
Fitting spatial ICAPP models

It is recommended that you go over the tutorial for temporal models first, since the mechanics of model

fitting are the same. We will only highlight the differences here.

The data
As with the temporal programs, the data should be in an � × 1 cell array x, where n is the number of

replications. But now each x{i}, instead of a vector, must be an �� × 2 matrix where the rows are the

spatial coordinates of the observed events for the ith replication.

Fitting the model
The parameter estimators are computed, basically, by calling

 >> [param,u,y,logf,OF,F] = …

 icapp2d(x,rng,Rmax,knts,p,sm,itmax,start,...)

The main difference with the temporal icapp program is in the variables rng and Rmax, that specify the

range, and knts, that specifies the basis knots.

Suppose the region B of interest is the triangle with vertices (0,0), (0,1) and (2,0). Then one would write

the following indicator function:

function y = rng_tri(x)

y = x(:,1)>=0 & x(:,1)<=2 & x(:,2)>=0 & x(:,2)<=(1-0.5*x(:,1));

end

This function takes as input an � × 2 matrix and gives as output a logical � × 1 vector indicating

whether each row of the matrix is inside the triangle. If we save this function in the file rng_tri.m, say,

then we call icapp2d as follows:

 >> [param,u,y,logf,OF,F] = …

 icapp2d(x,@rng_tri,Rmax,knts,p,sm,itmax,start,...)

The variable Rmax is a struct that specifies a rectangle that contains B, which is necessary for numerical

integrations within the program. Naturally, although not strictly necessary, one would specify the

smallest possible rectangle. In the case of the triangle with vertices (0,0), (0,1) and (2,0), this would be

the rectangle �0,2
 × �0,1
 :

 >> Rmax = struct('I1',[0 2],'I2',[0 1])

The variable knts is a � × 2 matrix giving the knots of the basis functions � of which the independent

components �� are linear combinations. The �s are normalized Gaussian densities centered at the

knots (the normalization ensures that ∑ �(�)
�
�� = 1 for all �). It is not strictly necessary that all knots

be inside B, but for numerical stability it is better that they are. The easiest way to do this is to create

equally spaced knots in a rectangle and filter out the unwanted knots with the function rng. For

example,

>> t1 = linspace(0,2,10)';

>> t2 = linspace(0,1,10)';

>> knts0 = [kron(t1,ones(10,1)) kron(ones(10,1),t2)];

>> i = rng_tri(knts0);

>> knts = knts0(i,:);

Plotting
The functions icapp2d and NGRbasis were written so as to make their output amenable for

computations, but not for plotting. If, say, we want to evaluate the 2nd model component �� at points

��, …, ��, we collect these points in an � × 2 matrix t and simply do

>> B = NGRbasis(t,knts,0);

>> phi2 = B*param.C(:,2);

as we would for the temporal components. Here phi2 is an � × 1 vector and its jth row is ��(��). But

in order to plot �� using the standard Matlab functions surf, mesh or contour, we need phi2 in

matrix form.

This can be done as follows:

>> t1 = linspace(0,2,20)';

>> t2 = linspace(0,1,20)';

>> t = [kron(t1,ones(20,1)) kron(ones(20,1),t2)];

>> B = NGRbasis(t,knts,0);

>> phi2 = B*param.C(:,2);

>> Phi2mat = reshape(phi2,20,20);

Note that, given the way we constructed t, the rows of Phi2mat correspond to the grid t1 and the

columns to t2. So we plot �� with, for instance, the command

>> mesh(t1,t2,Phi2mat)

But this plots �� over a rectangular region, not the triangular region we are interested in. So we mask

out the extra points by, for example, replacing them with NaN’s before plotting:

>> i = rng_tri(t);

>> phi2(~i,:) = NaN;

>> Phi2mat = reshape(phi2,20,20);

>> mesh(t1,t2,Phi2mat)

The functions surf and contour are used in a similar way.

