

UPDATING AND EXPANDING A MULTI RESOLUTION

LINEAR REFERENCING SYSTEM

FUNCTIONAL MERGE

By

ANTHONY LANE MORRISON

DR. ANDREW J. GRAETTINGER, COMMITTEE CHAIR

DR. STEVEN L. JONES

DR. RANDY K. SMITH

A THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the Department of Civil, Construction and Environmental Engineering
in the Graduate School of

The University of Alabama

TUSCALOOSA, ALABAMA

2012

Copyright Anthony Lane Morrison 2012

ALL RIGHTS RESERVED

ii

ABSTRACT

The Wisconsin Department of Transportation (WisDOT) uses two separate linear

referencing systems (LRSs) for complete statewide crash mapping. The State Trunk Network

(STN) represents only state routes while the Wisconsin Information System for Local Roads

(WISLR) includes all roads, with additional detail given to local routes. A functional link

between the two systems, the link-link table, has been developed that allows data to be translated

from STN(a higher resolution representation) to WISLR (a lower resolution representation).

This functional link between the two systems requires updating to reflect changes due to

roadway construction, linear referencing system edits, and other changes. The focus of this

research was to develop a technique to update the functional merge between the two systems.

Updating the link-link table is needed to allow for continued data translation between

from STN to WISLR, allowing for regular formation of a statewide crash map. While data is

easily translated from high to low resolution, ambiguities arise when data is moved from low

resolution to high resolution. Research presented in this thesis identifies common problems

associated with low to high resolution data translation and provides some rules and guidelines to

accommodate these issues.

This thesis presents the link-link table update methodology, an approach to expanded

data translation between dissimilar-resolution LRSs, and recommendations for future work

related to each topic.

iii

DEDICATION

This thesis is dedicated to my friends, family, and coworkers who helped me in various

capacities to assist me with this research and this ensuing manuscript.

iv

ACKNOWLEDGMENTS

I am thankful to so many for the opportunity to work on this project. God has

continuously blessed me with opportunities like these throughout my life and I am eternally

grateful. I am also thankful for my friends, family, and colleagues for their help and

encouragement throughout this research and the culminating creation of this thesis.

I am especially grateful to Dr. Andrew Graettinger for helping to guide me in various

areas of my life both within and outside of academics. I would also like to thank Dr. Steven

Parker at the University of Wisconsin-Madison for his help throughout this project. This

research would not have been possible without the help and support of my friends and

coworkers. I’d like to thank Zach Ryals, Blake Doherty, Michael Herron, Rachel Cary, Luke

Taylor, Stephanie Farrell, Wil Stone, Anika Kuczynski, Michael Sherer, and Ashley Purkey for

helping me in various ways with this research and for providing a great office environment.

Finally I thank The University of Alabama and the State of Alabama for providing me

this opportunity. I hope this work, along with countless others’ work that is far greater than my

own, may continue to illustrate the incalculable value of public education.

v

CONTENTS

ABSTRACT .. ii

DEDICATION ... iii

ACKNOWLEDGMENTS ... iv

CONTENTS .. v

LIST OF TABLES ..

LIST OF FIGURES ... i

INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Thesis Organization .. 4

LITERATURE REVIEW AND BACKGROUND .. 6

2.1 Conceptual Linear Referencing Systems .. 6

2.2 WisDOT Linear Referencing Systems .. 9

METHODOLOGY ... 14

3.1 Introduction ... 14

3.2 The STN and WISLR Systems ... 15

3.3 The Basic Link-Link Coding Process ... 17

3.4 Incorporating date information into the Link-Link Table ... 20

3.4.1 Record_Created Column .. 20

3.4.2 Record_Historic Column ... 21

3.4.3 Start_Valid Column ... 21

3.4.4 End_Valid Column .. 22

3.5 Populating Updated Information into the Link-Link Table .. 23

3.5.1 Simultaneous Date Column Population ... 23

3.5.2 Obtaining “Current” Data for Link-Link Updating ... 25

3.5.3 Identifying Changes and Updates to STN and WISLR ... 26

3.5.4 Updating Records in the Link-Link Table ... 28

3.6 Quality Assurance/Quality Control (QA/QC) .. 33

3.6.1 STN Link Check .. 33

3.6.2 WISLR Link Check ... 34

3.6.3 Gore Point Check ... 34

3.6.4 XY Connector Lines Check ... 35

3.6.5 Modified WISLR Point Moving Program ... 39

3.7 Update Issues .. 39

3.8 Using Link-Link for Data Translation .. 40

3.8.1 Approach .. 40

3.8.2 Data Translation ... 40

3.8.3 Problem 1: Intersection/Median Crossover Ambiguous Point Translation 41

i

3.8.4 Problem 2: Turn Lane Ambiguous Point Translation .. 42

3.8.5 Problem 3: Wayside Ambiguous Point Translation ... 44

3.8.6 Proposed Data Translation Rules ... 46

3.9 WISLR Editing Link Identification .. 49

3.10 Conclusion .. 51

RESULTS ... 53

4.1 Introduction ... 53

4.2 Dane County Pilot Study for Link-Link Update ... 53

4.3 Statewide Link-Link Coding Update Results ... 55

4.4 Data Translation Results ... 55

4.5 WISLR Editing Scope Identification .. 58

4.6 Conclusion .. 58

CONCLUSION AND FUTURE WORK ... 59

5.1 Conclusion .. 59

5.2 Future Work .. 60

REFERENCES ... 61

APPENDIX A - LINK-LINK DATE COLUMN POPULATION QUERIES 63

APPENDIX B - UPDATED WISLR POINT MOVING PROGRAM…………………….. …....68

LIST OF TABLES

Table 2.1. Names and Descriptions for the Six Main Link-Link Columns and Three Relevant
Link-Link Flag Columns (Ryals, 2011) .. 21

i

LIST OF FIGURES

Figure 2.1. Generalized LRS model known as NCHRP 20-27 model (Vonderohe & Hepworth,
1998) ... 7

Figure 2.2. Visualization of 20-27 (Wisconsin Department of Transportation, 1998) conceptual
model (Scarponcini, 2002) ………………………………………………………………………19

Figure 3.1. Example of the STN/WISLR relationship from the Madison, Wisconsin area. STN is
represented by thick red lines, while WISLR is represented with thin black lines 26

Figure 3.2. Example of the basic link-link table coding process: (a) illustrates a basic roadway
representation in WISLR and STN, (b) and (c) show basic attribute information from the shown
links, and (d) demonstrates the basic link-link table associated with the shown representations 19

Figure 3.3. Example of county-specific data selection procedure: (a) and (b) select Dane County
as the relevant county for updating, (c) the “Select by Attributes” user interface window, (d)
Dane County STN links selected using “Select by Attributes” .. 29

Figure 3.4. Example of data population procedure associated with link-link table update due to a
change in STN links: (a) example roadway section with a new and deleted STN link and
unchanged WISLR link, (b) attribute information for the STN links in the roadway section, (c)
attribute information for the WISLR link in the roadway section, (d) example link-link table
entry for old and new STN link in the roadway section ... 31

Figure 3.5. Command line used for “XY_Lines” generation ... 38

Figure 3.6. Example of “XY” lines shape file. Lines connect related data points on STN (line on
right side) and WISLR (line on left side) .. 38

Figure 3.7. General example of ambiguous point placement due to incongruent
intersection/median crossover representations: (a) example of data translation from STN to
WISLR; (b) example of data translation from WISLR to STN. ... 42

Figure 3.8. General example of ambiguous point placement due to incongruent turn lane
representations: (a) example of data translation from STN to WISLR; (b) example of data
translation from WISLR to STN…………………………………………………………………54

Figure 3.9. General example of ambiguous point placement due to a wayside: (a) example of
data translation from STN to WISLR; (b) example of data translation from WISLR to STN. 45

Figure 4.1. Thematic map of the number of data changes associated with each county. 54

Figure A.1. Start_Valid_Update1 query language……………………………………………….74

Figure A.2. Start_Valid_Update2 query language……………………………………...………..74

Figure A.3. End_Valid_Update1 query language……………………………..…………………75

Figure A.4. End_Valid_Update2 query language……………………………………………..…75

Figure A.5. End_Valid_Update3 query language…………………………………………..……76

Figure A.6. End_Valid_Update4 query language………………………………..………………77

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

The Wisconsin Department of Transportation (WisDOT) developed and maintains two

separate and independent linear referencing systems (LRSs) for use with traffic and

transportation business data in the State. The State Trunk Network (STN) was developed in the

early 1990s for use on Wisconsin interstates and state roads. Within STN there exists a network

of links and nodes that represent travel paths between state route intersections. The links are

described with unique identifiers and as-driven distances. The Wisconsin Information System

for Local Roads (WISLR) was developed approximately 10 years after STN for use on local

roads throughout the State. WISLR originated from cartographic representations that were

digitized from existing local, state, and federal sources. The digitized lines were converted into

multi-directional links that were split at intersections. End points of links were used to create

nodes. WISLR links are described by unique identifiers and although WISLR personnel collect

linear distances for links, state route distances are not maintained because of existing length data

in STN (A. J. Graettinger, Qin, Spear, Parker, & and Forde, 2009). Although WISLR shares

approximately 12,000 miles of roadway with STN, each system was developed and has

progressed independent of each other in order to meet various business needs within WisDOT.

However, due to differences in data types and formats, structural interoperability between the

two systems is difficult.

2

A connection between STN and WISLR was created that relates a segment of a link in

one system to the corresponding segment of link in the other system. This relationship is stored

in the “link-link” table. A statewide link-link table was completed in 2011 and was employed to

successfully move 2005-2009 state route crash data from STN to WISLR. Specifically, the link-

link table has allowed crash data points described with STN links and offsets to be translated into

crash data points described with WISLR links and offsets. Moreover, the link-link table allows

for movement from STN to WISLR of any point that contains STN link and offset information.

Sharing and translating crash data has been the main focus of this effort.

Although the link-link table was successful in providing a functional merge between STN

and WISLR, the link-link table is not dynamic. Expressly, the original link-link table was

created using data associated with 2009 conditions. Every year, STN and WISLR personnel

make numerous changes to line work and various related attribute information to keep up with

changing road networks. Updates are required of both systems any time there is construction,

surrendering of former state roads to local organizations, and other common activities. As a

result, the link-link table becomes, to an extent, outdated when updates are performed on

WisDOT LRSs. This circumstance can cause problems if, for example, a crash is coded to an

STN link that does not exist in the link-link table. The example crash would subsequently not

move to any WISLR link.

Because of the need to keep pace with changes made to transportation networks

throughout the State, updating the link-link table to reflect these changes is a priority. This

research defines a method that allows for yearly updating of the link-link table to incorporate

transportation network modifications into the functional merge between STN and WISLR. The

3

presented method allows for updates to be made to the table without disrupting current WisDOT

work flow.

Another related area of research presented in this thesis relates to data translation from

WISLR to STN, which is in the opposite direction of the original intent of the link-link table. To

accommodate the creation of a statewide crash map consisting of crashes on both state and local

roads, only data movement from STN (high resolution) to WISLR (low resolution) has been thus

far refined to a functional operation level. Data translation from WISLR to STN – from low

resolution to high resolution – is desired, in large part, because of current WisDOT crash data

reporting procedures. These procedures are presented below.

WisDOT currently uses a statewide system of reference points to which to “code” crashes

occurring on state routes. The Reference Point (RP) System allows designation of the linear

location of features along a roadway (Wisconsin Department of Transportation, 1998). An RP

can occur at a number of different physical landmarks including intersections, above ground

bridges, railroad crossings, state boundaries, and other identifiable features. When the RP linear

referencing method was originally developed in the 1970s, each RP was given a number and an

offset or “plus distance” on the route on which the RP appeared. After the development of the

STN link-offset linear referencing system, each RP number was assigned an STN link and offset.

Current crash reporting procedures involve analyzing written crash record information created by

law enforcement agents and assigning each crash that occurs on state routes an RP number and

an offset. By using the RP and offset, WisDOT can assign each crash an STN link and offset.

Recently, WisDOT embarked on a project to develop and implement an Incident

Location Tool (ILT) to assist law enforcement with crash location. This interactive tool will

4

implement a cartographic representation of the roadway network in patrol cars and will function

by having the law enforcement officer place a point at the location of a crash. WISLR will be

used as the roadway network in ILT. The tool will function in such a way that when an officer

clicks a position on the map, the associated WISLR link and offset information will be captured

and stored in the crash record. The link-link table will then be used to determine an STN link

and offset for crashes occurring along state routes. WisDOT seeks to continue using STN link

and offset information because of the numerous analysis tools available within the STN system

that are not functional within WISLR. Unfortunately, inconsistencies between the STN and

WISLR systems create problems when data is moved from WISLR to STN. Currently, WisDOT

is planning to flag crashes that map from WISLR to multiple locations in STN, and manually use

the existing RP coding method to assign an STN link and offset.

Because crash location data needs to be in three formats, STN link and offset, WISLR

link and offset, and RP number and offset within the STN system, accurate data movement

between the WISLR and STN systems is needed.

1.2 Thesis Organization

 This thesis is organized into five chapters. Chapter 2, Literature Review and

Background, presents not only a basic structure of a LRS, but also how updates to the general

systems have been handled and how data translation between two systems has been previously

approached. Chapter 3, Methodology, describes the link-link table update technique in detail and

presents the technique for WISLR-to-STN data translation. Chapter 4, Results, presents the

progress of the ongoing update project and the results of implementing a systematic data

translation technique. Chapter 5, Conclusion and Future Work, provides closing remarks about

the research presented and provides suggestions for valuable future work topics related to this

5

research. Appendices A and B provide additional detail relating to technical information created

during this research.

