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Data Assimilation Methods 

Learning Objectives 

Following this lecture, students will be able to: 

• Conceptually describe how three- and four-dimensional variational data assimilation 

methods merge observations with a first-guess analysis. 

• Describe how the extended and ensemble Kalman filter methods allow for a flow-

dependent background error covariance matrix to be obtained. 

• Describe the difference between flow-independent and flow-dependent formulations for 

obtaining the background error covariance matrix. 

• Practically implement the ensemble adjustment Kalman filter for simple one- and multi-

dimensional applications.  

 

Introduction 

We developed two analogous statistical frameworks for data assimilation in one dimension in 

our last lecture: least-squares minimization and cost-function minimization. Both approaches 

involve identifying the optimal combination of background estimates with observations to 

produce an updated analysis that is as close to the “true” atmospheric state as possible. We also 

presented the multidimensional analog to the least-squares problem, showing that the same basic 

tenets underlie the multidimensional problem. 

In this lecture, we wish to explore several of the most widely used data assimilation algorithms 

in greater detail. We begin with three- and four-dimensional variational data assimilation (3DVar 

and 4DVar), which are cost-function minimization methods that have traditionally used flow-

independent background error covariance matrix specifications. We close with the extended and 

ensemble adjustment Kalman filters, which are least-squares minimization methods that use 

flow-dependent specifications for the background error covariance matrix. The variational data 

assimilation material is provided mostly as a continued introduction to basic data assimilation 

concepts; our focus through the rest of the semester lies instead with ensemble Kalman filter 

approaches. 

The data assimilation algorithms considered in this lecture are not the only such algorithms that 

exist. For instance, hybrid ensemble-variational schemes use an ensemble of background 

estimates to provide a flow-dependent estimate of the background error covariance matrix for 

use in a 3DVar or 4DVar variational data assimilation scheme. Thus, the focus of this lecture is 

not to provide background regarding every possible algorithm but instead to demonstrate how 

the fundamental principles outlined in the previous lecture are used in widely used data-

assimilation algorithms. 
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Three-Dimensional Variational Data Assimilation 

Variational data assimilation algorithms use iterative methods to minimize a cost function that 

reflects the departure of the analysis from the background and observation(s).  

Recall that the one-dimensional formulation for cost-function minimization is given by: 

𝐽(𝑇𝑎) = 𝐽(𝑇𝑜) + 𝐽(𝑇𝑏) =
(𝑇𝑎 − 𝑇𝑜)

2

𝜎𝑜
2

+
(𝑇𝑎 − 𝑇𝑏)

2

𝜎𝑏
2  

Each term of the cost function is equal to the squared error relative to the analysis divided by its 

respective error variance. If we know the observation, background, and error variances of each, 

we can find the analysis temperature Ta that minimizes the cost function by taking the first partial 

derivative of J with respect to Ta, setting the result to zero, and solving for Ta. 

The multidimensional formulation for the cost function takes the form: 

𝐽(𝑥𝑎
→ ) = 𝐽(𝑥𝑏

→ ) + 𝐽(𝑦→) =
(𝑥𝑎
→ − 𝑥𝑏

→ )(𝑥𝑎
→ − 𝑥𝑏

→ )
𝑇

𝐵
→ +

(𝐻
→
(𝑥𝑎
→ ) − 𝑦→) (𝐻

→
(𝑥𝑎
→ ) − 𝑦→)

𝑇

𝑅
→  

Definitions of the terms listed above may be found in the previous lecture notes. The exponent T 

refers to the transpose matrix. It is hopefully apparent, however, that this formulation is identical 

to that for the one-dimensional problem apart from the added dimensionality: each term is equal 

to the squared error relative to the analysis weighted by its respective error covariance. 

