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DART	Tutorial	Part	1:	
Filtering	For	a	One	Variable	System	



Example:	Es'ma'ng	the	Temperature	Outside	

An	observa'on	has	a	value	(	*	),		



Example:	Es'ma'ng	the	Temperature	Outside	

An	observa'on	has	a	value	(	*	),		

and	an	error	distribu'on	(red	curve)	that	is	
associated	with	the	instrument.	



Example:	Es'ma'ng	the	Temperature	Outside	

Thermometer	outside	measures	1oC. 		

	Instrument	builder	says	thermometer
	is unbiased	with	+/-	0.8oC	Gaussian	error.
	



Example:	Es'ma'ng	the	Temperature	Outside	

The	red	plot	is	P(T | T0);	
probability	of	temperature	given	that	To	was	observed.	

Thermometer	outside	measures	1oC. 		



Example:	Es'ma'ng	the	Temperature	Outside	

The	green	curve	is	P(T | C);	
probability	of	temperature	given	all	available	prior	informa'on	C.	

We	also	have	a	prior	es'mate	of	temperature.	



Example:	Es'ma'ng	the	Temperature	Outside	

Prior	informa'on	C	can	include:	

1. Observa'ons	of	things	besides	T;	

2. Model	forecast	made	using	observa'ons	at	earlier	'mes;	

3. 	a	priori	physical	constraints		(	T	>	-273.15oC	);	

4. Climatological	constraints		(	-30oC	<	T	<	40oC	). 	



Combining	the	Prior	Es'mate	and	Observa'on	

€

P T |To,C( ) =
P To |T,C( )P T |C( )

P To |C( )

Bayes	
Theorem:	

Posterior:	Probability	of	T	
given	observa'ons	and	Prior.	
Also	called	update	or	analysis.	

Prior	

Likelihood:	Probability	that	To		is	
observed	if	T	is	true	value	and	given	
prior	informa'on	C.	



Combining	the	Prior	Es'mate	and	Observa'on	

€

P To |T,C( )P T |C( )
P To |C( )

=

€

P To |T,C( )P T |C( )
P To | x( )P x |C( )dx∫

€

=
P To |T,C( )P T |C( )
normalization

Rewrite	Bayes	as:	

Denominator	normalizes	so	Posterior	is	PDF.	



Combining	the	Prior	Es'mate	and	Observa'on	

P T |T0,C( ) = P(T0 |T ,C)P(T |C)normalization



Combining	the	Prior	Es'mate	and	Observa'on	
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Combining	the	Prior	Es'mate	and	Observa'on	
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Combining	the	Prior	Es'mate	and	Observa'on	

P T |T0,C( ) = P(T0 |T ,C)P(T |C)normalization



Combining	the	Prior	Es'mate	and	Observa'on	

P T |T0,C( ) = P(T0 |T ,C)P(T |C)normalization
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A 	 	 	:	Prior	Es'mate	based	on	all	previous	informa'on,	C.	
B 	 	 	:	An	addi'onal	observa'on.	
p(A|BC) 	:	Posterior	(updated	es'mate)	based	on	C	and	B.	

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Bayes’	Rule	



A 	 	 	:	Prior	Es'mate	based	on	all	previous	informa'on,	C.	
B 	 	 	:	An	addi'onal	observa'on.	
p(A|BC) 	:	Posterior	(updated	es'mate)	based	on	C	and	B.	
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p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Bayes’	Rule	



A 	 	 	:	Prior	Es'mate	based	on	all	previous	informa'on,	C.	
B 	 	 	:	An	addi'onal	observa'on.	
p(A|BC) 	:	Posterior	(updated	es'mate)	based	on	C	and	B.	
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Product (Numerator)

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Bayes’	Rule	



A 	 	 	:	Prior	Es'mate	based	on	all	previous	informa'on,	C.	
B 	 	 	:	An	addi'onal	observa'on.	
p(A|BC) 	:	Posterior	(updated	es'mate)	based	on	C	and	B.	
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Normalization (Denom.)

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Bayes’	Rule	
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Normalization (Denom.)

Posterior

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

A 	 	 	:	Prior	Es'mate	based	on	all	previous	informa'on,	C.	
B 	 	 	:	An	addi'onal	observa'on.	
p(A|BC) 	:	Posterior	(updated	es'mate)	based	on	C	and	B.	

