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DART Tutorial Part IV:

Other Updates for an Observed Variable
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Product of Two Gaussians

p(AIBC)

_ P(BIAC)p(AIC) _ p(BIAC)p(AIC)
p(BIC) [ p(B12)p(x1C)dx

Ensemble filters: Prior is available as finite sample.
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Don’t know much about properties of this sample.
May naively assume it is random draw from ‘truth’.



p(AIBC)—
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Product of Two Gaussians

~ p(BIAC)p(AIC)  p(BIAC)p(AIC)

p(BIC) [ p(Blx)p(x1C)dx

How can we take product of sample with continuous likelihood?

Prior PDF.
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Fit a continuous (Gaussian for now) distribution to sample.
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Product of Two Gaussians

~ p(BIAC)p(AIC)  p(BIAC)p(AIC)

AlBC)= -
PATBC)= T B1e)  [pBlopr Oods

Observation likelihood usually continuous (nearly always Gaussian).

0.6
zoab Qb;c?.-...L.I.k.el.l.h.o.od.._
= _ _
© |
3 Prior PDF,

a 0.2F e A e IR\
94 _2 0 2 4

If Obs. likelihood isn’t Gaussian, can generalize methods below.



Product of Two Gaussians

p(A1BC)= LBIAOPAIC) | p(BIAC)H(AIC)

p(BIC) [ p(B12)p(x1C)dx
Product of prior Gaussian fit and Obs. likelihood is Gaussian.
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Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.



Sampling Posterior PDF:

There are many ways to do this.
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Exact properties of different methods may be unclear.
Trial and error still best way to see how they perform.
Will interact with properties of prediction models, etc.



Sampling Posterior PDF:

Just draw a random sample (filter_kind=5in &assim tools nml).

0.6 , ,
Posterior PDF

Probability
o
N

o
\S)

Il\)o

L

ok @ D
_

N

W



Sampling Posterior PDF:

Just draw a random sample (filter_kind=5in &assim tools nml).
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Can ‘play games’ with this sample to improve (modify) its properties.

Example: Adjust the mean of the sample to be exact.



Sampling Posterior PDF:

Just draw a random sample (filter_kind=5in &assim tools nml).
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Can ‘play games’ with this sample to improve (modify) its properties.

Example: Adjust the mean of the sample to be exact.
Can also adjust the variance to be exact.



Sampling Posterior PDF:

Just draw a random sample (filter_kind=5in &assim tools nml).
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Might also want to eliminate rare extreme outliers.

NOTE: Properties of these adjusted samples can be quite different.
How these properties interact with the rest of the assimilation is
an open gquestion.



Sampling Posterior PDF:

Construct a ‘deterministic’ sample with certain features.
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For instance: Sample could have exact mean and variance.

This is insufficient to constrain ensemble, need other constraints.



Sampling Posterior PDF:

Construct a ‘deterministic’ sample with certain features
(filter_kind=6 in &assim tools nml; manually adjust kurtosis).
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Example: Exact sample mean and variance.

Sample kurtosis (related to the sharpness/tailedness of a distribution)
is 3, which is the expected value for a normal distribution. Start by
assuming a uniformly-spaced sample and adjusting quadratically.



Sampling Posterior PDF:

Construct a ‘deterministic’ sample with certain features
(filter_kind=6 in &assim tools nml; manually adjust kurtosis).
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Example: Exact sample mean and variance.

Sample kurtosis 2: less extreme outliers, less dense near mean.
Avoiding outliers might be nice in certain applications.
Sampling heavily near mean might be nice.



Sampling Posterior PDF:

First two methods depend only on mean and variance of prior sample.
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pose prior sample is (significantly) bimodal?




Sampling Posterior PDF:

First two methods depend only on mean and variance of prior sample.

Posterior PDF

Probability
o
&

O
\S)

%

Example: Suppose prior sample is (significantly) bimodal?

Might want to retain additional information from prior.
Recall that Ensemble Adjustment Filter tried to do this (Section 1).



Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF)
(filter_kind=2 in &assim tools nml).
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‘Classical’ Monte Carlo algorithm for data assimilation



Ensemble Filter Algorithms:
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Ensemble Kalman Filter (EnKF)
(filter_kind=2 in &assim tools nml).
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Again, fit a Gaussian to the sample.



Ensemble Filter Algorithms:
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Ensemble Kalman Filter (EnKF)
(filter_kind=2 in &assim tools nml).

Again, fit a Gaussian to the sample.



Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF)
(filter_kind=2 in &assim tools nml).
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Generate a random draw from the observation likelihood.
Associate it with the first sample of the prior ensemble.



Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF)
(filter_kind=2 in &assim tools nml).
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Have sample of joint prior distribution for observation and prior MEAN.
Adjusting the mean of obs. sample to be exact improves performance.

Adjusting the variance may further improve performance.
Outliers are a potential problem, but can be removed.



Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF)
(filter_kind=2 in &assim tools nml).
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For each prior mean/obs. pair, find mean of posterior PDF.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF)
(filter_kind=2 in &assim tools nml).
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Prior sample standard deviation still measures uncertainty of prior mean estimate.



Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF)
(filter_kind=2 in &assim tools nml).
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Prior sample standard deviation still measures uncertainty of prior mean estimate.
Obs. likelihood standard deviation measures uncertainty of obs. estimate.



Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF)
(filter_kind=2 in &assim tools nml).
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Take product of the prior/obs distributions for first sample.
This is the standard Gaussian product.



Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF)
(filter_kind=2 in &assim tools nml).
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Mean of product is random sample of posterior.
Product of random samples is random sample of product.



Ensemble Filter Algorithms:

o o
»

Probability
o

Ensemble Kalman Filter (EnKF)
(filter_kind=2 in &assim tools nml).
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Repeat this operation for each joint prior pair.




Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF)
(filter_kind=2 in &assim tools nml).
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Posterior sample maintains much of prior sample structure.
(This is more apparent for larger ensemble sizes.)
Posterior sample mean and variance converge to ‘exact’ for large samples.



Ensemble Filter Algorithms:

Ensemble Kernel Filter (EKF)
(filter_kind=3 in &assim tools nml).
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Can retain more correct information about non-Gaussian priors.
Can also be used for obs. likelihood term in product (not shown here).
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Ensemble Filter Algorithms:

Ensemble Kernel Filter (EKF)
(filter_kind=3 in &assim tools nml).
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Usually, kernel widths are a function of the sample variance.




Ensemble Filter Algorithms:

Ensemble Kernel Filter (EKF)
(filter_kind=3 in &assim tools nml).
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Usually, kernel widths are a function of the sample variance.



Ensemble Filter Algorithms:

Ensemble Kernel Filter (EKF)
(filter_kind=3 in &assim tools nml).

Probability
o O o
r O @

o
\S)

Approximate prior as a sum of Gaussians centered on each sample.



Ensemble Filter Algorithms:

Ensemble Kernel Filter (EKF)
(filter_kind=3 in &assim tools nml).
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The estimate of the prior is the normalized sum of all kernels.
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Ensemble Filter Algorithms:

Ensemble Kernel Filter (EKF)
(filter_kind=3 in &assim tools nml).
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Apply distributive law to take product: product of the

sum is the sum of the products. Otherwise, the
product cannot be analytically determined.



Ensemble Filter Algorithms:

Ensemble Kernel Filter (EKF)
(filter_kind=3 in &assim tools nml).
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Compute product of first kernel with Obs. likelihood.



Ensemble Filter Algorithms:

Ensemble Kernel Filter (EKF)
(filter_kind=3 in &assim tools nml).
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But, can no longer ignore the weight term for product of Gaussians.
Kernels with mean further from observation get less weight.



Ensemble Filter Algorithms:

Probability

Ensemble Kernel Filter (EKF)
(filter_kind=3 in &assim tools nml).
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Continue to take products for each kernel in turn.
Closer kernels dominate posterior.



Ensemble Filter Algorithms:

Ensemble Kernel Filter (EKF)
(filter_kind=3 in &assim tools nml).
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Final posterior is weight-normalized sum of kernel products.

Posterior is somewhat different than for ensemble adjustment or
ensemble Kalman filter (much less density in left lobe.)
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Ensemble Filter Algorithms:

Ensemble Kernel Filter (EKF)
(filter_kind=3 in &assim tools nml).
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Forming sample of the posterior can be problematic.

Random sample is simple.

Deterministic sampling is much more tricky here (few results available).



Ensemble Filter Algorithms:

Rank Histogram Filter (filter_kind=8 in &assim tools nml).
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Goal: Want to handle non-Gaussian priors or observation likelihoods.
Low information content obs. must yield small increments.
Must perform well for Gaussian priors.

Must be computationally efficient.



Ensemble Filter Algorithms:

Rank Histogram Filter (filter_kind=8 in &assim tools nml).
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Step 1: Get continuous prior distribution density.
* Place (ens_size + 1) mass between adjacent ensemble members.
* Reminiscent of rank histogram evaluation method.
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Ensemble Filter Algorithms:

Rank Histogram Filter (filter_kind=8 in &assim tools nml).
0.6 ! ! ! ! !
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Step 1: Get continuous prior distribution density.
e Partial Gaussian kernels on tails, N(tail_mean, ens_sd).
* tail_mean selected so that (ens_size + 1)* mass is in tail.



Ensemble Filter Algorithms:

Rank Histogram Filter (filter_kind=8 in &assim tools nml).
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Step 2: Use likelihood to compute weight for each ensemble member.
* Analogous to classical particle filter.

e Can be extended to non-Gaussian obs. likelihoods.



