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Doubly stochastic models for replicated 

spatio-temporal point processes 

The model 
Gervini (2019) proposes an additive model for the logarithm of the (unobservable) spatio-temporal 

intensity functions ��(�, �), … , �	(�, �) underlying a replicated point process:  

ln ��(�, �) = � + � + ln ���(�) + ln ���(�), 

ln ���(�) = μ(�) + � �����(�)
�

���
, 

ln ���(�) = �(�) + � �����(�)
�

���
, 

where the ��s and the ��s are orthonormal and the random effects ��s, ���s, and ���s are assumed 

jointly Normal. We explain in this note how to estimate the model parameters and interpret the results 

in the context of a bike-sharing data analysis. 

The data 
The data consist of starting times and destinations of bike trips that took place between April 1st and 

November 30 of 2016 at station #166 (located on Ashland & Wrightwood avenues) in the Divvy system 

of the city of Chicago. The data is available in the Matlab file data_166day.mat in this package. 

The data is organized as two 244 x 1 cell arrays x and y, where, for each day i, x{i} is a vector of 

starting times (on a 24-hour time scale) and y{i} is a two-column matrix with the respective 

destinations (first column is longitude, second column is latitude). The number of rows of x{i} and 

y{i} are then equal, since they correspond to the same trips. The x{i}s and y{i}s are, in fact, paired 

observations, but we keep them in separate cell arrays for easier manipulation. 

Fitting the model 
Estimation is done by the program STPP. The temporal mean and components, �(�) and ��(�)s, are 

modeled as spline functions using B-spline bases with equally spaced knots, so we first specify the basis 

parameters: the time domain, the number of knots, and the spline order. For these data the domain is 

[0,24]. We use cubic splines (order 4) and 10 equally space knots, so we set  

>> basis_x = struct('rng',[0 24],'or',4,'nk',10); 

The spatial mean and components, �(�) and ��(�)s, are modeled using a renormalized Gaussian kernel 

basis (NGbasis.m) with equally spaced centroids on an initial rectangle  � ×  " that contains the spatial 

domain of interest (we use 10 knots for each dimension, giving a total of 100 centroids). The actual 

domain of interest (a sector of the city of Chicago, in this case) is usually very irregular, so it is defined 
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through a logical function (Rdom_chi.m) that, given input s with longitude-latitude coordinates, returns 

1 if s is inside the desired domain or 0 otherwise.  Then the spatial basis is specified as follows:  

>> basis_y = struct('I1',[-87.840,-87.530],'I2',[41.800,42.030],... 

'Rdom',@Rdom_chi,'nk',10); 

We are going to estimate a model with two temporal components and two spatial components, so we 

set p1=2 and p2=2. We also need to specify smoothing parameters for the means and the components; 

in principle four different parameters could be used, since the scales are different, but for these data we 

found that 10%& works well for all functional parameters, producing estimates that are neither too 

irregular nor too smooth. So we set  

>> sm = struct('muX',1e-5,'pcX',1e-5,'muY',1e-5,'pcY',1e-5); 

There is an option to specify periodic temporal mean and components; we use this option here, since it 

is natural to expect that the intensity functions “wrap around” the interval [0,24], so we set per=1. 

Finally, we set the maximum number of iterations at itmax = 100 (note that estimation is done in a 

cumulative way, starting from a mean-only model and adding one component at a time, so several 

passes of at most itmax iterations each are carried out.) 

The parameter estimators are then computed by calling  

>> [param,effects,logf] = stpp(x,y,basis_x,basis_y,p1,p2,sm,per,itmax); 

The output struct param contains the parameter estimators, effects the random-effect estimators, 

and logf the estimated log-density for each data point.  

To visualize the mean and components we can use the functions plot_pc_t.m for the temporal 

parameters and plot_pc_sp.m for the spatial parameters: 

>> plot_pc_t(param.c0,param.C,param.s2u,basis_x) 

produces the plots 
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where the blue line is the estimated baseline intensity exp	{�(�)}, the green line is exp	{�(�) − .��(�)} 

and the red line is exp	{�(�) + .��(�)}, for . = 201�, with 2 = 1 on the left and 2 = 2 on the right. We 

interpret, then, that the first component explains variation in the morning peak vs higher demand in the 

early afternoon, and the second component mostly explains variation in the evening peak. 

Similarly, we plot the spatial components by calling  

>> plot_pc_sp(param.d0,param.D,param.s2v,basis_y) 

which produces the plots  
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Here the blue dots show the baseline spatial intensity exp	{�(�)}, the green dots exp	{�(�) − .��(�)} 

and the red dots exp	{�(�) + .��(�)}, for . = 203�. We see that the type of variation explained by the 

first component is: trips mostly concentrated around the bike station vs more trips going downtown. 

The second component accounts for: more trips going far North or South vs more trips staying in the 

central part of the city. 

The cross-correlations between the temporal component scores ���s and the spatial component scores 

���s can be obtained as 

>> diag(1./sqrt(param.s2u))*param.Suv*diag(1./sqrt(param.s2v)) 

ans = 

      0.90234      0.31654 

      -0.1182      0.10373 

We see that the correlation between the first temporal component and the first spatial component is 

very high. The correlation between the first temporal component and the second spatial component is 

not as high, but probably statistically significant too. 

To determine which correlations are statistically significant, we can use the asymptotic standard 

deviations of the estimators. The ‘reduced’ or ‘simplified’ asymptotic estimators, explained in the paper, 

are obtained by calling  

>> V = AV_stpp_simp(x,y,basis_x,basis_y,param,effects); 

>> n = length(x); 

>> sd = sqrt(diag(V/n)); 

The vector sd contains the standard deviations for all model parameters except the functional basis 

coefficients. See the help of function AV_stpp_simp.m to find out the exact order in which the 

elements are given. We are only interested in the asymptotic standard deviations of the cross-

covariances param.Suv here, which correspond to the indices  

>> i3 = p1+p2+1:p1+p2+p1*p2; 

Then we obtain the asymptotic Z-scores as  

>> z_Suv = param.Suv./reshape(sd(i3),[2 2]) 

z_Suv = 

       4.6043       2.6893 

     -0.62767      0.54915 

We see that only the first row, the covariances of the first temporal component with both spatial 

components, is statistically significant. 
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