As in the one-dimensional problem, the cost function’s minimum can be obtained by taking the 

gradient (across model space) of the cost function and setting it equal to zero. The analytic 

expression for the gradient of the cost function is given by: 

𝛻𝐽(𝑥𝑎
→ ) =

(𝑥𝑎
→ − 𝑥𝑏

→ )

𝐵
→ +

𝐻
→
(𝑥𝑎
→ )

𝑇
(𝐻
→
(𝑥𝑎
→ )− 𝑦→)

𝑅
→ = 0 

Note that this gradient is not taken over physical space but rather is taken across the model space 

defined by x. It is not computationally feasible to obtain an analytic solution for the analysis in 

the multidimensional problem in this way. Instead, an iterative procedure is typically used to 

minimize the cost function and obtain the updated analysis. One might start by assuming that the 

analysis equals the background to obtain an initial cost-function estimate. In the next iteration, 

one might assume that the analysis equals the observations to obtain a second cost-function 

estimate. The third and subsequent iterations would proceed to find the analysis between the 

background and observation that minimizes the cost function. Fig. 1 provides an example of 

cost-function minimization in a two-dimensional model space. 
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Figure 1. Idealized schematic showing the process of cost function minimization within a two 

variable (x1, x2) model space. In this example, the cost function takes the shape of a parabola. 

The background xb, where J(xb) is minimized, provides the initial guess for the analysis. Two 

iterations are used in this example to find the cost function minimum that defines the analysis xa. 

Figure reproduced from Warner (2011), their Fig. 6.12. 

 

Practical implementations of iterative procedures for cost-function minimization are designed 

such that the minimum is approached over a relatively small number of iterations. In this regard, 

the iterative procedure is intend to obtain the greatest amount of minimization without passing a 

point where the added computational expense of further minimizing the cost function outweighs 

the benefit to the analysis of doing so. This can be informed by the cost function’s Laplacian, 

which defines the slope of the cost function’s gradient (e.g., how quickly you are approaching 

the cost function’s minimum). In practice, on the order of 100 iterations may be required to 

minimize the cost function. 

Let’s consider a practical example of three-dimensional variational data assimilation. All figures 

in this example are reproduced from the UCAR MetEd tutorial, “Understanding Assimilation 

Systems: How Models Create Their Initial Conditions” (account and login required).  

Consider a wind observation at 250 hPa (OB). The first guess for the analysis (A) is provided by 

the background (red line). This means that the background’s cost is zero, such that an initial cost-

function estimate equal to the observation’s cost (assuming it is imperfect) is obtained. 

http://www.meted.ucar.edu/nwp/model_dataassimilation/navmenu.php?tab=1&page=1.0.0
http://www.meted.ucar.edu/nwp/model_dataassimilation/navmenu.php?tab=1&page=1.0.0
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The first iteration occurs as the analysis is adjusted to match the observation. This means that the 

observation’s cost is zero, such that a second cost-function estimate equal to the background’s 

cost is obtained. Implicitly, both of the obtained cost-function estimates are too large, with 

further iteration needed to determine the minimum cost-function value. 

 

Adjusting the analysis to match the observation has resulted in a profile shape that departs 

significantly from that of the background. The next iteration can involve updating the analysis of 

this variable at altitudes above and below that of the observation such that the profile shape more 

closely resembles that of the background. This enables another cost-function estimate to be 

obtained with non-zero contributions from both the background and observation. This estimate is 

smaller than before because of a better overall fit (considering the full profile structure, not just 

the level of the observation) to the background. 
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Subsequent iterations can involve updating the analysis to better match the background. The 

extent to which the analysis is updated to better match the background depends, as we discussed 

earlier, on the error characteristics of the background and the observation. This process is 

repeated until the cost function’s minimum is found, defining the new wind speed profile. 

 

The assimilated wind observation has produced a minor update to the wind speed at the 

observation location roughly between 500-150 hPa. Intuitively, we know that other fields such as 

height and temperature are related to the wind (e.g., through geostrophic and thermal wind 

balance). Thus, physically, assimilating this wind observation should also update these fields. 

Assume that the wind profile depicted in the above figures is of the zonal wind. Assimilating the 

wind observation increased westerly vertical wind shear between ~500-250 hPa and increased 

easterly vertical wind shear between ~250-150 hPa. From thermal wind balance, which describes 

the relationship of the horizontal layer-mean temperature gradient to the vertical wind shear, the 

magnitude of the horizontal layer-mean temperature gradient should increase in both layers. To 

accomplish this, warming to the south and cooling to the north below 250 hPa, and cooling to the 

south and warming to the north above 250 hPa, are needed.  