6

CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

 A linear referencing system is a computer based model that often represents

transportation data for use by Departments of Transportation. An LRS stores not only graphical

data, but also associated attribute data such as link ID and length. This attribute data allows for

the placement of transportation data using only a link ID and a measure value of a data element.

This data placement method has become particularly valuable for various transportation business

data such as roadway crashes. The basic concept of a linear referencing system and the tools

associated with an LRS are utilized within the WisDOT systems, STN and WISLR.

2.1 Conceptual Linear Referencing Systems

Linear Referencing Systems are made up of multiple levels of related information. The

conceptual model in Figure 2.1 shows a LRS as a compilation of three main parts: a datum,

network(s), and linear referencing methods (LRMs).

7

Figure 2.1. Generalized LRS model known as NCHRP 20-27 model (Vonderohe & Hepworth,

1998)

The datum, shown in the center of Figure 2.1, is an absolute set of anchor point and

anchor sections. These anchors points and segments relate to real locations and act as a platform

for movement among the other parts of the conceptual model. Anchor points require some

detailed explanation of the location in the field, which can be quantitative and/or qualitative.

Anchor sections are solely a connection between two anchor points. The length of the anchor

section can be calculated in the field to provide an accurate relationship between the anchor

points (Vonderohe, et al., 1997).

A network, as seen in Figure 2.1, is best described as a means for communication and

movement among point locations (Miller & Shaw, 2001). There are different types of networks

that can be present simultaneously through a common datum that is associated with an LRS, as

shown by Network N in Figure 2.1. A common network type is a link-node system, where links

8

are directional and act as flow conduits, and nodes are locations where links meet. Vice-versa,

nodes can be described as locations where flow can change, and the links simply connect certain

nodes, as described in the WisDOT Location Control Management Manual (Wisconsin

Department of Transportation, 1998).

A linear referencing method (LRM) is a way of describing the location of transportation

data on a given network. While there are several common LRMs, the link-offset method is

employed by WisDOT in the STN and WISLR systems. This method uses the directional link

on which the transportation data is located, as well as the distance down link that must be

traveled from the beginning of the link to the event.

Events are the visual product of processing business information through a LRS and are

at the center of spatial analysis. In a link-offset LRM, event points will be represented by a link

ID and an offset (Vonderohe & Hepworth, 1998). Bridge locations and segments of pavement

are physical data events, while crash points and project reference lines are intangible data events.

Events are generated solely through a LRS and will not always correspond to the actual location

of an event in the field due to fact that an LRS is only an abstract representation of actual

conditions.

Multiple maps and cartographic representations can be related to an LRS based on the

virtual anchors of the linear datum, meaning that cartography is not necessary to the function of

an LRS. However, cartography provides a visual perspective to better understand the

relationships of the network(s) and event data (Ryals, 2011). An LRM processes events by

referencing the Network, the Network is located on the earth’s surface by the Datum, and the

cartography is overlaid onto the Datum for visualization. A graphic illustration showing the

levels of the conceptual LRS data model is shown in Figure 2.2.

9

Figure 2.2. Visualization of 20-27 (Wisconsin Department of Transportation, 1998) conceptual

model (Scarponcini, 2002)

Data maintenance is of utmost importance regarding LRSs. To continue functionality of

an LRS it is important that all data, especially route and event data, within the systems are

maintained properly (Curtin, et al., 2007).

Schema uniformity is of utmost importance regarding data translation between

transportation systems. For data system interoperability to be possible, agreement must be

created between the data models. The models must both identify transportation features with

corresponding attributes and must be represented as line or point events using linear referencing

(Dueker & Butler, 2000).

2.2 WisDOT Linear Referencing Systems

STN and WISLR follow the basic components of an LRS. Additionally, WisDOT

business data reporting methods follow the requirements for events within an LRS. The

10

structure of WisDOT systems and data reporting methods allow for typical LRS rules to be

applied to translate data between STN and WISLR.

WisDOT chose to keep STN and WISLR separate in almost all respects, even when

devising a linear datum. STN was constructed utilizing a datum that ties features in the network

to field data positions that translate the theoretical location of network features. WISLR, on the

other hand, was built utilizing a datum that is directly tied to the spatial location as accurately as

possible (Ryals, 2011).

STN and WISLR are similar in that both lack a distinct datum. Instead, each system has

the datum embedded in the respective network. Explicitly, the network and datum are

functionally equivalent. Additionally, each system employs a different LRM (A. J. Graettinger

et al., 2009; A. J. Graettinger, et al., 2008). The WISLR system is described best by an

integrated method of network design. That is, WISLR consists of segmented routes that provide

more calibration in displaying measured transportation data than long, multiple-intersection

spanning features. The STN system could be described similarly, but it typically allows multiple

road features to comprise one link.

WisDOT necessarily maintains its LRSs by updating line work along with attributes or

databases. Extensive tools are implemented for this effort. Continuous update of the two

systems allow for STN and WISLR to be available for uninterrupted use and analysis.

WisDOT now seeks to use the functional join between STN and WISLR, basically the

link-link table, to move from an event on a WISLR chain, or cartographic representation, to an

event containing an STN link and offset. This translation is direct when a one-to-one

relationship between the two systems can be defined by the link-link table. However,

ambiguities occur when one-to-many relationships exist.

11

The RP system discussed previously would be considered a linear referencing method

(LRM) as defined by NCHRP. LRMs allow measurements along some type of linear element.

Each RP in the RP system is an LRM with an absolute distance defined. The location of the

point is given with an offset distance from the beginning of the STN link on which the RP exists.

The NCHRP model allows for translation expressions to convert traversals, or routes through a

part of a transportation network made up of one or more segments, from a LRS to cartographic

representation lines (Dueker & Butler, 2000; Scarponcini, 2002).

Given that the WISLR and STN systems exist on different scales, or resolution levels,

linking the data sets had to utilize non-arbitrary rules to describe relationships within the data

(Sester, et al., 1998). During link-link coding, rules were formulated in this way but only with

consideration of one direction: STN to WISLR (Ryals, 2011). STN-to-WISLR relation was

accomplished by linking the two systems with the link-link table. The design and basic

description of the link-link table is illustrated in Table 2.1. The STNid and WISLRid columns

were populated with the unique ID number of the STN and WISLR link lengths that were found

to correspond to each other. The STNstart and STNend columns identify the section of an STN

link that corresponds to the section of the WISLR link identified by the WISLRstart and

WISLRend columns.

Table 2.1. Names and Descriptions for the Six Main Link-Link Columns and Three Relevant
Link-Link Flag Columns (Ryals, 2011)

STNid STNstart STNend WISLRid WISLRstart WISLRend T M W

Unique
identifier

for the
STN link

Start
measure
for the
STN

section

End
measure
for the
STN

section

Unique
identifier

for the
WISLR

link

Start
measure for
the WISLR

section

End
measure for
the WISLR

section

Flag
for

Turn
Lanes

Flag for
Median

Crossovers

Flag for
waysides

12

Additionally, rules were established to deal with areas that did not directly correspond to

each other. Rules associated with the link-link table were implemented with the use of flag

columns within the table. Although five main flag columns were used during coding of the link-

link table, three are relevant to this research: turn-lane (T), median crossover (M), and wayside

(W). The turn-lane column identified areas in which STN represented an intersection with

physically separated turn lane links, while WISLR did not. The median crossover column

similarly identified areas in which STN represented median crossover with a link, while WISLR

did not. The wayside flag identified roadside areas that were represented in STN with links, but

were not represented in WISLR. The flag columns were created to manage discrepancies such

that every point along an STN link was able to translate to some point along WISLR.

Although not previously considered, rules must be determined to similarly move data sets

in the opposite direction, from WISLR to STN. One way to determine these rules is to visually

inspect existing data sets and determine regularities between the data. Problems arise in this

approach because of the difficulty to find and determine every possible exception to the rules

(Sester et al., 1998).

Data translation between linear referencing methods is said to occur in the following way.

An offset from a reference point such as a WisDOT RP with an STN link and offset is

transformed into an offset along an anchor section and subsequently transformed into reference

point in the other system such as in WISLR with a WISLR link and offset (Vonderohe &

Hepworth, 1998).

In earlier research regarding data sharing between WISLR and STN, it was found that a

methodology could be successfully implemented between two large LRSs while each system

continued regular independent functions. This methodology was refined with quality assurance

13

and quality control measures that allowed full crash data sharing from the STN to WISLR

systems with limited sharing from WISLR to STN. This research seeks to refine data translation

techniques in the opposite direction, from WISLR to STN.

14

CHAPTER 3

METHODOLOGY

3.1 Introduction

 This research was performed in order to design, analyze, and apply a technique for

updating a previously-defined functional merge between the State Trunk Network (STN) and the

Wisconsin Information System for Local Roads (WISLR). These two linear referencing systems

(LRSs) were designed and are maintained by the Wisconsin Department of Transportation

(WisDOT). STN corresponds to state routes only, while WISLR corresponds to all roads with

specific emphasis and detail paid to local roads. Previous research centered on defining a

functional merge between the two systems to allow for more complete analysis of statewide

business data. Within this business data, the most attention was paid to crash data. WisDOT

business data can include pavement data, bridge data, and other information.

 The previous research created a functional LRS merge through the “link-link” table. The

link-to-link merge method matched a section of a link in one system to a section of a link in the

other system. This table was systematically hand populated in a county-by-county manner.

Each completed county was then appended to a statewide link-link table. The table was created

based on 2009 line work and data provided by WisDOT. However, roadway construction, line

work editing needs and changes in roadway attributes within WISLR and STN necessitates a

constant update and enhancement of the link-link table in order to maintain robustness of the

15

merge between the two systems. To incorporate various updates and changes within the

roadway network into the link-link table, it is necessary to define an updating process.

 Due to the need for data analysis within both STN and WISLR and to the fact that the

resolution level between the two systems is dissimilar, data translation procedures must be

formulated. Data translation rules can assist the accurate translation of information between the

two LRSs. To avoid needing to formulate data translation rules WISLR, the lower resolution

system, could be upgraded to implement higher detail. This can be done by identifying areas that

require edits by WisDOT personnel. A methodology to formulate this identification process is

also necessary.

This chapter discusses details of the STN and WISLR systems and briefly details the

basic link-link table population process. Next, how date information was incorporated into the

table to accommodate table updating is described and the methodology used for updating the

link-link table is discussed. Then, issues that arose during updating of the link-link table are

discussed. The modified Quality Assurance/Quality Control programs and processes that were

used for accuracy verification in the table are also described. Data translation rules that can be

used to move data from high resolution STN to low resolution WISLR and back are discussed.

Finally, this chapter discusses how areas of WISLR that need editing due to discrepancies will be

identified for correction.

3.2 The STN and WISLR Systems

 The State Trunk Network (STN) was implemented in 1993 by WisDOT to manage and

sustain transportation information on state highways and interstates in the State. STN is made up

of links and nodes along state-controlled roads only. In 2002, WisDOT implemented the

16

Wisconsin Information System for Local Roads to accommodate federal mandates requiring

more complete road network information reporting to allow for more complete maintenance and

safety analyses for all roads throughout the states. An example of how STN and WISLR relate

to each other is shown in an example in Figure 3.1. The STN system (thick red lines) is overlaid

with the WISLR system (thin black lines) in and around Madison, Wisconsin.

Figure 3.1. Example of the STN/WISLR relationship from the Madison, Wisconsin area. STN is
represented by thick red lines, while WISLR is represented with thin black lines

 STN contains links and sites (or nodes), cartographically-representative chains, and

transportation business data. Every direction of state roadway is represented in STN with a link

containing attributes such as: a link ID, length measurement, from-site, and to-site. The sites

determine directionality of links and are stored as link attributes. STN link distance is stored in

thousandths of a mile. However, the links are only measured to the accuracy of a hundredth of a

mile. Additionally, STN links are not cartographically representative. Instead, they are drawn

17

from one node to another node using straight lines. Nodes are placed where a turn from one state

owned road to another state owned road can occur.

 WISLR contains cartographically-representative links, sites, and business data. Every

direction of every roadway throughout the state is represented in WISLR. However, WISLR

focuses more on local road than it does on state roads. Typically, sites in WISLR represent

roadway intersections. WISLR lengths are stored in feet and are recorded to the nearest foot.

3.3 The Basic Link-Link Coding Process

The link-link table essentially matches sections of links in STN to sections of links in

WISLR. An example of the basic link-link coding process is presented in Figure 3.2. Figure

3.2(a) shows a basic, one-direction example of a roadway section represented in STN and

WISLR. Figure 3.2(b) and (c) shows relevant STN and WISLR link attribute information

needed for link-link coding. Figure 3.2(d) presents a basic coded section of the link-link table.

Each row (or record) of the table is believed to be one equal segment of pavement described in

two separate LRSs (STN and WISLR). The first three columns of the link-link table relate to the

STN system, while the last three columns relate to the WISLR system.

The coded link-link data presented in Figure 3.2(d) is populated using the basic link-link

coding process. As can be seen in the figure, STN link A relates to four WISLR links: b, c, d,

and e. Initially, the only data known is the total STN link length (200), and the corresponding

WISLR link lengths. This allows for the table to be initially populated with four lines. The first

line is populated with the STNid (A), the STNstart (0), and all three of the WISLR link attributes

for the first WISLR link corresponding to STN link A. The next two lines are then populated

with the STNid and WISLR link attributes only. Next, the fourth line of data is populated with

18

the STNid, the STNend (200), and the WISLR link attributes for the last WISLR link

corresponding to STN link A.

