Euler’s method these are written in discrete form as

ωi+1 =ωi −
g
`
θi∆t (2.16a)

θi+1 = θi +ωi∆t (2.16b)

where the ith value corresponds to t = i∆t. The program pendulum.py is an
implementation of Eqs. (2.16a) and (2.16b).

Listing 2.5: Program pendulum.py

1 import pylab
2

3 g = 9.8 # standard freefall (m/s^2)
4 l = input(’pendulum length (meters) −> ’)
5 theta0 = input(’initial angle (radians) −> ’)
6 dt = input(’time step (seconds) −> ’)
7 tmax = input(’time to end of simulation (seconds) −> ’)
8 nsteps = int(tmax/dt)
9 omega = [0.0]*nsteps

10 theta = [0.0]*nsteps
11 t = [0.0]*nsteps
12

13 # use Euler’s method to integrate pendulum equations of motion
14 theta[0] = theta0
15 for i in range(nsteps−1):
16 omega[i+1] = omega[i]−g/l*theta[i]*dt
17 theta[i+1] = theta[i]+omega[i]*dt
18 t[i+1] = t[i]+dt
19 pylab.plot(t, theta)
20 pylab.xlabel(’time (s)’)
21 pylab.ylabel(’theta (rad)’)
22 pylab.title(’simple pendulum (Euler method)’)
23 pylab.show()

If we run this program with values ` = 1m, θ0 = 0.2 rad, ∆t = 0.04 s, and tmax =
10 s, we obtain the results shown in Fig. 2.5. Clearly something is wrong!

What is going wrong? The evolution is unstable: the amplitude should remain
constant, but instead it is increasing. The problem is that the Euler method is un-
stable. To see this, consider the total energy of the pendulum, which, in the small
angle limit, is simply

E =
1
2

m`2ω2 +
1
2

mg`θ 2 (2.17)
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Figure 2.5: Results from running the program pendulum.py (Listing 2.5) with
input `= 1m, θ0 = 0.2 rad, ∆t = 0.04 s, and tmax = 10s.

where m is the mass of the pendulum bob. To see how the energy will evolve in
time, we use Eqs. (2.16a) and (2.16b) to obtain an equation relating the energy at
step i + 1, Ei+1, to the energy at the previous step i, Ei:

Ei+1 =
1
2

m`2ω2
i+1 +

1
2

mg`θ 2
i+1

=
1
2

m`2
�

ωi −
g
`
θi∆t

�2
+

1
2

mg` (θi +ωi∆t)2

=
1
2

m`2ω2
i +

1
2

mg`θ 2
i +

�

1
2

m`2ω2
i +

1
2

mg`θ 2
i

�

∆t2

= Ei

�

1+
g
`
∆t2

�

.

(2.18)

The energy will therefore be a monotonically increasing function of time. While
we can make the numerical evolution closer to the expected evolution by reducing
the step size ∆t, we can never get rid of the fundamental instability of the Euler
method of integration: the energy will continue to increase with time no matter
how small we make ∆t.
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Figure 2.6: Results from running the modified program pendulum.py (List-
ing 2.5 with modification given in Listing 2.6) with the same input as in
Fig. (2.5).

Consider the following modification to the numerical scheme:

ωi+1 =ωi −
g
`
θi∆t (2.19a)

θi+1 = θi +ωi+1∆t. (2.19b)

This is known as the Euler-Cromer method. Note that Eq. (2.19a) is identical with
Eq. (2.16a), but in Eq. (2.19b), the value ωi+1 is used rather than the value ωi in
Eq. (2.16b). Evaluating the derivative dθ/d t at the current time step rather than
the past time step makes all the difference in this case: the integration scheme is
now stable. Consider a modified version of pendulum.py with the single change

Listing 2.6: Modification to program pendulum.py

17 theta[i+1] = theta[i]+omega[i+1]*dt

The evolution produced by this modified version of pendulum.py with the same
input as before is shown in Fig. 2.6.
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Exercise 2.4

a) Investigate why the Cromer’s modification to the Euler method stabilizes
the system. Repeat the calculation of Eq. (2.18) and show that the energy
evolves according to

Ei+1 = Ei +
1
2

mg`
�

ω2
i −

g
`
θ 2

i

�

∆t2 +O(∆t3). (2.20)

Substitute the known solution for θ (t) and ω(t) and integrate over one
period of oscillation to show that the Euler-Cromer system preserves the
energy over one period of oscillation to O(∆t2) while the Euler system only
preserves the energy to O(∆t). (In fact, the Euler-Cromer system does even
better: it preserves the energy to O(∆t3) over each oscillation.)

Modify the program pendulum.py to calculate the total energy of the pen-
dulum at each time step and verify explicitly that it is conserved with the
Euler-Cromer method. Contrast this to the situation when the Euler method
is used.

b) Perform numerical evolutions of the pendulum using the Euler-Cromer
method with various step sizes and compare with the analytic solution to
compute the truncation error of the integration method. Plot the error as
a function of time for various resolutions. Show that the Euler-Cromer
method (like the Euler method) is still only a first-order method.

Until now we have only considered ordinary differential for which we already
have analytic solutions. Now we’ll try something a bit more interesting, and inves-
tigate chaos in the double pendulum.

The double pendulum consisting of two bobs of mass m connected with mass-
less rods of length ` is shown in Fig. 2.7. The positions of the two bobs are given
by

x1 = ` sinθ1, y1 = −` cosθ1 (2.21a)

x2 = `(sinθ1 + sinθ2) y2 = −`(cosθ1 + cosθ2) (2.21b)

and so the kinetic energy and the potential energy are

T =
1
2

m( ẋ2
1 + ẏ2

1 + ẋ2
2 + ẏ2

2 )

=
1
2

m`2[2θ̇ 2
1 + θ̇

2
2 + 2θ̇1θ̇2 cos(θ1 − θ2)]

(2.22)

V = mg y1 +mg y2

= −mg`(2cosθ1 + cosθ2).
(2.23)
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Figure 2.7: The double pendulum.

The Lagrangian for the system is

L = T − V

=
1
2

m`2[2θ̇ 2
1 + θ̇

2
2 + 2θ̇1θ̇2 cos(θ1 − θ2)] +mg`(2 cosθ1 + cosθ2)

(2.24)

from which we obtain the canonical momenta

pθ1
=
∂ L

∂ θ̇1

=
1
2

m`2[4θ̇1 + 2θ̇2 cos(θ1 − θ2)] (2.25)

pθ2
=
∂ L

∂ θ̇2

=
1
2

m`2[2θ̇2 + 2θ̇1 cos(θ1 − θ2)]. (2.26)

The Hamiltonian is H = θ̇1pθ1
+ θ̇2pθ2

− L written in terms of the coordinates and
the momenta:

H =
1
2

p2
θ1
+ 2p2

θ2
− 2pθ1

pθ2
cos(θ1 − θ2)

m`2[1+ sin2(θ1 − θ2)]
−mg`(2cosθ1 + cosθ2). (2.27)

Now Hamilton’s equations of motion are

θ̇1 =
∂ H
∂ pθ1

=
pθ1
− pθ2

cos(θ1 − θ2)

∆
(2.28a)

θ̇2 =
∂ H
∂ pθ2

=
2pθ2

− pθ1
cos(θ1 − θ2)

∆
(2.28b)

ṗθ1
= −

∂ H
∂ θ1

= −2mg` sinθ1 − A+ B (2.28c)

ṗθ2
= −

∂ H
∂ θ2

= −mg` sinθ2 + A− B (2.28d)
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where

∆= m`2[1+ sin2(θ1 − θ2)] (2.28e)

A=
pθ1

pθ2
sin(θ1 − θ2)

∆
(2.28f)

B =
p2
θ1
+ 2p2

θ2
− pθ1

pθ2
cos(θ1 − θ2)

∆2/m`2
sin(θ1 − θ2) cos(θ1 − θ2) (2.28g)

Equations (2.28) form a system of first order ordinary differential equations. A
discretization of these equations using a Euler-Cromer method is now possible, and
a program to evolve the resulting system is dblpend.py (note that in this program
q1 and q2 refer to θ1 and θ2, while p1 and p2 refer to pθ1

/m and pθ2
/m).

Listing 2.7: Program dblpend.py

1 import math, pylab
2

3 g = 9.8 # standard freefall (m/s^2)
4 l = input(’pendulum length (meters) −> ’)
5 theta10 = input(’initial angle 1 (radians) −> ’)
6 theta20 = input(’initial angle 2 (radians) −> ’)
7 dt = input(’time step (seconds) −> ’)
8 tmax = input(’time to end of simulation (seconds) −> ’)
9 nsteps = int(tmax/dt)

10 t = [0.0]*nsteps
11 p1 = [0.0]*nsteps
12 p2 = [0.0]*nsteps
13 q1 = [0.0]*nsteps
14 q2 = [0.0]*nsteps
15 x1 = [0.0]*nsteps
16 x2 = [0.0]*nsteps
17 y1 = [0.0]*nsteps
18 y2 = [0.0]*nsteps
19

20 # initialize
21 q1[0] = theta10
22 q2[0] = theta20
23 x1[0] = l*math.sin(q1[0])
24 y1[0] = −l*math.cos(q1[0])
25 x2[0] = l*(math.sin(q1[0])+math.sin(q2[0]))
26 y2[0] = −l*(math.cos(q1[0])+math.cos(q2[0]))
27

28 # use Euler−Cromer method to integrate the double pendulum
29 for i in range(nsteps−1):
30 s = math.sin(q1[i]−q2[i])
31 c = math.cos(q1[i]−q2[i])
32 D = l**2*(1+s**2)
33 A = p1[i]*p2[i]*s/D
34 B = (p1[i]**2+2*p2[i]**2−2*p1[i]*p2[i]*c)*s*c*l**2/D**2
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35 p1[i+1] = p1[i]−(2*g*l*math.sin(q1[i])−A+B)*dt
36 p2[i+1] = p2[i]−(g*l*math.sin(q2[i])+A−B)*dt
37 q1[i+1] = q1[i]+(p1[i+1]−p2[i+1]*c)/D*dt
38 q2[i+1] = q2[i]+(2*p2[i+1]−p1[i+1]*c)/D*dt
39 t[i+1] = t[i]+dt
40

41 # put q1 and q2 in range −pi to +pi
42 q1[i+1] = (q1[i+1]+math.pi)%(2.0*math.pi)−math.pi
43 q2[i+1] = (q2[i+1]+math.pi)%(2.0*math.pi)−math.pi
44

45 # also compute (x,y) locations of points 1 and 2
46 x1[i+1] = l*math.sin(q1[i+1])
47 y1[i+1] = −l*math.cos(q1[i+1])
48 x2[i+1] = l*(math.sin(q1[i+1])+math.sin(q2[i+1]))
49 y2[i+1] = −l*(math.cos(q1[i+1])+math.cos(q2[i+1]))
50

51 # plot results
52

53 pylab.figure()
54 pylab.title(’double pendulum’)
55 pylab.plot(t, q2, label=’theta2’)
56 pylab.plot(t, q1, label=’theta1’)
57 pylab.xlabel(’t (s)’)
58 pylab.ylabel(’angle (rad)’)
59 pylab.legend(loc=9)
60 pylab.grid()
61 pylab.figure(figsize=(6, 6))
62 pylab.title(’Lissajou curves for the double pendulum’)
63 pylab.plot(q1, q2)
64 pylab.xlabel(’theta1 (rad)’)
65 pylab.ylabel(’theta2 (rad)’)
66 minmax = max(abs(min(q1+q2)), abs(max(q1+q2)))
67 pylab.axis([−minmax, minmax, −minmax, minmax], aspect=’equal’)
68 pylab.grid()
69 pylab.figure(figsize=(6, 6))
70 pylab.title(’double pendulum trace’)
71 pylab.plot(x2, y2)
72 pylab.xlabel(’x (m)’)
73 pylab.ylabel(’y (m)’)
74 pylab.axis([−2.1, 2.1, −2.1, 2.1], aspect=’equal’)
75 pylab.grid()
76 pylab.show()

For small initial displacement angles, θ1� 1 and θ2� 1, the motion is regular
as can be seen in Fig. 2.8. However, for larger displacement angles, the motion can
become chaotic as shown in Fig. 2.9. This means that the evolution of the system
depends very sensitively to the initial conditions. In Fig. 2.9 it is seen that two
evolutions with very small differences in the initial angle of displacement results in
motion that, at first, stay quite near to each other, but then rapidly diverge.
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Figure 2.8: Results from running the program dblpend.py (Listing 2.7) with
input ` = 1 m, θ1 = θ2 = 0.1 rad, ∆t = 0.001 s, and tmax = 20 s. The left
plot shows the evolution of θ1 and θ2 with time while the right plot shows the
Lissajou curve θ2 vs. θ1.

The difficulty with chaotic motion is that, because it is very sensitive to the ini-
tial conditions, it is also very sensitive to numerical errors. It is important, therefore,
to have highly accurate numerical schemes in order to evolve potentially chaotic
systems. We will discuss more accurate numerical schemes in the next section.

Exercise 2.5

a) Investigate the behavior of the double pendulum for small initial displace-
ment angles. Try to find the initial conditions that result in the two normal
modes of oscillation. Investigate these normal modes of oscillation.

b) Investigate the chaotic regime. Can you predict where chaotic evolution
occurs? How does the step size affect the evolution of a system in for chaotic
and non-chaotic motion.

2.4 Orbital motion

The motion of a planets about the Sun under Newtonian gravity is known as the
Kepler problem. Kepler’s three laws can be readily derived for any inverse-squared
central force,

F = −k
r
r3

(2.29)

where k is a constant (we leave it arbitrary for the present), r is the separation
vector which is directed from the center of force to the body in motion about it, and
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Figure 2.9: Results from running the program dblpend.py (Listing 2.7) with
input ` = 1 m, ∆t = 0.0001 s, and tmax = 12s for two slightly different initial
angles θ1 and θ2. The motion is initially very close but then diverges quite
rapidly. This is an example of chaotic motion.

r = ‖r‖ is the magnitude of this vector. First note that a central force can produce
no torque:

N =
dL
d t
=

d
d t
(r × p) = v × p + r × F = 0 (2.30)

where v = dr/d t is the velocity of the body, p = mv is its momentum (m is the
mass of the body), and L = r × p is its angular momentum. The last equality
holds since v ‖ p and r ‖ F where F = dp/d t, so both cross-products vanish. The
conservation of angular momentum implies that r and v span a conserved orbital
plane. Furthermore, the area dA swept out in time d t is 1

2 r×dr so the areal velocity,

dA
d t
=

1
2

r × v =
1

2m
r × p =

L
2m
= const (2.31)

is constant. This is Kepler’s second law.

To obtain Kepler’s first law, that the bound orbits are elliptical with the force
center at a focus of the ellipse, we begin by considering the evolution of the vector
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v × L:

d
d t
(v × L) =

dv
d t
× L= a× L

= −
k

mr3
[r × (r × p)] = −

k
r3
[r × (r × v)]

= −
k
r3
[(r · v)r − (r · r )v]

=
d
d t

�

k
r
r

�

(2.32)

where to obtain the last line we note that dr/d t = v · r/r. Since both sides are
now total derivatives in time, we have

v × L= k
� r

r
+ e
�

(2.33)

where e is a constant vector, which is proportional to the Laplace-Runge-Lenz vector.
We now take the dot product of both sides with the vector r and define the true
anomaly, θ , by cosθ = r̂ · ê, to obtain

kr(1+ e cosθ ) = r · (v × L) = (r × v) · L=
L
m
· L=

L2

m
= const (2.34)

where e = ‖e‖ is the eccentricity of the orbit, and finally we have

r =
L2/(mk)

1+ e cosθ
=

a(1− e2)
1+ e cosθ

(2.35)

which is the equation of an ellipse of eccentricity e and semi-major axis a =
L2/[mk(1− e2)] where r is the distance from one of the foci of the ellipse.

The semi-minor axis of an ellipse is b = a/
p

1− e2 and its area is A = πab.
This area is swept out in one orbital period, P, and, from Eq. (2.31) we have

L
2m

P = A= πab = π
a2

1− e2
= πa3/2 L

p
mk

. (2.36)

We then obtain Kepler’s third law, relating the period of the orbit to its semi-major
axis,

P2 =
4π2m

k
a3. (2.37)

Although Kepler’s first law gives us the shape of the orbit (an ellipse), and
Kepler’s second law describes how much area is swept out in an interval in time,
the problem of determining the exact position of the body along the ellipse as a
function of time, θ (t), is more involved. Here we derive Kepler’s equation for θ (t).
First, the orbit is described in terms of an eccentric anomaly,ψ, which is the angle of
a fictitious body that moves in a circle that is concentric with the ellipse that the true
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Figure 2.10: The geometric relationship between the eccentric anomaly, ψ,
and the true anomaly θ . The fictitious body (red) moves on a circle (thick
dotted line) that is concentric to the ellipse (thick solid line) of the true body’s
orbit so that it always has the same x-coordinate as the true body.

body moves on, where the position of the fictitious body has the same x-coordinate
as the true body (see Fig. 2.10). Simple trigonometry gives the relations

x = r cosθ = a cosψ+ ae (2.38a)

y = r sinθ = b sinψ= a
p

1− e2 sinψ (2.38b)

r =
a(1− e2)

1+ e cosθ
= a− ae cosψ. (2.38c)

From these one obtains the relationships

r(1+ cosθ ) = a(1− e)(1+ cosψ) (2.39a)

r(1− cosθ ) = a(1+ e)(1− cosψ) (2.39b)

[note: the sum of Eqs. (2.39a) and (2.39b) is twice Eq. (2.38c), the difference
is Eq. (2.38a), and the product is the square of Eq. (2.38b)] and the ratio of
Eqs. (2.39a) and (2.39b), along with the half angle formula for the tangent, yields
a relationship between the eccentric and true anomalies,

tan
θ

2
=

√

√1+ e
1− e

tan
ψ

2
. (2.40)
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Furthermore, the areal velocity is found to be

πab
P
=

dA
d t
=

1
2

r2 dθ
d t
=

1
2

ab(1− e cosψ)
dψ
d t

. (2.41)

Now we integrate this equation with respect to time to obtain Kepler’s equation,

M =ψ− e sinψ (2.42)

where

M =
2πt

P
(2.43)

is known as the mean anomaly.

One more important equation, known as the vis-viva equation, is obtained by
computing v2 = (d x/d t)2 + (d y/d t)2 from the time derivative of Eqs. (2.38a)
and (2.38b), along with Eq. (2.41), which gives

v2 =
4π2a3

P2

�

2
r
−

1
a

�

=
k
m

�

2
r
−

1
a

�

(2.44)

where Kepler’s third law is employed to obtain the second equality. Special cases
of the vis-viva equation are for the perihelion speed, vperihelion, where rperihelion =
a(1− e), and the aphelion speed, vaphelion, where raphelion = a(1+ e):

vperihelion =
2πa

P

√

√1+ e
1− e

and vaphelion =
2πa

P

√

√1− e
1+ e

. (2.45)

Kepler’s method of computing the location of a planet requires us to compute
the true anomaly at any given time and then Kepler’s first law yields the orbital
distance r. To determine the true anomaly at time t, θ (t), we must (i) compute
the mean anomaly M using Eq. (2.43), (ii) solve the transcendental Kepler’s equa-
tion, Eq. (2.42), for the eccentric anomaly, and (iii) obtain the true anomaly us-
ing Eq. (2.40). Step (ii) can be performed efficiently using Newton’s method (see
Sec. A.2); nevertheless, this approach to determining the position of a planet is
somewhat involved, and cannot be simply extended to more complex systems in-
volving perturbations to the system or to the dynamics of more than two bodies.
We therefore consider now a numerical approach to planetary motion involving the
direct integration of the equations of motion.

Consider the equations of motion for a planet in orbit about the Sun. We know
that the orbital plane is conserved, so we wish to evolve Newton’s equations of
motion in two-dimensions:

d2 x
d t2

= −GM�
x

(x2 + y2)3/2
(2.46a)

d2 y
d t2

= −GM�
y

(x2 + y2)3/2
(2.46b)
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where G is Newton’s gravitational constant, M� is the mass of the Sun, and their
product is known as the heliocentric gravitational constant,

GM� = 1.327 124420 99× 1020 m3 s−2, (2.47)

but in this section we will measure distances in astronomical units (AU) (the orbital
radius of the Earth) and times in years, so

GM� = 4π2 AU3 yr−2. (2.48)

We express Eqs. (2.46) as a system of first order differential equations:

d x
d t
= vx (2.49a)

dvx

d t
= −GM�

x
(x2 + y2)3/2

(2.49b)

d y
d t
= vy (2.49c)

dvy

d t
= −GM�

y
(x2 + y2)3/2

. (2.49d)

As before we simply need to discretize these equations and then perform a numer-
ical integration (with appropriate initial conditions) in order to evolve the orbit
of a planet. Let us consider now better methods for evolving ordinary differential
equations than the Euler or Euler-Cromer methods.

The most popular integration methods for ordinary differential equations are
known as Runge-Kutta methods. Let us consider first the second-order Runge-Kutta
method, known as rk2. Suppose we wish to solve the ordinary differential equation

d x
d t
= f (t, x) (2.50)

where f (t, x) is some known function. If we have a value x i = x(t i) at time t i ,
then we wish to compute the value x i+1 = x(t i+1) at time t i+1 = t i +∆t, which is

x(t i +∆t) = x(t i) +
d x
d t

�

�

�

�

t i ,x i

∆t +
1
2

d2 x
d t2

�

�

�

�

t i ,x i

∆t2 +O(∆t3)

= x(t i) + f (t i , x i)∆t ++
1
2

d f
d t

�

�

�

�

t i ,x i

∆t2 +O(∆t3).
(2.51)

Now we have

d f
d t
=
∂ f (x , t)
∂ t

+
∂ f (x , t)
∂ x

d x
d t

=
∂ f (x , t)
∂ t

+
∂ f (x , t)
∂ x

f (x , t)
(2.52)



36 CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS

so we find

x i+1 = x i + f (t i , x i)∆t +
1
2

�

∂ f
∂ t

�

�

�

�

t i ,x i

+
∂ f
∂ x

�

�

�

�

t i ,x i

f (t i , x i)

�

∆t2

+O(∆t3).

(2.53)

Note that

f (t i +
1
2∆t, x i +

1
2∆x)≈ f (t i , x i) +

∂ f
∂ t

�

�

�

�

t i ,x i

∆t
2
+
∂ f
∂ x

�

�

�

�

t i ,x i

∆x
2

(2.54)

to first order in ∆t and ∆x . Therefore, if we choose ∆x = f (t i , x i)∆t, we have

f (t i +
1
2∆t, x i +

1
2∆x) = f (t i , x i) +

1
2

�

∂ f
∂ t

�

�

�

�

t i ,x i

+
∂ f
∂ x

�

�

�

�

t i ,x i

f (t i , x i)

�

∆t

+O(∆t2).

(2.55)

Comparing this equation to Eq. (2.53) we see

x i+1 = x i + f (t i +
1
2∆t, x i +

1
2∆x)∆t +O(∆t3) (2.56)

where ∆x = f (t i , x i)∆t. This method therefore has second order accuracy (recall
the Euler method had only first order accuracy), and is known as the second order
Runge-Kutta method. In summary, the method, rk2 is as follows:

∆x1 = f (t i , x i)∆t (2.57a)

∆x2 = f (t i +
1
2∆t, x i +

1
2∆x1)∆t (2.57b)

x i+1 = x i +∆x2 +O(∆x3). (2.57c)

Equation (2.57a) makes an initial guess as to how much to increment x , and then
Eq. (2.57b) refines that guess by evaluating the function f (t, x) at the predicted
midpoint.

More commonly used is the fourth-order Runge-Kutta method, rk4, which is

∆x1 = f (t i , x i)∆t (2.58a)

∆x2 = f (t i +
1
2∆t, x i +

1
2∆x1)∆t (2.58b)

∆x3 = f (t i +
1
2∆t, x i +

1
2∆x2)∆t (2.58c)

∆x4 = f (t i +∆t, x i +∆x3)∆t (2.58d)

x i+1 = x i +
1
6∆x1 +

1
3∆x2 +

1
3∆x3 +

1
6∆x4 +O(∆x5). (2.58e)
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Exercise 2.6

a) Show algebraically that the system of equations given by Eqs. (2.58) is ac-
curate to fourth order.

b) Write a program to integrate the equations of motion for a simple harmonic
oscillator using the Euler-Cromer method, the second-order Runge-Kutta
method rk2, and the fourth-order Runge-Kutta method rk4. Compare your
evolutions to the known solution for various step sizes and demonstrate
that the order of accuracy is what you expect for these methods.

We are now ready to integrate the equations of motion for planetary orbits. We
express the system of ordinary differential equations in vector notation

dX
d t
= F(t, X) (2.59)

where the vector X contains the positions and velocities

X =







x
vx
y
vy






(2.60)

and the vector F gives their derivatives

F(t, X) =







vx

−GM�x/(x2 + y2)3/2

vy

−GM� y/(x2 + y2)3/2






. (2.61)

(Note that for this problem the function F does not have any explicit dependence
on time.) A program to integrate these equations of motion is planet.py.

Listing 2.8: Program planet.py

1 import math, pylab
2

3 GM = (2.0*math.pi)**2 # heliocentric gravitational constant
4

5

6 # function that implements rk4 integration
7 def rk4(t, x, f, dt):
8 dx1 = f(t, x)*dt
9 dx2 = f(t+0.5*dt, x+0.5*dx1)*dt

10 dx3 = f(t+0.5*dt, x+0.5*dx2)*dt
11 dx4 = f(t+dt, x+dx3)*dt
12 return x+dx1/6.0+dx2/3.0+dx3/3.0+dx4/6.0
13
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14

15 # function that returns dX/dt for the orbital equations of motion
16 def dXdt(t, X):
17 x = X[0]
18 vx = X[1]
19 y = X[2]
20 vy = X[3]
21 r = math.sqrt(x**2+y**2)
22 ax = −GM*x/r**3
23 ay = −GM*y/r**3
24 return pylab.array([vx, ax, vy, ay])
25

26

27 x0 = input(’initial x position (au) −> ’)
28 y0 = input(’initial y position (au) −> ’)
29 vx0 = input(’initial x velocity (au/yr) −> ’)
30 vy0 = input(’initial y velocity (au/yr) −> ’)
31 dt = input(’time step (yr) −> ’)
32 tmax = input(’time to end of simulation (yr) −> ’)
33 nsteps = int(tmax/dt)
34 x = [0.0]*nsteps
35 y = [0.0]*nsteps
36

37 # integrate Newton’s equations of motion using rk4;
38 # X is a vector that contains the positions and velocities being integrated
39 X = pylab.array([x0, vx0, y0, vy0])
40 for i in range(nsteps):
41 x[i] = X[0]
42 y[i] = X[2]
43 # update the vector X to the next time step
44 X = rk4(i*dt, X, dXdt, dt)
45 pylab.figure(figsize=(6, 6))
46 pylab.plot(x, y, ’o−’)
47 pylab.xlabel(’x (au)’)
48 pylab.ylabel(’y (au)’)
49 minmax = 1.1*max(abs(min(x+y)), abs(max(x+y)))
50 pylab.axis([−minmax, minmax, −minmax, minmax], aspect=’equal’)
51 pylab.grid()
52 pylab.show()

The perihelion speed of a planet is

vperihelion =
2πa

P

√

√1+ e
1− e

(2.62)

where P is the orbital period, a is the semi-major axis of the orbit, and e is the orbital
eccentricity. For Mercury these values are P = 0.241 yr, a = 0.387 AU, and e =
0.206 which yields vperihelion = 12.43AU yr−1 and a perihelion distance rperihelion =
a(1 − e) = 0.307 AU. Running planet.py with the input x0 = 0.307AU, y0 = 0,
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Figure 2.11: Results from running the program planet.py (Listing 2.8) with
input parameters corresponding to the orbit of Mercury: x0 = 0.307AU, y0 =
0, vx ,0 = 0, vy,0 = 12.43 AUyr−1, ∆t = 0.00241 yr and tmax = 0.241yr.

vx ,0 = 0, vy,0 = 12.43AU yr−1, ∆t = 0.00241yr and tmax = 0.241 yr produces the
results shown in Fig. 2.11.
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Exercise 2.7 In General Relativity, orbital motion can be described as in New-
tonian gravity but there is an additional 1/r4 term in the force law,

F(r)/m=
GM�

r2

�

1+
α

r2

�

(2.63)

where

α=
3GM�

c2
a(1− e2) (2.64)

which has the value α ≈ 1.10 × 10−8 AU2 for Mercury. Modify the program
planet.py to include the extra force term due to General Relativity. Also mod-
ify the program so that it locates each perihelion (or aphelion) anomaly. For
various values of α in the range 0.0001 < α < 0.01 determine the rate of
perihelion advance. Extrapolate this result to the value of α for Mercury.

Suppose we are interested computing the orbit of a comet, such as Halley’s
comet, having an eccentricity near unity. The orbit of Halley’s comet has a semi-
major axis a = 17.8 AU and an orbital period of 75yr, which suggests that we should
be able to take large time steps, but it also has a eccentricity of e = 0.967, so while
its aphelion is 35.1 AU, its perihelion is only 0.568 AU, and while it is close to the
Sun we will need to take very short time steps. In order to robustly evolve the
orbit of Halley’s comet we will obtain an adaptive scheme for integration of ordinary
differential equations where the step size is controlled so that the error is kept near
some desired tolerance.

First we need a method for determining how much error is being made with
each step. The direct way to determine this is to take the step∆t two ways: once as
a single step of size∆t, and a second time as two steps of size 1

2∆t. This difference
between the two results then is an estimate of the error being made in the single
step. This method is known as step doubling.

Alternatively, one could perform the single step using two methods, say once
with a fourth-order method and once with a fifth-order method. Again, the differ-
ence between the two results is an estimate of the error of the fourth order scheme.
It turns out that it is possible to find a fifth-order Runge-Kutta scheme in which the
various estimates of∆x can be combined differently in order to form a fourth-order
Runge-Kutta scheme. This is useful because one does not need to re-evaluate the
function being integrated at different points.

Such a fifth-order Runge-Kutta method with an “embedded” fourth order
Runge-Kutta method, rk45, uses requires six estimates of ∆x:

∆x1 = f (t i , x i)∆t

∆x2 = f (t i + a2∆t, x i + b21∆x1)∆t

∆x3 = f (t i + a3∆t, x i + b31∆x1 + b32∆x2)∆t

...

∆x6 = f (t i + a6∆t, x i + b61∆x1 + b62∆x2 + · · ·+ b65∆x5)∆t

(2.65a)
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where the as and bs are certain constants given below. Given these values of ∆x ,
a fifth order scheme is

(5)
x i+1= x i + c1∆x1 + c2∆x2 + · · ·+ c6∆x6 (2.65b)

where the cs are another set of constants, while a fourth order scheme is obtained
with a different linear combination of the ∆x values:

(4)
x i+1= x i + d1∆x1 + d2∆x2 + · · ·+ d6∆x6 (2.65c)

where the ds are a different set of constants. Our error estimate is then

e =
(5)
x i+1 −

(4)
x i+1=

6
∑

j=1

(c j − d j)∆x j . (2.65d)

The Cash-Karp parameters are given in Eq.(2.66) in Table 2.1.

If we have a desired value for the error, e0, then an adaptive method refines
the step size so as to achieve this value. If the trial step size∆t produces errors that
are larger than e0 then the step size is reduced and the step is repeated. However,
error is smaller than e0 then the current step is accepted, but for the next step the
step size is increased. In either case, we can make a prediction of the “correct” step
size given the ratio between the estimated error e and the desired error e0: since
the method is fourth-order, the local error is O(∆t5) so the estimated step size to
use next is

(∆t)next =∆t
�

�

�

e0

e

�

�

�

1/5
. (2.67)

Finally, to choose e0 we must decide whether we want to control the absolute error
of the result or the relative error:

e0 = εabs + εrel|x |. (2.68)

Note that for functions passing through zero, the relative error term can vanish so
it is helpful to have some value for εabs.

The program halley.py evolves the orbit of Halley’s comet using an adaptive
Runge-Kutta integrator called ark45. The resulting orbit is shown in Fig. 2.12 where
we see that the adaptive integrator has a higher concentration of points when the
comet is near the Sun and is moving fastest.

Listing 2.9: Program halley.py

1 import math, pylab
2

3

4 def rk45(t, x, f, dt):
5 """ Fifth order and embedded fourth order Runge−Kutta integration

step
6 with error estimate. """
7
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a
2
=

15
a

3
=

310
a

4
=

35
a

5
=

1
a

6
=

78
(2.66a)

b
21
=

15
b

31
=

340
b

41
=

310
b

51
=
−

1154
b

61
=

1631
55296

(2.66b)

b
32
=

940
b

42
=
−

910
b

52
=

52
b

62
=

175
512

(2.66c)

b
43
=

65
b

53
=
−

7027
b

63
=

575
13824

(2.66d)

b
54
=

3527
b
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=

44275
110592

(2.66e)

b
65
=
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4096

(2.66f)

c1
=
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378

c2
=

0
c3
=

250
621

c4
=
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c5
=

0
c6
=

512
1771

(2.66g)

d
1
=

2825
27648

d
2
=

0
d

3
=

18575
48384

d
4
=

13525
55296

d
5
=

277
14336

d
6
=

14
(2.66h)
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Figure 2.12: Results from running the program halley.py (Listing 2.9). No-
tice that the steps are much closer together near perihelion where the orbital
velocity is the greatest.

8 # Cash−Karp parameters
9 a2, a3, a4, a5, a6 = 1./5., 3./10., 3./5., 1., 7./8.

10 b21 = 1./5.
11 b31, b32 = 3./40., 9./40.
12 b41, b42, b43 = 3./10., −9./10., 6./5.
13 b51, b52, b53, b54 = −11./54., 5./2., −70./27., 35./27.
14 b61, b62, b63, b64, b65 = 1631./55296., 175./512., 575./13824.,
15 44275./110592., 253./4096.
16 c1, c2, c3, c4, c5, c6 = 37./378, 0., 250./621., 125./594., 0.,

512./1771.
17 d1, d2, d3, d4, d5, d6 = 2825./27648., 0., 18575./48384.,

13525./55296.,
18 277./14336., 1./4.
19 e1, e2, e3, e4, e5, e6 = c1−d1, c2−d2, c3−d3, c4−d4, c5−d5, c6−d6
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20

21 # evaluate the function at the six points
22 dx1 = f(t, x)*dt
23 dx2 = f(t+a2*dt, x+b21*dx1)*dt
24 dx3 = f(t+a3*dt, x+b31*dx1+b32*dx2)*dt
25 dx4 = f(t+a4*dt, x+b41*dx1+b42*dx2+b43*dx3)*dt
26 dx5 = f(t+a5*dt, x+b51*dx1+b52*dx2+b53*dx3+b54*dx4)*dt
27 dx6 = f(t+a6*dt, x+b61*dx1+b62*dx2+b63*dx3+b64*dx4+b65*dx5)*dt
28 # compute and return the error and the new value of x
29 err = e1*dx1+e2*dx2+e3*dx3+e4*dx4+e5*dx5+e6*dx6
30 return (x+c1*dx1+c2*dx2+c3*dx3+c4*dx4+c5*dx5+c6*dx6, err)
31

32

33 def ark45(t, x, f, dt, epsabs=1e−6, epsrel=1e−6):
34 """ Adaptive Runge−Kutta integration step. """
35

36 safe = 0.9 # safety factor for step estimate
37 # compute the required error
38 e0 = epsabs+epsrel*max(abs(x))
39 dtnext = dt
40 while True:
41 # take a step and estimate the error
42 dt = dtnext
43 (result, error) = rk45(t, x, f, dt)
44 e = max(abs(error))
45 dtnext = dt*safe*(e0/e)**0.2
46 if e < e0: # accept step: return x, t, and dt for next step
47 return (result, t+dt, dtnext)
48

49

50 GM = (2.*math.pi)**2 # heliocentric gravitational constant
51

52

53 # returns the derivative dX/dt for the orbital equations of motion
54 def dXdt(t, X):
55 x = X[0]
56 vx = X[1]
57 y = X[2]
58 vy = X[3]
59 r = math.sqrt(x**2+y**2)
60 ax = −GM*x/r**3
61 ay = −GM*y/r**3
62 return pylab.array([vx, ax, vy, ay])
63

64

65 # orbital parameters for Halley’s comet
66 a = 17.8 # semimajor axis, au
67 e = 0.967 # eccentricity
68 P = a**1.5 # orbital period
69 r1 = a*(1.−e) # perihelion distance
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70 v1 = (GM*(2/r1−1/a))**0.5 # perihelion speed
71

72 # initial data
73 x0 = r1
74 y0 = 0.
75 vx0 = 0.
76 vy0 = v1
77 dt = 0.01
78 tmax = P
79 x = [x0]
80 y = [y0]
81 t = [0.]
82

83 # integrate Newton’s equations of motion using ark45
84 # X is a vector that contains the positions and velocities being integrated
85 X = pylab.array([x0, vx0, y0, vy0])
86 T = 0.
87 while T < tmax:
88 (X, T, dt) = ark45(T, X, dXdt, dt)
89 x += [X[0]]
90 y += [X[2]]
91 t += [T]
92

93 pylab.figure(figsize=(6, 6))
94 pylab.plot(x, y, ’o−’)
95 pylab.xlabel(’x (au)’)
96 pylab.ylabel(’y (au)’)
97 minmax = 1.1*max(abs(min(x+y)), abs(max(x+y)))
98 pylab.axis([−minmax, minmax, −minmax, minmax], aspect=’equal’)
99 pylab.grid()

100 pylab.show()

Exercise 2.8 Write a program to solve the three-body problem depicted in
Fig. 2.13 where the three bodies are initially at rest in the configuration shown
and their subsequent motion is determined by Newton’s law of gravity. Use
units in which G = 1 and the masses, distances, and times are dimensionless.
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Figure 2.13: Initial configuration for the three body problem.



Chapter 3

Partial differential equations

There are three basic types of partial differential equations. Equations such as the
wave equation,

∂ 2u
∂ t2

= c2 ∂
2u
∂ x2

, (3.1)

where u(t, x) is a displacement function and c is a constant velocity, are known as
hyperbolic equations. Equations such as the diffusion equation,

∂ u
∂ t
=
∂

∂ x

�

D
∂ u
∂ x

�

, (3.2)

where u(t, x) is density field and D is the diffusion coefficient are known as parabolic
equations. The time-dependent Schrödinger equation is another example of a
parabolic equation. Equations such as the Poisson equation,

∂ 2u
∂ x2

+
∂ 2u
∂ x2

+
∂ 2u
∂ x2

= −
ρ(x , y, z)
ε0

(3.3)

where u(x , y, z) is a potential function and ρ/ε0 is a source, are known as elliptic
equations. The time-independent Schrödinger equation is another example of an
elliptic equation.

Hyperbolic or parabolic equations are found in initial value problems: the field
configuration u(t, x) is specified at some initial time and is evolved forward in
time. Elliptic equations are found in boundary value problems: the value of the
field u(x , y, z) is specified on the boundary of a region and we seek the solution
through the interior.

3.1 Waves

As our prototype wave equation problem, consider the scenario of propagating a
wave pulse along a taught wire of length L = 1 m that is fixed at both ends. The

47
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wave equation that we need to solve is

∂ 2u
∂ t2

= c2 ∂
2u
∂ x2

(3.4)

where u(t, x) is the displacement of the wire and c is the speed of propagation on
the wire. For our problem we will assume a value of c = 300 ms−1. In addition
to the wave equation we require boundary values and initial conditions. We have
already stated that the ends of the wires are fixed, so our boundary values are

u(t, 0) = u(t, L) = 0. (3.5)

As an initial condition we consider a Gaussian pulse

u(0, x) = exp

�

−
(x − x0)2

2σ2

�

(3.6)

of width σ = 0.02m centered at position x0 = 0.3m. The wave equation is a
second order equation so we must specify two initial conditions. As our second
initial condition we will assume that the initial displacement has been held fixed
up until time t = 0 at which point it is released. Our second initial condition is
therefore ∂ u(0, x)/∂ t = 0.