This update is encapsulated in the cost-function minimization procedure outlined above. 

However, though we treated it separately here, it actually occurs concurrently with the wind 

update. It should be emphasized that this update does not necessarily occur from an explicit 

physical balance statement within the model but rather through the covariance between errors in 
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each field, representing a statistical relationship between the fields. It is hoped that the physical 

relationship is conveyed through the statistical relationship, but in practice this is approximate at 

best because of issues like sampling error (estimating correlations with a subset of the true 

sample). 

 

Let us now consider a 500 hPa temperature observation at the same location as the 250 hPa wind 

observation. The procedure outlined above is followed to produce an updated analysis for both 

temperature and its related fields (e.g., the horizontal winds at multiple vertical levels, also via 

thermal wind balance). As above, this also is encapsulated in the cost-function minimization 

procedure; ultimately, the analysis is determined iteratively using all observations. 

Most practical implementations of 3DVar use flow-independent specifications for B in their 

formulation. This, naturally, will have an impact to how the background influences the analysis 

relative to that if a flow-dependent specification for B were used. As noted above, however, it is 

possible to use a hybrid ensemble-variational method to obtain a flow-dependent B that may be 

used in the cost-function minimization process. 

 

Four-Dimensional Variational Data Assimilation 

Four-dimensional variational data assimilation, or 4DVar, is a generalization of 3DVar to allow 

for the continuous assimilation of all available observations over some assimilation interval.  

Recall that the 3DVar formulation of the cost function is given by: 

𝐽(𝑥𝑎
→ ) =

(𝑥𝑎
→ − 𝑥𝑏

→ )(𝑥𝑎
→ − 𝑥𝑏

→ )
𝑇

𝐵
→ +

(𝐻
→
(𝑥𝑎
→ )− 𝑦→)(𝐻

→
(𝑥𝑎
→ )− 𝑦→)

𝑇

𝑅
→  

The 4DVar formulation is similarly expressed as: 
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𝐽 (𝑥𝑎
→ (𝑡0)) =

(𝑥𝑎
→ (𝑡0) − 𝑥𝑏

→ (𝑡0)) (𝑥𝑎
→ (𝑡0) − 𝑥𝑏

→ (𝑡0))
𝑇

𝐵
→
𝑡0

+∑
(𝐻
→
(𝑥𝑎
→ )

𝑖
− 𝑦→

𝑖
) (𝐻
→
(𝑥𝑎
→ )

𝑖
− 𝑦→

𝑖
)
𝑇

𝑅
→
𝑖

𝑛

𝑖=0

 

Here, t0 is the initial/analysis time, ti is an intermediate time at which one or more observations 

are assimilated, and tn is the time at the end of the assimilation window. As compared to 3DVar, 

there is no change to the background portion of the cost function’s formulation. The only change 

is found with the observation portion of the cost function’s formulation, in which observations 

over a series of times between t0 (i = 0) and tn (i = n) instead of at just t0 are assimilated. Each set 

of observations are assimilated at the time at which they are taken rather than at a single analysis 

time. Consequently, the analysis state vector in the observation portion of the cost function is 

that valid at the time of the observation. In the case of observations all being valid at t0, this 

formulation is identical to 3DVar. 

In contrast to 3DVar, which requires no model integration, the 4DVar algorithm requires 

integrating the model forward from t0 to tn as observations are assimilated. The model must be 

integrated backward from tn to t0 to finalize the analysis at t0, which requires using an adjoint (or 

backward linear) version of the model. Since an adjoint operator is specific to a given forecast 

model, it must be updated each time that the forecast model is updated. This can be resource 

intensive. Further, integrating the model both forward and backward during assimilation results 

in added computational expense for 4DVar as compared to 3DVar. Historically, this has limited 

its operational use to the ECMWF model, which is not limited by the same operational timing 

constraints as NCEP. 