To populate the missing offset values (line 1 STN end, lines 2 and 3 STNstart and

STNend, line 4 STNstart), multiple approaches can be used. If an access point exists on the STN

link at points corresponding to each WISLR node, the offset values related to the access points

can be used for the offset values. Access points exist to denote driven offset information for

intersections occurring along state routes. However, in this case, the ratio approach is used. This

approach uses ratios equal to each WISLR link length divided by the sum of WISLR link lengths

to determine equivalent STN offset values for each WISLR link. For example, WISLR link b

corresponds to the length of link b (158) divided by the total corresponding WISLR length

(158+304+164+430=1057) multiplied by the length of STN link A (158/1057 * 200 = 30). This

offset value of 30 is populated into the STNend field for line one and the STNstart field for line

two. This link-link table population procedure is repeated for each link-to-link relationship.

19

Figure 3.2. Example of the basic link-link table coding process: (a) illustrates a basic roadway
representation in WISLR and STN, (b) and (c) show basic attribute information from the shown
links, and (d) demonstrates the basic link-link table associated with the shown representations

Various discrepancies are known to occur when trying to relate STN and WISLR. To

accommodate these known differences, five flag columns were used in link-link coding: turn-

lane, median crossover, gore point, wayside, and problem. The turn-lane flag column exists to

flag any location in which STN represents an intersection with a turn-lane, when WISLR does

not. That is, the resolution of STN is higher than that of WISLR. This means that a one-to-one

relationship is not possible at a certain location. The median crossover flag column exists for a

similar reason; because STN represents a median crossover at an intersection for example, where

WISLR represents the same location with a single point. The gore-point flag exists to flag any

20

location at which a gore point exists. Gore points occur anytime roads merge or split. Because

of differences in measuring techniques, gore situations provide distinct length discrepancies

between STN and WISLR. The wayside flag column exists to identify any location in which a

wayside, or a roadside area, is represented in STN and not in WISLR. Finally the problem flag

column exists to identify any record with a problem not covered in the other four columns.

There also exists a comments column to explain the problem encountered. While the basic

make-up and population of the link-link table is straightforward, there are caveats that exist in

the process. The basic coding process has been extensively presented by Ryals (2011). More

detailed information regarding original link-link coding can be found in the Link-Link Table

Population Manual by Ryals (2011).

3.4 Incorporating date information into the Link-Link Table

To accommodate yearly updates of the link-link table, it is necessary to incorporate date

information into the link-link table. This was accomplished by not only modifying the existing

date column (“datemod”) in the table, but also adding three additional date columns. In the

updated link-link table, there are now four date columns: Record_Created, Record_Historic,

Start_Valid, and End_Valid. Each of these new columns will be presented in detail, followed by

how the dates within the columns are populated in link-link coding and used in data translation.

3.4.1 Record_Created Column

 The Record_Created column functions the same as the datemod column in the previous

link-link table layout. This column is populated by a coder and corresponds to the date on which

any record is created or entered into the link-link table. The dates that were entered into the

21

datemod column in original link-link coding were retained to populate this column for original

records in the table.

3.4.2 Record_Historic Column

 The Record_Historic column is populated by the dates when a particular row in the link-

link table becomes historic. The dates in this column are generated by a coder. A record could

become historic for many reasons. The reasons include changes to STN or WISLR link line

work, changes to an access point (i.e. the offset measure of the access point), and the discovery

of an error in the original link-link record. Entering dates associated with various data

modifications will be presented later in this thesis. Generally, dates in the Record_Historic

column correspond to Record_Created dates in updated or new records.

3.4.3 Start_Valid Column

The Start_Valid column is populated with dates corresponding to the links contained in a

record. These dates correspond to the more recent validity start date of the STN or WISLR link

in a link-link table record and are drawn from database tables generated by WisDOT. The

Route-Link (RTE_LINK) database table from each system was selected as the basis for

acquiring Start_Valid dates.

The Route-Link database table contains information linking routes and links and contains

every route-link relationship, for every link and route in the State. The data columns of interest

in the Route-Link database table are the route-link current and route-link historic date columns.

The route-link current date is the date on which the route and link combination contained in the

record first became valid. That is, when the route and the link contained in the record were both

valid in WisDOT databases. Similarly, the route-link historic date is the date on which the route

22

and link combination contained in the record first become historic. When either the link or route

in the record becomes historic, the route-link combination becomes historic.

The validity start dates are drawn from the link-route current date in the route-link table

associated with STN and WISLR. This date is independent of when the link or the attributes of

the link were physically entered into the database.

Within each link-link table record there are two possible dates that could be used for the

Start_Valid date. The STN link in the record will have an associated link-route current date as

will the WISLR link in the record. The date that is chosen to populate the Start_Valid field in

the link-link table is the more recent of these two dates. This date is chosen because the record

should only become valid when both links in the record are valid.

3.4.4 End_Valid Column

The End_Valid column is also populated with dates corresponding to the links contained

in a record. These dates correspond to the older validity end date of the STN or WISLR link in a

link-link table record. These dates are also drawn from the route-link database table from each

system. The validity start dates are drawn from the link-route historic date in the route-link table

associated with STN and WISLR. This date is independent of when the link and the attributes of

the link were physically retired from the database.

Within each link-link table record there are two possible dates that could be used for the

End_Valid date. The STN link in the record will have an associated link-route historic date as

will the WISLR link in the record. The date that is chosen to populate the End_Valid field is the

23

older of these two dates. This date is chosen because the record should only be valid when both

links in the record are valid and not historic.

A detailed example of how these four date columns are populated is shown in sections

3.5.1, Simultaneous Date Column Population and 3.5.4, Updating Records in the Link-Link

Table.

3.5 Populating Updated Information into the Link-Link Table

 Four basic steps were taken to update the link-link table. First, dates for each link-link

record were populated simultaneously. Second, updated line work was obtained from WisDOT

and refined to obtain “current” data. Third, changes and updates to STN and WISLR were

identified. Finally, the table was manually updated using a systematic approach. The complete

update process is explained in this section.

3.5.1 Simultaneous Date Column Population

 The first step required in updating the link-link table was the population of the four date

columns that were added to the link-link table. Six separate queries were written within

Microsoft Access to programmatically populate these date fields from the STN and WISLR

route-link tables. Two queries pertained to the Start_Valid column while the other four queries

pertained to the End_Valid column.

The two Start_Valid queries compare the date related to the route-link current date in the

STN route-link table with the date related to the route-link current date in the WISLR route-link

table. The more recent date between the two was populated into the Start_Valid field in the

record. The four remaining queries relate to populating the End_Valid column.

24

The first two End_Valid queries determine if the links in a link-link record contain a date

in the route-link historic column, i.e. if the STN or WISLR link in the link-link record is historic.

If a historic date is found for only one of the STN or WISLR links in the record, then the historic

date that exists in in the route-link historic attribute of that one link is populated into the

End_Valid field in the link-link record. The remaining two End_Valid queries function similarly

to the two Start_Valid queries. That is, these queries compare the date related to the route-link

historic date in the STN route link table with the date related to the route-link historic date in the

WISLR route-link table. The older date between the two was populated into the End_Valid field

in the link-link record.

Before these six queries were executed, each route-link table was initially refined to

ensure that each link was associated with only one record in the route-link table. This was done

by the Traffic Operations and Safety (TOPS) lab using a query that retained records that did not

contain current and historic dates that were equal to each other and also retained the minimum

and maximum dates for the current and historic dates associated with each link, respectively.

This “refined” table was then imported into Access for use with the six additional queries. Each

of the six queries used in date identification can be seen in Appendix A.

For an immediate accuracy check following the execution of the six Start_Valid and

End_Valid queries, rows with missing date data were identified. Each link-link record should

contain at least two populated date fields, the Record_Created and the Start_Valid fields. Any

record that did not have one or both of these fields populated was analyzed for an error and

manually corrected. Any row that was populated with an End_Valid date but not a

Record_Historic date was analyzed more closely because any record that is historic due to link

25

dates (i.e. the End_Valid date is populated) should also have a populated Record_Historic field.

Each identified row that had this issue was checked for accuracy and changed.

3.5.2 Obtaining “Current” Data for Link-Link Updating

 The first step required in updating the link-link table for yearly line work and database

changes within STN and WISLR is obtaining “current” data which was compared to previous

data. First, 2010 data was obtained for link-link updating. With respect to current links, this was

accomplished by looking at the STN and WISLR route-link tables. “Current” links were

identified by selecting records where the route-link combination is current. For 2010 data, this

was done by selecting records with a route-link current date earlier than 2011 and a route-link

historic date that was null or newer or equal to the year 2011. A list of current links was

obtained by summarizing this list of current route-links.

 A shape file of current links was obtained by joining the lists of current links to the

ArcMap coverage files generated by WisDOT and then exporting joined records to a new shape

file. This shape file was then joined to relevant date information by joining the “refined” route-

link tables with the previously created shape files. The shape files were then cleaned up to

contain only relevant coding information. The relevant columns included link ID number, from

and to site numbers, display name, and the date fields appended from the “refined” route-link

table.

 Current sites, or nodes, within STN and WISLR are obtained by performing a process

similar to the process used to identify current links. WisDOT reference site tables

(DT_REF_SITE) are used to obtain current sites within each system. The reference site tables

contain every site for STN and WISLR across the entire state. Each site is uniquely numbered,

26

with location and validity date information in the site attributes. Current sites were identified for

the 2010 update by selecting records with a route-link current date earlier than 2011 and a route-

link historic date that is null or newer or equal to the year 2011.

Current access points were obtained more easily. The WisDOT access point table

(DV_ACSI_PT) contains all of the statewide access points and the location points’ location

information. Location attributes are stored as latitude, longitude, and STN link-offset. However,

each access point is not uniquely identified. This means that the access point table is not

embedded with date information. As new access point data becomes available, the table is

simply updated with new access points, and the outdated access points are physically deleted

from the database. Moreover, the updated (2010) access point table was used in its entirety and

considered as current access point table.

3.5.3 Identifying Changes and Updates to STN and WISLR

After current data was obtained, it was necessary to identify what changes occurred

between data used in initial link-link coding and current data. There are six basic changes that

directly affected records in the link-link table. These changes are the addition of a new STN

link, a new WISLR link, or a new access point, and the deletion of an STN link, a WISLR link,

or an access point. Identifying these changes was accomplished completely within ArcMap,

using joins.

 First, new links were identified. This was done by joining old line work (i.e. data used in

the formation of the 2009 link-link) to new line work (i.e. data that was created in the previous

section) based on the link ID number. In the joined data, records that did not join were selected.

Selecting non-joined records identified new links, that is, links that have been added to the “old”

27

STN and WISLR data sets. These selected links were then exported into a new shape file that is

named “NEW_(data)_2010,” where (data) is the data source being analyzed (STN links/sites,

WISLR links/sites, access points, etc.). This process was repeated for STN and WISLR links.

 Second, deleted links were identified. This was done by joining new line work to old line

work based on the link ID number. In the joined data, records that did not join were selected.

Selecting non-joined records identified deleted links, that is, links that have been deleted from

the “old” STN and WISLR data sets. These selected links were then exported into a new shape

file that is names “DELETED_(data)_2010.” This process was repeated STN and WISLR links.

 Finally, changes to access points were identified. Identifying these changes required a

slightly different approach. Initially, to aid in identification, a column named “concat” was

created in the old and new access point data tables. This column was populated with a text

concatenation of the link ID (RWLK_ID), intersecting road name (ASCI_INTS), and offset

value (ASCI_PT1) associated with each access point. The “concat” column was then used as the

basis to join “new” data to “old” data and vice-versa, similarly to the previous process for link

identification. Again, un-joined records in each step were selected to identify new and deleted

access points, respectively. Next, the selected records were summarized within ArcMap based

on the STN link ID on which the access point exists or existed. The combination of the two

summarized lists created a full list of links affected by access point changes, deleted or new.

This full “affected links” list was then joined to the new STN links shape file previously

generated. Finally links associated with joined records were exported to generate a shape file

representing only links that have been affected by changes in access points. This new shape file

was named “AP_AFFECTED_STN_LINKS_(year).”

28

3.5.4 Updating Records in the Link-Link Table

 The process to update the link-link table proceeded very similarly to original link-link

coding, with a few exceptions. First a county to update was identified. The relevant shape files

were then imported into the working map. These relevant shape files included current data sets

for STN links, sites, and chains; WISLR links and sites; access points; new and deleted STN

links; new and deleted WISLR links; access-point-affected STN links; and statewide county

outlines. County-specific data was obtained by using the “select by location” feature in ArcMap

with the “intersects with the source layer” option, using a search radius of 1000 meters. Selected

links from each shape file were then exported to county-specific shape files to use for the update.

An example of this selection procedure regarding STN links in Dane County is illustrated in

Figure3.3. Figure 3.3(a) and (b) select Dane County as the relevant county for updating.

Figure3.3(c) shows the “Select By Location” tool user interface and the needed selections and

values. Figure3.3(d) shows the STN links selected using the tool.

