ERRATA FOR
 Gravitational-Wave Physics and Astronomy

Jolien D. E. Creighton, Warren G. Anderson

2014-06-26

Chapter 1

Equation (1.21) The argument here is made clearer by considering a single eleto Eq. (1.23)
Page 7 ment of mass $d m$. The text beginning just before Eq. (1.21) through Eq. (1.23) should read:

An element of the extended body, located at a position x and having mass $d m=\rho(\boldsymbol{x}) d^{3} \boldsymbol{x}$, experiences a tidal force

$$
\begin{equation*}
F_{i}=-\mathcal{E}_{i j} x^{j} d m \tag{1.21}
\end{equation*}
$$

If the element is moving through the tidal field with velocity v then there is an amount $F_{i} v^{i}$ of work per unit time done on that element. Summing over all elements that comprise the body yields the total amount of work:

$$
\begin{align*}
\frac{d W}{d t} & =-\int_{\text {body }} \mathcal{E}_{i j} v^{i} x^{j} d m \\
& =-\frac{1}{2} \mathcal{E}_{i j} \frac{d}{d t} \int_{\text {body }} x^{i} x^{j} d m \tag{1.22}\\
& =-\frac{1}{2} \mathcal{E}_{i j} \frac{d I^{i j}}{d t}
\end{align*}
$$

where, since $d m=\rho(\boldsymbol{x}) d^{3} \boldsymbol{x}$,

$$
\begin{equation*}
I^{i j}:=\int_{\text {body }} x^{i} x^{j} \rho(\boldsymbol{x}) d^{3} x \tag{1.23}
\end{equation*}
$$

is the quadrupole tensor.

Before Eq. (1.27) In sentence ending in Eq. (1.27), the term 'quadrupole tensor' PAGE 8 should have been used rather than 'moment of inertia tensor'.

Credit: Leslie Wade

Chapter 2

Equation (2.20) The equation contains an index error; it should read:
Page 16

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{v}:=g_{\mu v} u^{\mu} v^{v} \tag{2.20}
\end{equation*}
$$

Credit: Leslie Wade

Equation (2.67) The equation contains an index error; it should read:
Page 29

$$
\begin{equation*}
\left(\delta a^{\alpha}\right)_{\mathrm{bot}}=-\epsilon^{2} R_{\mu v \rho}{ }^{\alpha}(\mathcal{Q}) u^{\mu} v^{v} a^{\rho} \tag{2.67}
\end{equation*}
$$

Equation (2.68) The equation contains an index error; it should read:
Page 30

$$
\begin{equation*}
\left(\delta a^{\alpha}\right)_{\text {top }}=\epsilon^{2} R_{\mu v \rho}^{\alpha}(\mathcal{Q}) u^{\mu} v^{v} a^{\rho} \tag{2.68}
\end{equation*}
$$

Equation (2.102) The equation is missing a factor of 4; it should read:
Page 36

$$
\begin{equation*}
T^{\alpha \beta}=p\left(4 \frac{u^{\alpha} u^{\beta}}{c^{2}}+g^{\alpha \beta}\right) \quad \text { (radiation). } \tag{2.102}
\end{equation*}
$$

After Eq. (2.148) Page 44

Equation (2.148) actually contains some post-Newtonian corrections. Text following Eq. (2.148) should read:

In fact, this metric contains some post-Newtonian terms: strictly speaking, to recover Newtonian motion, one needs only $g_{00}=-c^{2}-2 \Phi$ and $g_{i j}=\delta_{i j}$ (see Section 4.1).