The general solution to the wave equation, Eq. (3.4), is

u(t, x) = f (x − c t) + g(x + c t) (3.7)

where f and g are arbitrary functions that correspond to a right-moving and a left-
moving solution respectively. It is straightforward to substitute this ansatz into the
wave equation to verify that it is a solution. The initial conditions are of the form

u(0, x) = f (x) + g(x)
∂ u(0, x)
∂ t

= c[g ′(x)− f ′(x)]. (3.8)

For example, if we want our initial conditions to correspond to a right-moving wave
then we have f (x) = u(0, x) and g(x) = 0 while if we want our initial conditions
to correspond to a left-moving wave then we have g(x) = u(0, x) and f (x) = 0.
For our problem we want ∂ u(0, x)/∂ t = 0 so we find f (x) = g(x) = 1

2 u(0, x), that
is, we have equal parts left-moving and right-moving waves.

Boundary conditions are required at x = 0 and x = L. For our problem these
points are fixed so we simply require

u(t, 0) = 0 u(t, L) = 0 (3.9a)

∂ u(t, 0)
∂ t

= 0
∂ u(t, L)
∂ t

= 0. (3.9b)

These are known as Dirichlet boundary conditions. Other types of boundary con-
ditions are possible, e.g., periodic boundary conditions, in which u(t, 0) = u(t, L),
and outgoing (non-reflecting) boundary condition.



3.1. WAVES 49

Another method of solving the wave equation algebraically uses the method of
separation of variables. We assume that the solution u(t, x) can be factored into a
function of time alone, T (t), multiplied by a function of position alone, X (t),

u(t, x) = T (t)X (x). (3.10)

Now we substitute this into the wave equation and we obtain

T̈ (t)X (x) = c2T (t)X ′′(x). (3.11)

Now divide both sides by T (t)X (x) to obtain

T̈ (t)
T (t)

= c2 X ′′(x)
X (x)

. (3.12)

Note that the left hand side is a function of time alone and the right hand side is a
function of position alone. The only way this can be so is if both the left hand side
and the right hand side are constants. Let the constant be ω2 and let ck = ω. We
now have to solve two ordinary differential equations

T̈ (t) =ω2T (t) (3.13a)

X ′′(x) = k2X (x). (3.13b)

The solutions to these two equations are simply

T (t)∝ e±iωt (3.14a)

X ′′(x)∝ e±ikx . (3.14b)

Any value ofω, or k, is possible so the general solution requires us to integrate over
all possible values. Our general solution is therefore

u(t, x) =

∫ ∞

−∞
dk
�

A(k)eik(x−c t) + B(k)eik(x+c t)
�

. (3.15)

Again we see that our solution is the sum of a right-moving and a left-moving wave.
The functions A(k) and B(k) are solved by taking the spatial Fourier transform of
the initial data. Imposing the Dirichlet boundary conditions further restrict our
solution: the allowed modes must vanish at x = 0 and x = L so we have

u(t, x) =
∞
∑

n=1

{An sin[nπ(x − c t)/L] + Bn sin[nπ(x + c t)/L]} . (3.16)

The coefficients An and Bn are determined by the initial data.
To obtain a numerical scheme for solving the wave equation, let us cast it in

first-order form with the help of an auxiliary field, v(t, x). We now show that the
system of first-order partial differential equations

∂ u(t, x)
∂ t

= c
∂ v(t, x)
∂ x

(3.17a)

∂ v(t, x)
∂ t

= c
∂ u(t, x)
∂ x

(3.17b)
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is equivalent to the wave equation. First we note that

∂ 2u(t, x)
∂ t2

= c
∂ 2v(t, x)
∂ t∂ x

= c2 ∂
2u(t, x)
∂ x2

(3.18)

where we first used Eq. (3.17a) and then Eq. (3.17b), so if we can define a suitable
auxiliary field v(t, x) then the wave equation will hold. Supposing Eq. (3.17b) we
see that

v(t, x) = c

∫ t

0

∂ u(t ′, x)
∂ x

d t ′ + f (x) (3.19)

where f (x) is an arbitrary function that we can choose so that c(∂ v/∂ x) = ∂ u/∂ t
at time t = 0, i.e.,

v(0, x) = f (x) =
1
c

∫ x
∂ u(0, x ′)
∂ t

d x ′. (3.20)

Now we simply need to show that c(∂ v/∂ x) = ∂ u/∂ t all future times. Since

∂

∂ t

�

c
∂ v
∂ x
−
∂ u
∂ t

�

= c
∂ 2v
∂ t∂ x

−
∂ 2u
∂ t2

= c2 ∂
2u
∂ x2

−
∂ 2u
∂ t2

= 0 (3.21)

we conclude that c(∂ v/∂ x) = ∂ u/∂ t at all times if it holds initially.

Notice that Eqs. (3.17a) and (3.17b) form a system of equations that are known
as flux-conservative equations, which have the form

∂ u
∂ t
+
∂ F(u)
∂ x

= 0 (3.22)

where

u =
�

u
v

�

(3.23)

is the vector of the field variables,

F(u) =
�

0 −c
−c 0

�

· u (3.24)

is the matrix of flux terms.

An even simpler example of a flux-conservative equation is the advection equa-
tion

∂ a(t, x)
∂ t

+ c
∂ a(t, x)
∂ x

= 0 (3.25)

and the solution to such an equation is

a(t, x) = f (x − c t) (3.26)

for some function f which is determined by the initial conditions f (x) = a(0, x).
We see that this initial pulse is “advected” along the x-axis with speed c. We will
return to this equation from time to time as a simple analog of the wave equation
that we are trying to solve.
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For our problem we have initial data for u, and since we are assuming that
∂ u(0, x)/∂ t = 0, our initial data for the auxiliary function v can be taken to be
v(0, x) = 0. Finally, to fully specify our problem we need the boundary conditions
for u and v. In the case of u the Dirichlet boundary conditions are trivially u(t, 0) = 0
and u(t, L) = 0. This can be achieved by imagining that the string continues into
the regions x < 0 and x > L and that, at the x = 0 boundary, there is always
a right-moving wave with x < 0 that precisely cancels the left moving wave at
that boundary, and similarly, at the x = L boundary, there is a left-moving wave
that precisely cancels the right-moving wave. Our boundary conditions for v must
ensure that the incoming waves exactly cancel the outgoing waves at the boundary.
Our boundary conditions are called reflective so that at x = 0 only right-moving
waves are allowed and at x = L only left-moving waves are allowed. Consider
the boundary at x = 0. Near this boundary the incoming wave must be u(t, x) =
f (x − c t) and so we have

∂ u
∂ x
= f ′(x − c t)

∂ u
∂ t
= −c f ′(x − c t) = −c

∂ u
∂ x

near x = 0. (3.27)

This means that

∂ v
∂ x
=

1
c
∂ u
∂ t
= −

∂ u
∂ x

near x = 0. (3.28)

That is, the gradient of u+v is zero at the x = 0 boundary. Similarly at the boundary
x = L only left-moving waves are allowed so the solution must be u(t, x) = g(x+c t)
and we find that the gradient of u− v is zero at the x = L boundary.

For our numerical evolution we require a discretized version of our flux-
conservative equation and the boundary conditions. Suppose that we divide the
length of wire into a grid of points separated by ∆x . For spatial derivatives we can
use a second-order accurate formula

∂ u(t, x)
∂ x

=
u(t, x +∆x)− u(t, x −∆x)

2∆x
+O(∆x2) (3.29)

and similarly for ∂ v/∂ x . For the time derivatives we use Euler differencing,

∂ u(t, x)
∂ t

=
u(t +∆t, x)− u(t, x)

∆t
+O(∆t) (3.30)

and similarly for ∂ v/∂ t. This is only first-order accurate in the time step ∆t but it
has the advantage that we only need to know u at time t to compute u at time t+∆t.
The boundary conditions on v are provided by the requirement that ∂ (u+v)/∂ x = 0
at x = 0 and ∂ (u− v)/∂ x = 0 at x = L, which yield

u(t, 0) + v(t, 0) = u(t,∆x) + v(t,∆x) (3.31a)

u(t, L)− v(t, L) = u(t, L −∆x)− v(t, L −∆x) (3.31b)
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and since u(t, 0) = 0 and u(t, L) = 0 we have

v(t, 0) = v(t,∆x) + u(t,∆x) (3.32a)

v(t, L) = v(t, L −∆x)− u(t, L −∆x). (3.32b)

We thus obtain the following scheme for evolving our wave equation: let

n
u j = u(n∆t, j∆x)
n
v j = u(n∆t, j∆x)

(3.33)

be the fields where n = 0,1, 2, . . . are the time steps and j = 0,1, 2, . . . , N are the
grid points along the wire with N = L/∆x . Then our system of equations is

n+1
u j =

n
u j +c

n
v j+1 −

n
v j−1

2∆x
∆t (3.34a)

n+1
v j =

n
v j +c

n
u j+1 −

n
u j−1

2∆x
∆t (3.34b)

for j = 1, 2, . . . , N − 1. This scheme is known as a forward time, centered space or
FTCS scheme. Our boundary conditions are

n
u0 = 0,

n
uN = 0,

n
v0 =

n
v1 +

n
u1

n
vN =

n
vN−1 −

n
uN−1 . (3.35)

The program waveftcs.py produces an animation of the displacement func-
tion u(t, x). The results are shown in Fig. 3.1. We see that the evolution is unstable:
numerical inaccuracies are quickly amplified and destroy the evolution in only a few
time steps.

Listing 3.1: Program waveftcs.py

1 import math, pylab
2

3 # fixed parameters
4 c = 300.0 # speed of propagation, m/s
5 L = 1.0 # length of wire, m
6 x0 = 0.3 # initial pulse location, m
7 s = 0.02 # initial pulse width, m
8

9 # input parameters
10 dx = L*input(’grid spacing in units of wire length (L) −> ’)
11 dt = dx/c*input(’time step in units of (dx/c) −> ’)
12 tmax = L/c*input(’evolution time in units of (L/c) −> ’)
13

14 # construct initial data
15 N = int(L/dx)
16 x = [0.0]*(N+1)
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17 u0 = [0.0]*(N+1)
18 v0 = [0.0]*(N+1)
19 u1 = [0.0]*(N+1)
20 v1 = [0.0]*(N+1)
21 for j in range(N+1):
22 x[j] = j*dx
23 u0[j] = math.exp(−0.5*((x[j]−x0)/s)**2)
24

25 # prepare animated plot
26 pylab.ion()
27 (line, ) = pylab.plot(x, u0, ’−k’)
28 pylab.ylim(−1.2, 1.2)
29 pylab.xlabel(’x (m)’)
30 pylab.ylabel(’u’)
31

32 # preform the evolution
33 t = 0.0
34 while t < tmax:
35 # update plot
36 line.set_ydata(u0)
37 pylab.title(’t = %5f’%t)
38 pylab.draw()
39 pylab.pause(0.1)
40

41 # derivatives at interior points
42 for j in range(1, N):
43 v1[j] = v0[j]+0.5*dt*c*(u0[j+1]−u0[j−1])/dx
44 u1[j] = u0[j]+0.5*dt*c*(v0[j+1]−v0[j−1])/dx
45

46 # boundary conditions
47 u1[0] = u1[N] = 0.0
48 v1[0] = v1[1]+u1[1]
49 v1[N] = v1[N−1]−u1[N−1]
50

51 # swap old and new lists
52 (u0, u1) = (u1, u0)
53 (v0, v1) = (v1, v0)
54 t += dt
55

56 # freeze final plot
57 pylab.ioff()
58 pylab.show()

To investigate the instability that we will introduce the von Neumann stability
analysis. First we’ll consider the simpler advection equation given by Eq. (3.25).
The FTCS system for this equation has the form

n+1
a j=

n
a j −c

n
a j+1 −

n
a j−1

2∆x
∆t. (3.36)
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t = 0.0 ms

t = 0.1 ms

t = 0.2 ms

t = 0.3 ms

t = 0.4 ms

t = 0.5 ms

Figure 3.1: Results from running the program waveftcs.py (Listing 3.1) with
parameters ∆x = 0.01 and ∆t =∆x/c. The evolution is unstable.

The eigenmodes are of the form

eik(x−c t) = eikxe−iωt (3.37)

where k is a spatial wave number and kc =ω is the vibration frequency. If we start
with a mode of the form

0
a j= eik j∆x (3.38)

we would expect it to evolve so that at time tn = n∆t it would be

n
a j= (e

−iω∆t)neik j∆x . (3.39)

Let us consider what actually happens to the spatial eigenmodes under the FTCS
finite difference approximation to the advection equation. Consider modes of the
form

n
a j= ξ

n(k)eik j∆x (3.40)

where ξ(k) is a complex amplitude for each k. With each time step, the amplitude
of the mode changes by one more power of ξ so we see that if |ξ(k)|> 0 modes will
be exponentially growing while if |ξ(k)| < 0 they will be damped. If we substitute
Eq. (3.40) into Eq. (3.36) we obtain

ξ(k) = 1− ic
∆t
∆x

sin k∆x (3.41)
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so

|ξ(k)|2 = 1+
�

c
∆t
∆x

�2

sin2 k∆x . (3.42)

This shows that all modes are unstable under the FTCS differencing scheme, and
the modes with k ∼ 1/∆x will grow the fastest.

A simple cure to the instability of the FTCS method is to make the replacement

n
a j→

1
2
(

n
a j+1 +

n
a j−1)

in the finite difference equations; the resulting scheme is known as the Lax method,

n+1
a j=

1
2
(

n
a j+1 +

n
a j−1)− c

n
a j+1 −

n
a j−1

2∆x
∆t. (3.43)

Repeating the von Neumann stability analysis shows that with the Lax scheme we
have

ξ(k) = cos k∆x − ic
∆t
∆x

sin k∆x (3.44)

or

|ξ(k)|2 = 1+

�

�

c
∆t
∆x

�2

− 1

�

sin2 k∆x . (3.45)

The evolution is stable if |ξ| ≤ 1, which translates to the requirement

c∆t ≤∆x . (3.46)

This requirement is known as the Courant condition. It ensures that all of the points
that could causally affect a point being computed are considered.

Applying the Lax method to the wave equation problem we obtain the finite
differencing scheme

n+1
u j =

1
2
(

n
u j+1 +

n
u j−1) + c

n
v j+1 −

n
v j−1

2∆x
∆t (3.47a)

n+1
v j =

1
2
(

n
v j+1 +

n
v j−1) + c

n
u j+1 −

n
u j−1

2∆x
∆t. (3.47b)

The only changes we need to make to the program waveftcs.py is in the finite dif-
ferencing equations. Here we list the lines in which our new program wavelax.py
differs from waveftcs.py.

Listing 3.2: Modified lines in program wavelax.py

43 v1[j] = 0.5*(v0[j−1]+v0[j+1])+0.5*dt*c*(u0[j+1]−u0[j−1])/dx
44 u1[j] = 0.5*(u0[j−1]+u0[j+1])+0.5*dt*c*(v0[j+1]−v0[j−1])/dx

In Fig. 3.2 we see that the evolution is quite stable when c∆t = ∆x but in
Fig. 3.3 we encounter instability when c∆t > ∆x as expected. In Fig. 3.4 we see
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t = 0.0 ms

t = 0.4 ms

t = 0.8 ms

t = 1.2 ms
t = 1.6 ms

t = 2.0 ms

t = 2.4 ms

t = 2.8 ms

t = 3.2 ms

t = 3.6 ms

Figure 3.2: Results from running the program wavelax.py (Listing 3.2) with
parameters ∆x = 0.01 and ∆t =∆x/c. The evolution is stable.

that the Lax equations are stable when c∆t <∆x , but also that there is numerical
dissipation of the wave.

We can repeat the von Neumann stability analysis for the two-variable system
we use to solve the wave equation. We assume that the eigenmodes are of the form

� n
u j
n
v j

�

= ξn(k)eik j∆x

� 0
u
0
v

�

(3.48)

where
0
u and

0
v are constants. If we put this ansatz into the FTCS differencing scheme

of Eq. (3.34) we obtain the equation






1− ξ(k) ic
∆t
∆x

sin k∆x

ic
∆t
∆x

sin k∆x 1− ξ(k)






·







0
u

0
v






=







0

0






. (3.49)

This is an eigenvalue equation for the eigenvalues ξ(k) and the only values that
admit solutions are the values for which the determinant of the matrix is zero. The
roots of the characteristic equation are

ξ(k) = 1± ic
∆t
∆x

sin k∆x . (3.50)
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t = 0.0 ms

t = 0.4 ms

t = 0.8 ms

t = 1.2 ms

t = 1.6 ms

t = 2.0 ms

Figure 3.3: Results from running the program wavelax.py (Listing 3.2) with
parameters ∆x = 0.01 and ∆t = 1.1∆x/c. The Courant condition is violated
and the evolution is unstable.

Again we see that the FTCS scheme is unconditionally unstable.

For the Lax differencing scheme, however, the eigenvalue equation takes the
form







cos k∆x − ξ(k) ic
∆t
∆x

sin k∆x

ic
∆t
∆x

sin k∆x cos k∆x − ξ(k)






·







0
u

0
v






=







0

0






. (3.51)

and the roots of the characteristic equation are

ξ(k) = cos k∆x ± ic
∆t
∆x

sin k∆x . (3.52)

As expected, we find that |ξ(k)| > 1 when c∆t > ∆x , which indicates unstable
evolution, |ξ(k)|= 1 when c∆t =∆x , which is the Courant condition and indicates
stable evolution with no amplitude dissipation, and |ξ(k)| < 1 when c∆t < ∆x ,
which again indicates stable evolution but now with amplitude dissipation.

Recall that we have adopted differencing schemes that were second order ac-
curate in space but only first order accurate in time. Let us now consider a method
that is second-order accurate in time.
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t = 0.0 ms

t = 0.4 ms

t = 0.8 ms

t = 1.2 ms
t = 1.6 ms

t = 2.0 ms

t = 2.4 ms

t = 2.8 ms

t = 3.2 ms

t = 3.6 ms

Figure 3.4: Results from running the program wavelax.py (Listing 3.2) with
parameters ∆x = 0.01 and ∆t = 0.9∆x/c. The evolution is stable but there is
numerical dissipation of the wave.

The method we will consider is called a leapfrog method because we evolve one
of our two fields, the u field, on a lattice that has locations at integer multiples of
∆x and ∆t, while we evolve the other field, the v field, on a lattice that is offset by
1
2∆x and 1

2∆t. The two fields then play leapfrog with each time step going between
the points that were used to compute the gradients. See Fig. 3.5.

Our discretization is therefore as follows:

n
u j = u(n∆t, j∆x) 0≤ j ≤ N (3.53a)
n
v j = v(n∆t − 1

2∆t, j∆x + 1
2∆x) 0≤ j ≤ N − 1. (3.53b)
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t = 0

t = Δt

t = 2Δt

t = 3Δt

t = 4Δt
x =

 0
x =

 Δx
x =

 2Δ
x

x =
 3Δ

x

x =
 4Δ

x

x =
 5Δ

x

x =
 6Δ

x

u₀⁰ u₁⁰ u₂⁰ u₃⁰ u₄⁰ u₅⁰

v₀⁰ v₁⁰ v₂⁰ v₃⁰ v₄⁰ v₅⁰
u₆⁰

v₀ v₁
₁

v₂ v₃ v₄ v₅
₁ ₁ ₁ ₁ ₁

u₀ u₁ u₂ u₃ u₄ u₅ u₆
₁ ₁ ₁ ₁ ₁ ₁ ₁

Figure 3.5: The offset grid meshes used in the leapfrog method. The filled
circles represent the points where the u field is evaluated — at integer steps in
∆x and ∆t — while the open circles represent the points where the v field is
evaluated. The circles that are filled with grey are boundary points that must
be supplied by the boundary conditions. Notice that there are no boundary
points for the v field.

Using the Taylor expansion of u about the point (t + 1
2∆t, x) we have

u(t +∆t, x) = u(t + 1
2∆t, x) + ( 1

2∆t)
∂ u(t + 1

2∆t, x)

∂ t

+
1
2
( 1

2∆t)2
∂ 2u(t + 1

2∆t, x)

∂ t2
+O(∆t3) (3.54a)

u(t, x) = u(t + 1
2∆t, x)− ( 1

2∆t)
∂ u(t + 1

2∆t, x)

∂ t

+
1
2
( 1

2∆t)2
∂ 2u(t + 1

2∆t, x)

∂ t2
+O(∆t3) (3.54b)

and so by subtracting the second equation from the first we have

∂ u(t + 1
2∆t, x)

∂ t
=

u(t +∆t, x)− u(t, x)
∆t

+O(∆t2). (3.55)
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Similarly we perform a Taylor expansion of v about the same point,

v(t + 1
2∆t, x + 1

2∆x) = v(t + 1
2∆t, x) + ( 1

2∆x)
∂ v(t + 1

2∆t, x)

∂ x

+
1
2
( 1

2∆x)2
∂ 2v(t + 1

2∆t, x)

∂ x2
+O(∆x3) (3.56a)

v(t + 1
2∆t, x − 1

2∆x) = v(t + 1
2∆t, x)− ( 1

2∆x)
∂ v(t + 1

2∆t, x)

∂ x

+
1
2
( 1

2∆x)2
∂ 2v(t + 1

2∆t, x)

∂ x2
+O(∆x3) (3.56b)

so

∂ v(t + 1
2∆t, x)

∂ x
=

v(t + 1
2∆t, x + 1

2∆x)− v(t + 1
2∆t, x − 1

2∆x)

∆x
+O(∆x2). (3.57)

Since ∂ u/∂ t = c(∂ v/∂ x) at this point we have

u(t +∆t, x)− u(t, x)
∆t

= c
v(t + 1

2∆t, x + 1
2∆x)− v(t + 1

2∆t, x − 1
2∆x)

∆x
(3.58)

up to second order in∆t and∆x . The equivalent formula in terms of our discretiza-
tion is

n+1
u j −

n
u j

∆t
= c

n+1
v j −

n+1
v j−1

∆x
. (3.59)

Now by evaluating ∂ v/∂ t and ∂ u/∂ x at the point (t, x + 1
2∆x) and using the rela-

tion ∂ v/∂ t = c∂ u/∂ x at this point we arrive at the relation

v(t + 1
2∆t, x + 1

2∆x)− v(t − 1
2∆t, x + 1

2∆x)

∆t
= c

u(t, x +∆x)− u(t, x)
∆x

(3.60)

or
n+1
v j −

n
v j

∆t
= c

n
u j+1 −

n
u j

∆x
. (3.61)

Therefore, the system of equations are evolved in the leapfrog scheme by the equa-
tions

n+1
v j =

n
v j +c

n
u j+1 −

n
u j

∆x
∆t (3.62a)

n+1
u j =

n
u j +c

n+1
v j −

n+1
v j−1

∆x
∆t. (3.62b)

For our problem the boundary conditions are very simple: we continue to require

n
u0 = 0

n
uN = 0 (3.63)
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but now we do not need to supply boundary conditions at all for v!

Notice that if we substitute Eq. (3.62a) into Eq. (3.62b) then we obtain the
equation

n+1
u j −2

n
u j +

n−1
u j

(∆t)2
= c2

n
u j+1 −2

n
u j +

n
u j−1

(∆x)2
(3.64)

which is just the result we would obtain with a simple finite differencing of the
original second-order wave equation, Eq. (3.4). We could have solved the wave
equation directly from this form, but in order to compute the field at step n+ 1 we
would need the values of the field both at step n and at step n − 1. The leapfrog
method is entirely equivalent but instead of keeping the data for u at two previous
time steps, it keeps the data for u and for v.

A complete listing of the program leapfrog.py is given below.

Listing 3.3: Program leapfrog.py

1 import math, pylab
2

3 # fixed parameters
4 c = 300.0 # speed of propagation, m/s
5 L = 1.0 # length of wire, m
6 x0 = 0.3 # initial pulse location, m
7 s = 0.02 # initial pulse width, m
8

9 # input parameters
10 dx = L*input(’grid spacing in units of wire length (L) −> ’)
11 dt = dx/c*input(’time step in units of (dx/c) −> ’)
12 tmax = L/c*input(’evolution time in units of (L/c) −> ’)
13

14 # construct initial data
15 N = int(L/dx)
16 x = [0.0]*(N+1)
17 u0 = [0.0]*(N+1)
18 v0 = [0.0]*N
19 u1 = [0.0]*(N+1)
20 v1 = [0.0]*N
21 for j in range(N+1):
22 x[j] = j*dx
23 u0[j] = math.exp(−0.5*((x[j]−x0)/s)**2)
24

25 # prepare animated plot
26 pylab.ion()
27 (line, ) = pylab.plot(x, u0, ’−k’)
28 pylab.ylim(−1.2, 1.2)
29 pylab.xlabel(’x (m)’)
30 pylab.ylabel(’u’)
31

32 # preform the evolution
33 t = 0.0
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34 while t < tmax:
35 # update plot
36 line.set_ydata(u0)
37 pylab.title(’t = %5f’%t)
38 pylab.draw()
39 pylab.pause(0.1)
40

41 # derivatives at interior points
42 for j in range(N):
43 v1[j] = v0[j]+dt*c*(u0[j+1]−u0[j])/dx
44 for j in range(1, N):
45 u1[j] = u0[j]+dt*c*(v1[j]−v1[j−1])/dx
46

47 # boundary conditions for u
48 u1[0] = u1[N] = 0.0
49

50 # swap old and new lists
51 (u0, u1) = (u1, u0)
52 (v0, v1) = (v1, v0)
53 t += dt
54

55 # freeze final plot
56 pylab.ioff()
57 pylab.show()

Figures 3.6 and 3.7 show evolutions obtained from the leapfrog.py program
using c∆t = ∆x and c∆t = 1

2∆x respectively. In particular, notice the evolution
depicted in Fig. 3.7 has far less dispersion than was seen in the Lax method. A
von Neumann stability analysis indicates why. If we substitute our standard ansatz

n
u j= ξ

n(k)eik j∆x 0
u (3.65)

into Eq. (3.64) we find

ξ(k)− 2[1−α2(1− cos k∆x)]ξ(k) + 1= 0 (3.66)

where α= c∆t/∆x , which has roots

ξ(k) = b±
p

b2 − 1 (3.67)

with
b = 1−α2(1− cos k∆x). (3.68)

If b2 ≤ 1 then ξ= b±i
p

1− b2 and so |ξ(k)|= 1 for all k and the evolution is stable.
However, if b2 > 1 then for one of the solutions, |ξ(k)| > 1 and the evolution is
unstable. Therefore, the stability requirement is |b| ≤ 1 or

|1−α2(1− cos k∆x)| ≤ 1. (3.69)

The right hand side is largest when cos k∆x = −1 which produces the inequality
2α2 − 1 ≤ 1 and so we see again that the condition for stability is the Courant
condition, α≤ 1.
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t = 0.0 ms

t = 0.4 ms

t = 0.8 ms

t = 1.2 ms
t = 1.6 ms

t = 2.0 ms

t = 2.4 ms

t = 2.8 ms

t = 3.2 ms

t = 3.6 ms

Figure 3.6: Results from running the program leapfrog.py (Listing 3.3) with
parameters ∆x = 0.01 and ∆t =∆x/c. The evolution is stable.

Exercise 3.1

a) Investigate what happens to reflections off of the boundary if you use Neu-
mann boundary conditions, in which the end points are allowed move freely,
rather than Dirichlet boundary conditions. Neumann boundary conditions
can be achieved as

n
u0=

n
u1 and

n
uN=

n
uN−1 .

b) Investigate what happens if the initial data is zero but the left-hand bound-
ary is constrained to move in a sinusoid

n
u0= Asinωtn

for various values of A and ω.

c) Consider a string that is composed of two segments in which the speed
is c1 = 300m s−1 for 0 ≤ x ≤ 1

2 L and c2 = 150 ms−1 for 1
2 L < x ≤ L.

Starting with a pulse in the left-hand side, study what happens when the
pulse hits the boundary between the two components of the string. Repeat
the investigation with c2 = 600 ms−1.
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t = 0.0 ms

t = 0.4 ms

t = 0.8 ms

t = 1.2 ms
t = 1.6 ms

t = 2.0 ms

t = 2.4 ms

t = 2.8 ms

t = 3.2 ms

t = 3.6 ms

Figure 3.7: Results from running the program leapfrog.py (Listing 3.3) with
parameters ∆x = 0.01 and ∆t = 0.5∆x/c. The evolution is stable. Although
there are some inaccuracies in the evolution, there is not the level of dispersion
seen in Fig. 3.4.

3.2 Heat diffusion

Let us now consider an initial value problem described by a parabolic partial differ-
ential equation.

Suppose a uniform rod of length L = 1 m that is insulated along its length
but not at its ends. Initially the rod has a temperature 0 ◦C. At t = 0 its left end
at position x = 0 is put into thermal contact with a heat reservoir of temperature
T0 = 25 ◦C while the right end at position x = L is kept at temperature 0 ◦C. Let
u(t, x) be the temperature along the rod as a function of time. This temperature
distribution then satisfies the heat diffusion equation

∂ u
∂ t
= D

∂ 2u
∂ x2

(3.70)

where D is the thermal diffusivity,

D =
k

cpρ
(3.71)

with k being the thermal conductivity, cp the specific heat capacity at constant pres-
sure, and ρ the mass density. For a copper rod, D ≈ 10−4 m2 s−1.
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Before we attempt to solve this problem numerically, we will obtain the solution
algebraically. In addition to Eq. (3.70) we have the initial condition

u(0, x) = 0 (3.72)

and the boundary conditions

u(t, 0) = T0

u(t, L) = 0
t > 0. (3.73)

Let us write our solution as the sum of a particular solution and a homogeneous
solution:

u(t, x) = uP(t, x) + uH(t, x). (3.74)

A particular solution to Eq. (3.70) with boundary conditions given by Eq. (3.73) is
simply

uP(t, x) = T0

�

1−
x
L

�

(3.75)

which is a stationary solution (it doesn’t depend on time), but of course it does not
satisfy our initial conditions given by Eq. (3.72). Hence we add a homogeneous
solution chosen to Eq. (3.70) that satisfies the boundary conditions

uH(t, 0) = u(t, 0)− uP(t, 0) = 0

uH(t, L) = u(t, L)− uP(t, L) = 0
t > 0 (3.76)

and then require that it solve the initial condition

uH(0, x) = u(0, x)− uP(0, x) = T0

� x
L
− 1

�

. (3.77)

Again we will use separation of variables, so we write

uH(t, x) = T (t)X (x) (3.78)

and we find that our partial differential equation separates into the ordinary differ-
ential equations

Ṫ
T
= D

X ′′

X
= −

1
τ

(3.79)

where −1/τ is our separation constant. The general solution for X (x) that satisfies
the boundary conditions Eq. (3.76) is

X (x) =
∞
∑

n=1

cn sin
nπx

L
(3.80)

where cn are coefficients and the separation constants are τn = L2/(n2π2D). The
solution for T (t) for each τn is simply

T (t) = e−t/τn (3.81)
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so our homogeneous solution is

uH(t, x) =
∞
∑

n=1

cne−t/τn sin
nπx

L
. (3.82)

We use our initial condition, Eq. (3.77), to determine the coefficients cn. At t = 0
we have

∞
∑

n=1

cn sin
nπx

L
= T0

� x
L
− 1

�

. (3.83)

Multiply both sides by sin(mπx/L) and integrate over x from 0 to L to find

L
2

cm = T0

∫ L

0

� x
L
− 1

�

sin
mπx

L
d x

= −
T0

mπ
L.

(3.84)

Therefore our full solution is

u(t, x) = T0

¨

1−
x
L
− 2

∞
∑

n=1

sin(nπx/L)
nπ

e−t/τn

«

(3.85a)

with

τn =
L2

π2D
1
n2

. (3.85b)

At late times, the n= 1 mode will be dominant and this solution is useful; however,
it is not so useful at early times when a large number of terms in the series are
important.

Let us now consider a numerical solution to the problem. As before we will
begin with a first-order accurate differencing of ∂ u/∂ t a second-order-accurate dif-
ferencing of ∂ 2u/∂ t2. We find

u(t +∆t, x)− u(t, x)
∆t

= D
u(t, x +∆x)− 2u(t, x) + u(t, x −∆x)

(∆x)2
. (3.86)

If we discretize our field so that

n
u j= u(n∆t, j∆x) (3.87)

for n = 0, 1,2, . . . and j = 0, 1,2, . . . , N where N = L/∆x , then we have the FTCS
evolution scheme

n+1
u j=

n
u j +D

n
u j+1 −2

n
u j +

n
u j−1

(∆x)2
∆t (3.88)

for n= 0,1, 2, . . . and j = 1,2, . . . , N − 1 along with the initial conditions

0
u j= 0 (3.89)
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and the boundary conditions

n
u0= T0 and

n
uN= 0. (3.90)

Since the FTCS scheme was unstable when applied to the wave equation, it
is important to check the stability of this scheme when applied to the diffusion
equation. As before we will perform a von Neumann stability analysis by taking the
ansatz

n
u j= ξ

n(k)eik j∆x 0
u (3.91)

and insert it into Eq. (3.88). This time we find

ξ(k) = 1− 4
D∆t
(∆x)2

sin2
�

k∆x
2

�

(3.92)

so provided

∆t ≤
1
2
(∆x)2

D
(3.93)

we have |ξ(k)| ≤ 1 for all k and the evolution will be stable.

The program heatftcs.py implements the FTCS scheme.

Listing 3.4: Program heatftcs.py

1 import math, pylab
2

3 # fixed parameters
4 T0 = 25.0 # temperature gradient, C
5 D = 1e−4 # thermal diffusivity, m^2/s
6 L = 1.0 # length of rod, m
7

8 # input parameters
9 dx = L*input(’grid spacing in units of rod length (L) −> ’)

10 dt = dx**2/D*input(’time step in units of (dx^2/D) −> ’)
11 tmax = L**2/D*input(’evolution time in units of (L^2/D) −> ’)
12

13 # construct initial data
14 N = int(L/dx)
15 x = [0.0]*(N+1)
16 u0 = [0.0]*(N+1)
17 u1 = [0.0]*(N+1)
18 for j in range(N+1):
19 x[j] = j*dx
20

21 # prepare animated plot
22 pylab.ion()
23 (line, ) = pylab.plot(x, u0, ’−k’)
24 pylab.ylim(0, T0)
25 pylab.xlabel(’x (m)’)
26 pylab.ylabel(’Temperature (Celcius)’)
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27

28 # preform the evolution
29 t = 0.0
30 while t < tmax:
31 # update plot
32 line.set_ydata(u0)
33 pylab.title(’t = %5f’%t)
34 pylab.draw()
35 pylab.pause(0.1)
36

37 # derivatives at interior points
38 for j in range(1, N):
39 u1[j] = u0[j]+dt*D*(u0[j+1]−2.0*u0[j]+u0[j−1])/dx**2
40

41 # boundary conditions
42 u1[0] = T0
43 u1[N] = 0.0
44

45 # swap old and new lists
46 (u0, u1) = (u1, u0)
47 t += dt
48

49 # freeze final plot
50 pylab.ioff()
51 pylab.show()

You can try running this program but you will find it is painfully slow. The
reason is that the step size is limited to ∆t ∼ (∆x)2/D but the diffusion time scale
across the rod takes place on time scales of τ∼ L2/D. This means that we will need
to evolve the system for ∼ (τ/∆t) ∼ (L/∆x)2 time steps. Since ∆x � L, this will
be a very large number of steps. We want to find a evolution scheme that allows us
to take much larger time steps.

The approach we will take is called a implicit differencing scheme. Again we per-
form a first-order-accurate finite difference approximation to ∂ u/∂ t and a second-
order-accurate finite difference approximation ∂ 2u/∂ x2, but now we evaluate the
spatial derivative at the future time step. We now have

n+1
u j −

n
u j

∆t
= D

n+1
u j+1 −2

n+1
u j +

n+1
u j−1

(∆x)2
. (3.94)

If we substitute the ansatz of Eq. (3.91) into this equation and solve for ξ we find

ξ(k) =
1

1+ 4
D∆t
(∆x)2

sin2
�

k∆x
2

� . (3.95)

The amplification factor is always less than unity, |ξ(k)| < 1 for all k and all step
sizes ∆t, so the method is unconditionally stable. For very large time steps, ∆t →
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∞, we see that Eq. (3.94) is driven towards the form ∂ 2u/∂ x2 = 0, for which the
solution is the known late-time particular solution uP.

However, if the time steps are too large then the details of the evolution will be
lost. For large scale features, those of length scale λ� ∆x where λ = 2π/k, then
|ξ| ≈ 1 provided ∆t � λ2/D, i.e., we need to take steps that are small compared
to the diffusion time over the length scales of interest in order to have an accurate
evolution.

Now we turn to the question of how to perform the evolution. Equation (3.94)
requires us to evaluate the spatial derivative at the future time step, but this is what
we are trying to calculate! We can write Eq. (3.94) in the form

α
n+1
u j−1 +β

n+1
u j +γ

n+1
u j+1=

n
u j for j = 1,2, 3, . . . , N − 1 (3.96)

where

α= γ= −
D∆t
(∆x)2

and β = 1+ 2
D∆t
(∆x)2

. (3.97)

We can express this linear algebra problem in matrix form as







































β γ 0 0 0 0 · · · 0

α β γ 0 0 0 · · · 0
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n
u1 −α
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n
u2
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n
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n
uN−3
n
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n
uN−1 −γ

n+1
uN







































(3.98)

or, more succinctly, as
A · u = v (3.99)

and note that
n+1
u0 and

n+1
uN which appear in the vector v are provided by the boundary

conditions.

Methods to solve linear algebra problems such as this one are described in
Appendix A.1. In particular, the matrix in Eq. (3.98) is known as a tridiagonal matrix
since it has non-zero values only along the diagonal, the sub-diagonal, and the
super-diagonal. In such cases there are very efficient methods for solving the linear
problem. Here we simply present the method to solve the system of equations;
Appendix (A.1) provides more detail.

Our method performs two passes over j, one forward and the other backward.
First we set the components of the vector v given the current values of the field u
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and the boundary conditions:

v j =











n
u1 −α

n+1
u0 j = 1

n
u j j = 2,3, . . . , N − 2
n
uN−1 −γ

n+1
uN j = N − 1.

(3.100)

Then we perform the following forward sweep:

u1 = v1/β

v1 = γ/β
for j = 1 (3.101)

u j =
v j −αu j−1

β −αv j−1

v j =
γ

β −αv j−1

for j = 2,3, . . . , N − 1. (3.102)

Finally we perform the backward sweep to get all the components of u:

u j = u j − u j+1v j for j = N − 2, N − 3, . . . 1. (3.103)

That’s it! At the end of this procedure we have the values for u at time step n+ 1.
The vector v is altered in this procedure, but we don’t care about that.

This implicit scheme is implemented in the program implicit.py.

Listing 3.5: Program implicit.py

1 import math, pylab
2

3 # fixed parameters
4 T0 = 25.0 # temperature gradient, C
5 D = 1e−4 # thermal diffusivity, m^2/s
6 L = 1.0 # length of rod, m
7

8 # input parameters
9 dx = L*input(’grid spacing in units of rod length (L) −> ’)

10 dt = (L**2/D)*input(’time step in units of (L^2/D) −> ’)
11 tmax = (L**2/D)*input(’evolution time in units of (L^2/D) −> ’)
12

13 # coefficients of the tridiagonal matrix
14 alpha = gamma = −D*dt/dx**2
15 beta = 1.0+2.0*D*dt/dx**2
16

17 # construct initial data
18 N = int(L/dx)
19 x = [0.0]*(N+1)
20 v = [0.0]*(N+1)
21 u = [0.0]*(N+1)
22 for j in range(N+1):
23 x[j] = j*dx
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24 u[0] = T0
25

26 # prepare animated plot
27 pylab.ion()
28 (line, ) = pylab.plot(x, u, ’−k’)
29 pylab.ylim(0, T0)
30 pylab.xlabel(’x (m)’)
31 pylab.ylabel(’Temperature (Celcius)’)
32

33 # preform the evolution
34 t = 0.0
35 while t < tmax:
36 # update plot
37 line.set_ydata(u)
38 pylab.title(’t = %5f’%t)
39 pylab.draw()
40 pylab.pause(0.1)
41

42 # swap u and v
43 (u, v) = (v, u)
44

45 # boundary conditions
46 u[0] = T0
47 u[N] = 0.0
48

49 # set the j=1 and j=N−1 points of v to the correct values
50 v[1] −= alpha*u[0]
51 v[N−1] −= gamma*u[N]
52

53 # forward sweep
54 u[1] = v[1]/beta
55 v[1] = gamma/beta
56 for j in range(2, N):
57 den = beta−alpha*v[j−1]
58 u[j] = (v[j]−alpha*u[j−1])/den
59 v[j] = gamma/den
60 # backward sweep
61 for j in reversed(range(1, N−1)):
62 u[j] −= u[j+1]*v[j]
63 t += dt
64

65 pylab.ioff()
66 pylab.show()

The results of this code can be seen in Fig. 3.8.
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Figure 3.8: Results from running the program implicit.py (Listing 3.5) with
parameters ∆x = 0.01 L and ∆t = 0.001 L2/D.