29

Figure 3.3. Example of county-specific data selection procedure: (a) and (b) select Dane County
as the relevant county for updating, (c) the “Select by Attributes” user interface window, (d)

Dane County STN links selected using “Select by Attributes”

 Next, a copy of the “old” link-link table was obtained and saved in the folder with the

other files being used in the county update. This copy was saved with the name “(County)_link-

link_(year).” The copied file was then open and all records that were not coded to the county

30

that being updated were deleted; deleting these records left only records that were coded to the

county being updated. An excel spreadsheet that served as the working document for the

updating process was then created. This spreadsheet contained the same column headings that

are contained in the updated version of the link-link table (i.e. with the four date columns).

 After data acquisition, the physical update process began. The general update process

proceeded as follows. County line work was analyzed, starting with the STN links (new and

deleted). Looking first at the deleted STN links shape file, each deleted link was identified. The

record(s) associated with each link ID was cut from the county-specific copy of the link-link

table and pasted in the excel spreadsheet used for editing. In the excel spreadsheet, relating to

the link-link record associated with the deleted STN link, the Record_Historic field was

populated with the date of the edit (i.e. the date that the record was cut from the link-link table),

and the End_Valid date was populated with the earliest route-link historic date associated with

the links in the record. In the case of a deleted STN link, this date was the route-link historic

date associated with the STN link. This occurred given that the STN link was the only link in the

record that has been updated (i.e. the WISLR link in the link-link record had not been edited).

 There was, in most cases, a new STN link associated with locations where an STN link

had been deleted. The new STN link is entered similarly to how original link-link coding

proceeded. In this case, the Record_Created date was the date that the record was entered into

the link-link table. The Start_Valid date was populated with the route-link current date

associated with the STN link, given that the WISLR link in the record was not edited later than

the date when the STN link was created. An example of the date population procedure

associated with link-link table update due to a change in STN links can be seen in Figure 3.4.

31

Figure 3.4(a) illustrates a basic example section of roadway showing a new and deleted STN link

associated with an unchanged WISLR link. Figure 3.4(b) and (c) show example attribute

information for the STN and WISLR links, respectively. Figure 3.4(d) presents an example of

how the change is coded into the link-link table.

Figure 3.4. Example of data population procedure associated with link-link table update due to a
change in STN links: (a) example roadway section with a new and deleted STN link and

unchanged WISLR link, (b) attribute information for the STN links in the roadway section, (c)
attribute information for the WISLR link in the roadway section, (d) example link-link table

entry for old and new STN link in the roadway section

 After all new and deleted STN links had been viewed and subsequently updated in the

Excel editing spreadsheet, WISLR links were analyzed. WISLR changes were addressed in the

same way that STN changes were addressed. However, some WISLR link changes occurred in

the same location as STN link changes, so some WISLR changes were accounted for in the STN

updating stage.

32

 After all WISLR changes were identified and reflected in the link-link table, access point

changes were investigated. Using the previously created access-points-affected-STN-links shape

file, STN links that were associated with access point changes were identified. Once a link had

been identified, the access points along the link were investigated. At this point, it was necessary

to identify whether any of the access points along a link represented a difference from offsets

already used within the existing record(s) in the county-specific link-link table. If a change was

found that does affect link-link, the link-link record associated with the changed-access-point

was cut and pasted into the Excel file similar to the previous update method for STN and

WISLR. Additionally, the link record associated with the direction opposite of the changed

access point was also updated. This was done because typically access points are defined for

only one direction of a roadway, but apply to both directions. Given that access points are

frequently updated to reflect accurate offset information, dates associated with changes to access

points on STN links must be managed differently than earlier presented link modifications.

 Link records that contained offsets that, according to the updated access points along the

link, no longer reflected accurate offset information were made historic. This was accomplished

by populating the Record_Historic column with the date of the record edit. The End_Valid date

field was populated with the same date as was present in the Start_Valid date field in the link-

link record. The new records associated with updated offset information from the updated access

points along the link were populated with a Record_Created date equal to the date of edit and a

Start_Valid date equal to the Start_Valid/End_Valid date on the outdated record for the link that

was updated.

33

 When all identified changes were reflected in the working Excel spreadsheet, all records

were copied and pasted into the county-specific link-link database table.

3.6 Quality Assurance/Quality Control (QA/QC)

 Similar QA/QC procedures are used in updating the link-link table as were used in

original link-link coding. However, some basic differences were needed to accommodate the

nature of updating the table. The four basic QA/QC procedures used to assure accuracy of the

updated link-link table were the STN and WISLR Link visual checks, Gore Point check, and the

XY Connector Line check. All of these checks were established during original link-link coding,

but will be briefly discussed with basic differences detailed. The first three checks require a

modified version of the link-link table to ensure that only current records in the link-link table

are used in accuracy checking. The fourth check requires the use of a modified point moving

program that is explained following the discussion of the checking procedure.

3.6.1 STN Link Check

 Keeping with the format and procedure associated with original link-link coding, all STN

links in the state must be coded into the link-link table and subsequently updated as needed. The

STN link check involves adding the link-link Access database table to the editing map and

joining the table to the STN links shape file based on STN link ID. Every link should join since

each STN link should be used in coding. Any link does not join in the process (i.e. an STN link

has a null value in the joined information) is not represented in the link-link table. This process

identifies un-coded STN links. These un-coded links should be added to the link-link table.

One modification was implemented in this check. In order to check the accuracy of only

the current records in the link-link table, a “trimmed” version of the link-link table is obtained

34

for the county being checked. This was accomplished in Microsoft Access by saving a copy of

the particular link-link table as a “trimmed” version, then opening the “trimmed” version and

deleting all records that have a populated Record_Historic field. Once this was performed, the

“trimmed” table contained only records with a populated date in the Record_Created and

Start_Valid fields. The “trimmed” table was then joined to the STN links shape file as was

previously presented in basic STN link check.

3.6.2 WISLR Link Check

 To ensure that all state route WISLR links are used in link-link coding, a visual check is

performed. This is accomplished by joining the link-link Access database table to the WISLR

link shape file based on WISLR ID. After the join is complete, the symbology of the WISLR

link shape file is adjusted to assist in visual inspection. This is done by making the symbol for

joined records one color and the symbol for un-joined records another color or invisible. After

the symbology is adjusted, it is possible to pan across a county to assure WISLR connectivity

along state routes and also that no WISLR links not representing state routes are used in the link-

link table. In updating the link-link table, the WISLR link check also required the use of the

“trimmed” table created in the previous check.

3.6.3 Gore Point Check

 Gore points typically occur where roads merge or split at an intersection. Records that

reflect where gore points occur are flagged in the link-link table. The gore point check ensures

that each gore point situation has been flagged in the link-link table. This check is performed by

first joining the link-link table to the STN links shape file based on STN link ID, then changing

the symbology of the shape file. Each link should be given a different colored symbol based on

35

whether the link is coded as a to (T), from (F), or both (B) gore point situation. This allows for a

quick visual check to ensure that each gore point situation is coded correctly. In updating the

link-link table, the gore point check also required the use of the “trimmed” table created in the

first check.

3.6.4 XY Connector Lines Check

 Perhaps the most powerful check associated with original link-link coding as well as

updating the link-link table is the XY connector lines check. This check consists of moving data

points from STN to WISLR and checking how the points spatially relate to each other. It is a

check of the basic link relationships defined in the link-link table.

 The process associated with the XY connector lines check begins by creating data points

along all the STN links in a county every hundredth of a mile, or every ten units in STN

measurements. This is accomplished using the previously created “STN Points Generator”

program (Ryals, 2011). Inputs required for this program to function are an Excel file containing

current links, offsets, and associated county for the county being coded and the link-link table

associated with the county being coded. This program and process functions the same as in

original link-link coding, however a current link list had to be generated for use by the program.

The program creates a table (the “STN_Points” table) within the link-link database file that

contains a unique identifier column, an STN link column, and an STN offset column. The table

is populated with as many data rows as is necessary to create a uniquely identified point every

hundredth of a mile on every current STN link in a county. The full, or “untrimmed,” county

link-link table (current and historic records) was used for this program because the program

populates the STN_Points table in the link-link database based solely off of the Excel file

36

containing current links, full link lengths, and the county associated with each link. As long as

the list of links in the Excel file is current, the current or historic status of a link-link record is

irrelevant at this stage.

 The next process involved in performing the XY connector line check involves moving,

or translating, the STN points to WISLR points. This is accomplished by using “WISLR Point

Moving Program” created in the previous link-link coding procedures (Ryals, 2011). The

WISLR Point Moving Program requires only the link-link table as an input. The program

functions by taking each data point created in the “STN_Points” table and calculating an

equivalent WISLR link and offset based off relationships existing in the link-link table. This

program functions similarly in updating the link-link table to how the program functioned in

original link-link coding. However, because some relationships can be duplicated in an updated

link-link table, in the case of an access point change or corrected error affecting the table, it was

necessary to perform one of two possible modified approaches to the WISLR point moving

process. One approach used the original “WISLR Point Moving Program” with the trimmed

version of a county link-link table as the input file. This approach moved points correctly, using

only current link-link records. The other approach used a modified WISLR point moving

program with the full version of a county link-link table as the input file. A modified WISLR

point moving program was created in this research and is explained in detail in the next section.

This approach also uses only current link-link records, without the need for trimming the link-

link table.

Both WISLR data translation approaches used the same basic process. The program

obtained each uniquely identified point from the “STN_Points” table with the STN link and

37

offset associated with each point. The WISLR point moving program then used link-link table

relationships to determine the WISLR link and offset that is functionally equivalent to the STN

point and offset being analyzed. The program then creates a table named “WISLR_final” that

contains the same uniquely identified point numbers from the STN table, with the equivalent

WISLR link and offset associated with each point.

At this point, the “STN_Points” and “WISLR_final” tables were used to create the lines

to check the link-link table for accuracy. First, these two tables were added to the ArcMap

editing map that was used in coding the updated link-link table. Each table was then physically

displayed using the “display route events” feature within ArcMap. This feature requires a route

file for STN and WISLR links to display the points existing in the STN and WISLR points tables

within the link-link database. These two event files were then exported as shape files named

“STN_Points” and “WISLR_Points” respectively. The “STN_Points” shape file was then

opened and two columns were added: “STN_X” and “STN_Y.” Each column was then

populated with the coordinate of each point using the “calculate geometry” function, using the

coordinate system of the data frame. The “WISLR_Points” shape file was then opened and two

columns were added: “WISLR_X” and “WILSR_Y.” Each of these columns was similarly

populated with the coordinate of each point using the coordinate system of the data frame.

Once the x and y coordinates were populated in each shape file, the STN and WISLR

points shape files were joined together based on Unique_ID. The attribute table associated with

the joined shape files was then exported and named “XY_Connector_Table.” The connector

table was then used to create the XY connector lines. Before creating the lines, a blank shape

file named “XY_Lines” was created in the same folder as the other county link-link coding files.

38

Next, Geospatial Modeling Environment program created by Beyer (Beyer) was used with

defined command lines within the program. The “XY_Connector_Table” was then translated to

lines in the “XY_Lines” shape file. The command line used to accomplish this task can be seen

in Figure 3.53.5, and a visual example of “XY_Lines” is shown in Figure 3.6.

convert.tabletolines(in(file path for ”XY_Connector_Table”), uidfield="Unique_ID",
fromx="STN_X", fromy="STN_Y", tox="WISLR_X", toy="WISLR_Y", out(file path for
”XY_Lines” shapfile))

Figure 3.5. Command line used for “XY_Lines” generation

Figure 3.6. Example of “XY” lines shape file. Lines connect related data points on STN (line on
right side) and WISLR (line on left side)

39

3.6.5 Modified WISLR Point Moving Program

 A modified version of the WISLR Point Moving Program was developed in this research.

The new code for the program can be seen Appendix B. The program works similarly to the

previous version, however, one major difference is that the program decides which link-to-link

relationships to use for computation based on the status of the record. A “Status” column within

the link-link table is created and populate with a “C” or an “H” based on whether the link-link

record is current or historic, respectively. The program then uses only records with a “C” status

for computation. This feature allows for the use of the entire link-link table in data point

moving. The modified version of the WISLR Point Moving Program was also modified to

determine current records by the date columns, avoiding the need to create a new “Status”

column in the table.

3.7 Update Issues

 Various issues were encountered during the update of the link-link table. The main issue

encountered that created the most relational problems is due to the lag time between when STN

updates line work and when WISLR updates line work. STN tends to update line work before

WISLR reflects changes along state routes. This lag time causes some changes in STN to not

have a good match within WISLR in yearly line work snapshots.

 Another issue encountered in updating link-link relates to the date fields in the table.

Some link dates did not seem to be valid, meaning a link had a route-link current date that

occurred after the route-link historic date. This issue was due mostly to discrepancies within the

route-link databases for STN and WISLR. It was determined to be an inconsequential problem

because of its limited frequency of occurrence.

40

3.8 Using Link-Link for Data Translation

 Previous sections have illustrated how the link-link table and the subsequently updated

table can be used to move data from STN to WISLR. However, a methodology has not been

refined to move data from WISLR to STN. Part of this research was to define data translation

techniques for the WISLR to STN direction. The approach, data analysis, and process

definitions of this effort are presented in the following sections.

3.8.1 Approach

Given that data sharing and translation from STN to WISLR was successfully

accomplished through earlier phases of research with the link-link table, an approach to translate

data from WISLR to STN was most practically accomplished by using the link-link table as well.

As was the case for STN to WISLR translation, the ability of the link-link table to define link-by-

link relationship data between the two systems was the building block for the WISLR to STN

translation effort.