Equation (2.153) The equation contains a factor of 4 rather than a factor of 2 ; it should Page 45 read:

$$
\begin{align*}
\frac{d \boldsymbol{p}}{d t}= & \gamma m\left\{-\nabla \Phi-\frac{\partial A}{\partial t}+v \times(\boldsymbol{\nabla} \times \boldsymbol{A})\right. \\
& \left.+\frac{1}{c^{2}}\left[2 \frac{\partial \Phi}{\partial t} v+2(v \cdot \nabla \Phi) v-v^{2} \nabla \Phi\right]\right\} \tag{2.153}
\end{align*}
$$

Equation (2.154) The equation is missing a negative sign; it should read:
Page 46

$$
\begin{equation*}
\Delta \tau=\int_{\gamma} d \tau=\int_{0}^{1} \sqrt{-g_{\mu v} \frac{d x^{\mu}}{d \sigma} \frac{d x^{v}}{d \sigma}} d \sigma, \tag{2.154}
\end{equation*}
$$

Equation (2.156) The equation is missing a negative sign; it should read: Page 46

$$
\begin{equation*}
\mathcal{L}=-m c^{2} \sqrt{-g_{\mu v}(\mathbf{x}) \frac{d x^{\mu}}{d \sigma} \frac{d x^{v}}{d \sigma}} \tag{2.156}
\end{equation*}
$$

Problem 2.5 Part (b) of the problem should read:
Page 47
b) Compute the equations of motion, $d^{2} t / d \tau^{2}$, $d^{2} r / d \tau^{2}$, and $d^{2} \phi / d \tau^{2}, \ldots$

Chapter 3

Section 3.1 The argument made at the beginning of this section is missing a
Page 49 critical step. Following Eq. (3.2) the text should read:

An important solution is the plane-wave solution, which we choose as travelling in the $z=x^{1}$-direction. Equation (3.1) implies that the components of the metric perturbation (both the actual perturbation and the trace-reversed version) must all be functions of the retarded time $t-z / c$. Because gauge freedom remains within the Lorenz gauge [cf. Eq. (2.140)], we are free to perform a gauge transformation generated by $\xi=\xi(t-z / c)$ and remain in a Lorenz gauge. We adopt a synchronous gauge in which $h_{0 i}=0$ by the choice $\xi_{0}=0$ and $\xi_{i}=\int \bar{h}_{0 i} d t$. The Lorenz gauge condition now further requires $\partial \bar{h}^{\mu 0} / \partial x^{\mu}=\partial \bar{h}^{00} / \partial t=0$ which implies $\partial \bar{h}^{\mu \alpha} / \partial x^{\mu}=\partial \bar{h}^{3 \alpha} / \partial z=0$, so $\bar{h}_{00}(t-z / c)$ and $\bar{h}_{3 \alpha}(t-z / c)$ are constant, and we are free to choose the constant to be zero. We then have $\bar{h}_{0 \alpha}=0$ and $\bar{h}_{3 \alpha}=0$.

After Eq. (3.7b) The inline equations of the last sentence of the paragraph are miss-
Page 51
ing factors of c. The sentence should read:
There must be more gauge freedom within the Lorenz gauge that is responsible for the extra (non-physical) degree of freedom (specifically, for $h_{00}=-c^{2} h_{33}=$ $\frac{1}{2} c^{2}\left(\bar{h}_{11}+\bar{h}_{22}\right)$, which does not appear in the Riemann tensor).

Equation (3.92) The integrand erroneously has retarded time; the equation should Page 71 read:

$$
\begin{equation*}
I^{i j}(t)=\int x^{i} x^{j} \tau^{00}(t, x) d^{3} x \tag{3.92}
\end{equation*}
$$

Equation (3.173) The equations contain the wrong factors of G and c and use ϕ rather Page 87 than φ; they should read:

$$
\begin{align*}
& \dddot{I}_{11}=-\dddot{I}_{22}=4 \frac{c^{5}}{G} \frac{\mu}{M}\left(\frac{v}{c}\right)^{5} \sin 2 \varphi \tag{3.173a}\\
& \dddot{I}_{12}=\dddot{I}_{21}=-4 \frac{c^{5}}{G} \frac{\mu}{M}\left(\frac{v}{c}\right)^{5} \cos 2 \varphi . \tag{3.173b}
\end{align*}
$$

Example 3.15 A negative sign is missing in the inline equation near the end of the Page 90 example; the text should read:
... the General Relativity prediction for the orbital decay is $\dot{P}=-2.402 \times 10^{-12}, \ldots$