Exercise 3.2

a) Obtain an exact solution to the diffusion equation

∂ u
∂ t
= D

∂ 2u
∂ x2

on an infinite line (i.e., −∞< x <∞) with initial condition

u(0, x) =
1

p
2πσ2

e−
1
2 x2/σ2

by assuming the solution retains the same form but with time-dependent
σ. Obtain an equation describing how σ evolves in time.

b) Perform a numerical simulation of the diffusion equation with this initial
data to confirm your exact solution.
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3.3 Schrödinger equation

The Schrödinger wave equation in one dimension is

iħh
∂Ψ

∂ t
= −
ħh2

2m
∂ 2Ψ

∂ x2
+ V (x)Ψ (3.104)

where V (x) is the potential, Ψ(t, x) is the wave function, and

ħh= 6.626068× 10−34 m2 kg s−1 (3.105)

is Planck’s constant. This is another example of a parabolic partial differential equa-
tion.

The solution to Schrödinger’s equation is

Ψ(t, x) = e−iĤ t/ħhΨ(0, x) (3.106)

where

Ĥ = −
ħh2

2m
∂ 2

∂ x2
+ V (x) (3.107)

is the Hamiltonian operator. Notice that the time evolution operator, exp(iĤ t/ħh),
is a unitary operator, so it will preserve the requirement that |Ψ(t, x)|2 represents a
probability density:

∫ ∞

−∞
|Ψ(t, x)|2 d x = 1. (3.108)

We would like our numerical evolution to also preserve this.

The trick to achieving this is to use Cayley’s form for the finite difference rep-
resentation of the unitary time evolution operator:

e−iĤ∆t/ħh '
1− 1

2 iĤ∆t/ħh

1+ 1
2 iĤ∆t/ħh

(3.109)

which is second-order accurate in time. If we let
n
Ψ j= Ψ(n∆t, j∆x) (3.110)

then Eq. (3.106) and Eq. (3.109) give us

(1+ 1
2 iĤ∆t/ħh)

n+1
Ψ j= (1−

1
2 iĤ∆t/ħh)

n
Ψ j (3.111)

where the operator Ĥ has the action

Ĥ
n
Ψ j= −

ħh2

2m

n
Ψ j+1 −2

n
Ψ j +

n
Ψ j−1

(∆x2)
+ Vj

n
Ψ j (3.112)

where Vj = V ( j∆x). Note that a second-order accurate form of the spatial deriva-
tive ∂ 2Ψ/∂ x2 has been taken. This method is known as the Crank-Nicolson method.
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Let us first perform a von Neumann stability analysis. Using the now familiar
ansatz

n
Ψ j= ξ

n(k)eik j∆x 0
Ψ (3.113)

we see from Eq. (3.111) that

ξ(k) =
1− i 1

2Ω j∆t

1+ i 1
2Ω j∆t

(3.114a)

where

Ω j =
ħh
m

1− cos k∆x
(∆x)2

+
Vj

ħh
(3.114b)

and clearly |ξ(k)| = 1 for all k and ∆t. The Crank-Nicolson method therefore is
stable and preserves unitarity for any step size.

As with the implicit method described in the previous section, the Crank-
Nicolson equations can be written in the form of a linear algebra problem with
a tridiagonal matrix. We have

α
n+1
Ψ j−1 +β j

n+1
Ψ j +γ

n+1
Ψ j+1= −α

n
Ψ j−1 +(2− β j)

n
Ψ j −γ

n
Ψ j+1 (3.115a)

where the coefficients α, βi , and γ are

α= γ= −i
ħh

4m
∆t
(∆x)2

(3.115b)

β j = 1+ i
ħh

2m
∆t
(∆x)2

+ i
Vj

ħh
∆t (3.115c)

and so the system of equations we need to solve is

A · x = b (3.116a)

with

x =



































n+1
Ψ1
n+1
Ψ2
n+1
Ψ3

...
n+1
ΨN−3
n+1
ΨN−2
n+1
ΨN−1



































(3.116b)
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b =

































−α
n
Ψ0 +(2− β1)

n
Ψ1 −γ

n
Ψ2 −α
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and

A=

































β1 γ 0 0 0 · · · 0

α β2 γ 0 0 · · · 0

0 α β3 γ 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 α βN−3 γ 0

0 · · · 0 0 α βN−2 γ

0 · · · 0 0 0 α βN−1

































(3.116d)

is a tridiagonal matrix.
Let us first solve a simple problem as a test of our implementation: we will

evolve an eigenfunction of the quantum harmonic oscillator to demonstrate that it
is a stationary solution. The quantum harmonic oscillator has a potential

V (x) =
1
2

kx2 (3.117)

where k is a spring constant. We use separation of variables to find the stationary
eigenfunction. Let

Ψ(t, x) =ψ(x)e−iE t/ħh (3.118)

so that |Ψ(t, x)| is constant in time. Then the time-dependent Schrödinger equation
reduces to

Eψ(x) = Ĥψ(x) (3.119)

which can be rewritten as

2E
ħhω0

ψ= −
ħh

mω0

d2ψ

d x2
+

mω0

ħh
x2ψ (3.120)

with
ω2

0 = k/m. (3.121)

Now we can construct a dimensionless independent variable

y =
s

mω0

ħh
x (3.122)
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and so obtain the differential equation

d2ψ

d y2
= (y2 −λ)ψ (3.123)

with
λ=

2E
ħhω0

. (3.124)

To make progress, notice that for y →±∞, the right hand side of Eq. (3.123)
∼ y2ψ. Since

d2

d y2
e±y2/2 ∼ y2e±y2/2 (3.125)

we seek a solution ψ ∼ e±y2/2. Furthermore, we want our solution to be bounded,
so that ψ→ 0 as y →±∞, so we write

ψ(y) = h(y)e−y2/2 (3.126)

where the function h(y) must satisfy the Hermite differential equation

h′′ − 2yh′ + (λ− 1)h= 0. (3.127)

If we express h(y) as a power series

h(y) =
∞
∑

n=0

cn yn (3.128)

then Eq. (3.127) becomes

∞
∑

n=2

n(n− 1)cn yn−2 − 2
∞
∑

n=1

n cn yn + (λ− 1)
∞
∑

n=0

cn yn = 0 (3.129)

or, by letting n→ n+ 2 in the first summation,

∞
∑

n=0

{[(n+ 2)(n+ 1)cn+2 − 2n cn + (λ− 1)cn] yn}= 0. (3.130)

Each power of y in this equation must individually vanish which results in the re-
currence relationship

cn+2 =
2n+ 1−λ
(n+ 1)(n+ 2)

cn (3.131)

where c0 and c1 are arbitrary. The solutions then are of the form

h(y) = c0p(y) + c1q(y) (3.132)

with

p(y) = 1+
1−λ

2!
y2 +

(1−λ)(5−λ)
4!

y4 + · · ·

q(y) = y +
3−λ

3!
y3 +

(3−λ)(7−λ)
5!

y5 + · · · .
(3.133)
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As n→∞, we have
cn+2

cn
∼

2
n

(3.134)

and therefore
p(y)∼ ey2

and q(y)∼ ey2
(3.135)

so the resulting solution is once again the diverging solution ψ(y) ∼ ey2/2. The
only way to avoid this is to have one of the cn coefficients vanish. Then if cn = 0 for
some value of n, we see from the recurrence relationship that cn+2 = 0, cn+4 = 0,
etc., so one functions p(y) or q(y) will be a polynomial of finite order. That is, if
cn = 0 for some even value of n then p(y) is a polynomial of finite order and we
can choose c1 = 0 to obtain the solution

ψ(y) = c0p(y)e−y2/2 (3.136)

while if cn = 0 for some odd value of n then q(y) is a polynomial of finite order and
we can choose c0 = 0 to obtain the solution

ψ(y) = c1q(y)e−y2/2. (3.137)

The requirement for cn+2 to vanish is simply

λ= λn = 2n+ 1 (3.138)

so we can only have bounded solutions when λ is a positive odd integer. The values
of λ in which bounded solutions are allowed are known as eigenvalues, and their
corresponding solutions are eigenfunctions. From the relationship between λ and E
we obtain the eigenenergies

En =
�

n+ 1
2

�

ħhω0 (3.139)

and the eigenstates are then

ψn(x)∝Hn

�
s

mω0

ħh
x
�

exp
�

−
1
2

mω0

ħh
x2
�

(3.140)

where the Hermite polynomial Hn(y) is either the polynomial p(y) above if n is
even or the polynomial q(y) above if n is odd (see Table 3.1).

For simplicity, we will consider the ground eigenstate

ψ0 =
�

1
π

mω0

ħh

�1/4

exp
�

−
1
2

mω0

ħh
x2
�

(3.142)

belonging to the eigenenergy E0 =
1
2ħhω0. This eigenfunction should be a station-

ary solution to our numerical implementation of the time-dependent Schrödinger
equation and it is: Fig. 3.9 shows that initial data is unchanged by the evolution.
The program oscillator.py performs the evolution of the wave function under
the time-dependent Schrödinger wave equation using the Crank-Nicolson scheme
with the harmonic oscillator potential of Eq. (3.117) and initial data corresponding
to the ground state given by Eq. (3.142). For convenience, ħh, m, and k are all set
to unity. This has the effect of expressing t in units of (m/k)1/2 and x in units of
ħh1/2/(mk)1/4.
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H0(x) = 1 (3.141a)

H1(x) = 2x (3.141b)

H2(x) = 4x2 − 2 (3.141c)

H3(x) = 8x3 − 12x (3.141d)

H4(x) = 16x4 − 48x2 + 12 (3.141e)

H5(x) = 32x5 − 160x3 + 120x (3.141f)

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (3.141g)

exp(2x t − t2) =
∞
∑

n=0

Hn(x)
n!

tn (3.141h)

Table 3.1: Hermite polynomials.

Listing 3.6: Program oscillator.py

1 import math, cmath, pylab
2

3 hbar = 1.0 # reduced Planck’s constant
4 m = 1.0 # mass
5 k = 1.0 # spring constant
6

7 # grid and time intervals
8 dx = 0.01
9 dt = 0.05

10 tmax = 10.0
11 xmin = −5.0
12 xmax = 5.0
13 N = int((xmax−xmin)/dx)
14

15 # initial data
16 x = [0.0]*(N+1)
17 u = [0.0]*(N+1)
18 v = [0.0]*(N+1)
19 p = [0.0]*(N+1)
20 omega0 = (k/m)**0.5
21 sigma = (hbar/(2.0*m*omega0))**0.5
22 for j in range(N+1):
23 x[j] = xmin+j*dx
24 u[j] = math.exp(−x[j]**2/(4.0*sigma**2))
25 u[j] = u[j]/(2.0*math.pi*sigma**2)**0.25
26 p[j] = u[j].real**2+u[j].imag**2
27

28 # potential
29 E0 = 0.5*hbar*omega0
30 V = [0.0]*(N+1)
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Figure 3.9: Results from running the program oscillator.py (Listing 3.6) to
evolve the quantum oscillator with initial data corresponding to the ground
state. There are two black curves superimposed: the probability density
|Ψ(t, x)|2 for the initial data, t = 0, and the final value at the end of the run,
t = 10. The initial and final data are indistinguishable. Also shown in blue is
the potential function in units of the ground state energy V (x)/E0. Units of t
are in (m/k)1/2 while units of x are in ħh1/2/(mk)1/4.

31 for j in range(N+1):
32 V[j] = 0.5*k*x[j]**2
33

34

35 # setup coefficients of the tridiagonal matrix
36 alpha = gamma = −1j*hbar*dt/(4.0*m*dx**2)
37 beta = [0.0]*(N+1)
38 for j in range(N):
39 beta[j] = 1.0−2.0*alpha+1j*(V[j]/(2.0*hbar))*dt
40

41 # prepare animated plot
42 pylab.ion()
43 fig = pylab.figure()
44 ax1 = fig.add_subplot(111)
45 ax1.set_xlim(xmin, xmax)
46 ax1.set_ylim(0.0, 1.1*max(p))
47 ax1.set_xlabel(’x’)
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48 ax1.set_ylabel(’probability density’)
49 ax2 = ax1.twinx()
50 ax2.set_xlim(xmin, xmax)
51 ax2.set_ylim(0.0, 1.1*max(V)/E0)
52 ax2.set_ylabel(’V / E0’)
53

54 # plot potential function and wave function
55 ax2.plot(x, [Vj/E0 for Vj in V], ’b’)
56 (line, ) = ax1.plot(x, p, ’k−’)
57

58 # preform the evolution
59 t = 0.0
60 while t−tmax < 0.5*dt:
61 # update plot
62 for j in range(N+1):
63 p[j] = u[j].real**2+u[j].imag**2
64 line.set_ydata(p)
65 pylab.title(’t = %5f’%t)
66 pylab.draw()
67

68 # set the values of the rhs
69 for j in range(1, N):
70 v[j] = −alpha*u[j−1]+(2.0−beta[j])*u[j]−gamma*u[j+1]
71 v[1] −= alpha*u[0]
72 v[N−1] −= gamma*u[N]
73

74 # forward sweep
75 u[1] = v[1]/beta[1]
76 v[1] = gamma/beta[1]
77 for j in range(2, N):
78 den = beta[j]−alpha*v[j−1]
79 u[j] = (v[j]−alpha*u[j−1])/den
80 v[j] = gamma/den
81 # backward sweep
82 for j in reversed(range(1, N)):
83 u[j] −= u[j+1]*v[j]
84 t += dt
85

86 # freeze final plot
87 pylab.ioff()
88 pylab.draw()
89 pylab.show()

Now we consider a more interesting problem: the quantum tunneling through
a finite potential barrier. Now our potential will be

V (x) =
§

V0 for −a < x < a
0 otherwise. (3.143)

where a is some constant that describes the half-width of the barrier. Our initial
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data will be a Gaussian wave packet moving with group velocity v0 = ħhk0/m where
k0 is the wave vector,

Ψ(0, x) =
1

4p
2πσ2

e−(x−x0)2/(2σ)2eik0 x . (3.144)

For this initial data,

〈x〉=
∫ ∞

−∞
Ψ∗ x̂ Ψ d x = x0 (3.145)

and

〈p〉=
∫ ∞

−∞
Ψ∗ p̂Ψ d x = ħhk0 (3.146)

where x̂ = x and p̂ = −iħh (∂ /∂ x). In order for our wave packet to have a well-
defined momentum, we require σ� 1/k0, and in order to resolve the wave packet
on our grid we require ∆x � σ. Additionally, the wavelength corresponding to
wave number k0 is λ0 = 2π/k0 and if we require a sufficiently fine grid to resolve
this, so ∆x � 1/k0. We are thus left with the requirement k0∆x � 1� k0σ. To
accurately monitor the evolution, we also want v0∆t ≤∆x or∆t ≤ m∆x/ħhk0. The
initial energy of the packet is approximately E0 =

1
2 mv2

0 = ħh
2k2

0/2m, and to allow
for some partial tunneling we will choose V0 ∼ E0 and a ∼ 1/k0.

The code tunnel.py evolves this system with the parameters V0 = ħh
2k2

0/2m,
k0a = 5, k0σ = 10, k0 x0 = −100, and k0∆x = ħhk2

0∆t/m = 1
4 . For convenience,

units are chosen so that ħh = 1, m = 1, and k0 = 1. The code is identical to
oscillator.py except in the beginning where the grid, the initial data, and the po-
tential are created. The initial part of tunnel.py that differs from oscillator.py is
given in Listing 3.7 and the results produced by the program are shown in Fig. 3.10.
We see that most of the wave packet is reflected off of the potential barrier but that
some portion of it tunnels through the barrier.

Listing 3.7: Modified lines in program tunnel.py

3 hbar = 1.0 # reduced Planck’s constant
4 m = 1.0 # mass
5 k0 = 1.0 # initial wavenumber
6

7 # grid and time intervals
8 dx = 0.25/k0
9 dt = 0.25*m/(hbar*k0**2)

10 tmax = 200.0*m/(hbar*k0**2)
11 xmin = −200.0/k0
12 xmax = 200.0/k0
13 N = int((xmax−xmin)/dx)
14

15 # initial data
16 x = [0.0]*(N+1)
17 u = [0.0]*(N+1)
18 v = [0.0]*(N+1)
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Figure 3.10: Results from running the program tunnel.py (Listing 3.7). The
dotted lines show the potential barrier which has width 2a = 10/k0 and height
V0 = ħh

2k2
0/2m where k0 = 〈p〉/ħh is the average wave number of the initial

wave packet, which had width σ = 10/k0.

19 p = [0.0]*(N+1)
20 x0 = −100.0/k0
21 sigma = 10.0/k0
22 for j in range(N+1):
23 x[j] = xmin+j*dx
24 u[j] = cmath.exp(−(x[j]−x0)**2/(4.0*sigma**2)+1j*k0*x[j])
25 u[j] = u[j]/(2.0*math.pi*sigma**2)**0.25
26 p[j] = u[j].real**2+u[j].imag**2
27

28 # potential
29 E0 = (hbar*k0)**2/(2.0*m)
30 a = 5.0/k0
31 V = [0.0]*(N+1)
32 for j in range(N+1):
33 if abs(x[j]) < a: V[j] = E0
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Exercise 3.3 Investigate the quantum scattering off of a potential shelf

V (x) =
§

0 for x ≤ 0
−αp2

0/2m for x > 0 (3.147)

for a wave packet initially centered around x0 with x0 < 0 and moving in the
positive-x direction with momentum p0 = ħhk0. Here α is a positive constant.
Find the probability of the particle reflecting off of the shelf for various values
of α.

Now consider the Schrödinger equation in more than one spatial dimensions,

iħh
∂Ψ

∂ t
= −
ħh2

2m
∇2Ψ + V (x )Ψ, (3.148)

where V (x ) is the potential and Ψ(t, x ) is the wave function. The solution is

Ψ(t, x ) = e−iĤ t/ħhΨ(0, x ) (3.149)

with

Ĥ = −
ħh2

2m
∇2 + V (x ). (3.150)

Employing Cayley’s form of the unitary operator and restricting ourselves to two
spatial dimensions, we find

(1+ 1
2 iĤ∆t/ħh)

n+1
Ψ j,k= (1−

1
2 iĤ∆t/ħh)

n
Ψ j,k (3.151)

where

Ĥ
n
Ψ j,k= −

ħh2

2m

n
Ψ j+1,k −2

n
Ψ j,k +

n
Ψ j−1,k

(∆x2)
−
ħh2

2m

n
Ψ j,k+1 −2

n
Ψ j,k +

n
Ψ j,k−1

(∆y2)
+ Vj,k

n
Ψ j,k

(3.152)
and

n
Ψ j,k= Ψ(n∆t, j∆x , k∆y). (3.153)

The computation of
n+1
Ψ j,k given

n
Ψ j,k can again be expressed in the form of the linear

problem A · x = b, but now the matrix A is not tri-diagonal (though it is sparse).

As an alternative, let us consider a method known as operator splitting. No-
tice that the Hamiltonian operator can be split into the sum of two Hamiltonian
operators,

Ĥ = Ĥx + Ĥ y (3.154)

(we continue to restrict ourselves to two spatial dimensions) where

Ĥx = −
ħh2

2m
∂ 2

∂ x2
+

1
2

V (x , y) (3.155)
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and

Ĥ y = −
ħh2

2m
∂ 2

∂ y2
+

1
2

V (x , y). (3.156)

The finite difference equations are now

(1+ 1
2 iĤ y∆t/ħh)(1+ 1

2 iĤx∆t/ħh)
n+1
Ψ j,k= (1−

1
2 iĤx∆t/ħh)(1− 1

2 iĤ y∆t/ħh)
n
Ψ j,k .
(3.157)

This is equivalent to the system of equations

(1+ 1
2 iĤx∆t/ħh)Ξ j,k = (1−

1
2 iĤ y∆t/ħh)

n
Ψ j,k (3.158)

(1+ 1
2 iĤ y∆t/ħh)

n+1
Ψ j,k = (1−

1
2 iĤx∆t/ħh)Ξ j,k. (3.159)

Here the auxiliary field Ξ is the “mid-step” value of Ψ. Both of these equations can
be written as a linear system with tri-diagonal matrices.

We illustrate this method with the problem of hard-“sphere” scattering in two
dimensions: an initial wave packet travels toward a potential

V (x , y) =
§

V0 for x2 + y2 < a2

0 otherwise (3.160)

where a is the radius of the circular potential and V0 is the height of the potential.
We choose k0a > 1 so that we are in the short-wavelength regime, and we choose
V0 to be comparable to the energy of the particle. The program scatter.py is listed
below, and the results can be seen in Fig. 3.11.

Listing 3.8: Program scatter.py

1 import math, cmath, pylab
2

3 # solves the tridiagonal system of equations A.x = b
4 def tridiag(alp, bet, gam, b):
5 n = len(bet)
6 x = pylab.zeros(b.shape, dtype=complex)
7 y = pylab.zeros(b.shape, dtype=complex)
8 y[0] = gam[0]/bet[0]
9 x[0] = b[0]/bet[0]

10 for i in range(1, n):
11 den = bet[i]−alp[i]*y[i−1]
12 y[i] = gam[i]/den
13 x[i] = (b[i]−alp[i]*x[i−1])/den
14 for i in reversed(range(n−1)):
15 x[i] −= x[i+1]*y[i]
16 return x
17

18

19 hbar = 1.0 # reduced Planck’s constant
20 m = 1.0 # mass
21 k0 = 1.0 # initial wavenumber
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Figure 3.11: Results from running the program scatter.py (Listing 3.8) but
at a finer resolution, ∆x = ∆y = 0.1/k0 and ∆t = 0.1m/(ħhk2

0), than in the
listing. The blue circle contour indicates the region where the potential is non-
zero.

22

23 # grid and time intervals
24 dy = dx = 0.5/k0
25 dt = 0.5*m/(hbar*k0**2)
26 tmax = 30.0*m/(hbar*k0**2)
27 ymin = xmin = −30.0/k0
28 ymax = xmax = 30.0/k0
29

30 # initial data
31 x = pylab.arange(xmin, xmax, dx)
32 y = pylab.arange(ymin, ymax, dy)
33 N = len(x)
34 u = pylab.zeros((N, N), dtype=complex)
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35 v = pylab.zeros((N, N), dtype=complex)
36 p = pylab.zeros((N, N))
37 x0 = −15.0/k0
38 y0 = 0.0/k0
39 sigma = 5.0/k0
40 for j in range(N):
41 for k in range(N):
42 rr = (x[j]−x0)**2+(y[k]−y0)**2
43 u[j,k] = cmath.exp(−rr/(4.0*sigma**2)+1j*k0*x[j])
44 p[j,k] = u[j,k].real**2+u[j,k].imag**2
45

46 # potential
47 a = 2.0/k0
48 E0 = (hbar*k0)**2/(2.0*m)
49 V = pylab.zeros((N, N))
50 for j in range(N):
51 for k in range(N):
52 rr = x[j]**2+y[k]**2
53 if rr < a**2:
54 V[j,k] = E0
55

56 # prepare animated plot
57 pylab.ion()
58 pylab.xlabel(’x’)
59 pylab.ylabel(’y’)
60 image = pylab.imshow(p.T, origin=’upper’, extent=(xmin, xmax, ymin, ymax

),
61 cmap=pylab.cm.hot)
62 pylab.contour(V.T, origin=’upper’, extent=(xmin, xmax, ymin, ymax),

colors=’c’)
63

64 # setup coefficients of the tridiagonal matrix
65 alpha = gamma = −1j*hbar*dt/(4.0*m*dx**2)
66 alp = alpha*pylab.ones(N, dtype=complex)
67 gam = gamma*pylab.ones(N, dtype=complex)
68 bet = pylab.zeros((N, N), dtype=complex)
69 for j in range(N):
70 for k in range(N):
71 bet[j,k] = 1.0−2.0*alpha+1j*(V[j,k]/(2.0*hbar))*dt
72

73 # preform the evolution; blithely ignore boundary conditions
74 t = 0.0
75 while t−tmax < 0.5*dt:
76

77 # update plot
78 for j in range(N):
79 for k in range(N):
80 p[j,k] = u[j,k].real**2+u[j,k].imag**2
81 image.set_data(p.T)
82 pylab.title(’t = %5f’%t)
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83 pylab.draw()
84

85 # first step of operator splitting
86 for j in range(1, N−1):
87 for k in range(1, N−1):
88 v[j,k] = −alpha*u[j,k−1]+(2.0−bet[j,k])*u[j,k]−gamma*u[j,k

+1]
89 for k in range(1, N−1):
90 u[:,k] = tridiag(alp, bet[:,k], gam, v[:,k])
91

92 # second step of operator splitting
93 for k in range(1, N−1):
94 for j in range(1, N−1):
95 v[j,k] = −alp[j]*u[j−1,k]+(2.0−bet[j,k])*u[j,k]−gam[j]*u[j

+1,k]
96 for j in range(1, N−1):
97 u[j,:] = tridiag(alp, bet[j,:], gam, v[j,:])
98 t += dt
99

100 # freeze final plot
101 pylab.ioff()
102 pylab.draw()
103 pylab.show()

3.4 Electric potentials

We now consider elliptic equations. The Poisson equation in three dimensions is

∂ 2u(x , y, z)
∂ x2

+
∂ 2u(x , y, z)
∂ y2

+
∂ 2u(x , y, z)

∂ z2
= −

ρ(x , y, z)
ε0

(3.161)

where u(x , y, z) is the electric potential field and ρ(x , y, z) is the charge density.
For simplicity, though, we will investigate the Laplace equation in two dimensions

∂ 2u(x , y)
∂ x2

+
∂ 2u(x , y)
∂ y2

= 0 (3.162)

on the square 0 ≤ x ≤ L and 0 ≤ y ≤ L with one wall of the square kept (the wall
at y = L) at a potential of V0 = 1V and the other walls grounded at 0 V.

We use separation of variables

u(x , y) = X (x)Y (y) (3.163)

to express Laplace’s equation as the ordinary differential equations

−
X ′′

X
=

Y ′′

Y
= k2 (3.164)
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Figure 3.12: Example boundary value problem for Laplace’s equation in two
dimensions.

where k is a separation constant. The boundary conditions are X (0) = 0, X (L) = 0,
Y (0) = 0, and Y (L) = V0. The solutions for X with these boundary conditions are

X (x)∝ sin
nπx

L
for n= 1,2, 3, . . . (3.165)

and the allowed separation constants are kn = nπ/L. The solutions for Y will be
a linear combination of hyperbolic sine and hyperbolic cosine functions, but since
only the hyperbolic sine function vanishes at x = 0 our solution is of the form

u(x , y) =
∞
∑

n=1

cn sin
nπx

L
sinh

nπy
L

. (3.166)

The final boundary condition, u(x , L) = V0, then determines the coefficients cn: we
have

∞
∑

n=1

cn sinh nπ sin
nπx

L
= V0. (3.167)

We multiply both sides by sin(mπx/L) and integrate from x = 0 to x = L to obtain

L
2

cm sinh mπ=







2LV0

mπ
for m odd

0 otherwise.
(3.168)
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We thus have

cm =







4V0

mπ sinh mπ
for m odd

0 otherwise
(3.169)

and the solution to Laplace’s equation is

u(x , y) = 4V0

∞
∑

n=1
n odd

sin(nπx/L)
nπ

sinh(nπy/L)
sinh nπ

. (3.170)

A large number of terms in this series are needed in order to accurately compute
the field near the wall near y = L (and especially at the corners).

The relaxation method can be used to elliptic equations of the form

L̂u= ρ (3.171)

where L̂ is an elliptic operator and ρ is a source term. The approach is to take an
initial distribution u that does not necessarily solve the elliptic equation and allow
it to relax to the solution of the equation by evolving the diffusion equation

∂ u
∂ t
= L̂u−ρ. (3.172)

At late times, t → 0, the solution will asymptotically approach the stationary solu-
tion to the elliptic equation.

For the problem at hand (ρ = 0 and L̂ is the two-dimensional Laplacian oper-
ator) the FTCS method applied to the diffusion equation results in

n+1
u j,k=

n
u j,k +





n
u j+1,k −2

n
u j,k +

n
u j−1,k

(∆x)2
+

n
u j,k+1 −2

n
u j,k +

n
u j,k−1

(∆y)2



∆t (3.173)

where
n
u j,k=

n
u ( j∆x , k∆y) and n indicates the iteration. For simplicity we take

∆x =∆y =∆ so we have

n+1
u j,k= (1−ω)

n
u j,k +

ω

4

�n
u j+1,k +

n
u j−1,k +

n
u j,k+1 +

n
u j,k−1

�

(3.174)

where ω= 4∆t/∆2.

Stability of the diffusion equation limits the magnitude of ω. We can deter-
mine the maximum value of ω using a von Neumann stability analysis, but now
we will limit ourselves to the spatial eigenmodes that satisfy the Dirichlet boundary
conditions for the homogeneous part of the solution. Our ansatz is therefore

n
u j,k=

0
u ξn(mx , my) sin

mxπ j∆
L

sin
myπk∆

L
(3.175)
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Figure 3.13: Results from running the program relax.py (Listing 3.9) with
parameters N = 20 grid points along each side. The solution is obtained after
386 iterations.

where mx and my are the mode numbers in the x and y direction respectively. By
substituting this ansatz into Eq. (3.174) we find

ξ(mx , my) = 1−ω+
ω

2

�

cos
mxπ∆

L
+ cos

myπ∆

L

�

(3.176)

and we see that stability is achieved, i.e., that |ξ(mx , my)| ≤ 1 for any mode given
by (mx , my), if ω ≤ 1. If we now take the largest value of ∆t = ∆2/4 allowed for
stable iteration corresponding to ω= 1, we obtain the following iteration scheme:

n+1
u j,k=

1
4

�n
u j+1,k +

n
u j−1,k +

n
u j,k+1 +

n
u j,k−1

�

. (3.177)

Here we see that the value of the field at a given lattice point ( j, k) at step n+ 1 is
equal to the average of the values of the field at the neighboring points at step n.
This is known as Jacobi’s method.

The program relax.py implements Jacobi’s method for our model problem.
The number of grid points along each side, N , is input. Results obtained for N = 20
points are shown in Fig. 3.13.

Listing 3.9: Program relax.py
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1 import math, pylab, mpl_toolkits.mplot3d
2

3 eps = 1e−5 # fractional error allowed
4 L = 1.0 # length of each side
5 N = input(’number of grid points on a side −> ’)
6 dy = dx = L/(N−1.0)
7 x = pylab.array(range(N))*dx
8 y = pylab.array(range(N))*dy
9 (x, y) = pylab.meshgrid(x, y)

10 u0 = pylab.zeros((N, N))
11 u1 = pylab.zeros((N, N))
12

13 # boundary conditions
14 for j in range(N):
15 u1[j,N−1] = u0[j,N−1] = 1.0
16

17 # prepare animated plot
18 pylab.ion()
19 image = pylab.imshow(u0.T, origin=’lower’, extent=(0.0, L, 0.0, L))
20

21 n = 0 # number of iterations
22 err = 1.0 # average error per site
23 while err > eps:
24 # update animated plot
25 image.set_data(u0.T)
26 pylab.title(’iteration %d’%n)
27 pylab.draw()
28

29 # next iteration in refinement
30 n = n+1
31 err = 0.0
32 for j in range(1, N−1):
33 for k in range(1, N−1):
34 u1[j,k] = (u0[j−1,k]+u0[j+1,k]+u0[j,k−1]+u0[j,k+1])/4.0
35 err += abs(u1[j,k]−u0[j,k])
36 err /= N**2
37 (u0, u1) = (u1, u0) # swap old and new arrays for next iteration
38

39 # surface plot of final solution
40 pylab.ioff()
41 fig = pylab.figure()
42 axis = fig.gca(projection=’3d’, azim=−60, elev=20)
43 surf = axis.plot_surface(x, y, u0.T, rstride=1, cstride=1, cmap=pylab.cm

.jet)
44 axis.contour(x, y, u0.T, 10, zdir=’z’, offset=−1.0)
45 axis.set_xlabel(’x’)
46 axis.set_ylabel(’y’)
47 axis.set_zlabel(’u’)
48 axis.set_zlim(−1.0, 1.0)
49 fig.colorbar(surf)
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50 pylab.show()

In the program relax.py, the iteration was continued until the average error
per mesh point was less than ε= 10−5 where the error was estimated by taking the
difference between the old value at step n and the new value at step n + 1. The
number of iterations required for convergence depends on the slowest decaying
eigenmode of the iteration. The modulus of the slowest-decaying mode is known
as the spectral radius,

ρ = max
mx ,my

|ξ(mx , my)|. (3.178)

From Eq. (3.176) we see that for the Jacobi method with ω= 1 we have

ρ = ρJ = cos
π∆

L
(3.179)

which corresponds to the mx = my = 1 mode. Each iteration multiplies the residual
error in this least-damped mode by a factor with modulus ρ and so the number of
iterations required to achieve a desired error tolerance ε will be

n≈
lnε
lnρ

. (3.180)

For the Jacobi method, ρJ ≈ 1− 1
2 (π/N)

2 and so

n≈
2| lnε|
π2

N2. (3.181)

Note that if we double the number of grid points N then we require four times as
many iterations to converge. For practical problems, Jacobi’s method converges too
slowly to be useful.

To make progress, consider again Eq. (3.174) and notice that if we imagine our
computational grid to be divided into staggered light and dark points, as depicted
in Fig. 3.14 then to update the value of a white point we need only the current value
at that white point and the values of the neighboring dark points, and vice-versa to
update a value of a dark point. Thus we can take a staggered approach where we
update all the white points and then we update all the black points and both steps
can be done in place. For steps where n is an integer, we compute the values of the
white points using the formula

n+1
u j,k= (1−ω)

n
u j,k +

ω

4

�

n+1/2
u j+1,k +

n+1/2
u j−1,k +

n+1/2
u j,k+1 +

n+1/2
u j,k−1

�

(3.182)

and then for steps where n is a half-integer we use the same formulate to compute
the values of the black points. We can repeat the stability analysis using the ansatz
of Eq. (3.175) and we find

ξ1/2(mx , my) =
ωc ±

p

ω2c2 − 4(ω− 1)
2

(3.183)
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Figure 3.14: A staggered lattice of dark and light points for use in successive
over-relaxation. The grey points are part of the boundary and are not evolved.
To update a white point requires only the previous value of the white point and
the surrounding dark points and similarly to update a black point requires only
the previous value of the black points and the surrounding light points.

where

c =
1
2

�

cos
mxπ∆

L
+ cos

mxπ∆

L

�

. (3.184)

This reveals that scheme of Eq. 3.189 is stable for 0 < ω < 2. When ω = 1 the
method is known as the Gauss-Seidel method, which converges somewhat faster
than the Jacobi method. For ω > 1 we have accelerated convergence (relative to
relaxation) which is known as successive over-relaxation or SOR. The parameter ω
is known as the over-relaxation parameter.

There is an optimal value for the over-relaxation parameter for which the
spectral radius is minimized. If we focus on the least-damped mode for which
mx = my = 1, we have c = ρJ and so the spectral radius as a function of ω can be
written as

ρ(ω) =







�

1
2ωρJ +

1
2

q

ω2ρ2
J − 4(ω− 1)

�2
for 0<ω≤ωopt

ω− 1 for ωopt ≤ω< 2
(3.185)
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where ωopt is the optimal choice that minimizes ρ,

ωopt =
2

1+
q

1−ρ2
J

=
2

1+ sin(π∆/L)
for ρJ = cos(π∆/L).

(3.186)

Thus, for the optimal choice of the over-relaxation parameter,ω=ωopt ≈ π/N , the
spectral radius is

ρ(ωopt) = ρopt =
1− sin(π∆/L)
1+ sin(π∆/L)

≈ 1−
2π
N

(3.187)

and the number of iterations required to reduce the error to some tolerance ε is

n≈
lnε

lnρopt
≈
| lnε|
2π

N . (3.188)

Now the number of iterations is proportional to N rather than N2 so convergence
is achieved much more rapidly for large values of N .

The program overrelax.py is a modification to relax.py that implements
successive over-relaxation. The program differs in many places so it is listed in its
entirety. The results for N = 100 points along a side are displayed in Fig. 3.15.
Convergence occurs in 137 iterations.

Listing 3.10: Program overrelax.py

1 import math, pylab, mpl_toolkits.mplot3d
2

3 eps = 1e−5 # fractional error allowed
4 L = 1.0 # length of each side
5 N = input(’number of grid points on a side −> ’)
6 dy = dx = L/(N−1.0)
7 x = pylab.array(range(N))*dx
8 y = pylab.array(range(N))*dy
9 (x, y) = pylab.meshgrid(x, y)

10 u = pylab.zeros((N, N))
11

12 # boundary conditions
13 for j in range(N):
14 u[j,N−1] = 1.0
15

16 # compute over−relaxation parameter
17 omega = 2.0/(1.0+math.sin(math.pi*dx/L))
18

19 # white and black pixels: white have j+k even; black have j+k odd
20 white = [(j, k) for j in range(1, N−1) for k in range(1, N−1) if (j+k)

%2 == 0]
21 black = [(j, k) for j in range(1, N−1) for k in range(1, N−1) if (j+k)

%2 == 1]
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Figure 3.15: Results from running the program overrelax.py (Listing 3.10)
with parameters N = 100 grid points along each side. The solution is obtained
after 137 iterations.

22

23 # prepare animated plot
24 pylab.ion()
25 image = pylab.imshow(u.T, origin=’lower’, extent=(0.0, L, 0.0, L))
26

27 n = 0 # number of iterations
28 err = 1.0 # average error per site
29 while err > eps:
30 # update animated plot
31 image.set_data(u.T)
32 pylab.title(’iteration %d’%n)
33 pylab.draw()
34

35 # next iteration in refinement
36 n = n+1
37 err = 0.0
38 for (j, k) in white+black: # loop over white pixels then black pixels
39 du = (u[j−1,k]+u[j+1,k]+u[j,k−1]+u[j,k+1])/4.0−u[j,k]
40 u[j,k] += omega*du
41 err += abs(du)
42 err /= N**2
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Figure 3.16: Example boundary value problem for Poisson’s equation: a point
charge q is located in the center of a cube with edge length 2L whose faces are
grounded.

43

44 # surface plot of final solution
45 pylab.ioff()
46 fig = pylab.figure()
47 axis = fig.gca(projection=’3d’, azim=−60, elev=20)
48 surf = axis.plot_surface(x, y, u.T, rstride=1, cstride=1, linewidth=0,
49 cmap=pylab.cm.jet)
50 wire = axis.plot_wireframe(x, y, u.T, rstride=1+N//50, cstride=1+N//50,
51 linewidth=0.25)
52 axis.contour(x, y, u.T, 10, zdir=’z’, offset=−1.0)
53 axis.set_xlabel(’x’)
54 axis.set_ylabel(’y’)
55 axis.set_zlabel(’u’)
56 axis.set_zlim(−1.0, 1.0)
57 fig.colorbar(surf)
58 pylab.show()

As a final example, let us solve for the electric potential produced by a point
charge centered in a cube with edges of length 2L in which the faces of the cube are
grounded as shown in Fig. 3.16. This is now a three-dimensional problem which
we can again solve using successive over-relaxation, and our iteration equation now
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also includes a source term:

n+1
ui, j,k = (1−ω)

n
ui, j,k

+
ω

6

�n+1/2
ui+1, j,k +

n+1/2
ui−1, j,k +

n+1/2
ui, j+1,k +

n+1/2
ui, j−1,k +

n+1/2
ui, j,k+1 +

n+1/2
ui, j,k−1

�

+
ω

6

ρi, j,k

ε0
∆2.

(3.189)

Again we divide the lattice of grid points into alternating “white” and “black” pixels
and solve for the white pixels on the integer steps and for the black pixels on the
half integer steps. The point charge gives us a charge density that we take to be

ρi, j,k =







q
∆3

for i = j = k = (N − 1)/2

0 otherwise
(3.190)

and we must be sure to choose an odd value for N so that there is a grid point at
the exact center of the box.

The program charge.py listed below computes the electric potential field
within the grounded box for a unit q/ε0 = 1 charge. The results are shown in
Fig. 3.17.