 

Figure 2. Schematic illustrating the 4DVar process. In this example, a previous model forecast is 

used to provide the background at t0, as in 3DVar, but also at all subsequent intermediate times ti. 

Observations are assimilated at t0, all ti, and tn, seeking to produce the optimal combination of the 

background and observations throughout the assimilation window that is a valid solution to the 

model equations. Here, the model state vectors from the corrected and previous forecasts are 

identical at tn, although it is more common for the corrected model state vector to be a better 

match to the available observations. Figure reproduced from Warner (2011), their Fig. 6.18. 
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In practice, 4DVar seeks to minimize the cost function throughout the assimilation window. It 

determines the analysis state vector xa at t0 that produces a model solution, given by the forecast 

state vector xf, that minimizes the cost function at all times between t0 and tn (Fig. 2). In the case 

of only assimilating observations at t0, this is identical to 3DVar and reflects cost-function 

minimization at the analysis time t0.  

 

Extended Kalman Filter 

The extended Kalman filter is a sequential (i.e., individual observations are assimilated one at a 

time rather than all at once) implementation of least-squares minimization that allows for a flow-

dependent, time-varying background error covariance matrix to the calculated to better determine 

the weighting matrix K. 

First, the background estimate of the model state xb at time t+1 is obtained by integrating the 

model M forward from a previous analysis xa at time t, i.e., 

𝑥𝑏
→ (𝑡 + 1) = 𝑀

→ 
𝑡→𝑡+1 (𝑥𝑎

→ (𝑡)) 

Next, the background error covariance matrix B valid at time t+1 is obtained. This is a function 

of (a) the linear forward propagation of analysis errors from time t to time t+1 and (b) the 

accumulated model error over the interval between times t and t+1: 

𝐵
→
(𝑡 + 1) = 𝑀

→ 
𝑡→𝑡+1 𝐴

→
(𝑡)𝑀
→ 
𝑡→𝑡+1

𝑇

+ 𝑄
→
(𝑡) 

Here, A is the analysis error covariance matrix at time t (or the one from which we just 

integrated the model), Q is the forecast error covariance matrix over the interval between times t 

and t+1, M represents the linear forward model operator, and MT represents the adjoint of M. Of 

these, Q can be particularly challenging to estimate or obtain, and this is left as a topic for other 

resources. 

Calculating B requires that we know A. In one dimension, the analysis error variance 𝜎𝑎
2 is 

related to the background error variance 𝜎𝑏
2 through the weighting factor k: 

𝜎𝑎
2 = (1 − 𝑘)𝜎𝑏

2 

The corresponding multidimensional formulation is given by: 

𝐴(𝑡) = (𝐼 − 𝐾⃗⃗⃗(𝑡)𝐻⃗⃗⃗(𝑡)) 𝐵⃗⃗(𝑡) 

Here, I is the identity matrix, defined as 1 along the diagonals and 0 elsewhere. For the case 

where t = 0, however, B and K are undefined (since there is only an analysis at t = 0) and thus 

some other method of defining A is needed to be able to calculate B at the first assimilation time. 
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The weighting matrix K at the future time (t + 1) can be determined once we know B at the 

future time. In the extended Kalman filter, this matrix is referred to as the Kalman gain matrix. It 

is identical to the generic multidimensional form of K in the last lecture except for being time-

dependent: 

𝐾
→
(𝑡 + 1) =

𝐵
→
(𝑡 + 1)𝐻𝑇(𝑡 + 1)

𝐻(𝑡 + 1) 𝐵
→
(𝑡 + 1)𝐻𝑇(𝑡 + 1) + 𝑅

→
(𝑡 + 1)

 

Here, the Kalman gain matrix is equal to the background error covariance divided by the total 

error covariance (background plus observations). H is the linear forward observation operator 

and HT is its adjoint. 