Problem 3.1 The first equation in the problem should read:
Page 91

$$
T_{\alpha \beta}^{\mathrm{GW}}=-\frac{c^{4}}{8 \pi G}\left\langle\stackrel{2}{G}_{\alpha \beta}\right\rangle+O\left(h^{3}\right)
$$

Chapter 4

Equation 4.11 The equation contains an index error; it should read:
Page 101

$$
\begin{align*}
16 \pi t_{\alpha \beta}= & -4 \frac{\partial \Phi}{\partial x^{\alpha}} \frac{\partial \Phi}{\partial x^{\beta}}-8 \frac{\partial^{2} \Phi}{\partial x^{\alpha} \partial x^{\beta}} \tag{4.11}\\
& +\eta_{\alpha \beta}\left(8 \Phi \nabla^{2} \Phi+6(\nabla \Phi) \cdot(\nabla \Phi)\right)
\end{align*}
$$

Equation 4.35a Page 105

The equation contains a factor of $1 / c^{2}$ error; the first line should read:

$$
g_{00}=-c^{2}+h_{00}=-c^{2}-2 \Phi-2 \frac{\Phi^{2}}{c^{2}}+4 \Psi-\frac{1}{c^{2}} \frac{\partial^{2} \chi}{\partial t^{2}}+O\left(\epsilon^{6}\right)
$$

Equation 4.50 Page 108

There is a missing subscript in this equation; the second to last line should read:

$$
+\hat{\boldsymbol{n}} \cdot \boldsymbol{x}_{A} \frac{\left(v_{A}^{i} x_{A}^{j}+v_{A}^{j} x_{A}^{i}\right)}{c}+\left(\hat{\boldsymbol{n}} \cdot \boldsymbol{x}_{A}\right)^{2} \frac{v_{A}^{i}}{c} \frac{v_{A}^{j}}{c}
$$

Equation 4.52 There is a subscript error on the last line of this equation; the last Page 109 line should read:

$$
\begin{equation*}
\left.-\frac{1}{2} \frac{\left(\boldsymbol{v}_{1} \cdot r_{12}\right)\left(v_{2} \cdot r_{12}\right)}{c^{2} r_{12}^{2}}\right] \tag{4.52}
\end{equation*}
$$

Credit: Charalampos Markakis and Nathan Kieran Johnson-McDaniel

Equation 4.53 There is a subscript error on the last line of this equation; the last Page 109 line should read:

$$
\begin{equation*}
\left.+\frac{1}{2} \frac{\left(v_{1} \cdot r_{12}\right)\left(v_{2} \cdot r_{12}\right)}{c^{2} r_{12}^{2}}\right], \tag{4.53}
\end{equation*}
$$

Credit: Charalampos Markakis and Nathan Kieran Johnson-McDaniel

Equation. (4.63) There are factors of c errors after the last equality; the equation Page 110 should read:

$$
\begin{equation*}
x^{3 / 2}=\frac{G M \omega}{c^{3}}=\frac{G M}{c^{2} a} \frac{v}{c}=\frac{v^{3}}{c^{3}}\left[1+(3-\eta) \frac{v^{2}}{c^{2}}\right] \tag{4.110}
\end{equation*}
$$

Credit: Charalampos Markakis and Nathan Kieran Johnson-McDaniel

Before Eq. (4.65) The energy function should be defined as:
Page 111

$$
\mathcal{E}:=\left(E-M c^{2}\right) / M c^{2}
$$

Credit: Charalampos Markakis and Nathan Kieran Johnson-McDaniel

Equation (4.104)
The equation contains index errors; it should read:
Page 118

$$
\begin{equation*}
\bar{h}_{\alpha \beta}=h_{\alpha \beta}-\frac{1}{2}_{2}^{0} g_{\alpha \beta} h \tag{4.104}
\end{equation*}
$$