Listing 3.11: Program charge.py

1 import math, pylab, mpl_toolkits.mplot3d, matplotlib.colors
2

3 eps = 1e−5 # fractional error allowed
4 L = 1.0 # half−length of each side
5 N = input(’number of grid points on a side −> ’)
6 dz = dy = dx = 2.0*L/(N−1.0)
7 x = −L+pylab.array(range(N))*dx
8 y = −L+pylab.array(range(N))*dy
9 z = −L+pylab.array(range(N))*dz

10 u = pylab.zeros((N, N, N))
11 rho = pylab.zeros((N, N, N))
12

13 # source
14 q = 1.0
15 rho[(N−1)//2,(N−1)//2,(N−1)//2] = q/(dx*dy*dz)
16

17 # prepare animated plot
18 pylab.ion()
19 s = u[:,:,(N−1)//2]
20 image = pylab.imshow(s.T, origin=’lower’, extent=(−L, L, −L, L), vmax

=1.0)
21

22 # compute over−relaxation parameter
23 omega = 2.0/(1.0+math.sin(math.pi*dx/L))
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Figure 3.17: Results from running the program charge.py (Listing 3.11) with
parameters N = 51 grid points along each side. The value of the electric po-
tential on the z = 0 plane is shown (the colors values are logarithmic in the
potential).

24

25 # white and black pixels: white have i+j+k even; black have i+j+k odd
26 white = [(i, j, k) for i in range(1, N−1) for j in range(1, N−1) for k

in
27 range(1, N−1) if (i+j+k)%2 == 0]
28 black = [(i, j, k) for i in range(1, N−1) for j in range(1, N−1) for k

in
29 range(1, N−1) if (i+j+k)%2 == 1]
30 n = 0 # number of iterations
31 err = 1.0 # average error per site
32 while err > eps:
33 image.set_data(s.T)
34 pylab.title(’iteration %d’%n)
35 pylab.draw()
36

37 # next iteration in refinement
38 n = n+1
39 err = 0.0
40 for (i, j, k) in white+black: # loop over white pixels then black pixels
41 du = (u[i−1,j,k]+u[i+1,j,k]+u[i,j−1,k]+u[i,j+1,k]+u[i,j,k−1]+u[



3.4. ELECTRIC POTENTIALS 99

i,j,k+1]
42 +dx**2*rho[i,j,k])/6.0−u[i,j,k]
43 u[i,j,k] += omega*du
44 err += abs(du)
45 err /= N**3
46

47 # surface plot of final solution
48 (x, y) = pylab.meshgrid(x, y)
49 s = s.clip(eps, 1.0)
50 levels = [10**(l/2.0) for l in range(−5, 0)]
51 pylab.ioff()
52 fig = pylab.figure()
53 axis = fig.gca(projection=’3d’, azim=−60, elev=20)
54 surf = axis.plot_surface(x, y, s.T, rstride=1, cstride=1, linewidth

=0.25,
55 cmap=pylab.cm.jet, norm=matplotlib.colors.

LogNorm())
56 axis.contour(x, y, s.T, levels, zdir=’z’, offset=−1.0,
57 norm=matplotlib.colors.LogNorm())
58 axis.contourf(x, y, s.T, 1, zdir=’x’, offset=−L)
59 axis.contourf(x, y, s.T, 1, zdir=’y’, offset=L)
60 axis.set_zlim(−1.0, 1.0)
61 axis.set_xlabel(’x’)
62 axis.set_ylabel(’y’)
63 axis.set_zlabel(’u’)
64 fig.colorbar(surf)
65 pylab.show()

Exercise 3.4 Solve the two-dimensional Laplace equation for the electric po-
tential for a parallel plate capacitor with potentials V = ±1V contained within
a grounded square region of side length L as shown in Fig. 3.18.
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Figure 3.18: Example boundary value problem for a two-dimensional capaci-
tor contained in a square region with sides of length L kept at 0 V.



Chapter 4

Random systems

4.1 Random walks

To determine the statistical properties of many body systems, we often perform
simulations of stochastic models of these systems. For example, if we put a drop of
ink in a pool of water, the ink molecules slowly diffuse throughout the pool. The
molecules move in a way that might be deterministic if we considered all of the colli-
sions with the water molecules, but is well modeled as a random walk in which each
step is taken in a random direction. Generally, numerical methods form simulation
of complex system via random numbers are known as Monte Carlo methods.

We consider first a one-dimensional random walk. Suppose a particle starts
at position x0. On each step the particle might move one unit in the positive- or
negative-directions with equal probability. Thus, on step n, we have xn = xn−1+∆xn
where the probability that ∆xn = ±∆x is positive is 1/2 and the probability that it
is negative is also 1/2. Here, ∆x is the step unit.

As time increases, the position of the particle will tend to drift away from zero,
though it might tend to move off in the positive direction or in the negative direction.
By step n, a particle will be at position

xn =
n
∑

i=1

∆x i (4.1)

though because the individual steps are random we cannot know where a particu-
lar particle will end up. We can make statistical statements about an ensemble of
particles however. The expected value of the position of the random walk is zero,
〈xn〉, since it is equally likely for the particle to wander off in the positive direction
as it is to wander of in the negative direction. The root-mean-squared distance or
RMS distance the typical particle will move by step n is

q

〈x2
n〉=

√

√

√

√

*

�

n
∑

i=1

∆x i

�2+

=

√

√

√

√

n
∑

i=1

n
∑

j=1

〈∆x i∆x j〉=
p

n∆x (4.2)
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where we have used the fact that each step is independent so that 〈∆x i∆x j〉 =
δi j(∆x)2. Two random walkers will tend to diverge with time, but as the square-
root of the step number.

If each step corresponds to a time ∆t so that time t corresponds to step n =
t/∆t then we have

〈x2(t)〉= 2Dt (4.3)

where D = (∆x)2/(2∆t) is the diffusion constant. The connection of random walks
to diffusion can be seen as follows: suppose that there are a large number of parti-
cles undergoing independent random walks. We divide up our spatial domain into
bins of some small but finite size and interpret the number of particles in each bin
divided by the size of the bin as the number density in that bin. The process of
binning up space into such bins is known as coarse graining. The number density
as a function of time will be proportional to the probability of a given random walk
finding itself in a bin as a function of time in an ensemble average (i.e., for a large
number of particles) so we compute this probability.

For a single particle in a one-dimensional random walk, the probability of a
particle finding itself at site j∆x at time (n+ 1)∆t depends only on the previous
step at time n∆t: if the particle is at position ( j−1)∆x or at position ( j+1)∆x at
time n∆t then there is a probability of 1/2 of the particle moving to position j∆x
at time (n+ 1)∆t. Thus,

n+1
p j=

1
2

n
p j−1 +

1
2

n
p j+1 (4.4)

which can be rewritten as

n+1
p j −

n
p j

∆t
=
(∆x)2

2∆t

n
p j+1 −2

n
p j +

n
p j−1

(∆x)2
. (4.5)

This is simply a finite difference equation (the FTCS scheme) corresponding to the
diffusion equation

∂ p(t, x)
∂ t

= D
∂ 2p(t, x)
∂ x2

(4.6)

with diffusion constant D = (∆x)2/(2∆t).

A numerical simulation of a random walk is given in Listing 4.1. This program
computes several random walks. With each step of a given walk, a random value
is chosen that determines whether to step forward or backward. In addition, the
root-mean-squared distance moved averaged over all the walks is computed for each
step. In Fig. 4.1 we show three sample random walks and in Fig. 4.2 we show the
root-mean-squared distance traveled as a function of the step number. The latter
figure shows that the expected behavior xrms =

p
n where n is the step number is

observed.

Listing 4.1: Program randwalk.py

1 import pylab, random
2
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Figure 4.1: Results from running the program randwalk.py (Listing 4.1) for
three random walks of 100 steps. The position of the walker with each step is
shown.

3 nsteps = input(’number of steps in walk −> ’)
4 nwalks = input(’number of random walks −> ’)
5 seed = input(’random number seed −> ’)
6 random.seed(seed)
7 steps = range(nsteps)
8 xrms = [0.0]*nsteps # mean squared distance
9

10 # loop over the number of walks being done
11 for i in range(nwalks):
12 x = [0]*nsteps # position at each step in walk
13 # loop over steps in this walk
14 for n in steps[1:]:
15 x[n] = x[n−1]+random.choice([−1, +1])
16 xrms[n] += (x[n]**2−xrms[n])/(i+1)
17 pylab.plot(steps, x, ’o−’)
18 for n in steps:
19 xrms[n] = xrms[n]**0.5
20

21 pylab.title(’random walk’)
22 pylab.xlabel(’step number’)
23 pylab.ylabel(’x’)
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Figure 4.2: Results from running the program randwalk.py (Listing 4.1) for
500 random walks of 100 steps. The root-mean-squared distance from the
origin of the walks at each step is shown. The solid line is the predicted xrms =p

n where n is the step number.

24 pylab.grid()
25 pylab.figure()
26 pylab.title(’root−mean−squared distance for %d walks’%nwalks)
27 pylab.plot(steps, xrms, ’.’)
28 pylab.plot(steps, [n**0.5 for n in steps], ’−’)
29 pylab.xlabel(’step number’)
30 pylab.ylabel(’root−mean−squared distance’)
31 pylab.grid()
32 pylab.show()

Now consider a random walk in two dimensions: a number of particles are
arranged in a square lattice in the middle of a square container. Each particle then
undergoes independent random walks. The initially ordered arrangement diffuses
to fill the entire box. This could be a model of, for example, a drop of ink placed in
a pool of water.

The system will naturally evolve from an ordered state to a disordered state.
To get some insight into why this occurs, suppose that we divide the square region
into some number K subregions or bins so that there are a large number of bins,
K � 1, but K is much smaller than the number of particles, K � N , and there are
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a large number of sites within each bin. This is essentially the coarse-graining that
we discussed earlier. A state is a particular arrangement the N particles amongst
the K bins, while the distribution is given by the set of occupation numbers, {nk} for
k = 0,1, . . . , K−1, that describe the number of particles in each bin. We assume that,
in equilibrium, each state is equally likely, but some distributions (sets of occupation
numbers) will be more likely than others. The reason that some sets of occupation
numbers are more likely than others is because some sets of occupation numbers
will more ways of being realized than others. The multiplicity of states describes the
number of ways of realizing a particular distribution; it is given by

Ω{nk} =
N !

n0!n1! · · ·nK−1!
. (4.7)

If each state is equally likely then the distribution with the largest value of the
multiplicity of states will be the most likely distribution.

To find the most likely distribution, then, we need to maximize Ω{nk} over all
possible sets of occupation numbers, {nk}. It is easier to consider the natural loga-
rithm of Ω{nk}, so define the entropy

S{nk}/kB = lnΩ{nk]} = ln N !−
K−1
∑

k=0

ln nk!. (4.8)

where
kB = 1.3806503× 10−23m2 kg s−2 K−1 (4.9)

is Boltzmann’s constant. Since S{nk} is monotonic in Ω{nk}, the distribution that
maximizes Ω{nk} will also maximize S{nk}. Consider a small perturbation to the
occupation numbers, {δnk}. At the maximum point we have

0= (S{nk+δnk} − S{nk})/kB = −
K−1
∑

k=0

ln
�

(nk +δnk)!
nk!

�

= −
K−1
∑

k=0

ln[(nk + 1)(nk + 2) · · · (nk +δnk)]

≈ −
K−1
∑

k=0

δnk ln nk

(4.10)

where we assume that δnk � nk so that each factor in the logarithm is ≈ nk.
Therefore we want to find the values {nk} for which

δn0 ln n0 +δn1 ln n1 +δn2 ln n2 + · · ·+δnK−1 ln nK−1 = 0 (4.11)

for arbitrary {δnk} which would result in n0 = n1 = · · · = nK−1 = 1. However this
cannot be the right answer because then there would only be K particles, not N
particles. We need to enforce the constraint

K−1
∑

k=0

nk = N = constant (4.12)
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which results in
δn0 +δn1 +δn2 + · · ·+δnK−1 = 0 (4.13)

or δn0 = −δn1 −δn2 − · · · −δnK−1. We substitute this into Eq. (4.11) to obtain

(ln n1 − ln n0)δn1 + (ln n2 − ln n0)δn2 + · · ·+ (ln nK−1 − ln n0)δnK−1 = 0. (4.14)

This equation will hold if n0 = n1 = n2 = · · · = nK−1 = N/K , i.e., when all the bins
have the same number of particles.

Incidentally, it is instructive to consider the situation in particles in different
bins have different energies, e.g., if we consider diffusion of particles in a vertical
plane in which particles prefer to move downward rather than upward. Let us sup-
pose that each particle in the kth bin has energy εk. The total energy E is conserved
and so we have an additional constraint that

K−1
∑

k=1

εknk = E = constant (4.15)

or
ε1δn1 + ε2δn2 + · · ·+ εK−1δnK−1 = 0 (4.16)

where, for convenience, we have taken the zero of energy such that ε0 = 0. We
substitute this additional constraint, δn1 = −(ε2/ε1)δn2 − · · · − (ε2/εK−1)δnK−1,
into Eq. (4.14) and we find

(ln n2 − ln n0 + βε2)δn2 + · · ·+ (ln nK−1 − ln n0 + βεK−1)δnK−1 = 0 (4.17)

where

β = −
ln(n1/n0)
ε1

(4.18)

is a Lagrange multiplier which can be understood to be the reciprocal of the tem-
perature of the system,

β =
1

kBT
. (4.19)

Now we find that the most likely set of occupation numbers are those for which

nk = n0e−βεk . (4.20)

Using the constraint equations for E and N we can determine the constants n0 and
β . If we define the partition function,

Z(β) =
K−1
∑

k=0

e−βεk (4.21)

then we see that

N =
K−1
∑

k=0

nk =
K−1
∑

k=0

n0e−βεk = n0Z(β) (4.22)
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so

n0 =
N

Z(β)
and nk =

N
Z(β)

e−βεk (4.23)

or, in terms of the probability that a particle will be in bin k, Pk = nk/N ,

Pk =
1

Z(β)
e−βεk (4.24)

Furthermore,

E =
K−1
∑

k=0

nkεk =
N

Z(β)

K−1
∑

k=0

εke−βεk = −N
d

dβ
ln Z(β) (4.25)

which will determine β in terms of E and N .

We can use Stirling’s approximation, ln n!∼ n ln n−n for large n, to express the
logarithm of the multiplicity of states in a more convenient form:

S/kB = lnΩ= ln N !−
K−1
∑

k=0

ln nk!

≈ (N ln N − N)−
K−1
∑

k=0

(nk ln nk − nk)

=
K−1
∑

k=0

(nk ln N − nk ln nk)

= −N
K−1
∑

k=0

Pk ln Pk

(4.26)

where Pk = nk/N is the probability of any particular particle being in bin k. For the
situation in which there is a different energy to occupy each bin we have

S/kB ≈ (N ln N − N)−
K−1
∑

k=0

(nk ln nk − nk)

= N ln N −
K−1
∑

k=0

nk ln
�

N
Z(β)

e−βεk

�

= N ln N −
K−1
∑

k=0

{nk ln N − nk ln Z(β)− βnkεk}

= N ln Z(β) + βE

(4.27)

Now, for a small alteration of the energies associated with the bins, we have

dS = kB

�

N
∂ ln Z(β)
∂ β

+ E
�

dβ + kBβ dE = kBβ dE (4.28)
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Figure 4.3: Snapshots from running the program diffuse.py (Listing 4.2) at
four times. The distribution of particles is initially arranged in a 20×20 square
in the middle of a 100× 100 box. With time the particles diffuse until they fill
the box homogeneously.

which can be written in the familiar form

dE = T dS. (4.29)

For our simulation of diffusion of particles in two-dimensions, the particles
are initially arranged in a square of dimensions M × M in the middle of a square
box of dimensions L × L. To monitor the growth of entropy, the box is divided into
K = B×B square bins. As the simulation progresses, fraction of the particles in each
bin is used to compute Pk, and this is then used to compute the entropy per particle
at each time step (in units of Boltzmann’s constant). The program to perform this
simulation is giving in Listing 4.2. Snapshots of the evolution taken at several times
are shown in Fig. 4.3 and a plot showing the increase of entropy with time is shown
in Fig. 4.4.
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Figure 4.4: Entropy evolution from the program diffuse.py (Listing 4.2) for
the evolution shown in Fig. 4.3. As the initially highly-ordered system diffuses
throughout the box, the entropy increases.

Listing 4.2: Program diffuse.py

1 import pylab, math, random
2

3 L = 100 # length of side of box
4 M = 20 # length of side of square of particles
5 B = 10 # number of coarse−grainig bins per side
6 nsteps = input(’number of steps in walk −> ’)
7 steps = range(nsteps)
8 seed = input(’random number seed −> ’)
9 random.seed(seed)

10

11 # initial positions of particles form a MM block in the middle of the box
12 xside = range((L−M)//2, (L+M)//2)
13 yside = range((L−M)//2, (L+M)//2)
14 x = [i for i in xside for j in yside] # x−locations of the particles
15 y = [j for i in xside for j in yside] # y−locations of the particles
16 N = len(xside)*len(yside) # number of particles
17 S = [0.0]*nsteps # entropy
18 P = pylab.zeros((B, B)) # probability of particle being in each bin
19

20 # setup animated figure
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21 pylab.figure(figsize=(6, 6))
22 (points, ) = pylab.plot(x, y, ’,’)
23 pylab.xlim(0, L)
24 pylab.ylim(0, L)
25 pylab.xticks(range(0, L+1, L//B))
26 pylab.yticks(range(0, L+1, L//B))
27 pylab.xlabel(’x’)
28 pylab.ylabel(’y’)
29 pylab.grid()
30

31 # simulate the random walks
32 for n in steps:
33 # update plot
34 points.set_data(x, y)
35 pylab.title(’step %d’%n)
36 pylab.pause(1e−6)
37 pylab.draw()
38

39 # update positions of particles and update counts in bins
40 P.fill(0)
41 for i in range(N):
42 (dx, dy) = random.choice([(−1, 0), (1, 0), (0, −1), (0, 1)])
43 x[i] += dx
44 y[i] += dy
45 # make sure that the particles stay in the box
46 if x[i] < 0 or x[i] >= 100:
47 x[i] −= dx
48 if y[i] < 0 or y[i] >= 100:
49 y[i] −= dy
50 # increment count in bin containing particle
51 P[x[i]*B//L,y[i]*B//L] += 1.0
52

53 # compute the entropy at this step
54 for i in range(B):
55 for j in range(B):
56 P[i,j] /= N
57 if P[i,j] > 0:
58 S[n] −= P[i,j]*math.log(P[i,j])
59 pylab.figure()
60 pylab.plot(steps, S)
61 pylab.xlabel(’step’)
62 pylab.ylabel(’entropy’)
63 pylab.show()
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Exercise 4.1 Consider a vertical column of height h containing gas molecules.
Initially, the molecules are contained in a small region in the middle of the
column, but then they diffuse to fill the entire column. Because of gravity, the
density of molecules will be slightly greater near the base of the column than
it will be at the top. Simulate this system as a random walk of some number
N of molecules but where the probability, a, to increase one step in height,
+∆y , is slightly different from the probability, 1 − a, to decrease one step in
height, −∆y . Derive an expression for a given in terms of the molecular mass
M of the gas, the standard freefall g = 9.8 ms−2, the temperature of the gas, T ,
the vertical height step, ∆y , the Boltzmann conststant kB and the atomic mass
unit u = 1.660538 921× 10−27 kg. Perform a numerical simulation and show
that the expected distribution of particles with height is obtained after the gas
reaches equilibrium (once the entropy becomes approximately constant with
time). Try the values T = 273K, ∆y = 100 m, h = 10km, and M = 28.964u
for dry air.

4.2 Ising model

The Ising model is a model of a ferromagnetic material. The material consists of
a large number of atoms arranged in a lattice. Each atom has two states of spin,
spin-up or spin-down, and these spins interact with each other via their mutual
magnetic interaction and they also interact with any ambient magnetic field. At
high temperature the spins all have random directions (either up or down) but as
the material is cooled the magnetic interactions tend to align the spins.

Let {si} for i = 0,1, 2, . . . N − 1 be the values of the spins where each spin can
have a value of either +1 (spin up) or −1 (spin down). Only nearest neighbor
interactions are considered in the Ising model; the energy of the system is thus
computed in terms of pairs of nearest atoms, 〈i, j〉, as

E = −J
∑

〈i, j〉

sis j −µH
N−1
∑

i=0

si (4.30)

where J is the exchange energy, H is an externally applied magnetic field, which
we will take to be H = 0 at first, and µ is the magnetic moment of the spins. The
overall magnetization is given by

M =
N−1
∑

i=0

si . (4.31)

As mentioned above, at high temperatures, the spins fluctuate randomly and 〈M〉=
0; the material is said to be in a paramagnetic phase. As the temperature drops below
a critical temperature known as the Curie temperature Tc, there is a phase transition
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in which the spins begin align and the material becomes magnetized. This is known
as the ferromagnetic phase.

To get a sense of the nature of the phase transition, it is helpful to analyze
the problem under an approximation known as mean field theory. At any particular
temperature the expectation value of any of the spins is 〈s〉. The expected value of
the magnetization is therefore

〈M〉= N〈s〉. (4.32)

The energy of the system can be written in the form

E =
∑

i

si

§

−J
∑

j∈〈i, j〉

s j −µH
ª

(4.33)

which indicates that we can regard atom i to experience an effective magnetic field

Heff = H +
J
µ

∑

j∈〈i, j〉

s j (4.34)

which contains both the applied magnetic field H and the field created by the neigh-
boring particles. In the mean field theory we have

〈Heff〉=
zJ
µ
〈s〉 (4.35)

where we take the applied field to vanish, H = 0, and where z is the number of
neighbors to each atoms. In one-dimension, z = 2; in a two two-dimensional recti-
linear grid, z = 4; in a three-dimensional rectilinear grid, z = 6. The contribution
to the energy of spin i in this mean effective field is E± = ∓µ〈Heff〉 where E+ is the
energy if si = +1 and E− is the energy if si = −1. In thermal equilibrium the relative
probabilities of the two states are

P+
P−
= e−(E+−E−)/kB T = e2µ〈Heff〉/kB T (4.36)

and so

P± =
e±µ〈Heff〉/kB T

e+µ〈Heff〉/kB T + e−µ〈Heff〉/kB T
. (4.37)

Now we can compute the expectation value of si sitting in the mean effective field:

〈si〉=
∑

si∈{+,−}

si Psi
= P+ − P− =

e+µ〈Heff〉/kB T − e−µ〈Heff〉/kB T

e+µ〈Heff〉/kB T + e−µ〈Heff〉/kB T

= tanh (µ〈Heff〉/kBT ) .

(4.38)

Because all atoms are equivalent, 〈si〉 = 〈s〉 so from Eq. (4.35) and Eq. (4.38) we
have

〈s〉= tanh (zJ〈s〉/kBT ) . (4.39)
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From this equation we can compute the value of 〈s〉 for any temperature. One
solution is always 〈s〉 = 0, but at low temperature there are three solutions, and
the 〈s〉= 0 solution is not the lowest energy one. There is a critical temperature at
which this transition occurs, which we can understand by expanding the hyperbolic
tangent function in powers of its argument near the critical temperature where
〈s〉 ≈ 0. Since tanh x = x − 1

3 x3 +O(x5) we have

〈s〉 ≈
zJ〈s〉
kBT

−
1
3

�

zJ〈s〉
kBT

�3

(4.40)

which can be solved for 〈s〉 to obtain

〈s〉 ≈
kBT
zJ

√

√3kB

zJ

�

zJ
kB
− T

�

for T ≤ Tc

∼ (Tc − T )1/2 for T ® Tc.

(4.41)

where Tc = zJ/kB. We see therefore that there is an abrupt transition during a
cooling process from the paramagnetic state to the ferromagnetic state at the Curie
temperature Tc, and that point the magnetization behaves as a power-law with a
critical exponent which in the mean field theory is 1/2. Note that although the
magnetization is not a smooth function of temperature at the Curie temperature, it
is continuous. This is the characteristic of a second-order phase transition. For a two-
dimensional lattice with z = 4, the mean field theory predicts a critical temperature
Tc = 4J/kB.

An exact solution is known (Onsanger 1944). The critical temperature is

Tc =
2J/kB

ln(1+
p

2)
≈ 2.269

J
kB

(4.42)

and the expected value 〈s〉 is

〈s〉=
�

1− sinh−4(2J/kBT )
�1/8

for T ≤ Tc

∼ (Tc − T )1/8 for T ® Tc.
(4.43)

Although the critical temperature and the critical exponent are different from those
predicted by the mean field theory, we see that the magnetization is again continu-
ous but not smooth function of temperature at the critical temperature.

In addition to the energy and magnetization, we can compute other thermo-
dynamic variables during the evolution, such as the heat capacity and the magnetic
susceptability. From the definition of the partition function Z we can obtain a few
important relations:

∂ Z
∂ β
=
∂

∂ β

N−1
∑

i=0

e−βEi = −
N−1
∑

i=0

Eie
−βEi = −Z

N−1
∑

i=0

Ei Pi = −Z〈E〉 (4.44)

∂ 2Z
∂ β2

=
∂ 2

∂ β2

N−1
∑

i=0

e−βEi =
N−1
∑

i=0

E2
i e−βEi = Z

N−1
∑

i=0

E2
i Pi = Z〈E2〉 (4.45)
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where Ei is the energy of atom i and Pi = Z−1e−βEi is the probability of the atom
i to have this energy. We then obtain a useful formula for the heat capacity of the
system,

C =
∂ 〈E〉
∂ T

= −
1

kBT 2

∂ 〈E〉
∂ β

=
1

kBT 2

∂

∂ β

�

1
Z
∂ Z
∂ β

�

=
1

kBT 2

�

1
Z
∂ 2Z
∂ β2

−
�

1
Z
∂ Z
∂ β

�2
�

=
1

kBT 2
Var(E)

(4.46)

where Var(E) = 〈(∆E)2〉 = 〈E2〉 − 〈E〉2 is the variance of the fluctuations in the
energy. Thus we can compute the heat capacity of the system by measuring the
fluctuation of the energy at fixed temperature rather than by the direct approach of
measuring the change of energy with temperature.

A similar trick can be done by taking derivatives with respect to the externally-
applied magnetic field H:

∂ Z
∂ H
=
∂

∂ H

N−1
∑

i=0

e−βEi =
N−1
∑

i=0

βµsie
−βEi = βµZ

N−1
∑

i=0

si Pi = βµZ〈M〉 (4.47)

∂ 2Z
∂ H2

=
∂ 2

∂ H2

N−1
∑

i=0

e−βEi =
N−1
∑

i=0

β2µ2s2
i e−βEi = β2µ2Z

N−1
∑

i=0

s2
i Pi = β

2µ2Z〈M2〉 (4.48)

which yield an expression for the magnetic susceptibility

χ =
∂ 〈M〉
∂ H

=
kBT
µ

∂

∂ H

�

1
Z
∂ Z
∂ H

�

=
kBT
µ

�

1
Z
∂ 2Z
∂ H2

−
�

1
Z
∂ Z
∂ H

�2
�

=
µ

kBT
Var(M).

(4.49)

Note that we can compute the magnetic susceptibility of the system even when there
is no externally applied magnetic field.

We now turn to the numerical simulation of the Ising model. We start with a
two-dimensional lattice of L× L atoms. Initially, the system is cold with all spins are
aligned with si = +1 for all i, and the temperature is kept at a small value. We now
perform a number of sweeps over all of the atoms where we perform the following
procedure: for each atom we compute the energy required to flip a spin, Eflip. If
this energy is less than zero, then we flip the spin, but even when there is a energy
cost to such a flip, we will allow the transition with a probability

Pflip = e−Eflip/kB T . (4.50)

This is known as the Metropolis algorithm. Thus, at non-zero temperature, there is a
chance that an atom will undergo a transition to a higher energy state. The average
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Figure 4.5: The energy per atom as a function of temperature for the Ising
model obtained from the program ising.py (Listing 4.3). These results were
obtained for a 30×30 lattice of atoms with an average of 104 sweeps for each
temperature.

energy and magnetization of the system over many sweeps through the atoms in
the lattice for fixed temperature, and then the temperature is increased slightly and
the procedure is repeated.

To see that the Metropolis algorithm for allowing a transition that increases the
energy with a probability given by Eq. (4.50) yields the correct distribution, note
that this procedure implies that the rate of transition from state 1 to state 2 where
E1 > E2 is W (1 → 2) = 1 while the rate of transitions from state 2 to state 1 is
W (2→ 1) = exp(−Eflip/kBT ) where Eflip = E1 − E2. In equilibrium we require the
number of transitions 1→ 2 to be equal to the number of transitions 2→ 1, so we
have

P1W (1→ 2) = P2W (2→ 1) (4.51)

which implies
P1

P2
= e−(E1−E2)/kB T (4.52)

and this is the desired distribution.

Listing 4.3 presents a program that will simulate a two-dimensional lattice of
L× L atoms with periodic boundary conditions. Initially, all the spins are aligned in
the up-direction and the temperature is low, T = 0.1 where hereafter temperature
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Figure 4.6: The magnetization per atom as a function of temperature for the
Ising model obtained from the program ising.py (Listing 4.3). These results
were obtained for a 30×30 lattice of atoms with an average of 104 sweeps for
each temperature.

is measured in units of J/kB. The temperature is incrementally increased in small
steps while a large number of sweeps of the Metropolis algorithm over the lattice
are performed at each temperature and the average energy per atom in units of
J (Fig. 4.5), magnetization per atom in units of J/µ (Fig. 4.6), and heat capacity
per atom in units of kB (Fig. 4.7). Note that the magnetization vanishes for tem-
peratures above the Curie temperature Tc, and at this temperature there is a cusp
in the heat capacity (a change in energy of the system does not cause a change in
temperature at this temperature).

Listing 4.3: Program ising.py

1 import math, pylab, random
2

3 J = 1.0 # exchange energy
4 L = input(’number of atoms per side of lattice −> ’)
5 nsweep = input(’number sweeps to average −> ’)
6 seed = input(’random number seed −> ’)
7 random.seed(seed)
8 N = L**2
9 kT = pylab.arange(0.1, 5.0, 0.1)

10 e = pylab.zeros(len(kT))
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Figure 4.7: The heat capacity per atom as a function of temperature for the
Ising model obtained from the program ising.py (Listing 4.3). These results
were obtained for a 30×30 lattice of atoms with an average of 104 sweeps for
each temperature.

11 m = pylab.zeros(len(kT))
12 c = pylab.zeros(len(kT))
13

14 # initial data
15 s = pylab.ones((L, L))
16 E = 0.0
17 M = 0.0
18 for i in range(L):
19 for j in range(L):
20 E −= J*s[i,j]*(s[(i+1)%L,j]+s[i,(j+1)%L])
21 M += s[i,j]
22

23 # prepare animated plot
24 pylab.ion()
25 image = pylab.imshow(s, vmax=1, vmin=−1)
26

27 # slowly warm up
28 for t in range(len(kT)):
29 # average nsweep sweeps
30 for sweep in range(nsweep):



118 CHAPTER 4. RANDOM SYSTEMS

31

32 # update animated plot
33 image.set_data(s)
34 pylab.title(’kT = %g’%kT[t])
35 pylab.draw()
36

37 # sweep over all particles in lattice
38 for i in range(L):
39 for j in range(L):
40

41 # compute energy required to flip spin
42 dE = s[(i+1)%L,j]+s[(i−1)%L,j]+s[i,(j+1)%L]+s[i,(j−1)%L

]
43 dE *= 2.0*J*s[i,j]
44

45 # Metropolis algorithm to see if we should accept trial
46 if dE <= 0.0 or random.random() <= math.exp(−dE/kT[t]):
47 # accept trial: reverse spin; return dE and dM
48 s[i,j] *= −1
49 M += 2.0*s[i,j]
50 E += dE
51

52 # update running means and variances
53 deltae = E−e[t]
54 deltam = M−m[t]
55 e[t] += deltae/(sweep+1)
56 m[t] += deltam/(sweep+1)
57 c[t] += deltae*(E−e[t])
58 e[t] /= N
59 m[t] /= N
60 c[t] /= nsweep*N*kT[t]**2
61

62 # produce plots
63 pylab.ioff()
64 pylab.figure()
65 pylab.plot(kT, e, ’o’)
66 pylab.xlabel(’temperature’)
67 pylab.ylabel(’energy per atom’)
68 pylab.grid()
69 pylab.figure()
70 pylab.plot(kT, m, ’o’)
71 pylab.xlabel(’temperature’)
72 pylab.ylabel(’magnetization per atom’)
73 pylab.grid()
74 pylab.figure()
75 pylab.plot(kT, c, ’o’)
76 pylab.xlabel(’temperature’)
77 pylab.ylabel(’heat capacity per atom’)
78 pylab.grid()
79 pylab.show()
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Exercise 4.2 First-order phase transitions. A first-order phase transition is
a transition in which some state variable is a discontinuous function of some
intensive variable. Consider the Ising model with an externally-applied field
H. Investigate how the magnetization of a two-dimensional lattice of spins
behaves as a function of H at constant temperature for temperatures between
1 J/kB and 5 J/kB. Notice that there is a first order phase transition (a discon-
tinuous jump in M as a function of H) for temperatures below Tc.

4.3 Variational method

In quantum mechanics, we often want to find the ground state of some system
with a complicated potential. The variational method uses the fact that the energy
functional of trial wave functions ψ,

E[ψ] =

∫

ψ∗(x )Ĥψ(x ) dx
∫

|ψ(x )|2 dx
, (4.53)

is a minimum for the ground state. This is easily seen by expressing the trial wave
function ψ in terms of the eigenfunctions ψn, n = 0, 1,2, . . ., of the Hamiltonian,
which satisfy Ĥψn = Enψn with E0 < E1 < E2 < · · · ,

ψ=
∞
∑

n=0

cnψn. (4.54)

Then we have
∫

ψ∗(x )ψ(x ) dx =
∞
∑

n=0

∞
∑

m=0

c∗ncm

∫

ψ∗n(x )ψm(x ) dx =
∞
∑

n=0

|cn|2 (4.55)

since
∫

ψ∗n(x )ψ
∗
m(x ) dx = δmn, and

∫

ψ∗(x )Ĥψ(x ) dx =
∞
∑

n=0

∞
∑

m=0

c∗ncm

∫

ψ∗n(x )Ĥψm(x ) dx

=
∞
∑

n=0

∞
∑

m=0

c∗ncmEm

∫

ψ∗n(x )ψm(x ) dx

=
∞
∑

n=0

En|cn|2

≥ E0

∞
∑

n=0

|cn|2 = E0

∫

ψ∗(x )ψ(x ) dx

(4.56)



120 CHAPTER 4. RANDOM SYSTEMS

so therefore E[ψ]≥ E0, with the minimum occurring when ψ=ψ0. This suggests
that the ground state can be found by minimizing the energy functional over a family
of wave functions. However, the wave function ψ(x ) is a continuous function of
position, and when we express it as a set of discrete values on an N -point spatial grid
the minimization problem becomes a problem of minimization on an N -dimensional
space. This can be solved using Monte Carlo methods.

The technique presented here is quite simple. An initial guess of the wave func-
tion is made on a discrete grid of points. One of these points is selected at random
and adjusted by a random amount to give us a trial wave function. The energy
function of Eq. (4.53) is evaluated for this trial wave function and is compared to
the energy function evaluated for the original guess: if the energy is larger for the
trial wave function then original guess is retained; otherwise the guess is updated
with the trial wave function. Note that we wish to have a normalized wave function
so it is helpful to normalize the waveform after making adjustments.

We illustrate the method with the application of finding the (known) ground
state of the quantum harmonic oscillator given a (rather poor) initial guess. The
harmonic oscillator potential is

V (x) =
1
2

kx2 (4.57)

where k is the spring constant and the Hamiltonian operator is

Ĥ = −
ħh2

2m
∂ 2

∂ x2
+ V (x). (4.58)

For simplicity we adopt units in which k = 1, m = 1, and ħh = 1. The one-
dimensional domain is gridded into N evenly spaced points centered at the origin
with spacing∆x = (xmax−xmin)/(N−1)where xmax = 5 and xmin = −5 in our units.
Our initial guess for ψi is constant throughout the domain except at the endpoints,
ψ0 and ψN−1 where we set it to zero ψ0 =ψN−1 = 0; the endpoints are kept fixed
at zero throughout the procedure. The constant value is chosen so that the wave
function is normalized,

∆x
N−2
∑

i=1

|ψi |2 = 1. (4.59)

To produce an updated trial wave function, one of the points j = 1,2, . . . , N−2
is selected at random and the value of the wave function at that point is multiplied
by a factor that is drawn from a uniform distribution between 0.8 and 1.2 and the
resulting trial waveform is then normalized. Equation (4.53) is then computed for
the trial wave function,

E[ψtrial] =∆x
N−2
∑

i=1

ψtrial
i Ĥψtrial

i (4.60)

where

Ĥψtrial
i = −

ħh2

2m

ψtrial
i+1 − 2ψtrial

i +ψtrial
i−1

(∆x)2
+ Viψ

trial
i . (4.61)
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Figure 4.8: Snapshots of some of the intermediate states explored during a run
of the program variational.py for N = 21 points in the interval −5≤ x ≤ 5.

The program variational.py in Listing 4.4 implements these methods to compute
the ground state wave function and energy for the quantum harmonic oscillator. As
seen in Fig. 4.8, a reasonably accurate approximation to the true ground state wave
function is achieved after a few hundred updates and Fig. 4.9 shows that the correct
ground state energy is rapidly found.
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Figure 4.9: The value of the energy functional as a function of update step
number for a run of the program variational.py for N = 21 points in the
interval −5≤ x ≤ 5. The true ground state 1

2ħhω0 is found with good accuracy.

Listing 4.4: Program variational.py

1 import math, random, pylab
2

3 # parameters for harmonic oscillator
4 hbar = 1.0
5 m = 1.0
6 k = 1.0
7 omega0 = (k/m)**0.5
8

9 # input number of grid points, steps, random seed
10 N = input(’number of grid points −> ’)
11 nstep = input(’number of steps −> ’)
12 seed = input(’random number seed −> ’)
13 random.seed(seed)
14

15 # setup grid and initial guess
16 xmin = −5.0
17 xmax = 5.0
18 dx = (xmax−xmin)/(N−1)
19 x = pylab.arange(xmin, xmax+0.1*dx, dx)
20 psi = pylab.ones(N) # initial guess
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21 psi[0] = psi[N−1] = 0.0 # endpoints fixed at zero
22

23 # compute energy, potential, normalization
24 V = pylab.zeros(N)
25 E = pylab.zeros(nstep+1)
26 ssq = 0
27 for i in range(1, N−1):
28 V[i] = k*x[i]**2/2.0
29 H = −hbar**2*(psi[i−1]−2.0*psi[i]+psi[i+1])/(2*m*dx**2)
30 H += V[i]*psi[i]
31 E[0] += psi[i]*H*dx
32 ssq += psi[i]**2*dx
33 E[0] /= ssq
34 psi /= ssq**0.5
35

36 # prepare animated plot
37 pylab.ion()
38 xfine = pylab.arange(xmin, xmax, 0.01)
39 psi0 = [(m*omega0/(math.pi*hbar))**0.25*math.exp(−0.5*m*omega0*xx**2/

hbar)
40 for xx in xfine]
41 pylab.plot(xfine, psi0)
42 (line, ) = pylab.plot(x, psi, ’o−’)
43 pylab.ylabel(’$\psi$’)
44 pylab.xlabel(’x’)
45

46 # perform the evolution
47 n = 1
48 while n <= nstep:
49 # choose a random point and a random amount to change psi
50 tmp = pylab.copy(psi) # temporary wavefunction trial
51 j = random.choice(range(1, N−1))
52 tmp[j] *= random.uniform(0.8, 1.2)
53

54 # normalize and compute energy
55 E[n] = 0.0
56 ssq = 0.0
57 for i in range(1, N−1):
58 H = −hbar**2*(tmp[i−1]−2.0*tmp[i]+tmp[i+1])/(2*m*dx**2)
59 H += V[i]*tmp[i]
60 E[n] += tmp[i]*H*dx
61 ssq += tmp[i]**2*dx
62 E[n] /= ssq
63

64 # test if the trial wavefunction reduces energy
65 if E[n] < E[n−1]:
66 # update current wavefunction
67 psi = tmp/ssq**0.5
68

69 # update plot
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70 line.set_ydata(psi)
71 pylab.title(’%d moves’%n)
72 pylab.draw()
73

74 # increment step count
75 n += 1
76

77 # freeze animation and plot energy as a function of time
78 pylab.ioff()
79 pylab.figure()
80 pylab.plot(range(nstep+1), E)
81 pylab.ylabel(’$E / \hbar\omega_0$’)
82 pylab.xlabel(’step number’)
83 pylab.grid()
84 pylab.show()

Exercise 4.3 Use the variational method to find a numerical approximation to
the ground state wave function and energy for (a) a V-shaped potential V (x) =
|x |, and (b) the quartic potential V (x) = x4.