3.8.2 Data Translation

Basic data translation requires moving data containing one method of location definition

such as an STN link and offset to another method of location definition such as WISLR link and

offset. Translating data in this direction has been previously refined. The approach to translate

data from WISLR to STN required a similar approach. This approach involves using

mathematical relationships presented in link-link records to relate one location definition method

to the other.

The first step in the WISLR-to-STN data translation effort was to create a general

computer program that translated data containing WISLR link numbers and offsets into data

41

containing STN link numbers and offsets. The WISLR-to-STN program, modeled after the

original STN-to-WISLR Point Moving Program, selects a table containing unique identifiers

with a WISLR link and offset and finds a matching record in the link-link table that contains a

matching WISLR link number. The program then determines, through mathematical ratios,

where on the corresponding STN link in the link-link record the point should be located. The

program then creates a new record in a new table with the same unique identifier as was read

from the record being analyzed and populates an STN link and offset reflecting the relationship

determined mathematically.

Three data sets were used to test the general data translation method from WISLR to

STN. First, statewide RPs were moved from STN to WISLR then back to STN for initial data

analysis. Next, hundredth-of-a-mile points along each STN link in Dane County were moved to

WISLR then back to STN. Finally, Dane County crash points were moved.

Although moving points from WISLR to STN was successful, due to resolution issues

some points landed at multiple ambiguous locations when moved back to STN. To find these

points that mapped to multiple locations, the moved points were summarized within ArcMap

based on the unique identifiers. This process produced a count for each point; a count greater

than one indicated that the point from WISLR moved to multiple locations in STN. There were

three common ambiguous point placement problems identified in this research. The problems

were due to (1) median crossovers, (2) turn-lanes, and (3) waysides. These problems are

discussed in the following subsections.

3.8.3 Problem 1: Intersection/Median Crossover Ambiguous Point Translation

The first common issue causing ambiguous data point placement occurs because of

intersection representations in STN and WISLR. This can be seen with an example intersection

42

illustrated in Figure 3.7. This example shows the intersection of two divided highways. As can

be seen, WISLR (thin black lines) represents the intersection with a point, while STN (thick

black lines) represents the intersection with four links. These four links represent median

crossovers. As shown by the dashed arrows in the figure, data points at the ends of the median

crossings move to a single point in WISLR (Figure 3.7(a)), in accordance with the link-link

relationship. However, when moving back to STN (Figure 3.7(b)) each point is moved to every

one of the four unique locations because one point in WISLR is represented by 4four nodes and

four median cross over links in STN. This multiple point placement pattern does not represent

the original location for all of the moved data points.

Figure 3.7. General example of ambiguous point placement due to incongruent

intersection/median crossover representations: (a) example of data translation from STN to
WISLR; (b) example of data translation from WISLR to STN.

3.8.4 Problem 2: Turn Lane Ambiguous Point Translation

A second common problem occurs at many state route intersections that include roadway

entrance or exit ramps and other similarly designed intersections. This problem primarily

43

involves resolution differences between STN and WISLR at intersections with turn lanes. This

issue can be seen in the example in Figure 3.8. Illustrated in this figure is an intersection where

STN accounts for turn lanes with physically separated links while WISLR represents the

intersection with a single link and single node. Link C in STN represents a right turn lane while

link B represents a straight or left turn lane. Data points 1 and 2 move correctly to the

intersection point represented in WISLR as shown in Figure 3.8(a). However, when these points

are moved back to STN (Figure 3.8(b)), points 1 and 2 both move to each original location, and

therefore, do not accurately represent the original conditions in STN. Additionally, data point C

represents some event on STN occurring on link B. The point is moved to WISLR correctly, but

then moves back to both turn lanes in STN. Given that the event did not occur in the right turn

lane, data point 3 placed on link C is a completely erroneous data point.

44

Figure 3.8. General example of ambiguous point placement due to incongruent turn lane

representations: (a) example of data translation from STN to WISLR; (b) example of data
translation from WISLR to STN

3.8.5 Problem 3: Wayside Ambiguous Point Translation

A final common problem that produced ambiguous data point placement situations was

associated with waysides along state routes. An example of this problem is shown in Figure 3.9.

In the figure, a wayside area is illustrated. In Figure 3.9, data points one through eight are

translated to a single point on WISLR in accordance with relationships defined in the link-link

table. This is because the wayside does not exist in the lower resolution WISLR system. When

this single point on WISLR is translated back to STN (Figure 3.9(b)), all eight of the uniquely

identified data points move back to the endpoints of the STN links on the wayside as well as the

point on the “mainline” of the roadway. This point placement is again in accordance with

45

relationships defined in the link-link table. This example explicitly illustrates the resolution level

difference between the two systems. Although the WISLR point moves correctly back to five

unique locations, every point that moved to the WISLR point moves back to each of the unique

locations. This causes eight data points to appear at each location. It is not desirable for all eight

data points to move back to five different locations given that these five locations were not

necessarily the “original starting point” of the STN data point. Because of discrepancies

between the resolutions of STN and WISLR, detail is lost when moving between the systems.

Figure 3.9. General example of ambiguous point placement due to a wayside: (a) example of
data translation from STN to WISLR; (b) example of data translation from WISLR to STN.

To deal with ambiguous data placement, a process that simply flags crashes that move to

ambiguous locations will be implemented in the short term. These crashes will then be manually

46

coded to STN using manual crash mapping methods. The objective of this phase of the research

is to identify ways to avoid manual coding in order to save time and resources.

3.8.6 Proposed Data Translation Rules

An absolute technique to eliminate ambiguities between the WISLR and STN systems, or

between any two linear referencing systems with different resolution levels, is simply to improve

the resolution level of the lower resolution system. This improvement will allow for complete

one-to-one relationships between the two systems. However in light of the extensive time and

effort associated with improving large linear referencing systems, it is necessary to address

common resolution differences. To accomplish this, rules were established that are associated

with not only linking linear referencing systems with different resolution levels, but also

associated with how data is coded in the lower resolution system before the data is translated to

the higher resolution system.

3.8.6.1 Data Processing Rules

The first potential rule relates to pre-processing of data before the data is translated from

lower resolution to higher resolution. In the case of crash data, reporting intersection details in

the crash record will allow for automatic location of the crash in both high and low resolution

versions of the intersection. For example, in the interstate interchange shown in Figure 3.8, if the

crash record denoted whether a crash occurred on the straight or right turn lane then an automatic

routine could be coded to place the crash. If this is recorded on the front end of data translation,

there is less ambiguity associated with moving data back to higher resolutions. A simple way to

do this would be to note if a crash at a selected WISLR intersection point occurs in a median

crossing. Additionally, at intersections that are represented with turn lanes in STN, the crash

record could note which turn lane contains the crash. While this rule would be useful for data

47

translation, far-reaching changes would have to be made to crash reporting methods and forms

requiring extensive time and effort.

To account for institutional constraints on implementing procedural changes in data

reporting, additional rules were formulated that relate solely to data translation. Fortunately, the

original link-link table was equipped with flag columns to identify common resolution

discrepancies between STN and WISLR, allowing for easier rule implementation at these

locations.

3.8.6.2 Median Crossover Rules

The second set of potential rules is associated with ambiguous data translation due to

resolution differences at median crossovers. This problem causes points from WISLR (lower

resolution) to move to multiple locations in STN (higher resolution). If an intersection point is

selected in WISLR, there are multiple locations to which the location can be placed in STN. To

reduce ambiguous event data placement at median crossovers, two rules can be implemented

regarding median crossovers. The first median crossover rule would place each data point

associated with a median-crossover-flagged-STN link at the center of the median crossing

instead of the ends of the link. This rule would eliminate two points from being translated to the

ends of the median crossover link. This rule could also be modified to place only one point at

the beginning of a link flagged as a median crossover, instead of placing a point at each end.

The second median crossover rule would ignore records in the link-link table associated with

median crossovers when moving data from WISLR to STN. This would occur by ignoring all

link-link records with a flagged median crossover field and creating a report with all of the data

associated with a median crossover record for future manual placement.

48

3.8.6.3 Turn Lane Rules

Four rules could be similarly applied to turn lanes. One rule for turn lanes could be

implemented by simply mapping all crashes that would have mapped to two turn lane links to a

single link. The single link to which a point would be placed would be arbitrarily determined

from which data-associated STN turn lane was first processed by the computer program. The

second rule could similarly implement single-link data placement. However in this rule, the

longest turn lane link would be used for data placement. A third rule would cause the point

moving program to ignore all turn-lane associated data and generate a report showing these data

points. Finally, an additional table could be included in the LRS to indicate a preferred single

location in the high resolution system for any data coming from a specific point in the low

resolution system.

3.8.6.4 Wayside Rules

The wayside rule allows for four user-controlled options regarding point placement at

waysides. One option would place data points at all possible locations, basically not changing

current data translation methods. The second option would place each data point at only one

location. This location would be arbitrarily determined by which data-receiving valid STN link

was processed first by the computer program. The third option would create a report with all of

the data points that would have moved to a wayside-denoted STN link while not actually

translating the data. Finally, an additional table could be created that would specify a preferred

single location in the higher resolution STN system for any data point that originates from a

specific location in the lower resolution system.

49

Rule Implementation

To implement the previous rules when translating data from WISLR to STN, a point

moving program was written. Radio buttons were added to a user interface that indicate how

waysides, median crossovers, and turn lanes should be implemented in data translation. Each

previously discussed rule is implemented in data translation simply by selecting one of the rule-

related radio buttons on the user interface.

To test the general effectiveness of implementing data translation rules, one of the

median crossover rules was implemented after the initial, rule-free data translation was

performed. In this test, the second median crossover rule was implemented. This rule ignores all

link-link records flagged as median crossovers.

3.9 WISLR Editing Link Identification

 The five flag columns in the link-link table exist to track inconsistent areas, or

discrepancies between STN and WISLR. In general, the flag columns identify pervasive

resolution differences between STN and WISLR (i.e. turn lanes, median crossovers, and

waysides). These three common problems generally require adding data to the WISLR system

such that the systems’ resolutions are equivalent. The problem flag column was created to

identify WISLR/STN discrepancies not represented in the other flag columns. In combination

with the comments columns, the problem flag identifies various problems associated with the

WISLR and STN systems that directly affect the link-link table.

 Analysis was performed on the comments associated with the problem flag column. The

comments column was summarized within ArcMap to compile a problem list identified during

original coding. It was found that a large majority of the line work problems flagged in the table

50

was associated with problems in WISLR. Because of this fact, it was determined that attention

would be paid by WisDOT to updating WISLR to address these problems and increase the

accuracy of the link-link table. It became necessary to identify the links that needed attention.

Correcting problem links was accomplished by first creating a concise list of general

problems in categories. It was determined that the largest category of problems would be

addressed first. The scale of link problems was determined by the number of links that each

category.

The three largest issues that were reversed WISLR links, WISLR link length errors, and

unnecessary WISLR links. Reversed WISLR links can be made up of one of a few conditions.

The most common type of reversed WISLR is one in which the attribute information is correct,

but the link is not physically drawn in the correct direction. These drawing-related reversed

WISLR links were the most common problem. WISLR links containing length errors are links

that appear to have errant measured length values. Related link length portions in the link-link

table should relate with a common ratio, 5.28. This is given that STN is measured in hundredths

of a mile while WISLR is measured in feet (1 hundredth of a mile = 5.28 feet). WISLR links

containing measured length errors were considered to be those that did not relate approximately

with this value. If the STN and WISLR portions were more than 53 feet different, the measured

length of the WISLR link was determined to be an error. The measurement value of 53 feet was

chosen because it is the equivalent of 10 STN units; 10 units in STN is the maximum accuracy

level of measurements in STN. All links containing lengths that were different by at least 53 feet

were added to a separate length error list. Finally, unnecessary links are those that are not used

in the link-link table, do not represent a traveled roadway direction, and have no value being

51

included in WISLR line work. Unnecessary links commonly occur in two locations. The first

occurrence is at entrance or exit ramps where both directions are represented with links while

only one direction is a traveled way. The second occurrence is at divided highways and one-way

streets. This occurrence similarly exists because two directions are represented by links, while

there exists only one traveled direction in reality.

To generate the list of unnecessary WISLR links, the WISLR overlay table was used.

This was because the overlay table contains vast amounts of information. The column that was

used in unnecessary link identification was the “opposite link” column. This column contains

the opposite link associated with each WISLR link in the database. The table was used in the

following way. First, the link-link table was summarized based on WISLR link ID. This

summarized WISLR link list was then joined to the overlay table based on WISLR link ID.

Next, all of the joined records were selected and separated from the un-joined records. The

“opposite link” column was then summarized and a list of opposite links associated with links

used in the link-link table was created. Logically, all opposite links should be used in the link-

link table. However, opposite links that were not used in link-link coding represent unnecessary

links. That is, links that represent an untraveled direction in reality. To obtain a list these

unnecessary links, the link-link table was joined to the summarized opposite link table. Any

records that did not join were considered unnecessary links. A list was created containing the

links associated with the un-joined records

3.10 Conclusion

 This research centered on determining first how a functional merge between two LRSs

could be updated to reflect frequently changing conditions. It was found that an update could be

52

performed given that date information was added into the merged data, and that some changes

were made to the original link-link updating procedure. Secondly, this research sought to

determine a methodology for translating data from a lower resolution LRS to one of higher

resolution. It was found that, with the implementation of specific data processing and translation

rules, data can be moved to distinct locations in the higher resolution LRS. This chapter

discussed the WISLR and STN systems, the basic link-link coding procedures, changes made to

the coding procedure to accommodate updating the table for changes in roadway network data,

low-to-high resolution LRS data translation, and methods to determine WISLR links needing

edits to aid in the accuracy of the link-link table. Chapter 4, Results, will explain how the link-

link table update process was implemented, the progress of this implementation, results of the

STN-to-WISLR data translation effort, and the success of determining WISLR links needing

edits.