Equation (4.105) Some Ricci terms were omitted; the equation should read: Page 118

$$
\begin{align*}
& G_{\alpha \beta}=\stackrel{0}{G}_{\alpha \beta}+\frac{1}{2}\left(-{ }_{8}^{g^{\mu \nu}} \stackrel{0}{\nabla}_{\mu} \stackrel{0}{\nabla}_{\nu} \bar{h}_{\alpha \beta}-\stackrel{0}{8}_{\alpha \beta} \stackrel{0}{\nabla}_{\mu} \stackrel{0}{\nabla}_{\nu} \bar{h}^{\mu \nu}\right. \\
& +\stackrel{0}{\nabla}_{\mu} \stackrel{0}{\nabla}_{\alpha} \bar{h}^{\mu}{ }_{\beta}+\stackrel{0}{\nabla}_{\mu}{ }^{0}{ }_{\beta} \bar{h}_{\alpha}{ }^{\mu} \tag{4.105}\\
& \left.-\bar{h}_{\alpha \beta} \stackrel{9}{g}^{\mu \nu v}{ }^{0}{ }_{\mu v}+{ }_{g}^{0}{ }_{\alpha \beta} \bar{h}^{\mu v}{ }^{0} R_{\mu v}\right) \\
& +O\left(h^{2}\right) \text {. }
\end{align*}
$$

Equation (4.107) The error in Eq. (4.105) propagates to this equation; it should read: Page 118

$$
\begin{align*}
& \stackrel{0}{g}^{\mu \nu v} \stackrel{0}{\nabla}_{\mu} \stackrel{0}{\nabla}_{\nu} \bar{h}_{\alpha \beta}-\stackrel{0}{\nabla}_{\mu} \stackrel{0}{\nabla}_{\alpha} \bar{h}_{\beta}{ }^{\mu}-\stackrel{0}{\nabla}_{\mu} \stackrel{0}{\nabla}_{\beta} \bar{h}^{\mu}{ }_{\alpha} \\
& \quad+\bar{h}_{\alpha \beta}{ }^{0}{ }^{\mu v}{ }^{0} R_{\mu v}-\stackrel{\circ}{g}_{\alpha \beta} \bar{h}^{\mu v v^{0}}{ }_{\mu v}=-\frac{16 \pi G}{c^{4}} \delta T_{\alpha \beta} \tag{4.107}
\end{align*}
$$

(Lorenz gauge).

Credit: John Friedman

Equation (4.109) The error in Eq. (4.107) propagates to this equation; it should read: Page 118

Chapter 5

Problem 5.4 The last sentence of the problem should read:
Page 195
Compute the gravitational waveform seen by an observer at a distance $r=10 \mathrm{kpc}$ off the axis of the collapsing spheroid.

Chapter 6

Before Eq. (6.99) The inline equation in the sentence beginning before Eq. (6.99) is Page 224 missing a superscript 2 ; it should read:

$$
S_{I}=2 \hbar c k I_{0} G_{\mathrm{prc}} G_{\mathrm{arm}}^{2}\left(k \Delta L_{0}\right)^{2}
$$

Equation (6.112) The equation is missing a superscript 2; it should read:
Page 228

$$
\begin{equation*}
I_{0, \mathrm{opt}}=\frac{\pi^{2} M c}{2 k} \frac{1}{G_{\mathrm{prc}} G_{\mathrm{arm}}^{2}} \frac{f_{\mathrm{opt}}^{2}}{\left|\hat{C}_{\mathrm{FP}}\left(f_{\mathrm{opt}}\right)\right|^{2}} \tag{6.112}
\end{equation*}
$$

Equation (6.123)
Page 230

$$
\begin{equation*}
-4 \pi^{2} f^{2} \ell \tilde{x}=-g(\tilde{x}-\tilde{X}) \tag{6.123}
\end{equation*}
$$