Bayes’	Rule	



Green	==	Prior	

Red	==	Observa'on	

Blue	==	Posterior	

The	same	color	scheme	is	used	throughout	ALL	Tutorial	materials.	

Color	Scheme	



This	product	is	closed	for	Gaussian	distribu'ons.	

−4 −2 0 2 40

0.2

0.4

0.6

Pr
ob

ab
ilit

y

Prior PDF

Obs. Likelihood

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Product	of	Two	Gaussians	

Any 1-D normal distribution can be 
represented as a PDF:



This	product	is	closed	for	Gaussian	distribu'ons.	
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Prior PDF
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Posterior PDF

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Product	of	Two	Gaussians	



Product	of	d-dimensional	normals	with	means					and					and	
covariance	matrices						and is	normal.	

Covariance:		

Mean:	 

Weight:

N (µ1,∑1)N (µ2 ,∑2 ) = cN (µ,∑)

∑ = (∑1
−1+∑2

−1)−1

µ = (∑1
−1+∑2

−1)−1(∑1
−1µ1 +∑2

−1µ2 )

µ1 µ2
∑1 ∑2

The weight is simply the normalization of the normal distribution defined by the product of
the prior and observation likelihood.

	

Product	of	Two	Gaussians	

c = 1
(2π)d /2 ∑1 +∑2

1/2 exp − 1
2

µ2 − µ1( )T (∑1 +∑2 )
−1 µ2 − µ1( )⎡

⎣
⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭
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Product	of	Two	Gaussians	

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

This	product	can be determined analytically	for	Gaussian	distribu'ons.	

	
But,	for	general	distribu'ons,	there’s	no	analy'cal	product.	



Don’t	know	much	about	proper'es	of	this	sample.	
May	naively	assume	it	is	random	draw	from	‘truth’.	

Ensemble	filters:	Prior	is	available	as	finite	sample.	
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Product	of	Two	Gaussians	

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫



How	can	we	take	product	of	sample	with	con'nuous	likelihood?	

Fit	a	con'nuous	(Gaussian	for	now)	distribu'on	to	sample.	
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Product	of	Two	Gaussians	

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫



Observa'on	likelihood	usually	con'nuous	(nearly	always	Gaussian). 	
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Product	of	Two	Gaussians	

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫



Product	of	prior	Gaussian	fit	and	Obs.	likelihood	is	Gaussian.		

	Analytically compu'ng	con'nuous
	posterior	is	simple. BUT,	we need	to	have

	a	SAMPLE	of	this	PDF...
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Posterior PDF

Prior Ensemble

Product	of	Two	Gaussians	

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫



There	are	many	ways	to	do	this. 	

Exact	proper'es	of	different	methods	may	be	unclear.	
Trial	and	error	s'll	best	way	to	see	how	they	perform.	
Will	interact	with	proper'es	of	predic'on	models,	etc.		
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Sampling	Posterior	PDF	



Ensemble	Adjustment	(Kalman)	Filter	
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Sampling	Posterior	PDF	



Ensemble	Adjustment	(Kalman)	Filter	

Again,	fit	a	Gaussian	to	sample.	
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Ensemble	Adjustment	(Kalman)	Filter	

Compute	posterior	PDF	(same	as	previous	algorithms).		
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Ensemble	Adjustment	(Kalman)	Filter	
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Posterior PDF

Mean Shifted
Variance Adjusted

Use	determinis'c	algorithm	to	‘adjust’	ensemble.	
1. ‘Shil’	ensemble	to	have	exact	mean	of	posterior.	
2. Use	linear	contrac'on	to	have	exact	variance	of	posterior.		

Sampling	Posterior	PDF	



p 	is	prior,	
u 	is	update	(posterior),	

	is	standard	devia'on,	
overbar	is	ensemble	mean. 		

Ensemble	Adjustment	(Kalman)	Filter	
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Mean Shifted
Variance Adjusted

 xi
u = xi

p − x p( ) i σ u /σ p( ) + x u
σi	=	1,...,	ensemble	size.		

Sampling	Posterior	PDF	



Ensemble	Adjustment	(Kalman)	Filter	

−4 −2 0 2 40

0.2

0.4

0.6

Pr
ob

ab
ilit

y

Posterior PDF

Mean Shifted
Variance Adjusted

Bimodality	maintained,	but	not	appropriately	posi'oned	
or	weighted.	No	problem	with	random	outliers.		

Sampling	Posterior	PDF	