53

CHAPTER 4

RESULTS

4.1 Introduction

 The link-link table update technique is able to incorporate changes and updates to two

linear referencing systems: STN and WISLR. This chapter presents the results associated with

implementing the link-link table update methodology. Additionally, this chapter presents results

associated with STN-to-WISLR data translation and the results from implementing data

translation rules. Finally, results are presented regarding the volume of identified WISLR links

requiring edits by WisDOT.

4.2 Dane County Pilot Study for Link-Link Update

 The link-link table coding procedure was formulated and tested in Dane County, the

second most populous county in the State. After the pilot study began, it was found that Dane

County also contained the largest number of required updates, identified with the methodology

described in Chapter 3. An illustration can be seen in Figure 4.1 of the number of changes

associated with each county in the State. As can be seen, approximately 9% of the 6274

identified Statewide LRS updates were found to have occurred in Dane County.

The Dane County pilot study was completed in approximately one month and

incorporated all updates and changes made to WISLR and STN data between 2009 and 2010. In

total, 377 records were turn into historic records, while 438 records were added to the table.

54

These changes were due to the addition of 74 new STN links, the addition of 12 WISLR

links, the deletion of 54 STN links and access point changes made to 73 STN links.

Figure 4.1. Thematic map of the number of data changes associated with each county.

 To test the viability of the updated 2010 link-link table, Dane County crashes from 2010

were analyzed with the table. In 2010, there were 3784 crashes coded to an STN link in Dane

County. Of these crashes, 3636 moved, through use of the updated link-link table, to a WISLR

55

link and offset. The 148 crashes that did not move to a WISLR link and offset were associated

with 44 STN links. Forty of these links were links that had been made historic in the 2010 link-

link table, thus the crashes associated with these 40 links could be moved to a WISLR link and

offset using the older 2009 link-link table. The four remaining STN links containing crashes that

did not move to a WISLR link and offset either were very historic links or links that do not exist

in Dane County.

4.3 Statewide Link-Link Coding Update Results

 The 2010 update of the link-link table has been completed. To test the usage of the table,

crash data from 2010 was analyzed using the table. In 2010, there were 50,166 crashes that

occurred on state routes and contained an STN link and offset. Of these crashes, 50,162

(~100%) were translated to a WISLR link and offset using the updated link-link table. Four

crashes did not move to WISLR because these four crashes were coded to a link that was never

valid. That is, the link became valid and historic at the exact same moment. This link might

have been created as a placeholder in the STN database or for another use by WisDOT. These

results illustrate the usefulness of the updated link-link table.

4.4 Data Translation Results

Data analysis regarding WISLR-to-STN data translation was performed on two Dane

County data sets: crash data, hundredth-of-a-mile points, and on a statewide data set: the

WisDOT RP database. There were 17,170 crash points in Dane County between 2005 and 2009

that moved from an originally coded STN link and offset to a corresponding WISLR link and

offset. All of the crashes moved back from WISLR to STN, however, 17,919 crash points

translated back to an STN link and offset, which is 647 crash locations more than the original

56

data set. The additional 647 (4%) crashes mapped back to multiple STN links. Of these 647

crashes, 28 (4%) were associated with turn-lane-flagged link-link records, 313 (48%) with

median crossovers, and 2 (0.3%) with waysides. If median crossovers are ignored, 17,512 crash

points translated to an STN link and offset; only 301 (2%) crashes mapped to multiple STN

links. Additionally, all 17,170 crashes again mapped to a location thus no crash data was lost by

ignoring median crossovers.

The second data set used for analysis was hundredth-of-a-mile points in Dane County.

Points are placed on every STN link every hundredth of a mile, the points are moved to WISLR

and visually inspected, and then moved back to STN and the initial location and final location

are compared. There are 86,178 hundredth-of-a-mile points in Dane County along STN links.

All of the points moved from STN to WISLR. When moving the points back to STN, 88,318

points moved, representing 1433 points (1.7%) that moved to multiple links. Of these 1433

points, 85 (6%) were associated with turn-lane-flagged link-link records, 260 (18%) with median

crossovers, and 63 (4%) with waysides. When median crossovers were ignored, 87,958 points

moved back to STN, representing 1149 points (1.3%) that moved to multiple links. Additionally,

all 86,178 hundredth-of-a-mile points mapped to a location on STN; no data points were lost by

not allowing data to land on median crossovers. The implementation of the rule required data

placement at a particular location on STN that may or may not have been the original crash

location. However, in implementing this rule, imprecise data placement would only be affected

at median crossings.

An extensive analysis was done on the third and final data set: the WisDOT RP points

database. This was chosen for extensive analysis because of the existence of the database as a

statewide list that is a size that provides a substantial sample of conditions around the state. The

57

most recent statewide RP database consists of 64,131 points with STN links and offsets. Of

these points, 37,562 moved to WISLR. This value consists of all but one current RPs and 3500

historic RPs. The historic RPs are not expected to all move to WISLR because some are located

on historic STN links not included in the link-link table. When the initial data translation was

performed, 44,123 point moved back to STN. All of the RP points on WISLR moved

successfully back to STN, however 4355 (12%) moved to multiple links. Of these points, 1623

(32%) are associated with link-link records that are flagged as median crossovers, 1150 (26%)

are associated with turn lanes, and 209 (5%) are associated with waysides. Additionally, of the

4355 points that mapped multiple times, 2560 (59%) moved to single unique locations multiple

times. These 2560 points lie on top of each other and contain the same coordinates, but exist on

different links, i.e. at the beginning of one link and the end of another link. Visual inspection of

the problems associated with multiple-mapped points showed that the problems were

representative of the problem categories that were previously identified. After the median

crossover rule was implemented, 2102 (6%) RPs moved to multiple links. Again, no RP data

was lost with the implementation of this rule. However due to resolution differences, even with

implementation of this rule an RP point that could be placed at multiple locations may not

necessarily move back to the original STN location of the RP.

Through analysis of each of these data sets, it was found that, in general, allowing a user

to choose how to handle ambiguous data placement locations can reduce the number of multiples

by up to 50% without losing any data. While only the median crossover rule was implemented

in this analysis, it can be reasonably expected that the other rules presented in this research

would have similar results in reducing multiples of translated data.

58

4.5 WISLR Editing Scope Identification

WISLR links needing edits were identified with the methodology set forth in the previous

section. Using this methodology, 4155 unused opposite links were identified, 288 reversed links

were identified, and 80 links with length adjustments needed were identified. The full list of

editing links was provided to WisDOT for further analysis.

4.6 Conclusion

 The results set forth in this section confirm the success of the methodology presented in

this thesis. The link-link table was successfully updated to reflect the current WisDOT road

network data. WISLR-to-STN data translation rules were formulated and tested on multiple data

sets. Finally, WISLR links requiring edits were identified and reported to WisDOT.

59

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

 The results of this research illustrate (1) the validity of the link-link table update

procedure and the general approach to updating a functional merge between two Linear

Referencing Systems (LRSs), (2) the necessity of data translation rules when translating data

between two LRSs with differing resolutions, and (3) how the link-link table can be used to

identify LRS links requiring edits. The link-link table is the functional merge between the State

Trunk Network (STN) and the Wisconsin Information System for Local Roads (WISLR). These

two LRSs were created by the Wisconsin Department of Transportation (WisDOT) to manage

and analyze business data on state routes and local roads.

 The major goal of this thesis was to update the link-link table to reflect changes made

after original link-link coding. This was accomplished without disruption to normal WisDOT

operating procedures. A second goal was to define rules regarding data translation between

dissimilar-resolution LRS. This was accomplished by creating data collection pre-processing

rules as well as data translation rules. Finally, a third goal was to identify links requiring edits by

WisDOT to improve the accuracy of the link-link table. This was accomplished by grouping

4523 WISLR links in three editing type categories. The results show that all three of the stated

goals of this research were successfully accomplished.

60

5.2 Future Work

 The updating process presented in this research will need to be implemented on a yearly

basis until link-link updating is incorporated into WisDOT operational procedures. This would

allow for concurrent updating of the table with STN and WISLR updating. Concurrent updating

would allow for the most up-to-date link-link table to exist at all times.

 Although WISLR edits were identified in this research, more general updating is needed

regarding problems associated with all of the flag columns in the link-link table. Editing issues

relating to these flag columns - especially turn lanes, median crossovers, and waysides –would

drastically improve the resolution of WISLR and limit the number of discrepancies between STN

and WISLR. This resolution update is essential for the continued accuracy improvement of data

translation between STN and WISLR without the need for translation rules.

 The research performed for this thesis provided an effective methodology for updating

the link-link table, however further research is recommended to perfect the functional

relationship between WISLR and STN through the inclusion of the information provided by the

link-link table into WisDOT operations. This thesis concludes with the expectation that the

methodology previously presented can be implemented to accomplish this goal.

61

REFERENCES

 Beyer, H. L.Hawths analysis tools for ArcGIS Retrieved 8/1/2012, 2012, from
http://www.spatialecology.com/htools/index.php

Curtin, K. M., Nicoara, G., & Arifin, R. R. (2007). A comprehensive process for linear
referencing. Journal of the Urban and Regional Information Systems Association, 12(2),
13-36.

Dueker, K. J., & Butler, J. A. (2000). A geographic information system framework for
transportation data sharing. Transportation Research Part C: Emerging Technologies, 8(1–
6), 13-36. doi: 10.1016/S0968-090X(00)00006-1

Graettinger, A. J., Qin, X., Spear, G., Parker, S. T., & and Forde, S. (2009). Combining state
route and local road linear referencing system information. Journal of the Transportation
Research Record, 2121, 152-159.

Graettinger, A. J., Qin, X., Spear, G., Parker, S. T., & Forde, S. (2008). State and non-state
network mapping integration. Proceedings of the 2008 Mid-Continent Transportation
Research Forum, Madison, Wisconsin.

Miller, H. J., & Shaw, S. (2001). GIS-T data models. Geographic Information Systems for
Transportation: Principles and Applications,

Ryals, Z. T. (2011). A technique for merging state and non-state linear referencing systems.
(Unpublished Master of Science degree). The University of Alabama, Tuscaloosa,
Alabama.

Scarponcini, P. (2002). Generalized model for linear referencing in transportation.
GeoInformatica, 6(1), 35-55. doi: 10.1023/A:1013716130838

Sester, M., Anders, K., & Walter, V. (1998). Linking objects of different spatial data sets by
integration and aggregation. GeoInformatica, 2(4), 335-358.

Vonderohe, A., Chou, C., Sun, F., & Adams, T. (1997). A generic data model for linear
referencing systems. Paper presented at the Research Results Digest 218. National
Cooperative Highway Research Program. Transportation Research Board, Washington,
DC.

62

Vonderohe, A., & Hepworth, T. (1998). A methodology for design of a linear referencing system
for surface transportation, final report. (No. Project AT-4567).Sandia National
Laboratories.

Wisconsin Department of Transportation. (1998). Wisconsin location control management
manual

63

APPENDIX A

LINK-LINK DATE COLUMN POPULATION QUERIES

 This appendix will present and describe the six link-link table date column population

queries used in Microsoft Access and discussed in section 3.5.1 of this thesis. In general, mass

population of dates should only be performed within the Start_Valid and End_Valid columns in

the link-link table. Since dates contained within the Record_Created and Record_Historic

columns reflect dates when a record was physically entered into the link-link table, these

columns should only be populated by a link-link coder. The six date population queries are

presented below and are named according to the column to which the query applies and the order

in which each should be executed for each column: Start_Valid_Update1, Start_Valid_Update2,

End_Valid_Update1, End_Valid_Update2, End_Valid_Update3, and End_Valid_Update4.

 To execute all of these queries, three tables are required: the link-link table, the “refined”

STN route-link table, and the “refined” WISLR route-link table. The latter two tables are briefly

discussed in the body of this thesis and were generated by the TOPS Lab. For simplicity, the

link-link table was renamed link_link in the database, the STN route-link table was renamed

STN_LINK in the database while the WISLR route-link table was renamed WISLR_LINK in the

database. These names are subsequently used in the queries. Additionally, the queries are

written for the 2010 link-link table update but can be easily adjusted for future years. All six

queries also implement an inner join between the link_link table, the STN_LINK table, and the

WISLR_LINK table based on STN link ID and WISLR link ID, respectively.

64

The STN_Valid_Update1 query populates the Start_Valid field in a record with the date

route-link current date queried from the STN_LINK table if the route-link current date associated

with the STN link in the link-link record is more recent than the validity start date associated

with the WISLR link in the link-link record. The WISLR date is queried from the

WISLR_LINK table and is the route-link current date associated with the WISLR link. The

more recent validity date is used for population because unless both the STN and WISLR links in

a link-link record are valid, then the record is not valid. The exact query language used in the

Start_Valid_Update1 query can be seen in Figure A.1.

