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DART Tutorial Part 1:

Filtering For a One Variable System
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Example: Estimating the Temperature Outside

An observation has a value ( * ),
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Example: Estimating the Temperature Outside

An observation has a value ( * ),

£ 0.4}
0
©
S
a 0.2
: : * ;
94 -2 0 2 4
Temperature

and an error distribution (red curve) that is
associated with the instrument.



Example: Estimating the Temperature Outside

Thermometer outside measures 1°C.
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Instrument builder says thermometer
is unbiased with +/- 0.8°C Gaussian error.



Example: Estimating the Temperature Outside

Thermometer outside measures 1°C.
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The red plotis P(T | T));
probability of temperature given that T, was observed.



Example: Estimating the Temperature Outside

We also have a prior estimate of temperature.
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The green curve is P(T | C);
probability of temperature given all available prior information C.



Example: Estimating the Temperature Outside

P
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rior information C can include:

. Observations of things besides T;
. Model forecast made using observations at earlier times;
a priori physical constraints (T >-273.15°C);

. Climatological constraints (-30°C < T < 40°C).



Combining the Prior Estimate and Observation

Likelihood: Probability that 7' is
observed if T'is true value and given
Bayes prior information C.

Theorem: \
o Prior
P(TIT.C) = P(T,1T,C)P(TIC)

W P(T,1C)
Posterior: Probability of T

given observations and Prior.
Also called update or analysis.




Combining the Prior Estimate and Observation

Rewrite Bayes as:

P(T I1T,C)P(TIC)  P(T,IT,C)P(TIC)

P(T,IC)  [P(T,1x)P(x1C)dx

P(T,|T,C)P(TIC)

normalization

Denominator normalizes so Posterior is PDF.



Combining the Prior Estimate and Observation

Probability

P(T1T,,C)=

P(T,|T,C)P(TC)

normalization
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Combining the Prior Estimate and Observation

P(T,IT,C)P(TIC)
normalization

P(TIT,.C)=

Obs. Likelihood
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Combining the Prior Estimate and Observation

P, T,C)P(TIC)
normalization

P(TIT,.C)=
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Combining the Prior Estimate and Observation

P(T,IT,C)P(TIC)
normalization

P(TIT,.C)=

Area Under Proddct IS Denorr{inator
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Combining the Prior Estimate and Observation

P(T,IT,C)P(TIC)
normalization

P(TIT,.C)=

O
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Bayes” Rule

A

p(A1BC)= PBIAOPAIC) | p(BIAC)H(AIC)
p(BIC) | p(B1x)p(x1C)dx
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: Prior Estimate based on all previous information, C.

B

: An additional observation.

p(AIBC) :Posterior (updated estimate) based on C and B.



Bayes” Rule

p(A1BC)=

Probability

A
B

p(BIAC)p(AIC)  p(BIAC)p(AIC)
p(BIC) jp(le)p(xw)dx

Obs. leellhood
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: Prior Estimate based on all previous information, C.
: An additional observation.

p(AIBC)

: Posterior (updated estimate) based on C and B.



Bayes” Rule

p(BIAC)p(AIC) _ p(BIAC)p(AIC)
p(BIC) [ p(B12)p(x1C)dx

p(AIBC):

Obs. leellhood

Probability
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A : Prior Estimate based on all previous information, C.

B : An additional observation.
p(AIBC) :Posterior (updated estimate) based on C and B.



Bayes” Rule

p(BIAC)p(AIC)  p(BIAC)p(AIC)
p(BIC) jp(le)p(xm)dx

p(AIBC)=

Obs. leellhood

Probability

2 4 6
A : Prior Estimate based on all previous information, C.

B : An additional observation.
p(AIBC) :Posterior (updated estimate) based on C and B.



Bayes” Rule

p(BIAC)p(AIC)  p(BIAC)p(AIC)

p(AIBC)=
p(BIC) [ p(Blx)p(x1C)dx
Posterlor
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A : Prior Estimate based on all previous information, C.
B : An additional observation.

p(AIBC) :Posterior (updated estimate) based on C and B.