The updated analysis may be obtained once K has been obtained. As before, this is equal to the 

background plus an optimally weighted innovation, i.e., 

𝑥𝑎
→ (𝑡 + 1) = 𝑥𝑏

→ (𝑡 + 1) + 𝐾
→
(𝑡 + 1) [𝑦→(𝑡 + 1) − 𝐻

→
(𝑡 + 1) 𝑥𝑏

→ (𝑡 + 1)] 

Here, y is the vector of the observations to assimilate, H is the forward operator to convert from 

model to observation space, and the innovation is equal to the terms in brackets. It is implicitly 

assumed that the innovation is transformed back to model space during the assimilation process. 

We can then repeat this process for the next analysis time using this updated analysis (for which 

we can compute A). 

 

Ensemble Kalman Filter 

The ensemble Kalman filter extends the extended Kalman filter to an ensemble framework. We 

start with an ensemble of atmospheric state analyses. Prior to the first assimilation time, this is 

typically obtained by randomly perturbing a single analysis that is often drawn from another 

model’s analysis. The random perturbations are often obtained from randomly sampling a static, 

climatological form of the background error covariance matrix B. The result is an ensemble of 

initial conditions xa with members that vary randomly as a function of climatological model 

background errors. If the ensemble is to be used with a limited-area model, this perturbation 

procedure is also applied to a single set of temporally varying lateral boundary conditions to 

obtain an ensemble of perturbed lateral boundary conditions. 

The model is then integrated to the next analysis time using the initial ensemble analyses as 

initial conditions. The ensemble forecasts valid at this subsequent analysis time provide the first 

guess xb. Observations are then assimilated to create an updated analysis. No further 

perturbations to the analysis are applied, and the cycle then repeats from here. 
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The ensemble Kalman filter differs from the extended Kalman filter in how the background error 

covariance matrix is specified. Recall the generic expressions for the background error variance 

(one dimension) and background error covariance matrix (multidimensional): 

𝜎𝑏
2 = 𝐸(𝜀𝑏

2) = (𝑥𝑏 − 𝑥𝑡)2 

𝐵
→
= (𝑥𝑏
→ − 𝑥𝑡

→ )(𝑥𝑏
→ − 𝑥𝑡

→ )
𝑇
 

These represent the mean squared errors in the background estimates relative to the true state. 

With an ensemble of background estimates, if we assume that these estimates are unbiased, the 

true state is approximated relative by the ensemble mean of the background estimates: 

𝑥𝑡
→ = 𝑥𝑏

→ 
 

This enables the background error covariance matrix to be expressed as: 

𝐵
→
= (𝑥𝑏
→ − 𝑥𝑏

→ 
)(𝑥𝑏
→ − 𝑥𝑏

→ 
)
𝑇

 

Here, the exponent of T represents the matrix transpose operator. No adjoint is needed to obtain 

B in this method. Instead, the ensemble forecasts themselves provide a direct estimate of how 

analysis errors propagate and how model errors accumulate in time. This is a clear advantage of 

the ensemble Kalman filter relative to the extended Kalman filter, although the ensemble 

approach does come with the disadvantage of being more computationally expensive. It should 

be noted that this B is also flow-dependent, a clear advantage relative to traditional 3DVar and 

4DVar implementations. 

The computation of K and xa follow from that for the extended Kalman filter.  

The analysis error covariance matrix A is computed relative to the ensemble mean analysis: 

𝐴
→
= (𝑥𝑎
→ − 𝑥𝑎

→ 
)(𝑥𝑎
→ − 𝑥𝑎

→ 
)
𝑇

 

More information about ensemble Kalman filters for atmospheric and geophysical applications is 

given by Whitaker and Hamill (2002, Mon. Wea. Rev.), Hakim and Torn (2008, Meteor. 

Monogr.), and Houtekamer and Zhang (2016, Mon. Wea. Rev.). 
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Practical Considerations and Implementations of Ensemble Kalman Filters 

Practically speaking, most ensemble filters used for atmospheric data assimilation, including the 

ensemble Kalman filter and the ensemble adjustment Kalman filter variant, apply Bayes’ 

theorem to assimilate an observation and thus update an ensemble of background estimates.  