UPDATE WISLR_LINK INNER JOIN (link_link INNER JOIN STN_LINK ON
link_link.STNid=STN_LINK.RDWY_LINK_ID) ON
WISLR_LINK.RDWY_LINK_ID=link_link.WISLRid SET link_link.Start_Valid =
STN_LINK.DT_RTE_LINK_CURR
WHERE ((STN_LINK.DT_RTE_LINK_CURR)>WISLR_LINK.LCM_CURR_DT)

Figure A.1. Start_Valid_Update1 query language

The Start_Valid_Update2 query populates the Start_Valid field in a record with the route-

link current date queried from the WISLR_LINK table if the route-link current date associated

with the WISLR link in the link-link record is more recent than the validity start date associated

with the STN link the link-link record. The STN date is queried from the STN_LINK table and

is the route-link current date associated with the STN link. The exact query language used in the

Start_Valid_Update2 query can be seen in Figure A.2.

UPDATE WISLR_LINK INNER JOIN (link_link INNER JOIN STN_LINK ON
link_link.STNid=STN_LINK.RDWY_LINK_ID) ON
WISLR_LINK.RDWY_LINK_ID=link_link.WISLRid SET link_link.Start_Valid =
WISLR_LINK.LCM_CURR_DT
WHERE ((STN_LINK.DT_RTE_LINK_CURR)<WISLR_LINK.LCM_CURR_DT)

Figure A.2. Start_Valid_Update2 query language

65

 The End_Valid_Update1 query populates the End_Valid field in a record with the route-

link historic date queried from the STN_LINK table if and only if a route-link historic date

associated with the WISLR link in the link-link record does not exist and the route-link historic

date associated with the STN link is prior to January 1, 2011. Expressly, this means that the

query populates the End_Valid column with the route-link date associated with the STN link in

the record, if the STN link is historic while the WISLR link is still current. The exact query

language used in the End_Valid_Update1 query can be seen in Figure A.3.

UPDATE WISLR_LINK INNER JOIN (link_link INNER JOIN STN_LINK ON
link_link.STNid=STN_LINK.RDWY_LINK_ID)
ON WISLR_LINK.RDWY_LINK_ID=link_link.WISLRid
SET link_link.End_Valid = STN_LINK.LCM_DT_HSTL
WHERE ((WISLR_LINK.LCM_HSTL_DT Is Null) And (STN_LINK.LCM_DT_HSTL <
#1/01/2011#))

Figure A.3. End_Valid_Update1 query language

 The End_Valid_Update2 query populates the End_Valid field in a record with the route-

link historic date queried from the WISLR_LINK table if and only if a route-link historic date

associated with the STN link in the link-link record does not exist and the route-link historic date

associated with the WISLR link is prior to January 1, 2011. Expressly, this means that the query

populates the End_Valid column with the route-link date associated with the WISLR link in the

record, if the WISLR link is historic while the STN link is still current. The exact query

language used in the End_Valid_Update2 query can be seen in Figure A.4.

UPDATE WISLR_LINK INNER JOIN (link_link INNER JOIN STN_LINK ON
link_link.STNid=STN_LINK.RDWY_LINK_ID)
ON WISLR_LINK.RDWY_LINK_ID=link_link.WISLRid
SET link_link.End_Valid = WISLR_LINK.LCM_HSTL_DT
WHERE ((STN_LINK.LCM_DT_HSTL Is Null) And (WISLR_LINK.LCM_HSTL_DT <
#1/01/2011#))

Figure A.4. End_Valid_Update2 query language

66

 The End_Valid_Update3 query populates the End_Valid field in a record with the route-

link historic date queried from the WISLR_LINK table if route-link historic dates associated

with the STN and WISLR links in the link-link record do, in fact, exist and the route-link historic

date associated with the WISLR link in the record is prior to January 1, 2011 and the route-link

historic date associated with the WISLR link in the link-link record is prior to the end validity

date associated with the STN link in the link-link record. This query applies to records in which

both the STN and WISLR links in the record are historic, and the WISLR link became historic in

2010, before the date when the STN link became historic. The exact query language used in the

End_Valid_Update3 query can be seen in Figure A.5.

UPDATE WISLR_LINK INNER JOIN (link_link INNER JOIN STN_LINK ON
link_link.STNid=STN_LINK.RDWY_LINK_ID)
ON WISLR_LINK.RDWY_LINK_ID=link_link.WISLRid
SET link_link.End_Valid = WISLR_LINK.LCM_HSTL_DT
WHERE ((WISLR_LINK.LCM_HSTL_DT Is Not Null) And (STN_LINK.LCM_DT_HSTL Is
Not Null) And (WISLR_LINK.LCM_HSTL_DT < #1/01/2011#) And
(STN_LINK.LCM_DT_HSTL>WISLR_LINK.LCM_HSTL_DT))

Figure A.5. End_Valid_Update3 query language

 The final query, the End_Valid_Update4 query, populates the End_Valid field in a record

with the route link historic date queried from the STN_LINK table if route-link historic dates

associated with the STN and WISLR links in the link-link record do, in fact, exist, and the route-

link historic date associated with the STN link in the record is prior to January 1, 2011 and the

route-link historic date associated with the STN link in the record is prior to the route-link

historic date associated with the WISLR link in the record. This query applies to records in

which both the STN and WISLR links in the record are historic, and the STN link became

historic in 2010, before the date when the WISLR link became historic. The exact query

language used in the End_Valid_Update4 query can be seen in Figure A.6.

67

UPDATE WISLR_LINK INNER JOIN (link_link INNER JOIN STN_LINK ON
link_link.STNid=STN_LINK.RDWY_LINK_ID)
ON WISLR_LINK.RDWY_LINK_ID=link_link.WISLRid
SET link_link.End_Valid = STN_LINK.LCM_DT_HSTL
WHERE ((WISLR_LINK.LCM_HSTL_DT Is Not Null) And (STN_LINK.LCM_DT_HSTL Is
Not Null) And (STN_LINK.LCM_DT_HSTL < #1/01/2011#) And
(STN_LINK.LCM_DT_HSTL<WISLR_LINK.LCM_HSTL_DT))

FigureA.6. End_Valid Update4 query language

 The queries shown in this appendix were used to populate the link-link table date

columns systematically.

68

APPENDIX B

UPDATED WISLR POINT MOVING PROGRAM

Option	 Explicit	 On	
Imports	 System.Data.OleDb	
Imports	 System	
Imports	 System.IO	
Imports	 System.Math	
Imports	 System.Text	
Public	 Class	 Form1	
	 	 	 	 Inherits	 System.Windows.Forms.Form	
	 	 	 	 Private	 STN_Table,	 link_link_file	 As	 String	
	 	 	 	 Dim	 Unique_ID,	 Link_ID,	 Link_Offset	
	 	 	 	 Dim	 STNid,	 STNstart,	 STNend,	 WISLRid,	 WISLRstart,	 WISLRend	
	 	 	 	 Dim	 Status	 As	 String	
	
	 	 	 	 Friend	 WithEvents	 Button5	 As	 System.Windows.Forms.Button	
	 	 	 	 Const	 epsilon	 As	 Double	 =	 0.000001	
	
	 	 	 	 Private	 Sub	 btnBrowse_Click(ByVal	 sender	 As	 System.Object,	 ByVal	 e	 As	
System.EventArgs)	 Handles	 btnBrowse.Click	
	 	 	 	 	 	 	 	 With	 OpenFileDialog1	
	 	 	 	 	 	 	 	 	 	 	 	 .Filter	 =	 "mdb	 Files(*.)|*.mdb"	
	 	 	 	 	 	 	 	 	 	 	 	 .CheckFileExists	 =	 True	
	 	 	 	 	 	 	 	 	 	 	 	 .CheckPathExists	 =	 True	
	 	 	 	 	 	 	 	 	 	 	 	 .RestoreDirectory	 =	 True	
	 	 	 	 	 	 	 	 	 	 	 	 If	 .ShowDialog	 =	 DialogResult.OK	 Then	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 txtfilepath.Text	 =	 .FileName	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 link_link_file	 =	 txtfilepath.Text	
	 	 	 	 	 	 	 	 	 	 	 	 Else	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 MsgBox("You	 didn't	 select	 your	 link_link	 file,	 or	 any	 file	 for	 that	
matter.")	
	 	 	 	 	 	 	 	 	 	 	 	 End	 If	
	 	 	 	 	 	 	 	 End	 With	
	 	 	 	 End	 Sub	
	 	 	 	 Private	 Sub	 tableCheck(ByVal	 link_link_file	 As	 String)	
	 	 	 	 	 	 	 	 'This	 was	 to	 check	 the	 tables	 to	 see	 if	 there	 are	 any	 WISLR	 links	 the	 link_link	
table	 that	 are	 not	 found	 in	 the	 WISLR	 points	 table,	
	 	 	 	 	 	 	 	 'but	 I	 don't	 think	 this	 will	 work	 because	 not	 every	 WISLR	 link	 is	 included	 in	 the	
link_link	 table	 and	 not	 every	 WISLR	 link	 in	 the	 link_link	 table	 will	 have	 a	 point	 on	 it.	
	 	 	 	 	 	 	 	 Dim	 cn	 As	 New	 OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data	 Source="	 &	
link_link_file)	
	 	 	 	 	 	 	 	 Dim	 cmd2	 As	 New	 OleDbCommand("DROP	 TABLE	 WISLR_Final",	 cn)	
	 	 	 	 	 	 	 	 cn.Open()	
	 	 	 	 	 	 	 	 If	 DoesTableExist("WISLR_final")	 =	 True	 Then	
	 	 	 	 	 	 	 	 	 	 	 	 Dim	 buttonYes	 As	 DialogResult	
	 	 	 	 	 	 	 	 	 	 	 	

69

buttonYes	 =	 MsgBox("A	 table	 entitled	 'WISLR_Final'	 already	 exists	 in	 the	 selected	
database.	 	 Do	 you	 want	 to	 remove	 this	 table?",	 MsgBoxStyle.YesNo,	 "Table	 Exists")	
	 	 	 	 	 	 	 	 	 	 	 	 If	 buttonYes	 =	 Windows.Forms.DialogResult.Yes	 Then	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Dim	 buttonSure	 As	 DialogResult	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 buttonSure	 =	 MsgBox("Are	 you	 sure?",	 MsgBoxStyle.YesNo,	 "Delete	 Table")	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 If	 buttonSure	 =	 Windows.Forms.DialogResult.Yes	 Then	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 cmd2.ExecuteNonQuery()	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Else	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Exit	 Sub	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 End	 If	
	 	 	 	 	 	 	 	 	 	 	 	 Else	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Exit	 Sub	
	 	 	 	 	 	 	 	 	 	 	 	 End	 If	
	 	 	 	 	 	 	 	 End	 If	
	 	 	 	 	 	 	 	 cn.Close()	
	 	 	 	 End	 Sub	
	 	 	 	 Private	 Sub	 Read_Calculate(ByVal	 link_link_file	 As	 String)	
	
	 	 	 	 	 	 	 	 Dim	 rate,	 Unique_ID1,	 WISLR_Link,	 WISLR_Offset	 As	 Double	
	 	 	 	 	 	 	 	 Dim	 i	 As	 Integer	 =	 0	
	 	 	 	 	 	 	 	 Dim	 currentrecord	 As	 String	
	 	 	 	 	 	 	 	 Dim	 STN_String	 As	 String	
	
	 	 	 	 	 	 	 	 Dim	 STNPointsDataTable	 As	 New	 DataTable	
	 	 	 	 	 	 	 	 Dim	 STNPointsDataRow	 As	 DataRow	
	 	 	 	 	 	 	 	 Dim	 LinkDataTable	 As	 New	 DataTable	
	 	 	 	 	 	 	 	 Dim	 LinkDataRow	 As	 DataRow	
	 	 	 	 	 	 	 	 Dim	 finaldatatable	 As	 New	 DataTable	
	 	 	 	 	 	 	 	 Dim	 finaldatarow	 As	 DataRow	
	 	 	 	 	 	 	 	 Dim	 UIColumn	 As	 DataColumn	 =	 New	 DataColumn("Unique_ID")	
	 	 	 	 	 	 	 	 UIColumn.DataType	 =	 System.Type.GetType("System.String")	
	 	 	 	 	 	 	 	 finaldatatable.Columns.Add(UIColumn)	
	 	 	 	 	 	 	 	 Dim	 LinkIDColumn	 As	 DataColumn	 =	 New	 DataColumn("Link_ID")	
	 	 	 	 	 	 	 	 LinkIDColumn.DataType	 =	 System.Type.GetType("System.String")	
	 	 	 	 	 	 	 	 finaldatatable.Columns.Add(LinkIDColumn)	
	 	 	 	 	 	 	 	 Dim	 OffsetColumn	 As	 DataColumn	 =	 New	 DataColumn("Link_Offset")	
	 	 	 	 	 	 	 	 OffsetColumn.DataType	 =	 System.Type.GetType("System.String")	
	 	 	 	 	 	 	 	 finaldatatable.Columns.Add(OffsetColumn)	
	
	 	 	 	 	 	 	 	 'Connects	 to,	 selects	 the	 records	 for,	 and	 fills	 the	 datatables	 to	 be	 used	 for	
this	 part	 of	 the	 program	
	 	 	 	 	 	 	 	 Dim	 cn	 As	 OleDbConnection	
	 	 	 	 	 	 	 	 cn	 =	 New	 OleDbConnection("Provider=microsoft.jet.OLEDB.4.0;Data	 source=	 "	 &	
link_link_file)	
	
	 	 	 	 	 	 	 	 STN_String	 =	 "SELECT	 *	 FROM	 STN_Points"	
	 	 	 	 	 	 	 	 currentrecord	 =	 "SELECT	 STNid,STNstart,STNend,WISLRid,WISLRstart,WISLRend,Status	
FROM	 link_link"	
	