Chapter 5

Data reduction

5.1 Statistical description of data

The measures of central tendency of a set of data are such statistics as the mean, the
median, and the mode, as well as various moments of the data. The sample mean
of a set of N points, {x i} where i = 0, 1,2, . . . , N − 1, is simply

x̄ =
1
N

N−1
∑

i=0

x i . (5.1)

A straightforward implementation is as follows:� �
>>> data = [3, 2, 5, 5, 2, 0, 3, 5, 2, 1, 0, 7]
>>> mean = sum(data) / float(len(data))
>>> mean
2.9166666666666665� �

The mean of the data makes use of the value of each of the data points, which
means that if one of these values is extreme — either very large or very small —
then the mean can be skewed by this single point. The median and mode are more
robust because they make fewer requirements on the values of the data points.

The median simply requires that the values of the data points have some ordi-
nation, that is, we only need to be able to determine if x i is greater than, less than,
or equal to x j , but not by how much. The median is then the value that is in the
middle. (If the number of data points is even, there are two values in the middle; in
such a situation it is common to take the mean of these two values.) Given a set of
data {x i}, reorder the data to form the order statistics {x(0), x(1), . . . , x(N−1)} where
x(0) is the smallest value, x(1) is the second smallest value, etc., and x(N−1) is the
largest value. The median is then

x̃ =

�

x((N−1)/2) if N is odd
1
2 (x(N/2−1) + x(N/2)) if N is even.

(5.2)

125
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In addition, the statistical range is R = x(N−1) − x(0) and the midrange is MR =
1
2 (x(N−1) + x(0)). We can find the median by� �

>>> data = [3, 2, 5, 5, 2, 0, 3, 5, 2, 1, 0, 7]
>>> data.sort()
>>> median = 0.5 * (data[(len(data) − 1)//2] + data[len(data)//2])
>>> median
2.5� �
Finally, the mode requires only that values of the data points can be put into

categories. The frequency of each category is the number of data points whose
values are in that category, and the mode is the category with the highest frequency.
It is possible that more than one category share this highest frequency in which case
the data is multimodal. The mode can be obtained as follows� �

>>> data = [3, 2, 5, 5, 2, 0, 3, 5, 2, 1, 0, 7]
>>> vals = set(data)
>>> freq = [data.count(v) for v in vals]
>>> maxfreq = max(freq)
>>> mode = [v for i, v in enumerate(vals) if freq[i] == maxfreq]
>>> mode
[2, 5]� �

Note that in this example, the data is bimodal with modes 2 and 5.

To illustrate that the median makes fewer assumptions about the nature of the
data than the mean, and the mode makes even fewer than the median, consider the
following: The median requires only an ordinal relation (except if the number of
data points is even), so we can find the median of such things as, say, letters:� �

>>> data = list(’abracadabra’)
>>> data.sort()
>>> median = data[len(data)//2]
>>> median
’b’� �

Note that we know that the letter b comes after the letter a, and c after b, but we
do not need to assign a numerical value to each letter in order to get the median.
Meanwhile, the mode does not even require an ordinal relationship between the
data points. For example, we do not know whether an apple is bigger or smaller
than an orange or a banana, but we can still find the mode of a basket of fruit:� �

>>> data = [’orange’, ’apple’, ’banana’, ’apple’, ’apple’, ’orange’]
>>> vals = set(data)
>>> freq = [data.count(v) for v in vals]
>>> maxfreq = max(freq)
>>> mode = [v for i, v in enumerate(vals) if freq[i] == maxfreq]
>>> mode
[’apple’]� �
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The mean, median, and mode all are measures of the central value of the data.
We often want to have a measure of the spread of the data as well. The standard
deviation is

s =

√

√

√ 1
N − 1

N−1
∑

i=0

(x i − x̄)2. (5.3)

Notice the factor 1/(N − 1) is used when the mean x̄ is computed from the same
data as is used to compute the standard deviation; if the value of the mean is known
a priori then the factor 1/N should be used. The standard deviation could be com-
puted as follows� �

>>> data = [3, 2, 5, 5, 2, 0, 3, 5, 2, 1, 0, 7]
>>> mean = sum(data) / float(len(data))
>>> sdev = (sum((v−mean)**2 for v in data)/(len(data)−1.0))**0.5
>>> mean, sdev
(2.9166666666666665, 2.1933093855190746)� �

The standard deviation is typically used in conjunction with the mean as measures
of the central value and the spread. When the median is used as the measure of
the central value, a measure of the spread that is in the same spirit would be the
interquartile range, which is the range of values that span the second and third
quartiles. In terms of the order statistics, the first quartile is Q1 = x(bN/4c), the third
quartile is Q3 = x(b(3N−1)/4c), and the interquartile range is Q3−Q1. Here, bac is the
greatest integer less than or equal to a. For example,� �

>>> data = list(’abracadabra’)
>>> data.sort()
>>> median = data[len(data)//2]
>>> q1 = data[len(data)//4]
>>> q3 = data[(3*len(data)−1)//4]
>>> q1, median, q3
(’a’, ’b’, ’d’)� �

This shows that the median letter is b, and that at least half of the letters are in
the range between a and d inclusive. Finally, when the mode is used, the spread is
often characterized in terms of the full width at half maximum or FWHM, which is
all the categories that have a frequency at least half of the maximum frequency:� �

>>> data = [’orange’, ’apple’, ’banana’, ’apple’, ’apple’, ’orange’]
>>> vals = set(data)
>>> freq = [data.count(v) for v in vals]
>>> maxfreq = max(freq)
>>> mode = [v for i, v in enumerate(vals) if freq[i] == maxfreq]
>>> fwhm = [v for i, v in enumerate(vals) if freq[i] > maxfreq // 2]
>>> mode, fwhm
([’apple’], [’orange’, ’apple’])� �

That is, apples are the most common fruit, but the number of oranges is not less
than half of the number of apples.
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We can also define these statistics for continuous distributions. A probability
density function, f (x), is a function that is everywhere non-negative, f (x) ≥ 0 for
all x , and is normalized,

∫ ∞

−∞
f (x) d x = 1. (5.4)

We say that the probability of x having a value between x and x + d x for small d x
is f (x) d x . The mean of the distribution is the expected value of x , 〈x〉,

µ= 〈x〉=
∫ ∞

−∞
x f (x) d x , (5.5)

and the standard deviation of the distribution is

σ =
Æ

Var(x) (5.6)

where the variance of the distribution is

Var(x) = 〈(x −µ)2〉= 〈x2〉 − 〈x〉2 (5.7)

with

〈x2〉=
∫ ∞

−∞
x2 f (x) d x . (5.8)

The cumulative distribution is

F(x) =

∫ x

−∞
f (x ′) d x ′ (5.9)

and the probability of X being below a value x is Pr{X ≤ x} = F(x). The inverse
function of the cumulative distribution function is the quantile function, Q(p), which
satisfies Q(p) = x for the value of x that satisfies F(x) = p:

Q(p) = inf{x | p ≤ F(x)}. (5.10)

In terms of the quantile function, the median is µ1/2 = Q(1/2), the first and third
quartiles are Q1 = Q(1/4) and Q3 = Q(3/4), and the interquartile range is IQR =
Q3 −Q1.

The mode of the distribution is the point (or points) of its maximum value,

mode= arg max
x

f (x) (5.11)

where
arg max

x
f (x) = {x | ∀y : f (y)≤ f (x)}. (5.12)

The half-maximum points are

H1 = inf{x | f (x)≥ 1
2 fmax} (5.13)

H2 = sup{x | f (x)≥ 1
2 fmax} (5.14)
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where fmax =maxx f (x), and the full width at half maximum is FWHM= H2−H1.

For example, consider the Cauchy distribution,

f (x; x0,γ) =
1
π

γ

(x − x0)2 + γ2
, (5.15)

which has a maximum value of fmax = 1/(πγ) at xmode = x0 and is half-maximum
at the values x0 ± γ, so the FWHM = 2γ. The cumulative distribution function for
the Cauchy distribution is

F(x; x0,γ) =
1
2
+

1
π

arctan
�

x − x0

γ

�

(5.16)

and the quantile function is therefore

Q(p; x0,γ) = x0 + γ tan[π(p− 1
2 )] (5.17)

from which we find that the median is µ1/2 = x0 and the first and third quartiles
are Q1 = x0 − γ and Q3 = x0 + γ. The inter-quartile range is therefore IQR = 2γ.
Hence we see that for the Cauchy distribution, the median and the mode have the
same value, x0, and the full width at half maximum and the inter-quartile range
also have the same value, 2γ. Interestingly, the mean and the variance cannot be
computed.

Another example is the normal distribution or Gaussian distribution,

f (x;µ,σ) =
1

p
2πσ2

exp

�

−
(x −µ)2

2σ2

�

. (5.18)

As the parameter symbols suggest, the mean of the distribution is µ and its standard
deviation is σ. The mode is also equal to the mean, and the full-width at half-
maximum is 2

p
2 ln 2σ ≈ 2.355σ. The cumulative distribution function is

F(x;µ,σ) =
1
2

�

1+ erf
�

x −µ
p

2σ2

��

(5.19)

where erf(x) is the error function,

erf(x) =
2
p
π

∫ x

0

e−t2
d t. (5.20)

The median is equal to the mean, µ1/2 = µ, and the quartiles are Q1 = µ+σz1 and
Q2 = µ+σz3 where z1 ≈ −0.67449 and z3 ≈ +0.67449 are the standard scores of
the first and third quartiles, so the interquartile range is IQR≈ 1.349σ.

Often we wish to compute the mean and the standard deviation of a number
of samples having to keep all values in the dataset. Perhaps the samples are be-
ing continually produced and we want to have a current estimate of the mean and



130 CHAPTER 5. DATA REDUCTION

standard deviation at every time (i.e., a running mean and a running standard de-
viation), or perhaps we simply do not want to have to store all the values. We can
achieve this as follows: first note that

n
n
x̄=

n−1
∑

i=0

x i (5.21)

where
n
x̄ is the average of the first n points. Then,

(n+ 1)
n+1
x̄ = n

n
x̄ +xn (5.22)

so we have
n+1
x̄ =

n
x̄ +

xn−
n
x̄

n+ 1
. (5.23)

Using this equation, we can continually update the running mean as more samples
are accumulated. Now consider the sum of the squares of the deviations from the
current mean when there are n samples,

n
M2=

n−1
∑

i=0

�

x i−
n
x̄
�2

. (5.24)

When we add an additional sample, we want to compute

n+1
M2 =

n
∑

i=0

�

x i−
n+1
x̄
�2

=
n−1
∑

i=0

�

x i−
n+1
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The term in the square brackets on the last line vanishes according to Eq. (5.22),
and so we have the formula

n+1
M2 =

n
M2 +

�

xn−
n+1
x̄
��

xn−
n
x̄
�

(5.26)

for updating the running value of M2. The standard deviation when there are n
samples is then

n
s=

�

n
M2

n− 1

�1/2

. (5.27)

Now suppose that we have two sets of data, {x i} and {yi}, with i =
0, 1,2, . . . , N − 1. If we want to determine if the two sets of data are correlated,
we can compute the linear correlation coefficient or Pearson’s r,

r =

∑N−1
i=0 (x i − x̄)(yi − ȳ)

Ç

∑N−1
i=0 (x i − x̄)2

Ç

∑N−1
i=0 (yi − ȳ)2

. (5.28)

The range of values of r are between −1 and +1. If the value of r is close to zero
then we say the data sets are uncorrelated; if it is close to +1 we say the data sets are
correlated; if it is close to −1 we say the data sets are anti-correlated. A recurrence
method for computing the numerator of the correlation coefficient for n samples of
(x , y) pairs,

n
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or, equivalently,
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Then the value of
n
r for the nth pair is

n
r =

n
C

r

n
M2,x

n
M2,y

. (5.32)

Now we want to know whether a computed value of r is significant. Let us
assume a null hypothesis, that the observed data samples {x i} and {yi} are ran-
dom numbers taken from independent distributions. In particular, we assume that
these independent probability distributions are normal distributions. The means
and standard deviations of the underlying Gaussian distribution from which the x
values were drawn are in general different from the mean and standard deviation
of the Gaussian distribution from which the y values were drawn, but because the
distributions are independent we would not expect any correlation between the x
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values and the y values under our null hypothesis. Given the null hypothesis we
can then compute the probability density function for the value of Pearson’s r given
N pairs of samples drawn from these independent Gaussian distributions. It is

f (r; N) =
1

B
�

1
2 , N−2

2

� (1− r2)(N−4)/2 (5.33)

where

B(a, b) =

∫ 1

0

ta−1(1− t)b−1d t =
Γ (a)Γ (b)
Γ (a+ b)

(5.34)

is known as the Euler beta function. It is related to the gamma function, which, for
integer arguments, is given by Γ (n) = (n− 1)!, and for half-integer arguments it is

Γ (n+ 1
2 ) =

1 · 3 · 5 · · · (2n− 1)
2n

p
π=

(n− 1)!!
2n

p
π. (5.35)

Using this distribution we can compute the probability p of getting a value of r with
|r|> rp for some number rp:

p = 1−
∫ rp

−rp

f (r; N) dr. (5.36)

To evaluate this integral, we perform a change of variables to x = r2; we then find
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where

B(x; a, b) =

∫ x

0

ta−1(1− t)b−1d t (5.38)

is known as the incomplete beta function. Therefore, when we calculate Pearson’s r
for our data sets, we can measure its p-value, which is the probability of obtaining a
value at least as extreme if the null hypothesis is true. A very small p-value, which
would occur for a value of r close to +1 or −1, would lead us to reject the null
hypothesis and conclude that correlation is statistically significant.

As an example, consider the period-luminosity relationship for Cepheid vari-
ables, which are a category of variable star that undergoes regular oscillations in its
brightness. The period of these oscillations is correlated with the overall luminos-
ity of the star. This data is given in Table 5.1 and is stored in a file cepheids.dat
(Listing 5.1). The program cepheid.py then reads this file and computes the cor-
relation coefficient between the logarithm of the period and the magnitude and
also produces a plot of the data, which is shown in Fig. 5.1. The correlation co-
efficient is found to be r = −0.894, which for N = 10 data points has a p-value
of p = 0.05% so the null hypothesis (of uncorrelated data sets) is quite unlikely.
(Note that brighter stars have smaller magnitudes, so it is conventional to plot the
vertical magnitude axis increasing downwards.) Rather than performing a numeri-
cal integral to compute the incomplete beta function, the function betainc in the
scipy.special module is used.
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Period (days) Magnitude

P ∆P V ∆V

40.9345 1.0315 22.985 0.008
75.3739 2.2386 22.676 0.016
49.4143 2.3786 23.290 0.019
42.6833 3.6532 23.412 0.044
30.8813 0.7128 23.532 0.014
27.2601 0.4105 23.626 0.016
21.7926 0.3649 23.669 0.021
30.4055 0.7575 23.699 0.015
30.4193 0.5237 23.728 0.016
22.8373 0.1005 23.776 0.013

Table 5.1: Period, P, and V-band magnitude, V data, with uncertainties∆P and
∆V for 10 Cepheid variables in the galaxy M101. This data is from Benjamin
J. Shappee and K. Z. Stanek “A new Cepheid distance to the giant spiral M101
based on image subtraction of Hubble Space Telescope/Advanced Camera for
Surveys observations,” The Astrophysical Journal, 733 124 (2011).

Listing 5.1: Data file cepheids.dat

1 # P dP V dV
2 40.9345 1.0315 22.985 0.008
3 75.3739 2.2386 22.676 0.016
4 49.4143 2.3786 23.290 0.019
5 42.6833 3.6532 23.412 0.044
6 30.8813 0.7128 23.532 0.014
7 27.2601 0.4105 23.626 0.016
8 21.7926 0.3649 23.669 0.021
9 30.4055 0.7575 23.699 0.015

10 30.4193 0.5237 23.728 0.016
11 22.8373 0.1005 23.776 0.013

Listing 5.2: Program cepheid.py

1 import pylab, scipy.special, math
2

3 # read file cepheids.dat and extract data
4 (P, dP, V, dV) = pylab.loadtxt(’cepheids.dat’, unpack=True)
5 N = len(P) # number of data points
6

7 # compute linear correlation coefficient
8 x = [math.log10(P[i]) for i in range(N)]
9 y = V

10 meanx = 0.0
11 meany = 0.0
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12 M2x = 0.0
13 M2y = 0.0
14 C = 0.0
15 for i in range(N):
16 deltax = x[i]−meanx
17 deltay = y[i]−meany
18 meanx = meanx+deltax/(i+1)
19 meany = meany+deltay/(i+1)
20 M2x = M2x+deltax*(x[i]−meanx)
21 M2y = M2y+deltay*(y[i]−meany)
22 C = C+deltax*(y[i]−meany)
23 r = C/(M2x*M2y)**0.5
24 p = 1−scipy.special.betainc(0.5, 0.5*(N−2), r**2)
25 print ’correlation coefficient, r = %f’%r
26 print ’probability under null hypothesis, p = %f%%’%(100*p)
27

28 # plot the data
29 pylab.errorbar(P, V, fmt=’o’, xerr=dP, yerr=dV)
30 pylab.ylim(reversed(pylab.ylim())) # reverse y−axis
31 pylab.xscale(’log’)
32 pylab.xlabel(’Period (days)’)
33 pylab.ylabel(’Magnitude’)
34 pylab.title(’Period−magnitude relation for Cepheid variables in M101’)
35 pylab.grid(which=’both’)
36 pylab.show()

5.2 Statistical tests of data distribution

Often, given a set of data, we wish to know if it is consistent with either a hy-
pothesized distribution or with another set of data. For example, we might try to
determine if a die is fair by rolling it some large number of times and see if the
probability of getting each result is the same. As another example, suppose we
wish to determine if a set of random data has a Gaussian distribution (i.e., we wish
to know if it was drawn from a Gaussian distribution). In the first example the data
can have only discrete values and we commonly use a Pearson’s chi-squared test.
In the second case the data values are continuous and we the Kolmogorov-Smirnov
test or K-S test could be used. (Note that data whose values are continuous can be
converted into data whose values are discrete by binning the data.)

We will first consider the K-S test to see if data is drawn from a particular
continuous distribution with a known cumulative distribution function F(x). From
the N data points, {x i} for i = 0, 1,2, . . . , N −1, construct the empirical distribution
function

FN (x) =
1
N

N−1
∑

i=0

Θ(x − x i) (5.39)
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Figure 5.1: Results from running the program cepheid.py (Listing 5.2) which
inputs the data file cepheids.dat (Listing 5.1, see also Table 5.1) and com-
putes the correlation coefficent r and its p-value p. The values r = −0.894
and p = 0.05% are found showing that period and magnitude are strongly
anticorrelated.

where Θ(x) is the Heaviside step function,

Θ(x) =
§

0 for x < 0
1 for x ≥ 0. (5.40)

The K-S test statistic is the largest distance between the empirical distribution func-
tion and the hypothesized distribution function,

D =max
x
|FN (x)− F(x)|. (5.41)

A large value of D indicates that the empirical distribution function is dissimilar to
the hypothesized distribution function and would lead us to reject the null hypoth-
esis (that the data points were drawn from the hypothesized distribution). In the
limit of large N , under the null hypothesis, the distribution of the quantity K =

p
N D

is known and so a p-value can be computed from the formula

p = 2
∞
∑

i=1

(−1)i−1e−2i2K2
. (5.42)
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For moderate values of N this formula for the p-value is approximately correct with

K =
�p

N + 0.12+
0.11
p

N

�

D. (5.43)

As an example, suppose that we have N data points that are drawn from a nor-
mal distribution with mean µ and standard deviation σ, while our null hypothesis
is that they are drawn from a normal distribution with zero mean and unit standard
deviation. The K-S test can be used to test the null hypothesis. Figure 5.2 shows the
results from the program ks1.py which simulates this scenario. For the particular
choice of parameters, with N = 13, µ = 0, and σ = 3 (and random seed of 101)
we find D = 0.424 which is very significant having a p-value of only p = 1.26%.

Listing 5.3: Program ks1.py

1 import pylab, random, math
2

3 N = input(’number of data points −> ’)
4 mu = input(’mean of true distribution −> ’)
5 sigma = input(’standard deviation of true distribution −> ’)
6 seed = input(’random number seed −> ’)
7 random.seed(seed)
8

9 # generate data
10 x = [random.gauss(mu, sigma) for i in range(N)]
11

12 # compute K−S test statistic
13 x.sort()
14 D = 0.0 # biggest difference
15 for i in range(N):
16 # the hypothesized cumulative distribution at this point
17 F = 0.5*(1.0+math.erf(x[i]/2**0.5))
18 F0 = i/float(N)
19 F1 = (i+1)/float(N)
20

21 # compute distance both before and after this point
22 d = max(abs(F−i/float(N)), abs(F−(i+1)/float(N)))
23

24 # keep this value if it is the largest so far
25 if d > D:
26 (D, X) = (d, x[i])
27 if abs(F−F0) > abs(F−F1): # determine the interval
28 segment = [F, F0]
29 else:
30 segment = [F, F1]
31

32 # compute p−value for this statistic
33 K = D*(N**0.5+0.12+0.11/N**0.5)
34 a = 2.0
35 b = −2.0*K**2
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36 p = 0.0
37 eps = 1e−6
38 for i in range(1, 20):
39 term = a*math.exp(b*i**2)
40 if abs(term) < eps*p:
41 break
42 p += term
43 a *= −1.0
44

45 # plot the empirical and hypothetical distributions
46 xfine = pylab.arange(−3.0, 3.0, 0.01)
47 F = [0.5*(1.0+math.erf(xx/2**0.5)) for xx in xfine]
48 pylab.plot(xfine, F, label=’hypothetical’)
49 pylab.plot(x+[float(’inf’)], [i/float(N) for i in range(N+1)], ’o−’,
50 drawstyle=’steps’, label=’empirical’)
51 pylab.plot([X, X], segment, ’D−−’, label=’D = %g’%D)
52 pylab.ylabel(’cumulative probability’)
53 pylab.xlabel(’x’)
54 pylab.title(’p−value = %3g%%’%(100*p))
55 pylab.legend(loc=0)
56 pylab.grid()
57 pylab.show()

The K-S test can also be used to test if two sets of data, {x1,i} for i =
0, 1,2, . . . , N1−1 and {x2, j} for j = 0, 1,2, . . . , N2−1, were drawn from the same dis-
tribution (the null hypothesis). Now there are two empirical distribution functions,
FN1
(x) and FN2

(x), and the test statistic is

D =max
x
|FN1
(x)− FN2

(x)|. (5.44)

Furthermore, the approximate p-value can be obtained as before using the quan-
tity K in Eq. (5.43) but now N is an effective number of data points, which is the
harmonic sum of the number of data points in each set,

1
N
=

1
N1
+

1
N2

(5.45)

or

N =
N1N2

N1 + N2
. (5.46)

An example of the use of the K-S test applied to two data sets is given in the
program ks2.py. Here the two sets of data are both drawn from Cauchy distribu-
tions but with different medians x0 and scale parameters γ. Figure 5.3 shows the
results when the medians of the distributions are both 0 but the scale parameters
are different with γ1 = 0.1 and γ2 = 0.5. The first data set has N1 = 13 samples
and the second data set has N2 = 10 samples. The random seed is 101. The K-S
test statistic is found to be D = 0.52 and the p-value is only p = 5.8%. Notice that
to generate the random data samples drawn from the Cauchy distribution we use
the quantile function of Eq. (5.17) with the value p being a uniform deviate in the
range from 0 to 1.
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Figure 5.2: Results from running the program ks1.py (Listing 5.3) with the
input parameters N = 13, µ = 0, σ = 3, and random number seed 101. The
hypothetical (zero-mean and unit-variance null hypothesis) and empirical cu-
mulative distributions are shown and the red line segment shows the maximum
interval between these two distributions (which gives D). The p-value is very
low, p = 1.26%, which shows there little support for the null hypothesis.

Listing 5.4: Program ks2.py

1 import pylab, random, math
2

3 N1 = input(’number of data points in set 1 −> ’)
4 N2 = input(’number of data points in set 2 −> ’)
5 med1 = input(’median of set 1 distribution −> ’)
6 med2 = input(’median of set 2 distribution −> ’)
7 gam1 = input(’scale parameter of set 1 distribution −> ’)
8 gam2 = input(’scale parameter of set 2 distribution −> ’)
9 seed = input(’random number seed −> ’)

10 random.seed(seed)
11

12 # generate data
13 x1 = [med1+gam1*math.tan(math.pi*(random.random()−0.5)) for i in range(

N1)]
14 x2 = [med2+gam2*math.tan(math.pi*(random.random()−0.5)) for i in range(

N2)]
15
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16 # compute K−S test statistic
17 x1.sort()
18 x2.sort()
19 x1 += [float(’inf’)] # add a final point at infinity
20 x2 += [float(’inf’)] # add a final point at infinity
21 F1 = F2 = 0.0
22 D = 0.0 # biggest difference
23 i = j = 0
24 while i <= N1 and j <= N2:
25 F1 = i/float(N1)
26 F2 = j/float(N2)
27 d = abs(F1−F2)
28 if x1[i] < x2[j]:
29 x = x1[i]
30 i += 1
31 elif x1[i] > x2[j]:
32 x = x2[j]
33 j += 1
34 else:
35 x = x1[i]
36 i += 1
37 j += 1
38 if d > D:
39 (D, X) = (d, x)
40 segment = [F1, F2]
41

42 # compute p−value for this statistic
43 N = N1*N2/float(N1+N2) # effective number of data points
44 K = D*(N**0.5+0.12+0.11/N**0.5)
45 a = 2.0
46 b = −2.0*K**2
47 p = 0.0
48 eps = 1e−6
49 for i in range(1, 20):
50 term = a*math.exp(b*i**2)
51 if abs(term) < eps*p:
52 break
53 p += term
54 a *= −1.0
55

56 # plot the two distributions
57 pylab.plot(x1, [i/float(N1) for i in range(N1+1)], ’o−’, drawstyle=’

steps’,
58 label=’x1’)
59 pylab.plot(x2, [i/float(N2) for i in range(N2+1)], ’o−’, drawstyle=’

steps’,
60 label=’x2’)
61 pylab.plot([X, X], segment, ’D−−’, label=’D = %g’%D)
62 pylab.ylabel(’cumulative probability’)
63 pylab.xlabel(’x’)
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Figure 5.3: Results from running the program ks2.py (Listing 5.4) with the
input parameters N1 = 13, N2 = 10, x0,1 = 0, x0,2 = 0, γ1 = 0.1, γ2 = 0.5, and
random number seed 101. The two empirical distributions are shown and the
red line segment shows the maximum interval between these two distributions
(which gives D). The p-value is small, p = 5.6%.

64 pylab.title(’p−value = %3g%%’%(100*p))
65 pylab.legend(loc=2)
66 pylab.grid()
67 pylab.show()

Now we consider Pearson’s chi-squared statistic for categorical data. As a
model problem, consider an experiment attempting to determine if a hypotheti-
cal event rate (e.g., radioactive decay events) is consistent with observation event
counts. In a given measurement time τ the expected number of events from a Pois-
son process is µ = λτ where λ is the event rate. Given this Poisson mean, µ, the
probability of obtaining n events is

f (n;µ) =
µn

n!
e−µ. (5.47)

Suppose we perform N measurements of a Poisson process with mean µ and we
obtain a set of event counts, {ni} for i = 0,1, 2, . . . N −1. The observed frequencies
are {Ok} for k = 0,1, 2,max{ni} where Ok is the number of times that ni = k in the
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N measurements,

Ok =
N−1
∑

i=0

δni ,k. (5.48)

The expected frequencies are

Ek = N f (k;µ0) = N
µk

0

k!
e−µ0 k = 0,1, 2, . . . ,max{ni}. (5.49)

where µ0 is the hypothesized Poisson mean under the null hypothesis. Pearson’s
chi-squared statistic is then given by

X 2 =
K−1
∑

k=0

(Ok − Ek)2

Ek
(5.50)

where K is the number of bins.

We need to choose the number of bins to use in constructing the observed
and expected frequencies. A normal choice of the number of bins to use is K =
max{ni}+ 2, where the bins k = 0, 1,2, . . . , max{ni} all correspond frequencies of
obtaining k events, and the last bin k = max{ni}+ 1 corresponds to the frequency
of obtaining more than max{ni} events. We have obviously OK−1 = 0 and

EK−1 = N −
K−2
∑

k=0

Ek. (5.51)

Now we need to determine the probability of obtaining a value X 2 or greater
under the null hypothesis. If we consider the sum

χ2 =
ν−1
∑

i=0

z2
i (5.52)

where each of the zi values are drawn from a normal distribution with zero-mean
and unit-variance then χ2 follows a chi-squared distribution,

f (χ2;ν) =
1

2ν/2Γ (ν/2)
(χ2)ν/2−1e−χ

2/2. (5.53)

The p-value for a given χ2 is then

p = 1−
γ(ν/2,χ2/2)
Γ (ν/2)

(5.54)

where

γ(a, x) =

∫ x

0

ta−1e−t d t (5.55)

is the incomplete gamma function. If we approximate each term in the sum of
Eq. (5.50) for X 2 as being approximately the square of a normal deviate of zero
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Figure 5.4: Results from running the program chisq1.py (Listing 5.5) with
the input parameters N = 200 measurments, µ= 4.5 (the true Poisson mean),
µ0 = 4 (the hypothesized Poisson mean), and random number seed 101. The
observed and expected frequencies are shown. The test statistic is X 2 = 30.7
and its p-value for ν= 11 degrees of freedom (K = 12 bins) is p = 0.12%.

mean and unit variance then we would expect X 2 to be chi-squared distributed un-
der the null hypothesis. However, not every term in the sum is independent since
we have the constraint that the sum of the values of Ek must equal the sum of the
values of Ok. This constraint means that the number of degrees of freedom that we
must use is ν= K − 1 in determining the significance of a measured X 2 value.

The program chisq1.py performs a simulation in which N measurements are
made of a Poisson process of true mean µ, and then the chi-squared test statistic
and its p-value are computed for a null hypothesis of a Poisson process of mean
µ0. To simulate this scenario, we need to construct a method for choosing the
observed number of events, ni , for each measurement i. For a Poisson process of
rate λ, probability distribution that the next event will occur in time t is f (t;λ) =
λexp(−λτ). We can then generate events at times

t j − t j−1 = −λ−1 log u j (5.56)

where t0 = 0 and u j is a uniform deviate between 0 and 1, and continue while
t j < τ. A trick to doing this efficiently is rather than adding exponentially-
distributed deviates until the sum is greater than τ, multiply uniform random devi-
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ates until the product is less than exp(−µ) where µ= λτ is the Poisson mean. The
program chisq1.py is given in Listing 5.5, and Fig. 5.4 shows the observed frequen-
cies N = 200 observations of a process with a true mean µ = 4.5 and the expected
frequencies for the hypothetical mean µ0 = 4. The test statistic is X 2 = 30.7 and its
p-value for ν = 11 degrees of freedom (K = 12 bins) is p = 0.12% which indicates
that the observed frequencies are not consistent with the expected frequencies. The
random number seed 101 is used.

Listing 5.5: Program chisq1.py

1 import pylab, scipy.special, random, math
2

3 N = input(’number of measurements −> ’)
4 mu = input(’true rate of events −> ’)
5 mu0 = input(’rate of events under null hypothesis −> ’)
6 seed = input(’random number seed −> ’)
7 random.seed(seed)
8

9 # generate data
10 n = [0]*N # number of events for each measurement
11 q = math.exp(−mu)
12 for i in range(N):
13 p = random.random()
14 while p > q:
15 p *= random.random()
16 n[i] += 1
17

18 # compute observed and expected distributions
19 K = max(n)+2 # number of bins; last one is the >max(n) bin
20 E = [0.0]*K # expected frequency
21 O = [0]*K # observed frequency
22 factorial = 1 # k!
23 for k in range(K−1):
24 O[k] = n.count(k)
25 E[k] = N*mu0**k*math.exp(−mu0)/factorial
26 factorial *= k+1
27 # remaining number in the >max(n) bin
28 E[K−1] = N−sum(E)
29

30 # compute chi−squared statistic
31 chisq = sum((O[k]−E[k])**2/E[k] for k in range(K))
32

33 # compute significance
34 nu = K−1 # degrees of freedom
35 p = 1.0−scipy.special.gammainc(0.5*nu, 0.5*chisq)
36

37 # plot results
38 counts = pylab.array(range(K))
39 pylab.bar(counts−0.3, O, color=’b’, width=0.3, label=’observed’)
40 pylab.bar(counts, E, color=’g’, width=0.3, label=’expected’)
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41 labels = [str(k) for k in range(K)]
42 labels[K−1] = ’>’+labels[K−1]
43 pylab.xticks(counts, labels)
44 pylab.ylabel(’frequency’)
45 pylab.xlabel(’counts’)
46 pylab.xlim(xmin=−1, xmax=K)
47 pylab.legend()
48 pylab.title(’chi−squared = %f, p−value = %f%%’%(chisq, 100.0*p))
49 pylab.show()

Pearson’s chi-squared test can also be used to determine if two data sets are
drawn from the same distribution. Let {Rk}, k = 0, 1,2, . . . , K − 1 be the observed
frequencies from the first data set and {Sk}, k = 0, 1,2, . . . , K − 1 be the observed
frequencies from the second data set. Pearson’s chi-squared test statistic is now

X 2 =
K−1
∑

k=0

�p

N2/N1 Rk −
p

N1/N2 Sk

�2

Rk + Sk
. (5.57)

where

N1 =
K−1
∑

k=0

Rk and N2 =
K−1
∑

k=0

Sk. (5.58)

Here we only include those bins k in which Rk + Sk 6= 0.

The program chisq2.py performs a simulation in which the first data set com-
prises N1 measurements of a Poisson process with mean µ1 from source 1 and the
second data set comprises N2 measurements of a Poisson process with mean µ2 from
source 2. The result when N1 = 200, N2 = 300, µ1 = 5, µ2 = 4, with random seed
101 is a test statistic value X 2 = 41 for ν = 11 degrees of freedom (K = 12 bins)
which has a very small p-value, p = 0.002%.

Listing 5.6: Program chisq2.py

1 import pylab, scipy.special, random, math
2

3 N1 = input(’number of measurements from source 1 −> ’)
4 N2 = input(’number of measurements from source 2 −> ’)
5 mu1 = input(’rate of events from source 1 −> ’)
6 mu2 = input(’rate of events from source 2 −> ’)
7 seed = input(’random number seed −> ’)
8 random.seed(seed)
9

10 # generate data
11 n1 = [0]*N1 # number of events for each measurement from source 1
12 n2 = [0]*N2 # number of events for each measurement from source 2
13 q1 = math.exp(−mu1)
14 q2 = math.exp(−mu2)
15 for i in range(N1):
16 p = random.random()
17 while p > q1:
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Figure 5.5: Results from running the program chisq2.py (Listing 5.6) with
the input parameters N1 = 200 measurments from a Poisson process with mean
µ1 = 5 as the first set of data and N2 = 300 measurements from a Poisson
process with mean µ2 = 4, and a random number seed 101. The value of the
test statistic is X 2 = 41 for ν = 11 degrees of freedom (K = 12 bins) and a
p-value of p = 0.002%.

18 p *= random.random()
19 n1[i] += 1
20 for i in range(N2):
21 p = random.random()
22 while p > q2:
23 p *= random.random()
24 n2[i] += 1
25

26 # compute observed and expected distributions
27 K = max(n1+n2)+1
28 R = [n1.count(k) for k in range(K)] # frequencies from source 1
29 S = [n2.count(k) for k in range(K)] # frequencies from source 1
30 counts = range(K)
31

32 # delete bins where R and S are both zero; note: need to go backwards
33 for k in reversed(range(K)):
34 if R[k] == 0 and S[k] == 0:
35 del R[k]
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36 del S[k]
37 del counts[k]
38

39 # remaining number of bins
40 K = len(counts)
41

42 # compute chi−squared statistic
43 Q1 = (float(N2)/float(N1))**0.5
44 Q2 = 1.0/Q1
45 chisq = sum((Q1*R[k]−Q2*S[k])**2/(R[k]+S[k]) for k in range(K))
46

47 # compute significance
48 nu = K−1 # degrees of freedom
49 p = 1.0−scipy.special.gammainc(0.5*nu, 0.5*chisq)
50

51 # plot results
52 counts = pylab.array(counts)
53 pylab.bar(counts−0.3, R, color=’b’, width=0.3, label=’source 1’)
54 pylab.bar(counts, S, color=’g’, width=0.3, label=’source 2’)
55 pylab.ylabel(’normalized frequency’)
56 pylab.xlabel(’counts’)
57 pylab.xticks(range(min(counts), max(counts)+1))
58 pylab.xlim(xmin=min(counts)−1, xmax=max(counts)+1)
59 pylab.legend()
60 pylab.title(’chi−squared = %f, p−value = %f%%’%(chisq, 100.0*p))
61 pylab.show()

5.3 Data modelling

Suppose that we have a set of N data points {(x i , yi)}, i = 0, 1,2, . . . , N−1 which we
wish to fit to some function y = f (x; a) where a are the parameter of the function
that we are trying to determine. Suppose that the uncertainties in the values yi are
σi and for now we will suppose that there are no uncertainties in the values of x i
(or that these uncertainties are very small). If our model is correct then we suppose
that the residuals,

ei = yi − f (x i; a), (5.59)

are normally-distributed random numbers with zero mean and variance σi . In this
case, the quantity

χ2 =
N−1
∑

i=0

e2
i

σ2
i

=
N−1
∑

i=0

[yi − f (x i; a)]2

σ2
i

(5.60)

will be chi-squared distributed with ν = N degrees of freedom. To determine the
best fit parameters â we minimize the value χ2 over the parameters. That is, we
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find the parameter values that solve the M equations,

0=
N−1
∑

i=0

yi − f (x i; â)
σ2

i

∂ f (x i; â)
∂ a j

j = 0,1, 2, . . . , M − 1 (5.61)

for the M parameter values {a j}, j = 0,1, 2, . . . , M − 1. This is known as chi-square
fitting.

As a concrete example, consider fitting data to a straight line, which is known
as linear regression. The equation of a straight line is

y = f (x; a, b) = a+ bx (5.62)

where a and b are the intercept and the slope respectively. The equations we must
solve are then

0=
N−1
∑

i=0

yi − â− b̂x i

σi
(5.63)

and

0=
N−1
∑

i=0

x i(yi − â− b̂x i)
σi

. (5.64)

These equations can be written as the system of equations

âS + b̂Sx = Sy

âSx + b̂Sx x = Sx y

(5.65)

where

S =
N−1
∑

i=0

1
σ2

i

Sx =
N−1
∑

i=0

x i

σ2
i

Sy =
N−1
∑

i=0

yi

σ2
i

Sx x =
N−1
∑

i=0

x2
i

σ2
i

Sx y =
N−1
∑

i=0

x i yi

σ2
i

(5.66)

and we obtain the solution

â =
Sx xSy − SxSx y

∆
b̂ =

SSx y − SxSy

∆
(5.67)

with
∆= SSx x − S2

x . (5.68)

We can further estimate the errors in the fit parameters â and b̂. By linear error
propagation, these will be

σ2
a =

N−1
∑

i=0

�

∂ â
∂ yi

σi

�2

and σ2
b =

N−1
∑

i=0

�

∂ b̂
∂ yi

σi

�2

. (5.69)
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We evaluate the partial derivatives using Eq. (5.67),

∂ â
∂ yi

=
1
σ2

i

Sx x − x iSx

∆

∂ b̂
∂ yi

=
1
σ2

i

x iS − Sx

∆
, (5.70)

and we obtain

σ2
a =

Sx x

∆
σ2

b =
S
∆

. (5.71)

In addition, we can compute the covariance between â and b̂, σab, which is

σab =
N−1
∑

i=0

∂ f (x i; â, b̂)
∂ â

∂ f (x i; â, b̂)

∂ b̂
σ2

i = −
Sx

∆
. (5.72)

The value of χ2 for the best-fit parameters, â and b̂, then determines the good-
ness of fit of our model, which is the p-value for that value of χ2,

p = 1−
γ(ν/2,χ2/2)
Γ (ν/2)

(5.73)

where in this case the number of degrees of freedom is ν = N − 2 since there are
two fitted parameters. If p is very small then the fit is questionable (or the errors
are underestimated).