Equation (6.187) Arguments to the D function are given in reverse order; the equaPage 243 tion should read:

$$
\begin{align*}
\tilde{\phi}_{\mathrm{ext}}(f) & :=\tilde{\phi}_{\mathrm{ext}, 1}(f)-\tilde{\phi}_{\mathrm{ext}, 2}(f) \\
& =k L \tilde{h}_{i j}(f)\left[\hat{p}^{i} \hat{p}^{j} D(\hat{\boldsymbol{p}} \cdot \hat{\boldsymbol{n}}, f L / c)-\hat{q}^{i} \hat{q}^{j} D(\hat{\boldsymbol{q}} \cdot \hat{\boldsymbol{n}}, f L / c)\right] \\
& =2 k L \tilde{h}(f), \tag{6.187}
\end{align*}
$$

Equation (6.202) There is an extra factor of i; the equation should read:
Page 247

$$
\begin{equation*}
\hat{C}_{\mathrm{SR}}(f)=\frac{t_{\mathrm{SRM}} \mathrm{e}^{-i\left(2 \pi f \ell_{\mathrm{SRC}} / c+\phi_{\mathrm{SRC}}\right)}}{1-r_{\mathrm{SRM}}\left(\frac{r_{\mathrm{ITM}}-\mathrm{e}^{-4 \pi i f L / c}}{1-r_{\text {ITM }} \mathrm{e}^{-4 \pi i f L / c}}\right) \mathrm{e}^{-2 i\left(2 \pi f \ell_{\mathrm{SRC}} / c+\phi_{\mathrm{SRC}}\right)}} . \tag{6.202}
\end{equation*}
$$

Before Eq. (6.210) Correct spelling is Sagnac interferometer.
Credit: Charalampos Markakis and Nathan Kieran Johnson-McDaniel

Chapter 7

After Eq. (7.1) A stationary process is not necessarily ergodic. The second senPAGE 269 tence after Eq. (7.1) should read:
If the process is also ergodic then the ensemble average is equivalent to a long time average....

Credit: Kipp Cannon

Equation (7.5) There are extraneous superscript 2s; the equation should read:
Page 270

$$
\begin{align*}
\left\langle x^{2}\right\rangle & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\infty}^{\infty} x_{T}^{2}(t) d t \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\infty}^{\infty}\left|\tilde{x}_{T}(f)\right|^{2} d f \tag{7.5}\\
& =\lim _{T \rightarrow \infty} \frac{2}{T} \int_{0}^{\infty}\left|\tilde{x}_{T}(f)\right|^{2} d f \\
& =\int_{0}^{\infty} S_{x}(f) d f,
\end{align*}
$$

Equation (7.65) The equation should read:
Page 283

$$
\begin{align*}
\mathcal{O}(\boldsymbol{\mu} ; \boldsymbol{\mu}+\Delta \boldsymbol{\mu}) & :=\max _{\Delta t} \mathcal{A}\left(t_{0}, \boldsymbol{\mu} ; t_{0}+\Delta t, \boldsymbol{\mu}+\Delta \boldsymbol{\mu}\right) \\
& =\max _{\Delta t}\left(u\left(t_{0}, \boldsymbol{\mu}\right), u\left(t_{0}+\Delta t, \boldsymbol{\mu}+\Delta \boldsymbol{\mu}\right)\right)
\end{align*}
$$

Equation (7.67) PAGE 283

The equation should read:

$$
\begin{align*}
\gamma^{i j}(\boldsymbol{\mu}) & =-\frac{1}{2} \max _{\Delta t}\left(u\left(t_{0}, \boldsymbol{\mu}\right), \frac{\partial^{2} u}{\partial \mu_{i} \partial \mu_{j}}\left(t_{0}+\Delta t, \boldsymbol{\mu}+\Delta \boldsymbol{\mu}\right)\right) \\
& =g^{i j}-g^{i 0} g^{0 j} / g^{00} \quad(i, j>0) \tag{7.67}
\end{align*}
$$