	 	 	 	 	 	 	 	 Dim	 STNadapter	 As	 New	 OleDb.OleDbDataAdapter(STN_String,	 cn)	
	 	 	 	 	 	 	 	 STNadapter.Fill(STNPointsDataTable)	
	
	 	 	 	 	 	 	 	 Dim	 rows	 As	 Integer	 =	 STNPointsDataTable.Rows.Count	
	 	 	 	 	 	 	 	 Dim	 linkadapter	 As	 New	 OleDb.OleDbDataAdapter(currentrecord,	 cn)	
	 	 	 	 	 	 	 	 linkadapter.Fill(LinkDataTable)	
	 	 	 	 	 	 	 	 Dim	 linkrows	 As	 Integer	 =	 LinkDataTable.Rows.Count	

70

	 	 	 	 	 	 	 	 Dim	 criteria	 As	 String	
	
	 	 	 	 	 	 	 	 Dim	 cn2	 As	 OleDbConnection	
	 	 	 	 	 	 	 	 cn2	 =	 New	 OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data	 Source="	 &	
link_link_file)	
	 	 	 	 	 	 	 	 Dim	 table_name	 As	 String	
	 	 	 	 	 	 	 	 table_name	 =	 "WISLR_final"	
	 	 	 	 	 	 	 	 Dim	 cmd	 As	 New	 OleDb.OleDbCommand("CREATE	 TABLE	 "	 &	 table_name	 &	 "(Unique_ID1	
double,	 WISLR_Link	 double,	 WISLR_Offset	 double)",	 cn2)	
	
	 	 	 	 	 	 	 	 cn2.Open()	
	 	 	 	 	 	 	 	 Try	
	 	 	 	 	 	 	 	 	 	 	 	 cmd.ExecuteNonQuery()	
	 	 	 	 	 	 	 	 Catch	 ex	 As	 OleDb.OleDbException	
	 	 	 	 	 	 	 	 	 	 	 	 MessageBox.Show(ex.Message,	 "OleDbException")	
	 	 	 	 	 	 	 	 	 	 	 	 Exit	 Sub	
	 	 	 	 	 	 	 	 Catch	 ex	 As	 Exception	
	 	 	 	 	 	 	 	 	 	 	 	 MessageBox.Show(ex.Message,	 "GeneralException")	
	 	 	 	 	 	 	 	 	 	 	 	 Exit	 Sub	
	 	 	 	 	 	 	 	 End	 Try	
	 	 	 	 	 	 	 	 cn2.Close()	
	
	
	
	 	 	 	 	 	 	 	 For	 Each	 STNPointsDataRow	 In	 STNPointsDataTable.Rows	 'Cycles	 through	 the	 entire	
set	 of	 STN_Points	 one	 at	 a	 time,	 selects	 matching	 records	 from	
	 	 	 	 	 	 	 	 	 	 	 	 'the	 link_link	 table	 and	 runs	 calculations	 on	 them	
	 	 	 	 	 	 	 	 	 	 	 	 Unique_ID	 =	 STNPointsDataRow(0)	
	 	 	 	 	 	 	 	 	 	 	 	 Link_ID	 =	 STNPointsDataRow(1)	
	 	 	 	 	 	 	 	 	 	 	 	 Link_Offset	 =	 STNPointsDataRow(2)	
	
	 	 	 	 	 	 	 	 	 	 	 	 criteria	 =	 "STNid	 =	 "	 &	 Link_ID	 'to	 select	 rows	 from	 the	 link_link	 table	 with	
matching	 link_IDs	
	
	 	 	 	 	 	 	 	 	 	 	 	 Dim	 selrows	 As	 Integer	 =	 LinkDataTable.Select(criteria).Length	
	 	 	 	 	 	 	 	 	 	 	 	 If	 selrows	 =	 0	 Then	 'Writes	 any	 records	 to	 a	 separate	 CSV	 file	 that	 have	 a	
link_ID	 not	 in	 the	 link_link	 table	
	
	 	 	 	 	 	 	 	 	 	 	 	 Else	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 'Cycles	 through	 the	 selected	 set	 of	 records	 from	 the	 link_link	 table;	
find	 which	 meets	 the	 criteria	 in	 the	 IF	 statement	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 For	 Each	 LinkDataRow	 In	 LinkDataTable.Select(criteria)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 STNid	 =	 LinkDataRow(0)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 STNstart	 =	 LinkDataRow(1)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 STNend	 =	 LinkDataRow(2)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WISLRid	 =	 LinkDataRow(3)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WISLRstart	 =	 LinkDataRow(4)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WISLRend	 =	 LinkDataRow(5)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Status	 =	 LinkDataRow(6)	
	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 If	 Status	 =	 "C"	 Then	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 'Performs	 math	 on	 any	 offset	 that	 falls	 within	 the	 correct	 range	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 If	 (Link_Offset	 =	 0	 And	 STNstart	 =	 0)	 And	 (Status	 =	 "C")	 Then	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 rate	 =	 (WISLRend	 -‐	 WISLRstart)	 /	 (STNend	 -‐	 STNstart)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WISLR_Offset	 =	 (rate	 *	 (Link_Offset	 -‐	 STNstart))	 +	 WISLRstart	

71

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WISLR_Link	 =	 WISLRid	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Unique_ID1	 =	 Unique_ID	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Dim	 NewRow	 As	 DataRow	 =	 finaldatatable.NewRow()	 'creates	 a	
new	 row	 in	 the	 final	 datatable	 with	 the	 new	 values	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 NewRow("Unique_ID")	 =	 Unique_ID1	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 NewRow("Link_ID")	 =	 WISLR_Link	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 NewRow("Link_Offset")	 =	 trunc(WISLR_Offset,	 3)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 finaldatatable.Rows.Add(NewRow)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ElseIf	 (Link_Offset	 >	 STNstart	 And	 Link_Offset	 <=	 STNend)	 And	
(Status	 =	 "C")	 Then	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 rate	 =	 (WISLRend	 -‐	 WISLRstart)	 /	 (STNend	 -‐	 STNstart)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WISLR_Offset	 =	 (rate	 *	 (Link_Offset	 -‐	 STNstart))	 +	 WISLRstart	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WISLR_Link	 =	 WISLRid	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Unique_ID1	 =	 Unique_ID	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Dim	 NewRow	 As	 DataRow	 =	 finaldatatable.NewRow()	 'creates	 a	
new	 row	 in	 the	 final	 datatable	 with	 the	 new	 values	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 NewRow("Unique_ID")	 =	 Unique_ID1	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 NewRow("Link_ID")	 =	 WISLR_Link	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 NewRow("Link_Offset")	 =	 trunc(WISLR_Offset,	 3)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 finaldatatable.Rows.Add(NewRow)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 End	 If	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ElseIf	 Status	 =	 "H"	 Then	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 End	 If	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Next	
	 	 	 	 	 	 	 	 	 	 	 	 End	 If	
	 	 	 	 	 	 	 	 	 	 	 	 i	 =	 i	 +	 1	
	 	 	 	 	 	 	 	 	 	 	 	 ProgressBar1.Value	 =	 (i	 /	 rows)	 *	 100	
	 	 	 	 	 	 	 	 Next	
	
	 	 	 	 	 	 	 	 'Creates	 a	 Hashtable	 and	 an	 arraylist	
	 	 	 	 	 	 	 	 'hashtable	 receives	 all	 values	 that	 are	 processed;	 if	 value	 exists	 already	 in	 the	
hashtable,	 that	 row	 is	 placed	 in	 the	 arraylist	
	 	 	 	 	 	 	 	 'the	 arraylist	 is	 then	 processed,	 and	 all	 records	 that	 are	 in	 the	 arraylist	 are	
deleted	 from	 the	 finaldatatable	
	 	 	 	 	 	 	 	 'Dim	 htable	 As	 New	 Hashtable	
	 	 	 	 	 	 	 	 'Dim	 duplicatelist	 As	 New	 ArrayList	
	
	 	 	 	 	 	 	 	 'For	 Each	 finaldatarow	 In	 finaldatatable.Rows	
	 	 	 	 	 	 	 	 '	 	 	 	 If	 htable.ContainsKey(finaldatarow(0))	 Then	
	 	 	 	 	 	 	 	 '	 	 	 	 	 	 	 	 duplicatelist.Add(finaldatarow)	
	 	 	 	 	 	 	 	 '	 	 	 	 Else	
	 	 	 	 	 	 	 	 '	 	 	 	 	 	 	 	 htable.Add(finaldatarow(0),	 String.Empty)	
	 	 	 	 	 	 	 	 '	 	 	 	 End	 If	
	 	 	 	 	 	 	 	 'Next	
	
	 	 	 	 	 	 	 	 'For	 Each	 finaldatarow	 In	 duplicatelist	
	 	 	 	 	 	 	 	 '	 	 	 	 finaldatatable.Rows.Remove(finaldatarow)	
	 	 	 	 	 	 	 	 'Next	
	
	 	 	 	 	 	 	 	 i	 =	 0	
	 	 	 	 	 	 	 	 Dim	 cn3	 As	 OleDbConnection	
	 	 	 	 	 	 	 	 cn3	 =	 New	 OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data	 Source="	 &	
link_link_file)	
	
	 	 	 	 	 	 	 	 cn3.Open()	
	 	 	 	 	 	 	 	 'Writes	 the	 values	 in	 the	 corrected	 finaldatatable	 to	 a	 CSV	 file	

72

	 	 	 	 	 	 	 	 Dim	 final_ID,	 Final_Link,	 Final_Offset	 As	 String	
	 	 	 	 	 	 	 	 Dim	 finalcount	 As	 Integer	 =	 finaldatatable.Rows.Count	
	 	 	 	 	 	 	 	 For	 Each	 finaldatarow	 In	 finaldatatable.Rows	
	 	 	 	 	 	 	 	 	 	 	 	 final_ID	 =	 finaldatarow(0)	
	 	 	 	 	 	 	 	 	 	 	 	 Final_Link	 =	 finaldatarow(1)	
	 	 	 	 	 	 	 	 	 	 	 	 Final_Offset	 =	 finaldatarow(2)	
	
	 	 	 	 	 	 	 	 	 	 	 	 Dim	 sql	 As	 String	 =	 "INSERT	 INTO	 "	 &	 table_name	 &	 "(Unique_ID1,	 WISLR_Link,	
WISLR_Offset)	 VALUES	 "	 &	 "('"	 &	 final_ID	 &	 "'	 ,	 '"	 &	 Final_Link	 &	 "',	 '"	 &	 Final_Offset	 &	
"')"	
	 	 	 	 	 	 	 	 	 	 	 	 Dim	 cmd1	 As	 New	 OleDbCommand(sql,	 cn3)	
	 	 	 	 	 	 	 	 	 	 	 	 Dim	 records	 As	 Integer	 =	 cmd1.ExecuteNonQuery()	
	 	 	 	 	 	 	 	 	 	 	 	 i	 =	 i	 +	 1	
	 	 	 	 	 	 	 	 	 	 	 	 ProgressBar3.Value	 =	 (i	 /	 finalcount)	 *	 100	
	 	 	 	 	 	 	 	 Next	
	 	 	 	 	 	 	 	 cn3.Close()	
	
	 	 	 	 End	 Sub	
	 	 	 	 Public	 Function	 DoesTableExist(ByVal	 table_name	 As	 String)	 As	 Boolean	
	 	 	 	 	 	 	 	 Dim	 dbconn	 As	 New	 OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data	 Source=	
"	 &	 link_link_file)	
	 	 	 	 	 	 	 	 dbconn.Open()	
	 	 	 	 	 	 	 	 Dim	 restrictions(3)	 As	 String	
	 	 	 	 	 	 	 	 restrictions(2)	 =	 table_name	
	 	 	 	 	 	 	 	 Dim	 dbTable	 As	 DataTable	 =	 dbconn.GetSchema("Tables",	 restrictions)	
	 	 	 	 	 	 	 	 If	 dbTable.Rows.Count	 =	 0	 Then	
	 	 	 	 	 	 	 	 	 	 	 	 DoesTableExist	 =	 False	
	 	 	 	 	 	 	 	 Else	
	 	 	 	 	 	 	 	 	 	 	 	 DoesTableExist	 =	 True	
	 	 	 	 	 	 	 	 End	 If	
	 	 	 	 	 	 	 	 dbTable.Dispose()	
	 	 	 	 	 	 	 	 dbconn.Close()	
	 	 	 	 	 	 	 	 dbconn.Dispose()	
	 	 	 	 End	 Function	
	 	 	 	 Private	 Sub	 btnExecute_Click(ByVal	 sender	 As	 System.Object,	 ByVal	 e	 As	
System.EventArgs)	 Handles	 btnExecute.Click	
	
	 	 	 	 	 	 	 	 Me.Enabled	 =	 False	
	 	 	 	 	 	 	 	 tableCheck(link_link_file)	
	 	 	 	 	 	 	 	 Read_Calculate(link_link_file)	
	
	 	 	 	 	 	 	 	 MsgBox("Done.	 A	 table	 entitled	 WISLR_Final	 has	 been	 created	 to	 the	 Access	
database.")	
	
	 	 	 	 	 	 	 	 Me.Close()	
	
	 	 	 	 End	 Sub	
	 	 	 	 Public	 Function	 trunc(ByVal	 number	 As	 Double,	 ByVal	 digits	 As	 Integer)	 As	 Double	
	 	 	 	 	 	 	 	 Return	 ((Truncate(number	 *	 Pow(10,	 digits)))	 /	 Pow(10,	 digits))	
	 	 	 	 End	 Function	
	
	
End	 Class	