Color Scheme

Green == Prior
Red == Observation

Blue == Posterior

The same color scheme is used throughout ALL Tutorial materials.



Product of Two Gaussians

~ p(BIAC)p(AIC)  p(BIAC)p(AIC)

p(AIBC)= =
p(B1C) j p(B1x)p(x1C)dx
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Any 1-D normal distribution can be 1 exp[—(x—#j]
represented as a PDF: o.N27 207



Product of Two Gaussians

p(a1BC)= LBIAOPAIC) _ p(BIAC)p(AIC)
p(B1C) j p(B1x)p(x|C)dx

This product is closed for Gaussian distributions.
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Product of Two Gaussians

Product of d-dimensional normals with means u, and u, and
covariance matrices 2,and 2.,is normal.

N(“1 321)N(.u2 ’22) = CN(,U,Z)

Covariance: >=C1+XN
Mean: u=Crl+2)7" G + 2 w,)
WEight: C= : 172 €XP {_l[(.uz — U, )T (X, +22)_1 (,le - :ul)]}
Qm)" |, +3,) 2

The weight is simply the normalization of the normal distribution defined by the product of
the prior and observation likelihood.



Product of Two Gaussians

p(a1BC)= LBIAOPAIC) _ p(BIAC)p(AIC)
p(BIC) | p(B1x)p(x1C)dx

This product can be determined analytically for Gaussian distributions.
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But, for general distributions, there’s no analytical product.



Product of Two Gaussians

p(AIBC)

_ P(BIAC)p(AIC) _ p(BIAC)p(AIC)
p(BIC) [ p(B12)p(x1C)dx

Ensemble filters: Prior is available as finite sample.
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Don’t know much about properties of this sample.
May naively assume it is random draw from ‘truth’.



p(AIBC)—

Probability
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Product of Two Gaussians

~ p(BIAC)p(AIC)  p(BIAC)p(AIC)

p(BIC) [ p(Blx)p(x1C)dx

How can we take product of sample with continuous likelihood?

Prior PDF.
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Fit a continuous (Gaussian for now) distribution to sample.
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Product of Two Gaussians

p(a1BC)= LBIAOPAIC) _ p(BIAC)p(AIC)
p(BIC) | p(B1x)p(x1C)dx

Observation likelihood usually continuous (nearly always Gaussian).
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Product of Two Gaussians

p(A1BC)= LBIAOPAIC) | p(BIAC)H(AIC)

p(BIC) [ p(B12)p(x1C)dx
Product of prior Gaussian fit and Obs. likelihood is Gaussian.
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Analytically computing continuous
posterior is simple. BUT, we need to have
a SAMPLE of this PDF...



Sampling Posterior PDF

Probability
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There are many ways to do this.
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Exact properties of different methods may be unclear.
Trial and error still best way to see how they perform.
Will interact with properties of prediction models, etc.



Sampling Posterior PDF
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Ensemble Adjustment (Kalman) Filter

AN

N

?Prior Ensembie

I
_I;O

—2 0 2




Sampling Posterior PDF

Ensemble Adjustment (Kalman) Filter
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Again, fit a Gaussian to sample.



Sampling Posterior PDF

Ensemble Adjustment (Kalman) Filter
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Compute posterior PDF (same as previous algorithms).



Sampling Posterior PDF

Ensemble Adjustment (Kalman) Filter
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Use deterministic algorithm to ‘adjust’ ensemble.
1. ‘Shift’ ensemble to have exact mean of posterior.
2. Use linear contraction to have exact variance of posterior.



Sampling Posterior PDF

Ensemble Adjustment (Kalman) Filter
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p isprior,
x! = (xl.p —)_cp).((y” /o'p)+)_c” u is update (posterior),
O is standard deviation,
overbar is ensemble mean.

i=1,..., ensemble size.



Sampling Posterior PDF

Probability

Ensemble Adjustment (Kalman) Filter
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Bimodality maintained, but not appropriately positioned
or weighted. No problem with random outliers.