Credit: Joseph Romano

Equation (7.234) Page 328

The equation should read:

$$
\begin{align*}
\Delta t_{0} & =\sqrt{\left(\Gamma^{-1}\right)_{00}}=\frac{1}{\varrho} \frac{\left|B^{00}\right|^{1 / 2}}{2 \pi f_{0}} \\
\Delta \varphi_{0} & =\sqrt{\left(\Gamma^{-1}\right)_{11}}=\frac{1}{\varrho} \frac{\left|B^{11}\right|^{1 / 2}}{2}, \\
\frac{\Delta \mathfrak{N K}}{\mathfrak{J I}} & =\sqrt{\left(\Gamma^{-1}\right)_{22}}=\frac{1}{\varrho} \frac{128}{5}\left(\frac{\pi G \mathfrak{J I} f_{0}}{c^{3}}\right)^{5 / 3}\left|B^{22}\right|^{1 / 2} . \tag{7.234c}
\end{align*}
$$

Equation (7.282) The summations over j are different for the two terms in the intePage 340 grand; the equation should read:

$$
\begin{align*}
\mathcal{N}^{2}:= & \sum_{i=1}^{N} 4 \int_{0}^{\infty}\left\{-T \sum_{\substack{j=1 \\
j<i}}^{N} \frac{\hat{S}_{i j}(f) \hat{S}_{j i}(f)}{S_{i}(f) S_{j}(f)}\right. \\
& \left.+2 \operatorname{Re} \sum_{\substack{j=1 \\
j \leq i}}^{N} \sum_{\substack{k=1 \\
k \neq i, j}}^{N} \frac{\tilde{s}_{i}^{*}(f) \hat{S}_{i k}(f) \hat{S}_{k j}(f) \tilde{s}_{j}(f)}{S_{i}(f) S_{k}(f) S_{j}(f)}\right\} d f \tag{7.282}
\end{align*}
$$

Equation (7.298) The equation should read:
Page 343

$$
\begin{align*}
\Omega_{0} & =\varrho T^{-1 / 2}\left(\frac{3 H_{0}}{10 \pi^{2}}\right)^{-1}\left(2 \int_{0}^{\infty} \frac{\gamma_{\mathrm{HL}}^{2}(f)}{f^{6} S_{\mathrm{H} 1}(f) S_{\mathrm{L} 1}(f)} d f\right)^{-1 / 2} \tag{7.298}\\
& \sim 2 \times 10^{-6}
\end{align*}
$$

Chapter 8

(No errors reported so far. . . .)

Appendix A

(No errors reported so far....)

Appendix B

Equation (B.4) Page 364

There are errors in a few factors; the equation should read:

$h_{22}=-$	$8 \sqrt{\frac{\pi}{5}} \frac{G \mu}{c^{2} r} \mathrm{e}^{-2 i \varphi} x\left\{1-\left(\frac{107}{42}-\frac{55}{42} \eta\right) x\right.$
	$+\left[2 \pi+6 i \ln \left(\frac{x}{x_{0}}\right)\right] x^{3 / 2}$
	$-\left(\frac{2173}{1512}+\frac{1069}{216} \eta-\frac{2047}{1512} \eta^{2}\right) x^{2}$
-	$\left[\left(\frac{107}{21}-\frac{34}{21} \eta\right) \pi+24 i \eta\right.$
	$\left.+i\left(\frac{107}{7}-\frac{34}{7} \eta\right) \ln \left(\frac{x}{x_{0}}\right)\right] x^{5 / 2}$
+	$\left[\frac{27027409}{646800}-\frac{856}{105} \gamma_{\mathrm{E}}+\frac{2}{3} \pi^{2}\right.$
	$-\frac{1712}{105} \ln 2-\frac{428}{105} \ln x-18\left[\ln \left(\frac{x}{x_{0}}\right)\right]$
	$-\left(\frac{278185}{33264}-\frac{41}{96} \pi^{2}\right) \eta-\frac{20261}{2772} \eta^{2}$
	$\left.\left.+\frac{114635}{99792} \eta^{3}+i \frac{428}{105} \pi+12 i \pi \ln \left(\frac{x}{x_{0}}\right)\right] x^{3}\right\} ;$