The program regress.py demonstrates the above procedure for linear regres-
sion. The data points are generated with yi = a + bx i + ei where ei are random
normally-distributed errors in the independent variable with variance σ2

i where
the values of σi are themselves randomly chosen with a log-normal distribution,
f (σ) = (2πσ2)1/2 exp(− 1

2 ln2σ) then scaled to 10% of their value. Figure 5.6
shows the results of the program regress.py for N = 10 data points with true inter-
cept and slope parameters a = 0 and b = 1 respectively and a random number seed
of 101; the estimated intercept and slope are â = −0.01±0.05 and b̂ = 1.02±0.09
respectively and the fit has χ2 = 6.35 and a p-value of p = 61%, which indicates
that the fit is good.

Listing 5.7: Program regress.py

1 import pylab, scipy.special, random
2

3 N = input(’number of points −> ’)
4 a = input(’true intercept −> ’)
5 b = input(’true slope −> ’)
6 seed = input(’random seed −> ’)
7 random.seed(seed)
8

9 # generate random data with random uncertainties in y
10 x = pylab.arange(0.5/N, 1.0, 1.0/N)
11 dy = [0.1*random.lognormvariate(0.0, 1.0) for i in range(N)]
12 y = [random.gauss(a+b*x[i], dy[i]) for i in range(N)]
13
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Figure 5.6: Results from running the program regress.py (Listing 5.7) with
input parameters N = 10, a = 0, b = 1, and random number seed 101. The
resulting fit has â = −0.01 ± 0.05, b̂ = 1.02 ± 0.09, χ2 = 6.35, and p-value
p = 61%.

14 # compute linear regression coefficients ahat and bhat and uncertainties
15 w = [1.0/dy[i]**2 for i in range(N)]
16 S = sum(w[i] for i in range(N))
17 Sx = sum(w[i]*x[i] for i in range(N))
18 Sy = sum(w[i]*y[i] for i in range(N))
19 Sxx = sum(w[i]*x[i]**2 for i in range(N))
20 Sxy = sum(w[i]*x[i]*y[i] for i in range(N))
21 Delta = S*Sxx−Sx**2
22 ahat = (Sxx*Sy−Sx*Sxy)/Delta
23 bhat = (S*Sxy−Sx*Sy)/Delta
24 da = (Sxx/Delta)**0.5
25 db = (S/Delta)**0.5
26

27 # compute chi−square and p−value of the fit
28 chisq = sum(w[i]*(y[i]−ahat−bhat*x[i])**2 for i in range(N))
29 p = 1.0−scipy.special.gammainc((N−2.0)/2.0, chisq/2.0)
30

31 # plot the data and the fit
32 pylab.errorbar(x, y, fmt=’o’, yerr=dy, label=’data: a=%g, b=%g’%(a, b))
33 pylab.plot([0.0, 1.0], [ahat, ahat+bhat],
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34 label=’fit: a=%.2f$\pm$%.2f, b=%.2f$\pm$%.2f’%(ahat, da, bhat
, db))

35 pylab.xlabel(’x’)
36 pylab.ylabel(’y’)
37 pylab.title(’chi−squared = %f, p−value = %f%%’%(chisq, 100.0*p))
38 pylab.legend(loc=2)
39 pylab.show()



5.3. DATA MODELLING 151

Exercise 5.1 The period and magnitude data for Cepheid variables given in
Table 5.1 can be used to determine the distance to M101. From observations of
nearby Cepheid variables, it is known that the period-luminosity relationship
is given by

MV = −1.43− 2.81 log10

�

P
1 day

�

(5.74)

where MV is known as the absolute magnitude, which is the magnitude that a
star would have if it were located at a distance of ten parsecs (10 pc) where

1 pc= 3.085680 25× 1016 m. (5.75)

The relationship between apparent magnitude, V , absolute magnitude, MV ,
and distance d is

d = 10(V−MV+5)/5 pc (5.76)

where V − MV is known as the distance modulus. By fitting a straight line to
the Cepheid data of V versus log10(P/1day), one can determine the distance
to M101.

The data in Table 5.1 has errors in both the measured values of the magni-
tude as well as the measured values of the period. When both the independent
and dependent variables contain uncertainties {σ2

x ,i} and {σ2
y,i} respectively,

the variance in the residuals ei = yi − a− bx i of a linear fit will be

σ2
i = Var(yi − a− bx i) = σ

2
y,i + b2σ2

x ,i (5.77)

and a chi-squared fit requires finding the values of a and b for which

χ2 =
N−1
∑

i=0

(yi − a− bx i)2

σ2
y,i + b2σ2

x ,i

(5.78)

is a minimum. The presence of the slope parameter b in the denominator
makes the problem of linear regression considerably more difficult.

However, the period-luminosity relationship for Cepheid variables has a
known slope, b = −2.81. Therefore, one needs only to find the intercept a in
the equation

V = a− 2.81 log10

�

P
1 day

�

(5.79)

for the Cepheid data in order to determine the distance to M101.
Use Eq. (5.78) to obtain a formula for the minimum chi-squared estimate

of the intercept a, and, using the Cepheid data, find the intercept in Eq. (5.79).
Then, using the period-luminosity relationship for Cepheids, Eq. (5.74), and
the distance modulus formula of Eq. (5.76), determine the distance in parsecs
to M101. (The uncertainty in x = log10(P/1 day), σx , is related to the uncer-
tainty in P, σP , by σx = σP/(P ln10).)
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We now go beyond fitting data to a line and consider the problem of fitting data
to a more complicated function. We suppose that the function that we wish to fit to
the data is a linear combination of M basis functions, fi(x), j = 0,1, 2, . . . , M − 1,
so that

y =
M−1
∑

j=0

a j f j(x) (5.80)

where the values of the coefficients a j are to be determined. For example we may
wish to fit the data to a polynomial

y = a0 + a1 x + a2 x2 + · · ·+ aM−1 x M−1. (5.81)

The general linear least squares fit then minimizes

χ2 =
N−1
∑

i=0

�

yi −
∑M−1

j=0 a j f j(x i)
�2

σ2
i

(5.82)

for the parameters a j . This equation can be written in matrix form as

χ2 = ‖X · a− b‖2 (5.83)

where a is a M -dimensional column vector whose components are the parameters
a j , b is an N -dimensional column vector whose components are the independent
variables weighted by the inverse of their standard deviations, bi = yi/σi , and X is
a N ×M design matrix of the weighted basis functions X i j = f j(x i)/σi:

χ2 =
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(5.84)

Notice that if the number of parameters M is equal to the number of data
points N then the design matrix X is a square matrix so we can simply solve the
linear system X · a = b for a by the methods described in Sec. A.1. The resulting
fit is then “perfect” with χ2 = 0. This is not the interesting case, however: our goal
is to find the best fit model having fewer parameters than data points. In this case
the matrix X is not a square matrix and we cannot invert it and solve for a.



5.3. DATA MODELLING 153

Our goal is to minimize χ2 and over the unknown parameters a and thereby
determine the parameters of the best fit â. At the minimum point we have ∇aχ

2 =
0, which results in the normal equations

XT ·X · â =XT · b (5.85)

where XT is the transpose of the matrix X. Notice that the matrix XT ·X is a M×M
square matrix, a is a M ×1 column vector, and XT · b is also a M ×1 column vector.
Therefore we can solve the normal equations for â using the methods described in
Sec. A.1. The solution is

â = Σ ·XT · b (5.86)

where Σ = (XT · X)−1 is the covariance matrix for the parameters. That is, the
variance in â j , σa j

, is the component Σ2
j j of the matrix Σ. This can be seen by

computing

σ2
a j
=

N−1
∑

i=0

�

∂ â j

∂ yi
σi

�2

(5.87)

where
∂ â j

∂ yi
σi =

∂ â j

∂ bi
=

M−1
∑

k=0

Σ jkX ik, (5.88)

which results in

σ2
a j
=

N−1
∑

i=0

M−1
∑

k=0

M−1
∑

l=0

Σ jkΣ jl X ikX il =
M−1
∑

k=0

M−1
∑

l=0

Σ jkΣ jl(Σ
−1)kl =

M−1
∑

k=0

Σ jkδ jk = Σ j j .

(5.89)

The covariance matrix Σ specifies a confidence ellipsoid in parameter space.
If it is not diagonal, then the uncertainties in the parameters are correlated and
principal axes of the ellipsoid will be linear combinations of the parameters. To
interpret what a confidence ellipsoid means, note that the parameters that minimize
χ2, â, will not be exactly the true value of the parameters, but will be within some
distance∆a of the true parameters. The difference between the value of χ2 for the
true parameters and the minimum value of χ2 will be

∆χ2 = ‖X · (â+∆a)− b‖2 − ‖X · â− b‖2

≈∆aT ·XT ·X ·∆a

=∆aT ·Σ−1 ·∆a

(5.90)

where we have used the fact that χ2 is a minimum for the parameters â. It turns
out that ∆χ2 is chi-squared distributed with M degrees of freedom if the errors
in the original data set are normally distributed. In this case, we can construct an
ellipsoid of constant ∆χ2 that will contain the true value of the parameters with
probability 1− p where

1− p =
γ(M/2,∆χ2/2)
Γ (M/2)

(5.91)
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1− p (%) M = 1 M = 2 M = 3

68.27 1.00 2.30 3.53
90 2.71 4.61 6.25
95 3.84 5.99 7.82
95.45 4.00 6.18 8.03
99 6.64 9.21 11.34
99.73 9.00 11.83 14.16

Table 5.2: ∆χ2 values for confidence ellipsiods of confidence level 1 − p for
the joint estimation of M parameters in the large data sample limit. Data from
Table 33.2 of the 2011 Review of Particle Physics, K. Nakamura et al. (Particle
Data Group), Journal of Physics G 37 075021 (2010).

is known as the confidence level for the ellipsoid. Values of ∆χ2 corresponding to
various confidence levels are given in Table 5.2.

Once a confidence level is chosen and its∆χ2 value is found, the error ellipsoid
would be the locus of points a in parameter space that satisfies

(a− â)T ·Σ−1 · (a− â) =∆χ2. (5.92)

In order to determine this ellipsoid, we perform a Cholesky decomposition of the
matrix Σ,

Σ= L ·LT (5.93)

where L is a lower-diagonal matrix. (The Cholesky decomposition can be thought
of as a special case of the LU-decomposition described in Sec. A.1 for a symmetric
matrix.) Then Eq. (5.92) becomes

‖L−1 · (a− â)‖=
Æ

∆χ2. (5.94)

To construct the ellipsoid, consider a set of points {u} on a unit sphere, ‖u‖ = 1;
then map these points to points on the error ellipsoid through

a = â+
Æ

∆χ2 L · u. (5.95)

Often we are interested in two-dimensional projections of the confidence ellipsoids
into a plane spanned by two of the parameters, say a j and ak. The corresponding
sub-matrix Σ[ jk] is

Σ[ jk] =

�

σ2
j σ jk

σ jk σ2
k

�

(5.96)

and its Cholesky decomposition is

L[ jk] =
�

σ j 0
r jkσk (1− r2

jk)
1/2σk

�

(5.97)



5.3. DATA MODELLING 155

where

r jk =
σ jk

σ jσk
(5.98)

is the correlation coefficient between a j and ak. With u = [cosθ , sinθ] being a one-
parameter family of points on a unit circle, the error ellipse on the a j-ak plane is
then given parametrically by

a j = â j +
Æ

∆χ2 σ j cosθ

ak = âk +
Æ

∆χ2 σk[r jk cosθ + (1− r2
jk)

1/2 sinθ]
0≤ θ ≤ 2π. (5.99)

Although the method such as LU-decomposition (or Cholesky decomposition)
that is described in Sec. A.1 can be used to solve the normal equations, a more
natural approach is the singular value decomposition (SVD) method. The singular
value decomposition of a N ×M real matrix X is

X=U ·W ·VT (5.100)

where U is a N × N orthogonal matrix (i.e., a matrix in which U−1 = UT), V is a
M ×M orthogonal matrix, and W is N ×M rectangular diagonal matrix with non-
zero components are only on the main diagonal, and these components, w j =Wj j ,
j = 0, 1,2, . . . , M−1, are all non-negative. The overdetermined system of equations
given by X · â = b can then be “solved” as

â =V ·W+ ·UT · b (5.101)

where W+ is the pseudoinverse of the matrix W, which is formed by taking the
transpose of W and taking the reciprocal of all the diagonal elements so that W+

j j =
1/w j , j = 0,1, 2, . . . , M − 1. (The pseudoinverse, also known as the Moore-Penrose
inverse can be written W+ = (WT ·W)−1 ·WT.) The covariance matrix Σ is

Σ=V · (WT ·W)−1 ·VT. (5.102)

The geometric interpretation is that the M×M diagonal square matrix (WT·W)−1 =
diag{1/w2

j } gives the lengths of the principal axes of the error ellipsiod, and the
orthogonal matrix V is a rotation in the parameter space so that the columns of V
correspond to the components of the principal axes.

The advantage to using the SVD method is to handle situations in which the
data do not clearly distinguish between two of the basis functions, say f j(x) and
fk(x). When this occurs, the matrix XT ·X becomes singular and methods such as
LU-decomposition will be unable to solve the linear system. In the case of a singu-
lar value decomposition, the pathology will manifest itself as one of the diagonal
elements of W being zero (or very close to zero). The solution is the following:
when computing W+ = diag{1/w j}, set any diagonal element in which w j is small
to zero rather than 1/w j . By doing so, the particular combination of basis functions
that is degenerate is effectively being given a very large uncertainty.
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Figure 5.7: Results from running the program svdfit.py (Listing 5.8) for
N = 50 data points fitted to a polynomial of degree 2 (M = 3) with coefficients
a0 = 1, a1 = 2, and a3 = −3, and random number seed 101. The resulting fit
has â0 = 1.03, â1 = 1.86, â2 = −2.88, χ2 = 54.2, and p-value p = 22%.

The program svdfit.py performs a polynomial fit to simulated data. The data
points are generated as before but now with a true model given by a polynomial
of specified order and coefficients. Figure 5.7 shows the results of the program
svdfit.py for N = 50 data points following the quadratic function y = a0+ a1 x +
a2 x2 with a0 = 1, a1 = 1, a2 = −3 and a random number seed of 101; the estimated
coefficients are â0 = 1.03, â1 = 1.86, and â2 = −2.88, and the fit has χ2 = 54.2
and a p-value of p = 22%, which indicates that the fit is good. The 90% confidence
error ellipses (1.64-sigma) for the parameters are shown in Fig. 5.8.

Listing 5.8: Program svdfit.py

1 import pylab, scipy.special, random, math
2

3 N = input(’number of points −> ’)
4 M = 1+input(’polynomial order −> ’)
5 a = pylab.zeros(M)
6 for j in range(M):
7 a[j] = input(’polynomial coefficient a%d −> ’%j)
8 seed = input(’random seed −> ’)
9 random.seed(seed)

10
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Figure 5.8: One-sigma (68% confidence) error ellipses for the measured pa-
rameters from running the program svdfit.py (Listing 5.8) with the same
input parameters as in Fig. 5.7. The true values of the parameters are shown
by a red star.

11 # generate random data with random uncertainties in y
12 x = pylab.arange(0.5/N, 1.0, 1.0/N)
13 dy = pylab.array([0.1*random.lognormvariate(0.0, 1.0) for i in range(N)

])
14 y = [sum(a[j]*x[i]**j for j in range(M)) for i in range(N)]
15 y = pylab.array([random.gauss(y[i], dy[i]) for i in range(N)])
16

17 # construct vector b and design matrix X
18 b = pylab.zeros(N)
19 X = pylab.zeros((N, M))
20 for i in range(N):
21 b[i] = y[i]/dy[i]
22 for j in range(M):
23 X[i,j] = x[i]**j/dy[i]
24

25 # compute fit parameters ahat and covariance matrix Sigma
26 (U, w, VT) = pylab.svd(X)
27 wmax = max(w)
28 Winv = pylab.zeros((M, N))
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29 Sigma = pylab.zeros((M, M))
30 eps = 1e−6
31 for j in range(M):
32 if w[j] > eps*wmax:
33 Winv[j,j] = 1.0/w[j]
34 else:
35 Winv[j,j] = 0.0
36 Sigma[j,j] = Winv[j,j]**2
37 ahat = pylab.dot(VT.T, pylab.dot(Winv, pylab.dot(U.T, b)))
38 Sigma = pylab.dot(VT.T, pylab.dot(Sigma, VT))
39

40 # compute chi−square and p−value of the fit
41 chisq = pylab.norm(pylab.dot(X, ahat)−b)**2
42 p = 1.0−scipy.special.gammainc((N−M)/2.0, chisq/2.0)
43

44 # plot results
45 xfine = pylab.arange(0.0, 1.0, 0.01)
46 yfit = [sum(ahat[j]*xx**j for j in range(M)) for xx in xfine]
47 ytrue = [sum(a[j]*xx**j for j in range(M)) for xx in xfine]
48 pylab.errorbar(x, y, fmt=’o’, yerr=dy)
49 pylab.plot(xfine, yfit, label=’fit: a=’+str(ahat))
50 pylab.plot(xfine, ytrue, ’−−’, label=’true: a=’+str(a))
51 pylab.xlabel(’x’)
52 pylab.ylabel(’y’)
53 pylab.title(’chi−squared = %f, p−value = %f%%’%(chisq, 100.0*p))
54 pylab.legend(loc=3)
55

56 # plot 90% (1.64−sigma) error ellipses
57 cos = [math.cos(2.0*math.pi*i/100.0) for i in range(101)]
58 sin = [math.sin(2.0*math.pi*i/100.0) for i in range(101)]
59 pylab.figure(figsize=(10, 10))
60 for j in range(M−1):
61 for k in range(j+1, M):
62 pylab.subplot(M−1, M−1, (M−1)*j+k)
63 (s0, s1, s01) = (Sigma[j,j]**0.5, Sigma[k,k]**0.5, Sigma[j,k])
64 r = s01/(s0*s1)
65 s = (1.0−r**2)**0.5
66 ex = [ahat[j]+3.53**0.5*s0*cos[i] for i in range(len(cos))]
67 ey = [ahat[k]+3.53**0.5*s1*(r*cos[i]+s*sin[i]) for i in
68 range(len(cos))]
69 pylab.plot(ex, ey)
70 pylab.plot([ahat[j]], [ahat[k]], ’go’)
71 pylab.plot([a[j]], [a[k]], ’r*’)
72 pylab.xlabel(’a%d’%j)
73 pylab.ylabel(’a%d’%k)
74 pylab.grid()
75 pylab.show()
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5.4 Bayesian inference

The statistical methods that have been described in the previous two sections have
been frequentist in nature: the statements that have been made are all of the form
“assuming the null-hypothesis, what is the probability of the observed data occur-
ring.” The use of the p-value to reject a null hypothesis and the use of confidence
ellipsoids for fit parameters are methods of frequentist inference.

Bayesian inference, on the other hand, attempts to establish the probability
of a hypothesis or a model given the observed data (in contrast to the frequen-
tist approach of finding the probability of the data given a hypothesis or a model).
Suppose that P(D | H) is the conditional probability of observing the data D given
a hypothesis H (this is what is used in frequentist inference). Then the conditional
probability of the hypothesis given the data, which is known as the posterior prob-
ability, is given by Bayes’s law,

P(H | D) =
P(H)P(D | H)

P(D)
(5.103)

where P(H) and P(D) are unconditional probabilities: P(H) is known as the prior
probability of the hypothesis being true (the probability of the hypothesis before
considering the data) and P(D) is the known as the evidence, which is the total
probability of the data under any hypothesis — it is essentially a normalization
constant required to make P(H | D) into a probability.

Bayes’s law follows directly from the relationship between conditional proba-
bilities and joint probabilities: If P(A∩ B) is the joint probability of both A and B
being true then then P(A∩ B) = P(A | B)P(B) where P(A | B) is the probability of A
being true given that B is true and P(B) is the unconditional probability of B being
true. Also, P(A∩B) = P(B | A)P(A). By equating these two expressions for the joint
probability P(A∩ B) we arrive at Bayes’s law, P(B | A) = P(B)P(A | B)/P(A).

For the problem of data modelling, we wish to determine the posterior proba-
bility distribution of the parameters a given the observed data, which we will denote
x ,

p(a | x ) =
p(a)L(a | x )

∫

da p(a)L(a | x )
(5.104)

where L(a | x ) is the likelihood function for the parameters, which is simply related
to the probability density function of the data for those parameters f (x ; a), by

L(a | x ) = f (x ; a). (5.105)

The prior probability distribution for the parameters, p(a), represents any previous
knowledge we have on the parameter values, e.g., from previous experiments or
from physical constraints. Notice that the denominator of the right hand side of
Eq. (5.104) is the integral of the likelihood function over the entire parameter space,
which is known as the marginalized likelihood; it the required normalization in order
for p(a | x ) to be a probability density function for the model parameters a.
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A method to locate the most probable parameter values â, i.e., the mode of
the distribution p(a | x ), is to perform a random walk in the parameter space,
computing p(a | x ) at every step. A Markov chain Monte Carlo (MCMC) method is
one in which the random steps are taken so that the probability distribution of the
parameter steps are given by the posterior distribution, p(a | x ). In such a random
walk, since the steps themselves map out the desired posterior distribution, we
obtain not only the most likely value of the parameters but also their distribution.

We have already discussed the Metropolis algorithm for drawing random pa-
rameter values that follow a desired distribution p(a | x ). Here we consider a
generalization known as the Metropolis-Hastings algorithm. First we need to choose
some proposal distribution, q(a′; a), that gives the probability density for moving to
a new position a′ from the current position a. Suppose that at step n in our ran-
dom walk we are point an in parameter space. Then, use the proposal distribution
q(a′; an) to choose some candidate point â′ in the parameter space. Now construct
the Hastings test ratio

α(an, a′) =min
§

1,
p(a′ | x )
p(an | x )

q(an; a′)
q(a′; an)

ª

. (5.106)

This is the probability that we accept the proposed point a′, so we generate a ran-
dom number u uniformly distributed between 0 and 1 and if u ≤ α(an, a′) then
we accept the proposed move and set an+1 = a′; otherwise, we reject the proposed
move and stay at the current position by setting an+1 = an.

The Metropolis-Hastings algorithm yields a transition probability w(a → a′)
from some point a in parameter space to some new point a′ in parameter space
that is

w(a→ a′) = q(a′; a)α(a, a′). (5.107)

If we multiply this by p(a | x ) we find

p(a | x )w(a→ a′) = p(a | x )q(a′; a)α(a, a′)

=min
�

p(a | x )q(a′; a), p(a′ | x )q(a; a′)
	

= p(a′ | x )q(a; a′) min
§

p(a | x )
p(a′ | x )

q(a′; a)
q(a; a′)

, 1
ª

= p(a′ | x )q(a; a′)α(a′, a)
= p(a′ | x )w(a′→ a).

(5.108)

This is the detailed balance equation that implies that the random walk will attain a
physical equilibrium of reversible transitions between points. The probability dis-
tribution for landing at point a′ is found by integrating the p(a)w(a→ a′) over all
possible starting positions a, which is

∫

w(a→ a′) p(a | x ) da = p(a′ | x )
∫

w(a′→ a) da = p(a′ | x ) (5.109)

and so we see that the probability distribution for a′ is indeed the desired distribu-
tion p(a′ | x ). Note that the w(a′ → a) is the probability of arriving at position a



5.4. BAYESIAN INFERENCE 161

given that we started at position a′, and so if we integrate it over all possible ending
points a the result is the probability that we go somewhere, which is unity.

Notice the following important feature of the Markov chain Monte Carlo
method: The posterior distribution (which we wish to determine) appears in the
Hastings test ratio α only as a ratio. That is, in order to calculate α, we need only

p(a) L(a | x )∝ p(a | x ), (5.110)

and we do not need to know the normalization constant for the distribution p(a | x ).
The likelihood is a known function and the prior distribution p(a) is also a known
function.

Although the choice of the proposal distribution can be (almost) arbitrary, the
effectiveness of the Markov chain Monte Carlo can depend sensitively on it. We
want the proposal to be broad enough that we can explore the parameter space
effectively should our initial guess at the parameters, a0, be far away from the
most-probable values, â, otherwise it may take an arbitrarily large number of steps
to find the region where the parameters are truly maximized. On the other hand,
if the distribution is too broad then when we find ourselves in the right region of
parameter space we may find ourselves rejecting nearly every proposal that takes
us away from that region, which would prevent us from effectively exploring the
parameter space in the high probability region.

A useful method for performing a Markov chain Monte Carlo is to begin with
a burn-in time. Because our initial guess a0 might be in a very unlikely region of
parameter space, it might take a number of steps before the chain moves to the
correct region and begins to behave in some sense of equilibrium. During the burn-
in period the proposal distribution should be relatively broad so that the chain can
move about effectively until it finds the region of high likelihood. The width of the
proposal distribution should be tuned during the burn-in period to achieve some
reasonable rate of accepting proposals: if the acceptance rate is too low, i.e., if the
fraction of proposals that are accepted is too small (say, < 10%) then we should be
taking smaller steps; however, if the acceptance rate is too high, i.e., if the fraction
of proposals that are accepted is too large (say, > 50%), then we should be taking
bigger steps.

After the burn-in period, the chain is in equilibrium and explores the most likely
region of parameter space, with the individual steps sampling from the posterior
distribution that we wish to determine. The post-burn-in phase is then used to
measure the posterior distribution.

An example will help to clarify the method. Suppose that there are N data
points, {x i}, i = 0, 1,2, . . . , N − 1, that are Gaussian random deviates having a
mean µ1 for the first M points, i < M (the first stage), and having a mean µ2 for
the remaining N − M points, i >= M (the second stage). Our goal is to compute
the posterior probability distribution p(a | x ) where a = [µ1,µ2, M] are our model
parameters. The likelihood of a proposed set of parameters a is

L(a | x ) = f (x ; a) = (2πσ2)N/2 exp

�

−
M−1
∑

i=0

(x i −µ1)2

2σ2
−

N−1
∑

i=M

(x i −µ2)2

2σ2

�

(5.111)
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while we take our prior distributions to be uniform distributions with p(µ1) and
p(µ2) being constant over the entire µ1-µ2 plane (this is known as an improper
prior because it is not normalizable) and p(M) = 1/N for 0 ≤ M ≤ N − 1 and
p(M) = 0 otherwise.

We will adopt a proposal distribution that is a bivariate Gaussian distribution
in µ1 and µ2,

q(µ′1,µ′2;µ1,µ2) =
1

2πσ2
µ

exp

�

−
(µ′1 −µ1)2 + (µ′2 −µ2)2

2σ2
µ

�

, (5.112)

where σµ determines the step-size in the µ1-µ2 plane. Initially we will take a fairly
large value σµ = 1 but we will adjust this parameter during the burn-in phase so
that we maintain a reasonable proposal acceptance rate. The proposal distribution
for the transition point M , q(M ′; M), will be a uniform distribution of integers in
the range M −∆M to M +∆M where ∆M is the typical step size in M . We begin
with a step size of ∆M = N/10 and we again adjust this value during the burn in
phase.

Note that both the proposal distributions q(µ′1,µ′2;µ1,µ2) and q(M ′; M) are
symmetric: q(µ′1,µ′2;µ1,µ2) = q(µ1,µ2;µ′1,µ′2) and q(M ′; M) = q(M ; M ′), so the
ratio of the proposal distributions in the Hastings test ratio α will be unity. That is,
the Metropolis-Hastings algorithm reduces to the Metropolis algorithm when one
chooses symmetric proposal distributions. The acceptance test ratio is therefore

α(an, a′) =







0 M ′ < 0 or M ′ ≥ N ,
Λ 0≤ M ′ < N and Λ≤ 1
1 otherwise

(5.113)

(note the prior on M ′ gives rise to the condition α = 0 when M < 0 or M ≥ N)
where Λ is the likelihood ratio,

Λ=
L(a′ | x )
L(an | x )

. (5.114)

It is more convenient to compute the logarithm of the likelihood ratio,

lnΛ=−
M ′−1
∑

i=0

(x i −µ′1)
2

2σ2
−

N−1
∑

i=M ′

(x i −µ′2)
2

2σ2

+
Mn−1
∑

i=0

(x i −µ1,n)2

2σ2
+

N−1
∑

i=Mn

(x i −µ2,n)2

2σ2

=
µ′1SM ′−1

σ2
+
µ′2(SN−1 − SM ′)

σ2
−

M ′µ′21 + (N −M ′)µ′22
2σ2

−
µ1,nSMn−1

σ2
−
µ2,n(SN−1 − SMn

)

σ2
+

Mnµ
2
1,n + (N −Mn)µ2

2,n

2σ2

(5.115)
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Figure 5.9: The Gaussian data generated by mcmc.py (Listing 5.9) has N = 200
data points; the first M = 150 of the data points have a mean of µ1 = 2 and a
standard deviation σ = 1, while the remaining N −M = 50 data points have a
mean of µ2 = −1 and a standard deviation σ = 1. A random seed of 101 was
used to generate this data. The program mcmc.py then uses a Markov chain
Monte Carlo method to estimate the values of µ1, µ2, and M .

where we can pre-compute the sums Sk, k = 0, 1,2, . . . , N − 1,

Sk =
k
∑

i=0

x i . (5.116)

Our initial guess for the parameters will be µ1 = µ2 = 0 and M = N/2.

The program mcmc.py performs a Markov chain Monte Carlo to estimate pos-
terior probability distribution for the values µ1, µ2, and M . Figure 5.9 shows the
data generated for N = 200 points with a first-stage mean of µ1 = 2, a second-
stage mean of µ2 = −1, a transition from first- to second-stage at M = 150 points,
and a random number seed of 101. We monitor the evolution of the estimated pa-
rameters in Fig. 5.10. The burn-in period is during the first 1000 points (it is in
the red shaded region). During this time, the value of step size control parameters
σµ and ∆M are adjusted to maintain an acceptance rate between 10% and 50%.
At the end of the burn-in period, the chain has located the peak of the posterior
distribution, and the subsequent measurement period (100 000 steps) are used to
measure the posterior probability distribution, which is shown in Fig. 5.11. Notice
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Figure 5.10: The evolution of the estimated parameter values µ1, µ2, and M
as a function of Markov chain step performed by mcmc.py (Listing 5.9) for the
data shown in Fig. 5.9. The first 1000 data points in the red shaded region are
during the burn-in period; subsequently, the random steps are used as samples
of the posterior probability. Only 5000 points following the burn-in period are
shown.

from Fig. 5.10 that the correct value of M is determined quite accurately, and from
Fig. 5.11 that the true value of µ1 and µ2, which is shown as a red star, is found
close to the central region of the posterior probability distribution.

Listing 5.9: Program mcmc.py

1 import pylab, random, math, mpl_toolkits.mplot3d
2

3 # input parameters
4 N = input(’number of points −> ’)
5 Mtrue = input(’transition point −> ’)
6 mu1true = input(’mean of first stage −> ’)
7 mu2true = input(’mean of second stage −> ’)
8 seed = input(’random seed −> ’)
9 random.seed(seed)

10

11 # generate random data with fixed uncertainty
12 sigma = 1.0
13 x = [random.gauss(mu1true, sigma) for i in range(Mtrue)]
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Figure 5.11: The posterior distribution for parameter values µ1 and µ2 found
by mcmc.py (Listing 5.9) for the data shown in Fig. 5.9 (the posterior distri-
bution for M is sharply peaked at the correct value M = 150). The red star
indicates the location of the true values µ1 = 2 and µ2 = −1.

14 x += [random.gauss(mu2true, sigma) for i in range(Mtrue, N)]
15

16 # cumulative sum of x used to compute likelihoods
17 S = [sum(x[:i]) for i in range(N)]
18

19 # set up lists to store the steps
20 nburn = 1000 # number steps during burn−in phase
21 nmeas = 100000 # number of measurement steps after burn−in
22 M = [0]*(nburn+nmeas)
23 mu1 = [0.0]*(nburn+nmeas)
24 mu2 = [0.0]*(nburn+nmeas)
25

26 # perform MCMC
27 dM = int(0.1*N+0.5) # step size for M
28 dmu = 1.0 # step size for mu1 and mu2
29 M[0] = N//2 # initial guess for transition point
30 accept = 0
31 for step in range(1, nburn+nmeas):
32 M[step] = M[step−1]+random.randint(−dM, dM)
33 mu1[step] = random.gauss(mu1[step−1], dmu)
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34 mu2[step] = random.gauss(mu2[step−1], dmu)
35 logLambda = mu1[step]*S[M[step]−1]+mu2[step]*(S[N−1]−S[M[step]])
36 logLambda −= 0.5*(M[step]*mu1[step]**2+(N−M[step])*mu2[step]**2)
37 logLambda −= mu1[step−1]*S[M[step−1]−1]+mu2[step−1]*(S[N−1]−S[M[

step−1]])
38 logLambda += 0.5*(M[step−1]*mu1[step−1]**2+(N−M[step−1])*mu2[step−

1]**2)
39 logLambda /= sigma**2
40 if M[step] < 0 or M[step] >= N: # reject step if M is out of bounds
41 logalpha = −float(’inf’)
42 else:
43 logalpha = min(0, logLambda)
44 if logalpha >= 0 or math.log(random.random()) < logalpha: # accept

step
45 accept += 1
46 else:
47 # reject step: reset parameters to previous values
48 M[step] = M[step−1]
49 mu1[step] = mu1[step−1]
50 mu2[step] = mu2[step−1]
51 # during burn−in phase, adjust step sizes to control rejection rate
52 if step < nburn and step%20 == 0: # check every 20 steps
53 rate = accept/20.0 # acceptance rate
54 if rate < 0.1: # rate too low: take smaller steps
55 dmu *= 0.5
56 dM = 1+int(dM//2)
57 if rate > 0.5: # rate too high: take bigger steps
58 dmu *= 2.0
59 dM = 2*dM
60 accept = 0
61

62 # plot data
63 pylab.figure()
64 pylab.errorbar(range(N), x, yerr=sigma, fmt=’o’)
65 pylab.ylabel(’x’)
66 pylab.xlabel(’sample’)
67

68 # plot traces
69 nplot = 5000 # number of points after burn−in to plot
70 pylab.figure()
71 pylab.subplot(2, 1, 1)
72 pylab.plot(range(−nburn, nplot), mu1[:nburn+nplot], label=’stage 1’)
73 pylab.plot(range(−nburn, nplot), mu2[:nburn+nplot], label=’stage 2’)
74 pylab.ylabel(’mean’)
75 pylab.xlim(−nburn, nplot)
76 pylab.axvspan(−nburn, 0, facecolor=’r’, alpha=0.2)
77 pylab.legend()
78 pylab.subplot(2, 1, 2)
79 pylab.plot(range(−nburn, nplot), M[:nburn+nplot])
80 pylab.ylabel(’transition point’)
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81 pylab.xlim(−nburn, nplot)
82 pylab.axvspan(−nburn, 0, facecolor=’r’, alpha=0.2)
83 pylab.xlabel(’step’)
84

85 # plot probability distribution in mu1−mu2 plane
86 fig = pylab.figure()
87 (Z, xedges, yedges) = pylab.histogram2d(mu1[nburn:], mu2[nburn:], bins

=20,
88 normed=True)
89 X = 0.5*(xedges[:−1]+xedges[1:]) # centers of histogram bins
90 Y = 0.5*(yedges[:−1]+yedges[1:]) # centers of histogram bins
91 (Y, X) = pylab.meshgrid(Y, X)
92 axis = fig.gca(projection=’3d’, azim=−50, elev=20)
93 surf = axis.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=pylab.cm.

jet)
94 axis.contour(X, Y, Z, zdir=’z’, offset=−pylab.amax(Z))
95 axis.contourf(X, Y, Z, 50, zdir=’x’, offset=min(mu1[nburn:]), colors=’c’

)
96 axis.contourf(X, Y, Z, 50, zdir=’y’, offset=max(mu2[nburn:]), colors=’c’

)
97 axis.set_xlabel(’mu1’)
98 axis.set_ylabel(’mu2’)
99 axis.set_zlabel(’probability’)

100 axis.set_zlim(−pylab.amax(Z), pylab.amax(Z))
101 axis.plot([mu1true], [mu2true], [−pylab.amax(Z)], ’r*’)
102 fig.colorbar(surf)
103 pylab.show()
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Appendix A

Algorithms

First: a warning! None of the routines presented here should be used in serious
numerical work. These routines are intended to demonstrate various algorithms,
but they are not written for efficiency or robustness. Almost certainly there will
be packages that provide much better implementations than are given here, and
these should be used instead. For example, in Python the module numpy (which is
part of pylab) provides linear algebra routines that should be used rather than the
illustrative ones given here. Similarly, scipy (also part of pylab) provides routines
for finding roots, computing integrals, etc.

That said, I think it is helpful to learn about the algorithms in order to have a
better understanding of what these packages are doing, so it is in this spirit that the
implementations below are given.

A.1 Linear algebra

A common problem in linear algebra is the following: Given a N ×N matrix A, and
a N -dimensional vector b, solve the linear system

A · x = b (A.1)

for the N -dimensional vector x .
The approach that we will consider here, known as LU decomposition, was in-

troduced by Alan Turing. The idea is to factor the matrix A into the product of a
lower-triangular matrix L and a upper-triangular matrix U, i.e.,

A= L ·U (A.2)

where, e.g., if N = 4, we have

L=







L00 0 0 0
L10 L11 0 0
L20 L21 L22 0
L30 L31 L32 L33






and U=







U00 U01 U02 U33
0 U11 U12 U13
0 0 U22 U23
0 0 0 U33






. (A.3)
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If we can achieve this, then we can recast our linear problem as follows:

A · x = L ·U · x = b (A.4)

so if we let y =U · x then we must solve the system

L · y = b (A.5a)

U · x = y . (A.5b)

We first solve Eq. (A.5a) for y and then solve Eq. (A.5b) to solve for x . This is not
so hard since L and U are triangular matrices: the system of equations that must
be solved for y are

L00 y0 = b0 → y0 = b0/L00

L10 y0 + L11 y1 = b1 → y1 = (b1 − L10 y0)/L11

L20 y0 + L21 y1 + L22 y2 = b2 → y2 = (b2 − L20 y0 − L21 y1)/L22

...
...

so if these are evaluated from the top down then you always have all the values of
yi that you need to compute the next one; similarly the system of equations that
must be solved for x are

U00 x0 + U01 x1 + U02 x2 + · · ·+ U0,N−2 xN−2 + U0,N−1 xN−1 = y0

U11 x1 + U12 x2 + · · ·+ U1,N−2 xN−2 + U1,N−1 xN−1 = y1

...

UN−2,N−2 xN−2 + UN−2,N−1 xN−1 = yN−2

UN−1,N−1 xN−1 = yN−1

which are then solved from the bottom up so that

xN−1 = yN−1/UN−1,N−1

xN−2 = (yN−2 − UN−2,N−1 xN−1)/UN−2,N−2

xN−3 = (yN−3 − UN−3,N−1 xN−1 − UN−3,N−2 xN−2)/UN−3,N−3

...

and, again, when solved in this order, all the values of x i that are required at each
step will have already been computed. Therefore the procedure is as follows: first
construct the components yi

yi =
1
Lii

 

bi −
i−1
∑

j=0

Li j y j

!

for i = 0,1, . . . , N − 1 (A.6a)

and then construct the components x i

x i =
1

Uii

 

yi −
N−1
∑

j=i+1

Ui j x j

!

for i = N − 1, N − 2, . . . , 0. (A.6b)
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Again, notice that by counting i upward in computing the yi values and downward
in computing the x i values, the needed values in the expressions are always avail-
able.

The challenge now is to do the factorization of A into L ·U. This requires us
to solve a system of equations that has the form

A00 = L00U00 A01 = L00U01 A02 = L00U02 · · ·
A10 = L10U00 A11 = L10U01 + L11U11 A12 = L10U02 + L11U12 · · ·
A20 = L20U00 A21 = L20U01 + L21U11 A22 = L20U02 + L21U12 + L22U22 · · ·

...
...