Ensemble Filter Algorithms:

Rank Histogram Filter (filter_kind=8 in &assim tools nml).
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Step 2: Use likelihood to compute weight for each ensemble member.
e Can approximate interior likelihood with linear fit; for efficiency.



Ensemble Filter Algorithms:

Rank Histogram Filter (filter_kind=8 in &assim tools nml).
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Step 3: Compute continuous posterior distribution.
* Approximate likelihood with trapezoidal quadrature, take product.
(Displayed product normalized to make posterior a PDF).



Ensemble Filter Algorithms:

Rank Histogram Filter (filter_kind=8 in &assim tools nml).
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Step 3: Compute continuous posterior distribution.

Product of prior Gaussian kernel with likelihood for tails.



Ensemble Filter Algorithms:

Rank Histogram Filter (filter_kind=8 in &assim tools nml).
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Step 4: Compute updated ensemble members:

* (ens_size +1)*! of posterior mass between each ensemble pair.

* (ens_size +1)1in each tail.

e Uninformative observation (not shown) would have no impact.



Ensemble Filter Algorithms:

Rank Histogram Filter (filter_kind=8 in &assim tools nml).
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Compare to standard ensemble adjustment Kalman filter (EAKF).
Nearly Gaussian case, differences are small.



Ensemble Filter Algorithms:

Rank Histogram Filter (filter_kind=8 in &assim tools nml).
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Rank Histogram gets rid of prior outlier that is inconsistent with obs.
EAKF can’t get rid of this prior outlier.

Large prior variance from outlier causes EAKF to shift all members too
much towards observation (with mean off the page).



Ensemble Filter Algorithms:

Rank Histogram Filter (filter_kind=8 in &assim tools nml).
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Probability Density

Convective-scale models (and land models) have analogous behavior.
Convection may fire at ‘random’ locations.

Subset of ensembles will be in right place, rest in wrong place.

Want to aggressively eliminate convection in wrong place.



Dealing with Ensemble Filter Errors

Fix 1, 2, 3 independently,
HARD but ongoing.

2. h errors; 3. ‘Gross’ Obs. Error 4. Sampling Error;

Representativeness R e Gaussian
’ .
Assumption

Often, ensemble filters...

1-4: Variance inflation,
Increase prior uncertainty
to give obs more impact.

U4
. / ) )
1. Model Error 5. Sampling Error; 5. ’Locallzatlon’: onIy |€t

Assuming Linear

Statistical Relation obs. impact a set of
‘nearby’ state variables.

Often smoothly decrease
impact to 0 as function of
distance.
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Model/Filter Error: Filter Divergence and Variance Inflation

1. History of observations and physical system => ‘true’ distribution.
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Model/Filter Error: Filter Divergence and Variance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Sampling error, some model errors lead to insufficient prior variance.
3. Can lead to ‘filter divergence’: prior is too confident, obs. Ignored.

Variance Deficient PDF ™
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Model/Filter Error: Filter Divergence and Variance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Sampling error, some model errors lead to insufficient prior variance.
3. Can lead to ‘filter divergence’: prior is too confident, obs. Ignored.

Variance Deficient PDF ™
> b N— P — :
g "TRUE" Prior PDF;
Q N 7 B
O N N
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0 v % i %
=4 3 5 1 0

Naive solution is variance inflation: just increase spread of prior.
For ensemble member i, inflate(x,)=vA(x,-%)+X



Model/Filter Error: Filter Divergence and Variance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Most model errors also lead to erroneous shift in entire distribution.

3. Again, prior can be viewed as being TOO CERTAIN.

0.8——ruE Prior PDF Error in Mean (from model)
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Model/Filter Error: Filter Divergence and Variance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Most model errors also lead to erroneous shift in entire distribution.

3. Again, prior can be viewed as being TOO CERTAIN.

0-8—FRUE" Prior PDF Error in Mean (from model)
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Inflating can ameliorate this.
Obviously, if we knew E(error), we’d correct for it directly.



Physical Space Variance Inflation

Inflate all state variables by same amount before assimilation.

Capabilities:

1. Can be effective for a variety of models.

2. Can maintain linear balances.

3. Prior continues to resemble that from the first guess.

4. Simple and computationally cheap.

Liabilities:

1. State variables not constrained by observations can ‘blow up’.
For instance unobserved regions near the top of AGCMs.

2. Magnitude of A normally selected by trial and error.



Physical Space Variance Inflation in Lorenz 63

Observation outside prior: danger of filter divergence.
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Physical Space Variance Inflation in Lorenz 63

After inflating, observation is in prior cloud: filter divergence avoided.
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Physical Space Variance Inflation in Lorenz 63

Inflated prior outside attractor. Posterior will also be off attractor.

Can lead to transient
off-attractor behavior or...

model ‘blow-up’.

Observation in red.

Prior ensemble in green.

Inflated ensemble in magenta.
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