To do so, these algorithms assume that the ensemble background estimate is normally 

distributed. The background error variance (one dimension) or background error covariance 

matrix (multiple dimensions) is calculated from the ensemble estimates themselves, as described 

above in multiple dimensions for the ensemble Kalman filter. These algorithms also assume that 

the observation that is to be assimilated can be expressed as a normal distribution with mean 

equal to the observation value and variance equal to the assumed observation error variance. 

A normal distribution for any variable x can be expressed as: 

𝑒𝑥𝑝(
−(𝑥 − 𝜇𝑥)

2

2𝜎𝑥2
) 

where µx is the mean of x and σx
2 is the variance of x.  

This distribution can be normalized such that it represents a probability distribution function: 

1

𝜎𝑥√2𝜋
𝑒𝑥𝑝 (

−(𝑥 − 𝜇𝑥)
2

2𝜎𝑥2
) 

The application of Bayes’ theorem to ensemble atmospheric data assimilation has the general 

form: 

Posterior Probability = Prior Probability * Observation Probability 

                            normalization 

Here, the normalization factor is simply the area underneath the curve cut out by the product in 

the numerator. Thus, the posterior (i.e., analysis) probability is the normalized product of the 

prior (or background) and observation probability distributions, which are both normal 

distributions. Note that the product of any two normal distributions is also a normal distribution! 

The normal distribution from the product of two normal distributions has mean and variance of: 

𝜇𝑎 =
𝜇𝑏𝜎𝑜

2 + 𝜇𝑜𝜎𝑏
2

𝜎𝑜2 + 𝜎𝑏
2 = 𝜇𝑏

𝜎𝑜
2

𝜎𝑜2 + 𝜎𝑏
2 + 𝜇𝑜

𝜎𝑏
2

𝜎𝑜2 + 𝜎𝑏
2 = 𝜇𝑏(1 − 𝑘) + 𝜇0𝑘 = 𝜇𝑏 + 𝑘(𝜇0 − 𝑢𝑏) 

𝜎𝑎
2 =

𝜎𝑜
2𝜎𝑏
2

𝜎𝑜2 + 𝜎𝑏
2 



Data Assimilation Methods, Page 12 

 

Here, subscripts of b indicate background, subscripts of o indicate observation, and subscripts of 

a indicate analysis or posterior to make each specific to the ensemble data assimilation 

application. 

Note that the analysis mean and variance are both identical to the least-squares formulation! This 

is a nice outcome of assuming normal distributions for both the background and observation, 

even as the validity of this assumption is often questionable for the highly non-linear 

atmosphere.  

How are the individual ensemble member estimates adjusted once the analysis mean has been 

computed, however? As we will discuss later this semester, the specifics vary between flavors of 

the ensemble Kalman filter, of which there are several. 

The ensemble adjustment Kalman filter is a deterministic filter, as there is a clear 

correspondence between the ensemble member background and analysis distributions. 

Specifically, the ensemble background estimates are first uniformly (i.e., maintaining their 

distribution and spread) shifted so that they have a mean equal to the new analysis mean, then 

uniformly scaled so that they have a variance equal to the new analysis variance. This is depicted 

visually in the figures below from the excellent UCAR DART Tutorial reference: 

  

Mathematically, this takes the form: 

𝑥𝑎 = 𝜇𝑎 + (𝑥𝑏 − 𝜇𝑏)√(
𝜎𝑜2

𝜎𝑜2 + 𝜎𝑏
2) 

wherein the ensemble analysis estimates are equal to the analysis mean (calculated analytically 

as described above) plus the variance-scaled departure of each ensemble background estimate 

from the background mean. The variance scaling is equivalent to √1 − 𝑘. This variance-scaled 

departure defines the departure of each analysis estimate from the analysis mean. 