...
. . .

which are N2 equations for N(N + 1) unknowns. The extra N unknowns can be
specified by setting the diagonal elements Lii = 1. The equations can be arranged
in column-major-order starting with the leftmost column as follows: for the first
column we have

A00 = U00 → U00 = A00

A10 = L10U00 → L10 = A10/U00

A20 = L20U00 → L20 = A20/U00

A30 = L30U00 → L30 = A30/U00

...
...

for the second column we have

A01 = U01 → U01 = A01

A11 = L10U01 + U11 → U11 = A11 − L10U01

A21 = L20U01 + L21U11 → L21 = (A21 − L20U01)/U11

A31 = L30U01 + L31U11 → L31 = (A31 − L30U01)/U11

...
...

for the third column we have

A02 = U02 → U02 = A02

A12 = L10U02 + U12 → U12 = A12 − L10U02

A22 = L20U02 + L21U12 + U22 → U22 = A22 − L20U02 − L21U12

A32 = L30U02 + L31U12 + L32U22 → L32 = (A32 − L30U02 − L31U12)/U22

...
...

and so on. The equations can then be solved in the order indicated: for each j =
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0, 1, . . . , N − 1, compute first

Ui j =











Ai j −
i−1
∑

k=0

LikUk j for i = 0, 1, . . . , j

0 for i = j + 1, . . . , N − 1

(A.7a)

and then compute

Li j =















0 for i = 0,1, . . . , j − 1
1 for i = j

1
U j j

�

Ai j −
j−1
∑

k=0

LikUk j

�

for i = j + 1, . . . , N − 1.
(A.7b)

If these procedures are performed in order before j is advanced then again all
the components are calculated before they are required. This method is known
as Crout’s algorithm.

I should note that this method is not very numerically stable without “pivoting”,
which involves exchanging rows or columns so that you never end up dividing by
zero in Eq. (A.7b). See the warning at the beginning of this appendix!

Once in LU-decomposed form, it is simple to compute the determinant of the
matrix, detA =

∏N−1
i=0 Uii , and the inverse can also be computed by solving the

system

L ·Y = I (A.8a)

U ·A−1 =Y (A.8b)

which is akin to solving the system Eqs. (A.5) repeatedly (column-by-column) for
the vectors b corresponding to each column of the identity matrix and the resulting
x is then the corresponding column of the inverse matrix.

A special case of LU-decomposition is the case of a tridiagonal matrix, for which
the only non-zero components lie along the diagonal and next to the diagonal.
Suppose we wish to solve the equation
























β0 γ0 0 0 0 · · · 0 0
α1 β1 γ1 0 0 · · · 0 0
0 α2 β2 γ2 0 · · · 0 0
0 0 α3 β3 γ3 · · · 0 0
...

...
...

. . .
. . .

. . .
...

...
0 0 0 · · · αN−3 βN−3 γN−3 0
0 0 0 0 · · · αN−2 βN−2 γN−2
0 0 0 0 0 · · · αN−1 βN−1

























·

























x0
x1
x2
x3
...

xN−3
xN−2
xN−1

























=

























b0
b1
b2
b3
...

bN−3
bN−2
bN−1

























(A.9)
for the vector x . Rather than representing the whole N×N matrix, we have only the
3 N -vectors α, β , and γ (and we do not even need the components α0 and γN−1 of
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these vectors). The solution can be achieved with a single forward decomposition
and substitution followed by a back-substitution. The forward sweep is given by

yi =











γi

βi
for i = 0

γi

βi −αi yi−1
for i = 1, 2, . . . N − 1

(A.10a)

and

x i =











bi

βi
for i = 0

bi −αi x i−1

βi −αi yi−1
for i = 1, 2, . . . N − 1.

(A.10b)

The back-substitution is then

x i = x i − x i+1 yi i = N − 2, N − 3, . . . , 0. (A.10c)

Example routines for performing LU-decomposition, ludecomp, and for using
such a decomposition to compute the determinant of a matrix, determinant, solv-
ing a linear system, solve, finding the inverse of a matrix, inverse, and solving a
tridiagonal linear system, tridiag, are given in the listing for module linalg.py.

Listing A.1: Module linalg.py

1 import pylab
2

3

4 def ludecomp(A):
5 """ Use Crout’s algorithm to perform LU decomposition of A. """
6

7 n = len(A)
8 L = pylab.zeros(A.shape)
9 U = pylab.zeros(A.shape)

10 for i in range(n):
11 L[i,i] = 1.0
12 for j in range(n):
13 for i in range(j+1):
14 U[i,j] = A[i,j]
15 for k in range(i):
16 U[i,j] −= L[i,k]*U[k,j]
17 for i in range(j+1, n):
18 L[i,j] = A[i,j]
19 for k in range(j):
20 L[i,j] −= L[i,k]*U[k,j]
21 L[i,j] /= U[j,j]
22 return (L, U)
23

24

25 def determinant(A):
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26 """ Computes the determinant of a matrix. """
27

28 (L, U) = ludecomp(A)
29 det = U[0,0]
30 for i in range(1, len(A)):
31 det *= U[i,i]
32 return det
33

34

35 def solve(A, b):
36 """ Solves the linear system A.x = b for x. """
37

38 n = len(A)
39 (L, U) = ludecomp(A)
40 x = pylab.zeros(b.shape)
41 y = pylab.zeros(b.shape)
42 # forward substitute to solve equation L.y = b for y
43 for i in range(n):
44 y[i] = b[i]
45 for j in range(i):
46 y[i] −= L[i,j]*y[j]
47 y[i] /= L[i,i]
48 # back substitute to solve equation U.x = y for x
49 for i in reversed(range(n)):
50 x[i] = y[i]
51 for j in range(i+1, n):
52 x[i] −= U[i,j]*x[j]
53 x[i] /= U[i,i]
54 return x
55

56

57 def inverse(A):
58 """ Finds the inverse of A. """
59

60 # note that the routine solve works even if b is a matrix!
61 B = pylab.eye(len(A)) # the identity matrix
62 return solve(A, B)
63

64

65 def tridiag(alp, bet, gam, b):
66 """ Solves the linear system A.x = b for x where A is a tridiagonal
67 matrix with subdiagonal elements given in the vector alp, diagonal
68 elements given in the vector bet, and superdiagonal elements given

in
69 the vector gam. """
70

71 n = len(bet)
72 x = pylab.zeros(b.shape)
73 y = pylab.zeros(b.shape)
74 y[0] = gam[0]/bet[0]
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75 x[0] = b[0]/bet[0]
76 for i in range(1, n):
77 den = bet[i]−alp[i]*y[i−1]
78 y[i] = gam[i]/den
79 x[i] = (b[i]−alp[i]*x[i−1])/den
80 for i in reversed(range(n−1)):
81 x[i] −= x[i+1]*y[i]
82 return x

A.2 Root finding

The task of root finding is simply: given a function f (x), find the value of x for
which

f (x) = 0. (A.11)

If we try to solve N equations with N unknowns, we have a multidimensional root
finding problem

f (x ) = 0. (A.12)

We first consider the one-dimensional case.

The first task is to bracket the root of interest. By bracket we mean that we
wish to find some interval a < x < b in which the root exists. Furthermore, we
require sgn f (a) = − sgn f (b).

Once the root is bracketed, there are several methods that can be used to locate
its value. The bisection method, which was described earlier, is a robust method in
which the interval is continually bisected so that the root is contained in smaller
and smaller intervals. If the desired accuracy of the root is ε then the number of
iterations required to find the root is log2(|b− a|/ε).

A more powerful method is known as Newton’s method. Suppose that our initial
guess for the root is the value x0. Then the Taylor series of our function about this
guess is

f (x) = f (x0) + f ′(x0) (x − x0) + · · · (A.13)

and since we are looking for the root, f (x) = 0, we solve this equation for x to
obtain our next guess,

x1 = x0 −
f (x0)
f ′(x0)

. (A.14)

This process is repeated iteratively with

x i+1 = x i −
f (x i)
f ′(x i)

. (A.15)

This procedure has quadratic convergence, meaning that if the error at step i is εi
then the error at step i + 1 is εi+1∝ ε2

i . To see this, note that

0= f (x) = f (x i) + f ′(x i) (x − x i) +
1
2

f ′′(ξi)(x − x i)
2 (A.16)
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where ξi is some number between x and x i . Using Eq. (A.15) we see

x − x i+1 =
1
2

f ′′(ξi)
f ′(x i)

(x − x i)
2 (A.17)

and therefore we have

εi+1 =
1
2
| f ′′(ξi)|
| f ′(x i)|

ε2
i (A.18)

where εi+1 = |x − x i+1| and εi = |x − x i |.
Note that Newton’s method requires not only the function f (x) but also its

derivative f ′(x). However, it is often the case that we do not know this derivative
function. In such cases, it is possible to use the numerical difference approximation
to the derivative,

f ′(x)≈
f (x + d x)− f (x)

d x
. (A.19)

Example root solving routines by bisection, bisect, or by Newton’s method,
newton, are given in the listing for module root.py. The routine bisect performs
a bisection search for a root given a bracketing interval. The routine newton uses
the Newton method to compute the root of a function given an initial guess. If the
user supplies a derivative function dfdx then that is used; otherwise the difference
approximation is used.

Listing A.2: Module root.py

1 def bisect(f, a, b, eps=1e−6):
2 """ Finds the root of function f in the interval (a,b) by bisection.

"""
3

4 # orient the search so that f(a) < 0 and f(b) > 0
5 if f(a) > 0: # swap a and b
6 (a, b) = (b, a)
7 while abs(a−b) > eps:
8 xmid = (a+b)/2.0
9 if f(xmid) < 0:

10 a = xmid
11 else:
12 b = xmid
13 return xmid
14

15

16 def newton(f, x, dfdx=None, eps=1e−6):
17 """ Finds the root of a function using Newton’s method. """
18

19 if dfdx is None: # for estimating derivative
20 delta = eps**0.5
21 while True:
22 fx = f(x)
23 if dfdx is None:
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24 dx = delta*x
25 if abs(dx) < delta:
26 dx = delta
27 df = (f(x+dx)−fx)/dx
28 else:
29 df = dfdx(x)
30 dx = −fx/df
31 x += dx
32 if abs(dx) < eps:
33 return x

Exercise A.1 A difficulty with Newton’s method is that the iteration will not
generically converge on the root: it is quite possible that at some iteration
the guess may find itself at a point where f ′(x i) is very close to zero; if this
happens, the next iteration will shoot off. Consider the complex equation

z3 − 1= 0 (A.20)

for which Newton’s method gives the iteration

zi+1 =
2
3 zi −

1
3 z−2

i . (A.21)

Explore the basin of convergence for the root z = 1, i.e., the region in the
complex plane for which the initial guess eventually converges on the root.

Newton’s method can be used to obtain recurrence relations for computing
various functions. For example, the square root function,

p
y , can be obtained by

solving for the root of the equation

x2 − y = 0. (A.22)

Here, f (x) = x2 − y so Newton’s method yields the recurrence relation

x i+1 =
1
2

�

x i +
y
x i

�

(A.23)

with x0 = 1. Another example is to compute the reciprocal, 1/y , of a number. Here
we let f (x) = y−1/x and Newton’s method then results in the recurrence relation

x i+1 = x i(2− y x i). (A.24)

This method works when 1
2 ≤ y < 1. Note: only multiplication and addition is

required to do division.

Now consider the problem of multidimensional root finding. We wish to solve
a system of N equations,

f (x ) = 0 (A.25)
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for the N unknowns, x . The Taylor expansion of f (x i +∆x i) is

f (x i +∆x i) = f (x i) + J(x i) ·∆x i +O(∆x 2
i ) (A.26)

where J is the Jacobian matrix

J=





∂ f1/∂ x1 · · · ∂ f1/∂ xN
...

. . .
...

∂ fN/∂ x1 · · · ∂ fN/∂ xN



 . (A.27)

We thus determine ∆x i by solving the matrix equation

J(x i) ·∆x i = − f (x i) (A.28)

and iterate our guess
x i+1 = x i +∆x i . (A.29)

If the Jacobian is not known, it can be approximated with a finite difference ap-
proximation.

A.3 Minimization

Finding the minimum of a function f (x) is somewhat different from finding the
roots of the function, but there are some similarities. The first task is to bracket the
minimum. However, here a bracket is a triplet of points (a, b, c) with a < b < c
and where f (b) < f (a) and f (b) < f (c). If this is the case then we know that the
minimum (or a minimum) of f (x) must lie somewhere between a and c.

The analog of the bisection method of root finding is the following: Suppose
that the interval (a, b) is larger than the interval (b, c); then choose a trial value x
somewhere in the interval between a and b and compute f (x). If f (x)< f (b) then
our new bracketing triplet is (a, x , b) but if f (x) > f (b) then our new bracketing
triplet is (x , b, c).

Ideally we would like the width of the bracket to be the same for either of these
outcomes, so we require b − a = c − x . Now we need to consider where the value
of b should have been placed initially. Suppose that the distance b− a is a factor ϕ
larger than the distance c− b. Let∆= c− b = x−a so that b−a = ϕ∆= c− x . We
want the new bracketing triplet to have the same proportion. In the case that the
new bracketing triplet is (a, x , b), then, we would like x − a = ϕ(b− x). However,
x−a =∆ and b− x = (c− x)−(c− b) = ϕ∆−∆. We therefore find∆= ϕ2∆−ϕ∆
or

ϕ2 −ϕ − 1= 0. (A.30)

The (positive) solution to this equation is

ϕ =
1+
p

5
2

≈ 1.61803399 (A.31)
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which is known as the golden ratio.

With each iteration, the bracketing interval will be reduced to a fraction 1/ϕ ≈
0.618033989 of its previous size — almost as good as the fraction 0.5 that was
achieved in each iteration in the bisection search for a root.

Because we are searching for the minimum of a function, we might not be able
to achieve the expected accuracy in the location of the minimum. This is because
a function is relatively insensitive to offsets ∆x from the position of the minimum.
Note that if x is the minimum of the function then

f (x +∆x)≈ f (x) +
1
2

f ′′(x)∆x2

= f (x)(1± ε)
(A.32)

where

ε=
|x2 f ′′(x)|
2| f (x)|

�

∆x
x

�2

. (A.33)

If |x2 f ′′(x)| ∼ | f (x)| then we see that the tolerance that we should strive for is

|∆x | ∼ |x |
p
ε. (A.34)

The minimization method discussed above is only applicable to one-
dimensional problems, and it will only find the minimum within the given bracket,
which might be a local minimum rather than a global minimum. Finding a global
minimum of a (possibly multidimensional) function is a more complex problem. A
useful, stochastic method for searching for the approximate global minimum is sim-
ulated annealing. The method is not guaranteed to find the true global minimum
of the function (to within some tolerance), but it is useful in finding an acceptable
minimum, particularly in problems of optimization.

Annealing is a process in which a metal is brought to high temperatures and
then cooled, which allows the collection of atoms to settle into a minimum energy
state. In case of numerical minimization of a function, points within the domain
of the function are selected randomly, and the current guess of the minimum is
updated probabilistically. The domain is explored widely at first, where transitions
from one point in the domain to another are frequently accepted, even if the value
of the function increases in doing so by borrowing energy from the reservoir. At
temperature T the probability of being in a state with energy E is proportional to
e−E/kB T (the Boltzmann distribution) where kB is Boltzmann’s constant. As cooling
occurs, the exploration narrows as transitions to points with larger values of the
function are accepted less and less often when they involve an increase in energy.
A temperature parameter controls the degree to which unfavorable transitions will
be allowed. A cooling schedule describes how the temperature decreases with it-
eration. At very low temperature, the system settles down to the local minimum,
which is hopefully quite close to the global minimum, if the cooling takes place
slowly enough. (If the system is cooled to T = 0 immediately, only the local mini-
mum in the vicinity of the initial state will be found.)
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Suppose the current guess of the position of the minimum of some function
f (x ) is x 0. A new position x is proposed. If the current temperature parameter is
T then this proposed position is accepted with probability

P = e−[ f (x )− f (x 0)]/T (A.35)

if f (x ) > f (x 0); otherwise the proposal is always accepted. This is the Metropo-
lis algorithm discussed in Sec. 4.2. By sometimes allowing such uphill moves, the
annealing process allows wider exploration of the parameter space and is less sus-
ceptible to being trapped in a local minimum. As T is decreased, such uphill moves
become less frequent, and the annealing process becomes more and more greedy,
demanding that only downhill moves be allowed.

The initial temperature T should be chosen to be larger than the range of the
function over its domain so that the entire domain is explored at high temperature.
(In the implementation below, if an initial temperature is not specified, twice the
value of f (x 0) is used where x 0 is the initial guess.) At any given temperature,
several proposals are considered before reducing the temperature (100 times the
number of dimensions in x in the implementation below), after which the tempera-
ture is lowered by 5%. Eventually, when the temperature is low and new proposals
are always rejected, the current position is taken to be the minimum.

The listing for minimize.py contains three routines: the first one, bracket,
is designed to search for a bracketing triplet (a, b, c) by walking downhill from an
initial guessed interval (a, b). The second routine, golden, employs the golden
section search algorithm to find a minimum given a bracketing triplet (a, b, c). The
third routine, anneal, performs simulated annealing to find an approximate global
minimum.

Listing A.3: Module minimize.py

1 import math, random
2

3 goldenratio = 0.5+0.5*5.0**0.5
4

5

6 def bracket(f, a, b):
7 """ Brackets the minimum of a function. """
8

9 fa = f(a)
10 fb = f(b)
11 if fb > fa: # swap a and b so that f(b) < f(a)
12 (a, b) = (b, a)
13 (fa, fb) = (fb, fa)
14 c = b+(b−a)*goldenratio
15 fc = f(c)
16 while fb > fc: # keep going downhill
17 (a, b) = (b, c)
18 c = b+(b−a)*goldenratio
19 (fb, fc) = (fc, f(c))
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20 return (a, b, c)
21

22

23 def golden(f, a, b, c, eps=1e−6):
24 """ Uses a golden section search for the minimum of a function. """
25

26 tolerance = eps**0.5
27 fb = f(b)
28 while abs(a−c) > tolerance*(abs(a)+abs(c)):
29 # make sure that b is closer to c
30 if abs(b−a) < abs(c−b): # swap a with c
31 (a, c) = (c, a)
32 x = a+(b−a)/goldenratio
33 fx = f(x)
34 if fx < fb:
35 (a, b, c) = (a, x, b)
36 fb = fx
37 else:
38 (a, b, c) = (x, b, c)
39 if fx < fb:
40 return (x, fx)
41 else:
42 return (b, fb)
43

44

45 def anneal(f, x0, xnew, T0=None):
46 """ Uses simulated annealing to find the minimum of a function. """
47

48 # get number of dimensions of x0, or 1 if scalar
49 try: ndim = len(x0)
50 except: ndim = 1
51

52 f0 = f(x0)
53 T = T0 if T0 is not None else 2.0*f0
54 anneal.state = (T, x0, f0) # save state for possible external access
55

56 # loop until no step accepted at current temperature
57 accept = True
58 while accept:
59 accept = False
60 for i in range(100*ndim): # steps at this temperature
61 x = xnew(x0) # get proposed new position
62 fx = f(x)
63 if fx < f0 or random.random() < math.exp((f0−fx)/T):
64 accept = True # the step has been accepted
65 (x0, f0) = (x, fx) # update position
66 anneal.state = (T, x0, f0) # update state
67 T *= 0.95 # exponential cooling
68 return (x0, f0)
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Figure A.1: Left panel: the initial route of the salesperson. The distance of
this path is 13.637. Middle panel: the optimized solution found by simulated
annealing with a random number seed of 1 used in the simulation. The dis-
tance of this solution is 4.067. Right panel: the optimized solution found by
simulated annealing with a random number seed of 2 used in the simulation.
The distance of this solution is 4.103.

An illustration of simulated annealing is in solving the traveling salesperson
problem: given N towns, what route should a salesperson take in order to minimize
the total distance that they must travel while visiting each town and returning to
the original town?

The program traveler.py uses simulated annealing to attempt to solve this
problem for N = 25 towns. First, the town positions are chosen randomly (with a
fixed random number seed so that the same town locations are used for different
simulations). The order of the towns in the list of town positions is taken to be the
order that they are visited by the salesperson. A function distance computes the
distance the salesperson must travel to visit all the towns in order, and return to the
starting town. To generate a new path, two towns are chosen at random and are
swapped in the routine townswap. These routines and the initial list of towns are
passed to the routine anneal. The results of two simulations, with random number
seeds of 1 and 2, yield paths with a total distance of 4.067 and 4.103 respectively,
while the initial path had distance 13.637. These are shown in Fig. A.1. While
simulated annealing does not always result in the global minimum, both of the
solutions are close to the optimal solution.

Listing A.4: Program traveler.py

1 import pylab, random, minimize
2

3 # (x,y) coordinates for N random town locations
4 random.seed(4) # always use the same town locations
5 N = 25
6 p = [(random.random(), random.random()) for i in range(N)]
7

8 # get random seed for this simulated annealing
9 seed = input(’random number seed −> ’)

10 random.seed(seed)
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11

12

13 def distance(p):
14 s = 0.0
15 (xprev, yprev) = p[−1] # previous town location
16 for i in range(N):
17 (x, y) = p[i] # current town location
18 s += ((x−xprev)**2+(y−yprev)**2)**0.5
19 (xprev, yprev) = (x, y)
20 return s
21

22

23 count = 0
24 def townswap(p):
25 # periodically draw the current state
26 global count
27 if count % 1000 == 0:
28 line.set_xdata([x for (x,y) in p+[p[0]]])
29 line.set_ydata([y for (x,y) in p+[p[0]]])
30 (T, _, d) = minimize.anneal.state
31 pylab.title(’T=%g D=%g’ % (T, d))
32 pylab.draw()
33 count += 1
34

35 # swap two distinct towns
36 (i, j) = (random.randrange(len(p)), random.randrange(len(p)))
37 while i == j: # must be distinct towns
38 (i, j) = (random.randrange(len(p)), random.randrange(len(p)))
39 p = list(p) # copy of p
40 (p[i], p[j]) = (p[j], p[i]) # swap towns i and j
41 return p
42

43

44 # plot initial path
45 pylab.ion()
46 pylab.figure(figsize=(5,5))
47 pylab.xlim(0, 1)
48 pylab.ylim(0, 1)
49 (line,) = pylab.plot([x for (x,y) in p+[p[0]]], [y for (x,y) in p+[p

[0]]], ’o−’)
50 pylab.draw()
51

52 print ’initial distance:’, distance(p)
53

54 p, d = minimize.anneal(distance, p, townswap)
55

56 print ’final distance:’, d
57

58 # plot final path
59 line.set_xdata([x for (x,y) in p+[p[0]]])
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60 line.set_ydata([y for (x,y) in p+[p[0]]])
61 (T, _, _) = minimize.anneal.state
62 pylab.title(’T=%g D=%g’ % (T, d))
63 pylab.draw()
64 pylab.ioff()
65 pylab.show()

A.4 Interpolation

If we have a function f (x) whose value we know at two points, x0 and x1, i.e.,
we know y0 = f (x0) and y1 = f (x1), then we can construct a line y = y0 + (x −
x0)(y1− y0)/(x1− x0) that passes through the points (x0, y0) and (x1, y1). This line
is a linear approximation to the original function f (x), and if we want to estimate
the value of f (x) for some value of x in the x0 < x < x1 we can use the value given
by our linear approximation. This is known as linear interpolation.

If we have values of the function at more points then it will be possible to fit a
higher order polynomial to these points and our polynomial approximation to the
function will presumably be better. Suppose we have a function f (x) that we have
evaluated at a N points, {x i} for 0 ≤ i ≤ N − 1, and that the known values are
yi = f (x i). Then Lagrange’s interpolation formula finds the polynomial of degree
N−1 that passes through these points. If we want to evaluate the function for some
x that is not one of the {x i}, we have

f (x) =
N−1
∑

i=0

λi(x)yi + RN−1(x) (A.36)

where

λi(x) =
N−1
∏

j=0
j 6=i

x − x j

x i − x j
=
(x − x0) · · · (x − x i−1)(x − x i+1) · · · (x − xN−1)
(x i − x0) · · · (x i − x i−1)(x i − x i+1) · · · (x i − xN−1)

(A.37)

and RN−1(x) is a remainder term

|RN−1(x)| ≤
(xN−1 − x0)N

N !
max

x0≤x≤xN−1

| f (N)(x)|. (A.38)

Here, f (N)(x) is the N th derivative of f . Notice that λi(x j) = δi j so the polynomial
that is used in the approximation does in fact pass through all the known points.

The most basic case is the two-point interpolation formula, or linear interpola-
tion. In this case, n = 1, and we use the two values y0 = f (x0) and y1 = f (x1) to
interpolate the function at the value x:

f (x)≈
x − x1

x0 − x1
y0 +

x − x0

x1 − x0
y1

= y0 +
y1 − y0

x1 − x0
(x − x0)

(A.39)
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which is the same formula for the linear approximation that we had before.

An efficient way to performing polynomial interpolation is given by Neville’s
algorithm. Suppose

n
y i (x)

are polynomials of degree n that pass through the points yi , yi+1, . . . , yi+n. When
n= 0 the polynomials are degree 0 (constants), and we have

0
y i (x) = yi (constant)

for i = 0, . . . , N −1. When n= 1 the polynomials are degree 1 (lines), and we have

1
y i (x) =

x − x i+1

x i − x i+1

0
y i +

x − x i

x i+1 − x i

0
y i+1

for i = 0, . . . , N−2. Then, a recurrence relation gives the N−n degree n polynomials
in terms of the degree (n− 1) polynomials as

n
y i (x) =

x − x i+n

x i − x i+n

n−1
yi +

x − x i

x i+n − x i

n−1
yi+1 (A.40)

for i = 0, . . . , N − n − 1. The result we seek then is for the n = N − 1 degree
polynomial with i = 0:

N−1
y0 (x).

An example interpolation routine, polynomial, that implements Neville’s al-
gorithm is given in the listing for the module interpolate.py.

Listing A.5: Module interpolate.py

1 def polynomial(xx, x, y):
2 """ Polynomial interpolation of points (x[i],y[i]) to find y(xx).
3 Warning: the values of y[] are modified."""
4

5 N = len(x)
6 for n in range(1, N):
7 for i in range(N−n):
8 y[i] = (xx−x[i])*y[i+1]+(x[i+n]−xx)*y[i]
9 y[i] /= x[i+n]−x[i]

10 return y[0]

A.5 Integration

We seek to compute the integral

Q =

∫ b

a

f (x) d x (A.41)
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by the method of quadrature. A direct approach is to use the Riemann sum

Q ≈ S =∆x
N−1
∑

n=0

f (a+ n∆x) (A.42)

with ∆x = (b − a)/N . As N → ∞ (so ∆x → 0) this approach will converge to
the value of the integral. To find the accuracy of this rectangular method, consider
a single step:

∫ (n+1)∆x

n∆x

f (x) d x =

∫ (n+1)∆x

n∆x

�

f (n∆x) + f ′(n∆x) (x − n∆x)

+
1
2

f ′′(n∆x) (x − n∆x)2 + · · ·
�

d x

= f (n∆x)∆x +
1
2

f ′(n∆x) (∆x)2 +O(∆x3)

= f (n∆x)∆x +
1
2

f ′(ξn) (∆x)2

(A.43)

where ξn is some number between n∆x and (n+ 1)∆x . The first term is just the
contribution to the Riemann sum while the second term represents extra part that
is ignored in the Riemann sum — the error term. But such an error is introduced
by each of the terms in the Riemann sum, so the accumulated error will be a factor
of ∼ N = (b− a)/∆x larger. We therefore find

∫ b

a

f (x) d x =∆x
N−1
∑

n=0

f (a+ n∆x) +O

�

(b− a)2 f ′(ξ)
N

�

. (A.44)

Doubling the number of points used in the sum (i.e., the number of times that the
function is evaluated) merely doubles the accuracy of the result.

An obvious improvement is to evaluate the function at the midpoint between
two steps:

Q ≈ S =∆x
N−1
∑

n=0

f
�

a+ (n+ 1
2 )∆x

�

. (A.45)

This is known as the midpoint method, and it is convenient for computing open
integrals where we do not wish to evaluate the function at the endpoints a or b
(e.g., if the integrand is singular at these points). The accuracy of each step of the
midpoint method can be found:
∫ (n+1)∆x

n∆x

f (x) d x =

∫ (n+1)∆x

n∆x

f
�

(n+ 1
2 )∆x

�

d x

+

∫ (n+1)∆x

n∆x

f ′
�

(n+ 1
2 )∆x

� �

x − (n+ 1
2 )∆x

�

d x

+O(∆x3)

= f
�

(n+ 1
2 )∆x

�

∆x +O(∆x3)

(A.46)
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where we note that the second integral on the right-hand-side of vanishes. Thus,
for the extended midpoint method,

∫ b

a

f (x) d x =∆x
N−1
∑

n=0

f
�

a+ (n+ 1
2 )∆x

�

+O

�

(b− a)3 f ′′(ξ)
N2

�

. (A.47)

We see that doubling of the number of points increases the accuracy by a factor of
four.

For closed integrals, where the endpoint is to be retained, the trapezoid method
approximates the integral at each step as a trapezoid rather than a rectangle:

∫ (n+1)∆x

n∆x

f (x) d x ≈∆x
�

1
2

f (n∆x) +
1
2

f ((n+ 1)∆x)
�

. (A.48)

It is easy to show by Taylor expanding the function about both n∆x and (n+1)∆x
that the accuracy of this step is O(∆x3) so the extended trapezoid method is

∫ b

a

f (x) d x =∆x
�

1
2

f (a) + f (a+∆x) + f (a+ 2∆x) + · · ·

+ f (a+ (N − 1)∆x) +
1
2

f (a+ N∆x)
�

+O

�

(b− a)3 f ′′(ξ)
N2

�

.

(A.49)

Again the method is O(1/N2). Figure A.2 illustrates the rectangle, midpoint, and
trapezoid quadrature methods.

A useful property of the trapezoid rule is that if you have used it to obtain
a value S with N + 1 points, then if you wish to (roughly) double the number of
points to 2N + 1, you already have N + 1 of those points computed. Therefore, the
extended trapezoid method can be written as this recurrence: on stage n = 0 with
(∆x)0 = b− a the value

S0 = (b− a)
f (a) + f (b)

2
(A.50)

is computed; then at each later stage we have

Sn+1 =
1
2

�

Sn + (∆x)n+1

2n−1
∑

i=0

f
�

a+ 1
2 (∆x)n+1 + i (∆x)n+1

�

�

(A.51)

where (∆x)n+1 = (b − a)/2n. This recurrence is implemented in the routine
trapstep in integrate.py (see Listing A.6). You can use it directly to compute
an integral with nmax levels of refinement as� �

s = 0.0
for n in range(nmax):

s = integrate.trapstep(f, a, b, n, s)� �
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Figure A.2: The rectangle, midpoint, and trapezoid methods of quadrature.
The open circles indicate the points where the function is evaluated.

The routine trapezoid in Listing A.6 performs this but continues the refinement
until the desired accuracy is achieved.

An important feature about the extended trapezoid rule derives from its con-
nection to the Euler-Maclaurin formula,

∆x
�

1
2

f (a) + f (a+∆x) + · · ·+ f (a+ (N − 1)∆x) +
1
2

f (b)
�

=

∫ b

a

f (x) d x +
p
∑

k=1

B2k

(2k)!
(∆x)2k

�

f (2k−1)(b)− f (2k−1)(a)
�

+ Rp

(A.52)

where B2k are the Bernoulli numbers and Rp is a remainder term that is on the
order of the next term in the summation on the right hand side. The left hand side
of this equation is the extended trapezoid rule and the sum on the right hand side
represents the error. As expected, the first term in the sum is O(∆x2). However,
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notice that the summation includes only even powers of ∆x , and, in particular,
there is no ∆x3 term. This means that if we compute the nth stage of refinement
of the extended trapezoid rule, Sn, then

Sn =

∫ b

a

f (x) d x +
B2

2!
(∆x)2n

�

f ′(b)− f ′(a)
�

+O((∆x)4n) (A.53a)

and for the (n+ 1)th stage

Sn+1 =

∫ b

a

f (x) d x +
B2

2!
(∆x)2n+1

�

f ′(b)− f ′(a)
�

+O((∆x)4n+1). (A.53b)

But since (∆x)n = 2(∆x)n+1, we find

4Sn+1 − Sn = 3

∫ b

a

f (x) d x +O((∆x)4n) (A.54)

or
∫ b

a

f (x) d x =
1
3
(4Sn+1 − Sn) +O((∆x)4n). (A.55)

Thus we have constructed an O(1/N4) method! This is known as the extended
Simpson’s rule. Explicitly, it is

∫ b

a

f (x) d x =∆x
�

1
3

f (a) +
4
3

f (a+∆x) +
2
3

f (a+ 2∆x) +
4
3

f (a+ 3∆x) + · · ·

+
2
3

f (a+ (N − 2)∆x) +
4
3

f (a+ (N − 1)∆x) +
1
3

f (b)
�

+O

�

(b− a)5 f (4)(ξ)
N4

�

.

(A.56)

The routine simpson in Listing A.6 employs Eq. (A.55) to perform a quadrature
with continued refinement until the desired accuracy is achieved. Since the error
is O(1/N4) in routine simpson, it converges much faster than routine trapezoid,
where the error is O(1/N2).

There is nothing to stop us from using the same trick to generate higher and
higher order methods for integration. For example, if we have the result from stage
n − 1, Sn−1, with (∆x)n−1 = 2(∆x)n = 4(∆x)n+1, we can use it to eliminate the
O((∆x)4n) term in Eq. (A.54). We have:

Sn+1 =Q+ A1(∆x)2n+1 + A2(∆x)4n+1 +O(∆x6) (A.57a)

Sn =Q+ 4A1(∆x)2n+1 + 16A2(∆x)4n+1 +O(∆x6) (A.57b)

Sn−1 =Q+ 16A1(∆x)2n+1 + 256A2(∆x)4n+1 +O(∆x6) (A.57c)
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where Q is the integral we are computing and A1 and A2 are the coefficients of the
O(∆x2) and O(∆x4) error terms respectively. We find

45Q = 64Sn+1 − 20Sn + Sn−1 +O
�

(∆x)6n
�

(A.58)

or

∫ b

a

f (x) d x =
1

45
[64Sn+1 − 20Sn + Sn−1] +O

�

(b− a)7 f (6)(ξ)
N6

�

(A.59)

where N = 2n. This is known as Boole’s rule. Explicitly it is

∫ b

a

f (x) d x =∆x
�

14
45

f (a) +
64
45

f (a+∆x) +
24
45

f (a+ 2∆x) +
64
45

f (a+ 3∆x)

+
28
45

f (a+ 4∆x) +
64
45

f (a+ 5∆x) +
24
45

f (a+ 6∆x) + · · ·

+
24
45

f (a+ (N − 2)∆x) +
64
45

f (a+ (N − 1)∆x) +
14
45

f (b)
�

+O

�

(b− a)7 f (6)(ξ)
N6

�

.

(A.60)

We could continue this procedure, but notice what is happening: we have a
sequence of refinements of the trapezoid rule and with each extra term in the se-
quence we can eliminate one more error term. The remaining error term is then
O(1/N2(n+1)). We express the Euler-Maclaurin formula as a polynomial of degree
n,

P(ξ) = A0 + A1 ξ+ A2 ξ
2 + · · ·+ An ξ

n, (A.61)

where A0 =Q+Rn is the value of the integral we seek, Q, plus a remainder term, Rn,
A1, A2, . . . , An are some constant coefficients, and ξ = ∆x2. A set of refinements,
{S0, S1, . . . , Sn}, are simply different samples of this polynomial with Sn = P(ξn),
and ξn = 2−2n(b− a)2, so we use polynomial extrapolation to ξ = 0 (i.e., ∆x = 0)
to obtain the value A0 =Q+Rn where the remaining error, Rn, is O(∆x2(n+1)). This
technique is known as Richardson extrapolation. For example, suppose we have
{S0, S1, S2} which are the values of the polynomial P(ξ) at the points {ξ0,ξ1 =
1
4ξ0,ξ2 =

1
16ξ0} and where ξ0 = (b− a)2. Then the interpolating polynomial is

P(ξ) =
(ξ− 1

4 )(ξ−
1
16 )

(1− 1
4 )(1−

1
16 )

S0 +
(ξ− 1)(ξ− 1

16 )

( 1
4 − 1)( 1

4 −
1
16 )

S1 +
(ξ− 1)(ξ− 1

4 )

( 1
16 − 1)( 1

16 −
1
4 )

S2 (A.62)

and the extrapolation to ξ= 0 yields

Q = P(0)− R2 =
1

45
S0 −

20
45

S1 +
64
45

S2 − R2 (A.63)
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where R2 ∼ O(∆x6) [cf. Eq. (A.59)]. In this way, as we increase the number
of stages of refinement, n, we also increase the degree of the polynomial and re-
move successively more error terms with our extrapolation. The technique of us-
ing Richardson extrapolation to accelerate convergence of the trapezoidal rule for
quadrature is known as Romberg integration. The routine romberg in Listing A.6
uses the Romberg method to evaluate the integral.

The quadrature rules thus far have been of a form

∫ b

a

f (x) d x ≈
N−1
∑

n=0

wn f (xn) (A.64)

where wn are a set of weight coefficients and xn have been evenly spaced points be-
tween a and b. If we relax the restriction that the spacing of the points be even, then
we can make optimal choices of both wn and xn, which allows us to obtain higher-
order quadrature rules without increasing the number of function evaluations. The
method is known as Gaussian quadratures.

To illustrate the general idea, suppose we wish to compute the integral

∫ 1

−1

f (x) d x

where f (x) is a cubic polynomial

f (x) = c0 + c1 x + c2 x2 + c3 x3

for some set of coefficients {c0, c1, c2, c3}. Of course, the result is going to be

∫ 1

−1

f (x) d x = 2c0 +
2
3

c2

so it will be sufficient to determine this combination of the coefficients in order
to evaluate the integral. These can be determined by evaluating the function at
judiciously selected points:

f (−
Æ

1/3) + f (
Æ

1/3) = 2c0 +
2
3

c2

so
∫ 1

−1

f (x) d x = f (−
Æ

1/3) + f (
Æ

1/3).

Thus, the integral of any cubic polynomial can be exactly computed by evaluating
it at two points. We will see that the integral of a polynomial of degree 2N −
1 can computed by evaluating it at N specially chosen points. If a function can
be approximated as a polynomial, this provides a efficient way of evaluating its
integral.
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Consider an interpolating polynomial as described in Sec. A.4:

p(x) =
N−1
∑

n=0

λn(x) f (xn) (A.65)

where λn(x) are Lagrange’s interpolating polynomials given in Eq. (A.37). If f (x)
is a polynomial of degree N −1 then p(x) is exactly equal to f (x); otherwise, p(x)
is a polynomial approximation to f (x). If we replace f (x) in the integrand by p(x)
we find

∫ b

a

f (x) d x ≈
∫ b

a

p(x) d x =
N−1
∑

n=0

wn f (xn) (A.66)

with

wn =

∫ b

a

λn(x) d x . (A.67)

Once we choose the evaluation points {xn} for 0≤ n≤ N −1 we can evaluate these
weight coefficients. The evaluation points are known as abscissas.

Suppose that f (x) is a polynomial of degree 2N −1. Then it can be factored as

f (x) = q(x)PN (x) + r(x) (A.68)

where PN (x) is a polynomial of degree N , q(x) is a quotient polynomial of degree
N − 1, and r(x) is a remainder polynomial also of degree N − 1. We choose PN (x)
to be a polynomial that is orthogonal to all polynomials of degree less than N in the
interval a ≤ x ≤ b:

∫ b

a

xnPN (x) d x = 0 for n= 0,1, . . . , N − 1. (A.69)

Then we have
∫ b

a

f (x) d x =

∫ b

a

r(x) d x =
N−1
∑

n=0

wnr(xn) (A.70)

and notice that the second equality is exact because r(x) is a polynomial of degree
N − 1 or less. Also we have

N−1
∑

n=0

wn f (xn) =
N−1
∑

n=0

wnq(xn)PN (xn) +
N−1
∑

n=0

wnr(xn). (A.71)

Because PN (x) is of degree N , it has N roots. If we choose the {xn} for n =
0,1, . . . , N − 1 to be those roots, then the first term on the right hand side vanishes
and we have

N−1
∑

n=0

wn f (xn) =
N−1
∑

n=0

wnr(xn). (A.72)
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Combining this with Eq. (A.70), we have

∫ b

a

f (x) d x =
N−1
∑

n=0

wn f (xn) (A.73)

as an exact equality when f (x) is a polynomial of degree 2N − 1.

The method therefore requires us to find a polynomial of degree N , PN (x), that
is (i) orthogonal to all lower-degree polynomials in the interval a ≤ x ≤ b, and (ii)
has all N roots in this interval. These roots are then used as the locations at which
the function f (x) is to be evaluated, and as the points at which to construct the
Lagrange interpolating polynomial λn(x). Notice that

PN (x) = AN (x − x0)(x − x1) · · · (x − xN−1) (A.74)

where AN is some constant, so, taking one derivative and evaluating at the root xn,
we have

P ′N (xn) = AN (xn − x0) · · · (xn − xn−1)(xn − xn+1) · · · (xn − xN−1). (A.75)

Now we see that the Lagrange interpolating polynomial of Eq. (A.37) can be ex-
pressed as

λn(x) =
PN (x)

(x − xn)P ′N (xn)
(A.76)

and therefore the weights can be written as

wn =
1

P ′N (xn)

∫ b

a

PN (x)
x − xn

d x . (A.77)

This formula for the weights can be put into a more convenient form. First, note
that, for some integer k with 0≤ k ≤ N − 1,

x k
n

∫ b

a

PN (x)
x − xn

d x =

∫ b

a

�

x k

x − xn
−

x k − x k
n

x − xn

�

PN (x) d x =

∫ b

a

x k PN (x)
x − xn

d x (A.78)

where the second equality holds because the second term in square brackets is a
polynomial of degree k < N , and is orthogonal to PN (x). Any linear combination
of terms of this equation can be constructed, and, in particular

PN−1(xn)

∫ b

a

PN (x)
x − xn

d x =

∫ b

a

PN−1(x)
PN (x)
x − xn

d x . (A.79)

Now PN (x)/(x − xn) is a polynomial of degree N − 1, which can be written as

PN (x)
x − xn

=
AN

AN−1
PN−1(x) + s(x) (A.80)
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where s(x) is a polynomial of degree N−2, which is orthogonal to PN−1(x). Hence,
Eq. (A.79) can be rewritten

∫ b

a

PN (x)
x − xn

d x =
AN/AN−1

PN−1(xn)

∫ b

a

[PN−1(x)]
2 d x . (A.81)

Using this identitity in Eq. (A.77) we obtain

wn =
AN/AN−1

P ′N (xn)PN−1(xn)

∫ b

a

[PN−1(x)]
2 d x . (A.82)

The set of orthogonal polynomials we are interested in are the Legendre poly-
nomials. These are the polynomial solutions to Legendre’s differential equation

d
d x

�

(1− x2)
d

d x
PN (x)

�

+ N(N + 1)PN (x) = 0 (A.83)

and can be obtained using Rodrigues’ formula

PN (x) =
1

2N N !
dN

d xN
[(x2 − 1)N ]. (A.84)

The first few Legendre polynomials along with their abscissas and weights are tab-
ulated in Table A.1. These polynomials are orthogonal in the interval −1 ≤ x ≤ 1
with

∫ 1

−1

PM (x)PN (x) =
2

2N + 1
δMN . (A.85)

Although our interval was a ≤ x ≤ b, these polynomials are suitable since we can
make the change of variables

∫ b

a

f (x) d x =
b− a

2

∫ 1

−1

f ( 1
2 (b− a)x ′ + 1

2 (b+ a)) d x ′. (A.86)

Therefore, without loss of generality, we take a = −1 and b = 1 going forward.

Our task is simply to compute the absiccas and weights for the Legendre poly-
nomials. The abscissas are the roots of the Legendre polynomials. We can com-
pute these numerically using Newton’s method described in Sec. A.2. We need
approximate locations for the roots to use as initial guesses. From Eq. (22.16.6) of
Abramowitz and Stegun (1964) we take the initial guesses for the roots to be

xn ≈ cos
�

4n+ 3
4N + 2

π

�

(A.88)

When performing Newton’s method, we need to evaluate PN (x) and P ′N (x). These
can be obtained using the recurrence relationships

PN+1(x) =
(2N + 1)x PN (x)− N PN−1(x)

N + 1
(A.89)
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N Abscissas Weights Legendre polynomial

0 – – P0(x) = 1 (A.87a)

1 0 2 P1(x) = x (A.87b)

2 −
q

1
3 ,+

q

1
3 1,1 P2(x) =

1
2 (3x2 − 1) (A.87c)

3 −
q

3
5 , 0,+

q

3
5

5
9 , 8

9 , 5
9

P3(x) =
1
2 (5x3 − 3x) (A.87d)

Table A.1: Legendre polynomials and their abscissas and weights.

and

P ′N (x) = N
x PN (x)− PN−1(x)

x2 − 1
(A.90)

beginning with the first two Legendre polynomials given by Eqs. (A.87a)
and (A.87b). Note that, at a root of PN (x) we have

P ′N (xn) = N
PN−1(xn)
1− x2

n

. (A.91)

Thus, the Newton’s method will update our guesses with

i+1
x n=

i
xn −

1−
i
x 2

n

N
PN (

i
xn)

PN−1(
i
xn)

. (A.92)

To compute the weights, we can use Eq. (A.85) and Eq. (A.91). In addition,
from Rodrigues’ formula, Eq. (A.84), we see

AN =
(2N)!

2N (N !)2
. (A.93)

Combining these results with Eq. (A.82) we have finally

wn =
2

N2

1− x2
n

[PN−1(xn)]2
. (A.94)

Multidimensional integration can be performed by successive applications of
these one-dimensional integrations. However, for high-dimensional integrals, the
computational cost can become prohibitive. For example, if a one dimensional inte-
gral requires N function calls, an M -dimensional integral requires on order of N M

function calls, which can be huge if M is large. An alternative to evaluating the
function on a fixed grid of points is to evaluate the function at random points in
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the domain of integration. This is known as Monte Carlo integration. Then, the
multidimensional integral can be evaluated as

∫

Ω

f (x )dM x 'QN (A.95)

for large N where

QN = VolΩ
1
N

N−1
∑

n=0

f (x n) (A.96)

and where {x n} for 0 ≤ n ≤ N − 1 are a set of random points within the M -
dimensional domain Ω whose volume is VolΩ. An estimate of the error in the
estimate is given by

Var(QN ) = 〈Q2
N 〉 − 〈QN 〉2 ≈ (VolΩ)2

s2
f

N
(A.97)

where

s2
f =

1
N − 1

N−1
∑

n=0

�

f (x n)−
1
N

N−1
∑

n′=0

f (x n′)

�2

(A.98)

is the square of the sample standard deviation of the function values. Thus, for
large N , the error in the Monte Carlo estimate of the integral becomes

EN ≈
Æ

Var(QN ) = VolΩ
s f
p

N
. (A.99)

We see that convergence is relatively slow as the error decreases only as the square-
root of the number of function evaluations. However, this is true regardless of the
dimensions of the integral.

The listing for integrate.py contains routines to perform integration of a
function using the extended trapezoid rule, trapezoid, the extended Simpson’s
rule, simpson, and the Romberg method, romberg. These are all based on succes-
sive refinements of the trapezoid rule which is provided in the routine trapstep.
The routine abscissas computes the abscissas and weights needed for Gaussian
quadrature, and the routine gaussian performs integration using Gaussian quadra-
tures. In addition, two routines for performing multidimensional integration are
provided: gaussiannd and montecarlo.

Listing A.6: Module integrate.py

1 import interpolate, pylab, itertools
2

3

4 def trapstep(f, a, b, n, s):
5 """ Perform the nth refinement of a trapezoid method and update sum.
6 Here, f is the integrand, a and b are the limits of the integral,
7 n is the step (0 on first call), and s is the sum so far. """
8
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9 if n == 0:
10 return (b−a)*(f(b)+f(a))/2.0
11 else:
12 steps = 2**(n−1)
13 dx = (b−a)/steps
14 x0 = a+dx/2.0
15 s = (s+dx*sum(f(x0+i*dx) for i in range(steps)))/2.0
16 return s
17

18

19 def trapezoid(f, a, b, eps=1e−6):
20 """ Trapezoidal method of quadrature to a specified accuracy.
21 Here, f is the integrand, a and b are the limits of the integral,
22 and eps is the desired fractional accuracy. """
23

24 n = 0
25 s = trapstep(f, a, b, n, 0.0)
26 while True:
27 n += 1
28 s0 = s # s0 is the previous value of the trapezoid sum
29 s = trapstep(f, a, b, n, s)
30 if abs(s−s0) < eps*abs(s0):
31 return s
32

33

34 def simpson(f, a, b, eps=1e−6):
35 """ Simpson’s method of quadrature to a specified accuracy.
36 Here, f is the integrand, a and b are the limits of the integral,
37 and eps is the desired fractional accuracy. """
38

39 n = 0
40 q = s = trapstep(f, a, b, n, 0.0)
41 while True:
42 n += 1
43 (q0, s0) = (q, s) # save previous values
44 s = trapstep(f, a, b, n, s)
45 q = (4.0*s−s0)/3.0
46 if abs(q−q0) < 0.25*eps*abs(q0):
47 return q
48

49

50 def romberg(f, a, b, eps=1e−6):
51 """ Romberg’s method of quadrature to a specified accuracy.
52 Here, f is the integrand, a and b are the limits of the integral,
53 and eps is the desired fractional accuracy. """
54

55 degree = 5 # degree of polynomial extrapolation
56 n = 0
57 s = [trapstep(f, a, b, n, 0.0)]
58 xi = [1.0]
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59 while True:
60 n += 1
61 s += [trapstep(f, a, b, n, s[−1])] # append new element
62 xi += [xi[−1]/4.0] # append new element
63 if len(s) >= degree:
64 ss = s[−degree:] # last degree elements of s
65 # extrapolate to dx = 0
66 q = interpolate.polynomial(0.0, xi[−degree:], ss)
67 dq = ss[1]−ss[0] # error in extrapolation
68 if abs(dq) < eps*abs(q):
69 return q
70

71

72 def abscissas(N):
73 """ Returns a list of (abscissa, weight) pairs suitable for
74 Gaussian quadrature. """
75

76 if N == 0:
77 return []
78 if N == 1:
79 return [(0.0, 2.0)]
80 # initial guess of root locations
81 x = pylab.cos(pylab.pi*(4.0*pylab.arange(N)+3.0)/(4.0*N+2.0))
82 # Newton’s method
83 eps = 1e−15
84 while True:
85 # generate Legendre polynomials using recurrence relation
86 (p0, p1) = (1.0, x)
87 for n in range(1,N):
88 (p0, p1) = (p1, ((2.0*n+1.0)*x*p1−n*p0)/(n+1.0))
89 dx = −(1.0−x**2)*p1/(N*p0)
90 x += dx
91 if max(abs(dx)) < eps:
92 break
93 w = 2.0*(1.0−x**2)/(N*p0)**2
94 return [(x[n], w[n]) for n in range(N)]
95

96

97 def gaussian(f, a, b, N=5):
98 """ Gaussian quadrature with a specified number of abscissas.
99 Here, f is the integrand, a and b are the limits of the integral,

100 and N is the number of abscissas. """
101

102 fac = 0.5*(b−a)
103 mid = 0.5*(b+a)
104 return fac*sum(w*f(fac*x+mid) for (x,w) in abscissas(N))
105

106

107 def gaussiannd(f, a, b, N=5):
108 """ Multidimensional Gaussian quadrature.
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109 Here, f is the integrand, a and b are arrays giving the limits
110 of the integral, and N is the number of abscissas. """
111

112 a = pylab.asarray(a)
113 b = pylab.asarray(b)
114 ndim = a.size
115 if a.size == 1: # use normal 1d Gaussian quadrature
116 return gaussian(f, a, b)
117 fac = 0.5*(b−a)
118 mid = 0.5*(b+a)
119 s = 0.0
120 # loop over all possible ndim−vectors of abscissas
121 for xw in itertools.product(abscissas(N), repeat=ndim):
122 x = pylab.array([x for (x,_) in xw])
123 w = pylab.prod([w for (_,w) in xw])
124 s += w*f(fac*x+mid)
125 return pylab.prod(fac)*s
126

127

128 def montecarlo(f, a, b, eps=1e−3, nmin=100, nmax=1000000):
129 """ Monte Carlo integration.
130 Here, f is the integrand, a and b are arrays giving the limits
131 of the integral, and eps is the desired accuracy.
132 The parameters nmin and nmax specify the minimum and
133 maximum number of random points to use. """
134

135 a = pylab.asarray(a)
136 b = pylab.asarray(b)
137 vol = pylab.prod(b−a)
138 s = 0.0 # running average of f(x)
139 ssq = 0.0 # running sum of (f(x)−s)2
140 n = 0
141 while n < nmax:
142 n += 1
143 x = pylab.uniform(a, b)
144 fx = f(x)
145 d = fx − s
146 s += d/n
147 ssq += d*(fx − s)
148 err = ssq**0.5/n # assume n−1 ~= n
149 if n > nmin and err < eps*abs(s):
150 break
151 return vol*s

As an example, consider the test integral
∫ π

0

sin(x) d x .

We can perform quadrature with the routines trapezoid, simpson, romberg,
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gaussian, and montecarlo and count the number of function calls required us-
ing the following code� �

import pylab, integrate
pylab.seed(101)
def inttest(integrator):

global count; count = 0
def testfunction(x): global count; count += 1; return pylab.sin(x)
print "result %.7f" % integrator(testfunction, 0.0, pylab.pi),
print "obtained in %d function calls" % count,
print "using %s" % integrator.__name__

inttest(integrate.trapezoid)
inttest(integrate.simpson)
inttest(integrate.romberg)
inttest(integrate.gaussian)
inttest(integrate.montecarlo)� �

and the resulting output is� �
result 1.9999996 obtained in 2049 function calls using trapezoid
result 2.0000000 obtained in 129 function calls using simpson
result 2.0000000 obtained in 17 function calls using romberg
result 2.0000001 obtained in 5 function calls using gaussian
result 2.0016163 obtained in 232504 function calls using montecarlo� �

Note that the accuracy requirement for the montecarlo routine is lower than for
the other routines.

As an example of multidimensional integration, consider the 9-dimensional
integral

∫ 1

0

· · ·
∫ 1

0

f (x0, . . . , x8) d x0 · · · d x8

with

f (x0, . . . , x8) =
1

∑8
n=0 xn

.

We test the routines gaussiannd and montecarlo and measure the number of func-
tion calls with the following code� �

import pylab, integrate
pylab.seed(101)
def inttest9d(integrator):

global count; count = 0
def testfunction(x): global count; count += 1; return 1.0/sum(x)
print "result %.7f" % integrator(testfunction, [0.0]*9, [1.0]*9),
print "obtained in %d function calls" % count,
print "using %s" % integrator.__name__

inttest9d(integrate.gaussiannd)
inttest9d(integrate.montecarlo)� �
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if x(t) is real, ℑx(t) = 0, then x̃(− f ) = x̃∗( f )
if x(t) is imaginary, ℜx(t) = 0, then x̃(− f ) = − x̃∗( f )
if x(t) is even, x(t) = x(−t), then x̃(− f ) = x̃( f )
if x(t) is odd, x(t) = −x(−t), then x̃(− f ) = − x̃( f )

Table A.2: Symmetries of the Fourier transform.

and the resulting output is� �
result 0.2315219 obtained in 1953125 function calls using gaussiannd
result 0.2316330 obtained in 46677 function calls using montecarlo� �

Gaussian quadratures now requires many more function evaluations than the Monte
Carlo method (note that 1953125 = 59). As the dimensionality increases, use of
gaussiannd quickly becomes impractical.

A.6 Fourier transform

The Fourier transform of a continuous function x(t) is

x̃( f ) =

∫ ∞

−∞
e−2πi f t x(t) d t (A.100)

while the inverse Fourier transform is

x(t) =

∫ ∞

−∞
e+2πi f t x̃( f ) d f . (A.101)

We say that x(t) and x̃(t) are Fourier transform pairs, and denote this relationship
as

x(t) ⇐⇒ x̃( f ).

A number of important properties follow from the definition of the Fourier trans-
form, and these are summarized in tables A.2 and A.3. In the time-domain, the
convolution of two functions is

x ∗ y =

∫ ∞

−∞
x(τ)y(t −τ) dτ (A.102)

while the correlation of two functions is

corr(x , y) =

∫ ∞

−∞
x(t +τ)y(τ) dτ. (A.103)
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scaling property: x(at)⇐⇒
1
|a|

x̃( f /a)

shifting property: x(t − t0)⇐⇒ x̃( f )e−2πi f t0

convolution theorem: (x ∗ y)(t)⇐⇒ x̃( f ) ỹ( f )

correlation theorem: corr(x , y)(t)⇐⇒ x̃( f ) ỹ∗( f )

Table A.3: Properties of the Fourier transform.

The total power in a signal is given in either the time- or the frequency-domains by
integrating the modulus squared of the signal over the entire domain:

∫ ∞

−∞
|x(t)|2d t =

∫ ∞

−∞
| x̃( f )|2d f . (A.104)

This is Parseval’s theorem. We are often interested in the power spectral density, that
is, the power that is contained in some frequency interval between f and f + d f .
A one-sided power spectral density folds the negative frequencies onto the positive
frequencies so that only positive frequencies are required; it is defined as

Sx( f ) = | x̃( f )|2 + | x̃(− f )|2. (A.105)

The integral of Sx( f ) over all positive frequencies is then the total power in the
signal.

If we sample the function at intervals∆t, so we have the samples x j = x( j∆t)
of the original function, then we can recover the original function from the samples
via

x(t) =∆t
∞
∑

j=−∞

sin[2π fNy(t − j∆t)]

π(t − j∆t)
x j (A.106)

where

fNy =
1

2∆t
(A.107)

is known as the Nyquist frequency. This result is known as the sampling theorem.
However, the sampling theorem only holds if the function that was sampled, x(t),
was band limited to a frequency band that in which the highest frequency was less
than the Nyquist frequency of the sampling. Otherwise the sampling process will
result in aliasing high frequency content to low frequencies. Thus it is important
to ensure that the sampling interval ∆t is small enough such that the Nyquist fre-
quency is higher than the highest frequency contained in the signal x(t).

The discrete forms of the Fourier transform for a series of points x j = x(t j)
where t j = j∆t for 0≤ j < N and x̃k = x̃( fk) where

fk =
§

k∆ f 0≤ k ≤ N/2
(N − k)∆ f N/2< k < N (A.108)
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t
3Δt 4Δt2ΔtΔtx₀

x₁

x₂

x₃

x₄

x(t)

Figure A.3: An illustration of aliasing: The function x(t) = sin(2π f0 t) (solid
line) is sampled at intervals of∆t = 3

4 f0 (blue points), so the Nyquist frequency
fNy =

2
3 f0 < f0. These points can be fit by the sinusoid sin(2π f1 t) (dotted line)

where f1 =
1
3 f0. The power at frequency f0 is aliased to the lower frequency

f1.

with ∆ f = 1/(N∆t) are

x̃k =∆t
N−1
∑

j=0

e−2πi jk/N x j (A.109)

and

x j =∆ f
N−1
∑

k=0

e+2πi jk/N x̃k. (A.110)

We are interested in computing the discrete Fourier transform

Xk =
N−1
∑

j=0

e−2πi jk/N x j (A.111)

and the discrete inverse Fourier transform

x j =
1
N

N−1
∑

j=0

e+2πi jk/N Xk. (A.112)

Note that x̃k = Xk∆t. The discrete Fourier transform omits this factor of ∆t. The
properties listed previously for the continuous Fourier transform continue to hold
for the discrete Fourier transform.

The basis functions in the Fourier series, exp(−2πi jk/N) are all periodic in
j → j + N for all integers k, which indicates that the discrete Fourier transform is
a representation of a periodic function x(t) for which x(t + N∆t) = x(t). If our
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function is not actually periodic then some care should be taken in choosing the
length of the sample. If the function has support over a limited domain in t then
we can sample the function over this entire domain. Otherwise we can sample a
representative portion of the function and use some method (e.g., windowing or
zero-padding) to handle the fact that the samples we take will be treated as if they
were taken from a periodic function.

The direct approach to computing the discrete Fourier transform would re-
quire O(N2) operations: for each of the N values of k, we would compute the sum
which would require N operations. However, there is a much more efficient way of
computing the discrete Fourier transform, known as the fast Fourier transform, that
requires only O(N log N) operations. The trick to computing the discrete Fourier
transform efficiently is given by the Danielson-Lanczos lemma,

Xk =
N−1
∑

j=0

e−2πi jk/N x j

=
N/2−1
∑

j=0

e−2πi(2 j)k/N x2 j +
N/2−1
∑

j=0

e−2πi(2 j+1)k/N x2 j+1

=
N/2−1
∑

j=0

e−2πi jk/(N/2)x2 j +ω
k

N/2−1
∑

j=0

e−2πik/(N/2)x2 j+1

= Ek +ω
kOk

(A.113)

where
ω= e−2πi/N (A.114)

is known as a twiddle factor. We see that a Fourier transform of N points can be
reduced to doing two Fourier transforms, E and O of N/2 even and odd points
respectively. We assume that N is a power of two, so we repeat this procedure
recursively log2 N times and this results in a sum of log2 N Fourier transforms of a
single point. Of course, each one of those Fourier transforms of a single value is
just that value, which is one of the values of x j .

The range of k in Ek and Ok is 0 ≤ k < N/2 while for Xk it is 0 ≤ k < N . The
values of Xk for N/2≤ k < N can be obtained from

Xk+N/2 = Ek −ωkOk. (A.115)

If we have Ek and Ok packed sequentially in a list, Yk, of N values then we must
perform a butterfly operation to obtain the values of Xk:

Xk = Yk +ω
kYN−k

XN−k = Yk −ωkYN−k.
(A.116)

The Fourier transform can therefore be used to efficiently convolve or correlate
functions (which are simple operations in the frequency domain). In addition, we
often want to compute the power spectrum of a function. For these purposes, it is
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important to make sure that the functions being convolved or correlated are zero-
padded at the ends so that the periodicity imposed by the discrete Fourier transform
does not cause one function to “wrap around” and spoil the result.

Another important application of the Fourier transform is in spectral analysis.
The one-sided power spectral density is computed from a set of samples x j via its
discrete Fourier transform Xk as

P0 =
1
N
|X0|2 DC component (A.117a)

Pk =
1
N
(|Xk|2 + |XN−k|2) 1≤ k < N/2 (A.117b)

PN/2 =
1
N
|XN/2|2 Nyquist component. (A.117c)

Here Pk is known as a periodogram. If the function being sampled is not periodic in
the interval N∆t then again the end effects need to be taken care of, as there will
be spectral leakage in which the power of the continuous function at any frequency
that is not exactly one of the fk frequency bins of the discrete Fourier transform gets
smeared into all of the frequency bins.

The normal technique for performing spectral analyses of aperiodic functions
is to use windowing. A window is a smooth function of time with 0 ≤ t < N∆t
that tapers off as t → 0 and t → N∆t. The data samples are multiplied by the
window function which essentially suppresses the data near the ends of the interval.
This reduces the leakage of power into frequencies that are far away from actual
frequency. Some common window functions are the Hann window,

w j =
1
2

�

1− cos
�

2π j
N − 1

��

, (A.118)

the Hamming window

w j = 0.54− 0.46cos
�

2π j
N − 1

�

, (A.119)

and the Bartlett window

w j = 1−
2

N − 1

�

�

�

�

j −
N − 1

2

�

�

�

�

. (A.120)

With data windowing, the power spectral density is given by the periodogram

P0 =
1

wss
|Y0|2 DC component (A.121)

Pk =
1

wss
(|Yk|2 + |YN−k|2) 1≤ k < N/2 (A.122)

PN/2 =
1

wss
|YN/2|2 Nyquist component. (A.123)
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where Yk is the discrete Fourier transform of the windowed data y j = w j x j and

wss =
N−1
∑

j=0

w2
j (A.124)

is the sum-squared of the window function.

If we wish to find the power spectrum of a continuous, stationary random pro-
cess then the periodogram does not provide a very good estimate: the value of the
periodogram at each frequency bin will have a variance that is the same as the value
at that frequency. In order to reduce the variance in the power spectral estimation, a
technique known as Welch’s method is commonly used. In this method, a long stretch
of data of M points is divided into K overlapping segments of N points so that seg-
ment ` comprises the points x j+`N/2 for 0 ≤ j ≤ N − 1 where 0 ≤ ` ≤ K − 1. Given
M points and a segment length N then the number of segments is K = 2M/N − 1,
or, conversely, the total number of points needed to form K overlapping N points
is M = N(K + 1)/2. For each of the K segments, the (windowed) periodogram is
computed, and then these periodograms are averaged to obtain the power spectral
density:

Sk =
1
K

K−1
∑

`=0

P`,k. (A.125)

The listing for fft.py contains routines to perform the fast Fourier transform
and its inverse as well as routines to generate various kinds of window functions,
the periodogram, and the power spectral density using Welch’s method.

Listing A.7: Module fft.py

1 import math, cmath
2

3

4 def radix2fft(x, sign=−1.0):
5 """ Computes the FFT of a list of values.
6 Assumes the number of values is a power of 2. """
7

8 N = len(x)
9 if N == 1: # Fourier transform of one point is that point

10 return [x[0]]
11 else: # compute half−size ffts of even and odd data
12 X = radix2fft(x[0::2], sign)
13 X += radix2fft(x[1::2], sign)
14 omega = cmath.exp(math.copysign(2.0, sign)*cmath.pi*1j/N)
15 omegak = 1.0
16 for k in range(N//2): # butterfly
17 tmp = omegak*X[k+N//2]
18 (X[k], X[k+N//2]) = (X[k]+tmp, X[k]−tmp)
19 omegak *= omega
20 return X
21
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22

23 def fft(x, sign=−1.0):
24 """ Computes the FFT of a list of values.
25 Requires the number of values to be a power of 2. """
26

27 # make sure length of x is a power of 2
28 N = len(x)
29 if N & N−1 != 0:
30 raise ValueError(’number of points must be a power of 2’)
31 return radix2fft(x, sign)
32

33

34 def ifft(X, sign=1.0):
35 """ Computes the inverse FFT of a list of values.
36 Requires the number of values to be a power of 2. """
37

38 N = len(X)
39 x = fft(X, sign)
40 for j in range(N):
41 x[j] /= N
42 return x
43

44

45 def dft(x, sign=−1.0):
46 """ Computes the DFT of a list of values using the slow O(N^2)

method. """
47

48 N = len(x)
49 y = [0.0]*N
50 for k in range(N):
51 for j in range(N):
52 y[k] += x[j]*cmath.exp(math.copysign(2.0, sign)*cmath.pi*1j*

j*k
53 /float(N))
54 return y
55

56

57 def hann(N):
58 """ Create a Hann window. """
59

60 fac = 2.0*math.pi/(N−1)
61 wss = 0.0
62 w = [0.0]*N
63 for j in range(N):
64 w[j] = 0.5*(1.0−math.cos(fac*j))
65 wss += w[j]**2
66 return (w, wss)
67

68

69 def hamming(N):
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70 """ Create a Hamming window. """
71

72 fac = 2.0*math.pi/(N−1)
73 wss = 0.0
74 w = [0.0]*N
75 for i in range(N):
76 w[i] = 0.54−0.46*math.cos(fac*j)
77 wss += w[j]**2
78 return (w, wss)
79

80

81 def bartlett(N):
82 """ Create a Bartlett window. """
83

84 mid = (N−1.0)/2.0
85 wss = 0.0
86 w = [0.0]*N
87 for j in range(N):
88 w[j] = 1.0−abs(j−mid)/mid
89 wss += w[j]**2
90 return (w, wss)
91

92

93 def periodogram(x, window=’Rectangular’):
94 """ Computes the periodogram of a list of values.
95 Requires the number of values to be a power of 2.
96 Returns only the positive frequencies. """
97

98 N = len(x)
99 # construct window

100 if window == ’Rectangular’:
101 (w, wss) = ([1.0]*N, N)
102 elif window == ’Hann’:
103 (w, wss) = hann(N)
104 elif window == ’Hamming’:
105 (w, wss) = hamming(N)
106 elif window == ’Bartlett’:
107 (w, wss) = bartlett(N)
108 else:
109 raise ValueError(’unrecognized window type’)
110 # apply window to a copy of the data
111 y = [0.0]*N
112 for j in range(N):
113 y[j] = w[j]*x[j]
114 # fft windowed data and compute power
115 Y = fft(y)
116 Y[0] = Y[0].real**2/wss
117 for k in range(1, N//2):
118 Y[k] = (Y[k].real**2+Y[k].imag**2)/wss
119 Y[k] += (Y[N−k].real**2+Y[N−k].imag**2)/wss
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120 Y[N//2] = Y[N//2].real**2/wss
121 return Y[:N//2+1]
122

123

124 def psdwelch(x, N, window=’Rectangular’):
125 """ Computes the power spectral density of a list of values using
126 Welch’s method with overlapping segments of length N.
127 Requires N to be a power of 2.
128 Returns only the positive frequencies. """
129

130 M = len(x)
131 K = 2*M//N−1 # number of segments
132 S = [0.0]*(N//2+1) # the power spectral density
133 # compute the running mean of the power spectrum
134 for l in range(K):
135 P = periodogram(x[l*N//2:N+l*N//2], window)
136 for k in range(N/2+1):
137 S[k] = (P[k]+l*S[k])/(l+1)
138 return S
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Appendix B

Binary representation of
numbers

Sometimes programs give surprising results for even very simple expressions. For
example,� �

>>> 0.1 + 0.2
0.30000000000000004� �

Here is another example:� �
>>> 1e8 + 1e−8
100000000.00000001
>>> 1e8 + 1e−9
100000000.0� �

To understand this result it is necessary to understand how numbers are represented
by a computer.

Integer numbers are naturally stored as bits in binary format. In Python, an
integer can be displayed in its binary (base 2) representation as follows:� �

>>> bin(42)
’0b101010’� �

Here, the 0b prefix indicates the number is being displayed in binary, and the fol-
lowing 101010 is the base 2 representation of the decimal 42. Integer numbers are
stored with a fixed number of bits, typically either 32 bits or 64 bits depending
on the type of computer. Python is also capable of storing much larger integers in
variable width representations. For example, Python can compute a googol, 10100:� �

>>> 10**100
100000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000L� �

211
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The trailing L indicates that this is a variable width long representation. Although
Python handles variable width integers, most other computer languages support
only fixed width integers. The smallest and largest integers that can be stored in
a 64 bit signed integer type are −263 = −9 223372 036854 775808 and 263 − 1 =
9 223372 036854 775807.

Real numbers are approximated in a floating point representation. The floating
point number is composed of a significand, having some fixed number of digits, and
an exponent,

signficand× baseexponent

so, for example, the number 617
500 can be written

617
500

= 1.234= 1234× 10−3

so its floating point significand is 1234 and its (base 10) exponent is -3. In this case,
the real number can be exactly represented with a four decimal digit significand.
Because the significand has a finite precision, not all real numbers can be exactly
represented. Irrational numbers can never be exactly represented, and some ratio-
nal numbers cannot be exactly represented in a given base. For example, 1

9 cannot
be exactly represented in base 10, but in base 3 it is just 1× 3−2.

On computers, the significand and exponent are stored as a binary integer with
a certain number of digits and the base is 2. The most common way that real
numbers are approximated on a computer is as double precision IEEE 754 floating
point numbers. In this case, the significand has 53 bits of precision. (Only 52 bits
of the significand actually need to be stored because the first bit will always be 1.)
The exponent has 11 bits and a final bit indicating the sign of the number brings
the total number of bits in a double precision floating point number to 64.

Python’s bin routine cannot be used to show the binary representation of a
floating point number. The following is a routine that will:� �

def binary(x, precision=53):
s = ’−’ if x < 0 else ’’ # write the sign
ip, fp = abs(x) // 1, abs(x) % 1 # integer and fractional parts
s += bin(int(ip)) + ’.’ # write the integer part and radix point
if ip != 0:

precision −= len(s) − 2
# write the fractional part
for i in range(precision):

s += str(int(2*fp))
fp = (2*fp) % 1

return s� �
Now we can get the binary representation of numbers such as 0.1 and 0.2:� �

>>> binary(0.1)
’0b0.00011001100110011001100110011001100110011001100110011’
>>> binary(0.2)
’0b0.00110011001100110011001100110011001100110011001100110’� �
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It is clear that 0.1 and 0.2 are not terminating in base 2; they are 0.000112 and
0.00112 respectively. Because the computer represents these numbers with finite
precision, the representation is not exact. Rather than 0.1 and 0.2, the computer
uses the values

900719925474099
9007199254740992

and
900719925474099

4503599627370496
.

The result of adding these numbers is seen in the following:� �
>>> binary(0.1 + 0.2)
’0b0.01001100110011001100110011001100110011001100110011010’� �

Notice that there is a small error at the end: the last two digits should have been
01 rather than 10 as can be seen as follows:� �

>>> binary(0.3)
’0b0.01001100110011001100110011001100110011001100110011001’� �

The reason for the error is that that the numbers 0.1 and 0.2 were only approx-
imately represented to begin with, and errors accumulate as rounding off is per-
formed multiple times.

An immediate consequence of roundoff error is that one needs to be careful
when comparing floating point numbers:� �

>>> 0.1 + 0.2 == 0.3
False� �

Instead, use a function similar to this one to see if two floating point numbers are
close:� �

def isclose(x, y, rtol=1e−5, atol=1e−8):
return abs(x − y) <= (atol + 0.5 * rtol * abs(x + y))� �

Here, atol is the absolute tolerance and rtol is the relative tolerance. A routine
similar to this is provided in numpy.

The finite precision of the floating point numbers representation in a computer
can lead to catastrophic cancellation in subtracting numbers that are very similar.
For example, consider the function

f (x) =
1− cos x

x2

which could be implemented in python as� �
import math
def f(x):

return (1.0 − math.cos(x)) / x**2� �
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For small values of x , one expects f (x) ≈ 1
2 . However, if the function is evaluated

at x = 1.1× 10−8,� �
>>> f(1.1e−8)
0.917539689773� �

which is quite far from the true value. A more numerically stable implementation
would be� �

import math
def f(x):

return 2.0 * math.sin(0.5 * x)**2 / x**2� �
Now one obtains the more satisfying result� �

>>> f(1.1e−8)
0.5� �
The precision of a computer’s floating point representation is called the machine

epsilon. It is the smallest number that can be added to 1.0 that gives a distinctly
different number. It can be determined as follows:� �

epsilon = 1.0
while 1.0 + 0.5 * epsilon != 1.0:

epsilon *= 0.5
print repr(epsilon)� �

The result is 2.220446049250313e-16 which is 2−52. In addition to the pre-
cision of a computer’s floating point representation, there are limits on the
largest number that can be represented, and the tiniest number that is usable.
The minimum ‘normal’ positive double-precision floating point number is 2−1022

or 2.2250738585072014e-308 and the maximum double-precision floating point
number is (1 + (1 − 2−52)) × 21023 or 1.7976931348623157e+308. Attempting to
create a larger number can result in an overflow error:� �

>>> 2.0**1024
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
OverflowError: (34, ’Result too large’)� �
There are some special floating point numbers. Positive and negative infin-

ity are floating point numbers that are always greater than or less than any rep-
resentable floating point number respectively. In Python, these numbers can be
obtained as float(’inf’) and float(’-inf’). The final number is called not a
number, or NaN, and results from impossible floating point operations:� �

>>> 0 * float(’inf’)
nan
>>> float(’inf’) + float(’−inf’)
nan� �
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The NaN is a useful as an invalid floating point value. In Python it can be obtained
with float(’nan’).

Exercise B.1 Consider the function

f (x) =
1

sin2 x
−

1
x2

.

a) Use calculus to determine the exact value of

lim
x→0

f (x).

b) Write a program to evaluate f (x), and evaluate it for x = 10−1, x = 10−2,
x = 10−3, x = 10−4, x = 10−5, x = 10−6, x = 10−7, x = 10−8. Which of
these gives the closest approximation to your result from part (a)?

c) Explain the results of part (b).

Further reading

More details about floating point numbers and the IEEE 754 standard can be found
in these references:

• Floating Point Arithmetic: Issues and Limitations The Python Tutorial https:
//docs.python.org/2/tutorial/floatingpoint.html

• What Every Computer Scientist Should Know About Floating-Point Arithmetic
by David Goldberg (1991) http://perso.ens-lyon.fr/jean-michel.
muller/goldberg.pdf

• IEEE Standard for Floating-Point Arithmatic (2008) http://ieeexplore.
ieee.org/servlet/opac?punumber=4610933

https://docs.python.org/2/tutorial/floatingpoint.html
https://docs.python.org/2/tutorial/floatingpoint.html
http://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf
http://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
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discrete Fourier transform, 203
discrete inverse Fourier transform, 203
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distribution, 105
double precision, 212

eccentric anomaly, 32
eccentricity, 32
eigenenergies, 77
eigenfunctions, 77
eigenstates, 77
eigenvalues, 77
elliptic equations, 47
empirical distribution function, 134
entropy, 105
error function, 129
Euler beta function, 132
Euler’s method, 13
Euler-Maclaurin formula, 188
evidence, 159
exchange energy, 111
extended Simpson’s rule, 189

fast Fourier transform, 204
ferromagnetic phase, 112
floating point, 212
flux-conservative, 50
forward time, centered space, 52
frequentist, 159
full width at half maximum, 127

gamma function, 132
Gauss-Seidel method, 93
Gaussian distribution, 129
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Gaussian quadratures, 191
general linear least squares, 152
global error, 17
golden ratio, 179
goodness of fit, 148

heat capacity, 114
Heaviside step function, 135
heliocentric gravitational constant, 35
Hermite polynomial, 77
hyperbolic equations, 47

implicit differencing scheme, 68
improper prior, 162
incomplete beta function, 132
incomplete gamma function, 141
initial value problems, 47
interquartile range, 127
Ising model, 111

Jacobi’s method, 90

K-S test, 134
Kepler problem, 30
Kepler’s equation, 32
Kepler’s first law, 31
Kepler’s second law, 31
Kepler’s third law, 32
Kolmogorov-Smirnov test, 134

Lagrange’s interpolation formula, 184
Laplace-Runge-Lenz vector, 32
Lax method, 55
leapfrog method, 58
Legendre polynomials, 194
Legendre’s differential equation, 194
likelihood function, 159
likelihood ratio, 162
linear correlation coefficient, 131
linear interpolation, 184
linear regression, 147
local error, 17
LU decomposition, 169

machine epsilon, 214
magnetic susceptibility, 114
marginalized likelihood, 159

Markov chain Monte Carlo, 160
mean, 125
mean anomaly, 34
mean field theory, 112
measures of central tendency, 125
median, 125
Metropolis algorithm, 114
Metropolis-Hastings algorithm, 160
midpoint method, 186
midrange, 126
mode, 125
Monte Carlo integration, 196
Monte Carlo methods, 101
Moore-Penrose inverse, 155
multimodal, 126
multiplicity of states, 105

Neville’s algorithm, 185
Newton’s method, 175
normal distribution, 129
normal equations, 153
not a number, 214
null hypothesis, 131
Nyquist frequency, 202

occupation numbers, 105
operator splitting, 83
order statistics, 125
over-relaxation parameter, 93

p-value, 132
parabolic equations, 47
paramagnetic phase, 111
parsecs, 151
Parseval’s theorem, 202
partition function, 106
Pearson’s chi-squared test, 134
Pearson’s r, 131
periodogram, 205
polynomial interpolation, 184
posterior probability, 159
prior probability, 159
probability density function, 128
proposal distribution, 160
pseudoinverse, 155

quadrature, 186
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quantile function, 128

random walk, 101
rectangular method, 186
reflective boundary conditions, 51
relative error, 41
relaxation method, 89
Richardson extrapolation, 190
Riemann sum, 186
Rodrigues’ formula, 194
Romberg integration, 191
root finding, 20
Runge-Kutta method, 36

sampling theorem, 202
second-order phase transition, 113
separation of variables, 49
shooting method, 19
simulated annealing, 179
singular value decomposition, 155
spectral leakage, 205
spectral radius, 92
standard deviation, 127
standard scores, 129
state, 105
statistical range, 126
step doubling, 40
Stirling’s approximation, 107
successive over-relaxation, 93

thermal diffusivity, 64
transpose, 153
trapezoid method, 187
tridiagonal matrix, 69, 172
true anomaly, 32
truncation error, 13

uncorrelated, 131

variance, 128
variational method, 119
vis-viva equation, 34
von Neumann stability analysis, 53

Welch’s method, 206
windowing, 205
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