In the 1-D ensemble data assimilation case, an observation for a given variable and location is 

used to update ensemble estimates for that same variable and location. In the more common 

multivariate case, an observation for a given variable and location is used to update ensemble 

estimates of many variables and locations! How does this look in a practical sense, however?  
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Consider a simple multivariate scenario, wherein an observation of one variable at one location 

is used to update an ensemble of background estimates for a different variable at a different 

location. First, the observation and its variance are used to update the ensemble background 

estimates of the observed variable at the observation location. This allows us to obtain the 

analysis increments, or the adjustment needed to each background estimate to obtain its 

corresponding analysis estimate. We next obtain the slope of the linear regression line between 

the ensemble background estimates for the observed and unobserved variables. This provides a 

measure of the correlation between the observed and unobserved variables’ backgrounds, from 

which we can obtain the analysis increments for the unobserved variable. These analysis 

increments are simply the analysis increments for the observed variable scaled by the slope of 

the linear regression line between the observed and unobserved variables’ background estimates. 

This is depicted visually in Fig. 3 below from the UCAR DART Tutorial reference. 

 

Figure 3. Graphical depiction of an observation of some variable at some location is used to 

update the background estimates of an unobserved variable at some (other) location. In this 

example, five ensemble member background estimates an observed variable (x-axis) and an 

unobserved variable (y-axis) are depicted by the green stars. The observation is first assimilated 

(here with the ensemble Kalman filter) to update the observed variable’s background estimates, 

resulting in the blue lines (depicting its analysis increments) and blue stars on the lower inset 

axis. Next, the linear regression line (depicted in red) between the two backgrounds is obtained. 

Finally, the observed variable’s analysis increments are scaled by the linear regression’s slope to 

obtain the unobserved variable’s analysis increments and analysis estimates. This results in the 

blue lines on the leftmost inset axis. Figure reproduced from the UCAR DART Lab Tutorial, 

Section 2.  

https://dart.ucar.edu/tutorials/dart-lab/
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Mathematically, the slope of the linear regression line between two sets of background estimates 

is given by: 

𝛽 =
𝑐𝑜𝑣(𝑥𝑏,𝑜 , 𝑥𝑏,𝑢)

𝑣𝑎𝑟(𝑥𝑏,𝑜)
=

∑ [(𝑥𝑏,𝑜
𝑖 − 𝜇𝑏,𝑜)(𝑥𝑏,𝑢

𝑖 − 𝜇𝑏,𝑢)]
𝑛
𝑖=1

𝑛 − 1
𝜎𝑏,𝑜
2  

where… 

• 𝑥𝑏,𝑜is the ensemble of background estimates for the observed variable 

• 𝑥𝑏,𝑜
𝑖  is the ith ensemble member’s background estimate for the observed variable 

• µb,o is the mean of 𝑥𝑏,𝑜 

• 𝜎𝑏,𝑜
2  is the variance of 𝑥𝑏,𝑜 

• 𝑥𝑏,𝑢 is the ensemble of background estimates for the unobserved variable 

• 𝑥𝑏,𝑢
𝑖  is the ith ensemble member’s background estimate for the unobserved variable 

• µb,u is the mean of 𝑥𝑏,𝑢 

• n is the total number of ensemble members 

If the background estimates are uncorrelated, their covariance and thus the slope will be zero. 

Once β has been determined, the ensemble analysis estimates for the unobserved variable (𝑥𝑎,𝑢) 

are given by: 

𝑥𝑎,𝑢 = 𝑥𝑏,𝑢 + 𝛽[(𝑥𝑎,𝑜 − 𝑥𝑏,𝑜)] 

The slope of the linear regression line between the observed and unobserved variable’s 

background estimates is equal to the rise (the unobserved variable’s analysis increments) over 

run (the observed variable’s analysis increments). The run equals 𝑥𝑎,𝑜 − 𝑥𝑏,𝑜, the former of 

which we compute using the equation on pg. 12 and the latter of which we know from the 

background estimates. We compute the slope using the equation on the top of this page. Given 

the run and the slope, we can find the rise as the product of the slope and the run. This is added 

to the unobserved variable’s background estimates to obtain its analysis estimates (the ends of 

the vertical blue lines in Fig. 3’s left inset). 

A single equation for the unobserved variable’s ensemble analysis estimates takes the form: 

𝑥𝑎,𝑢 = 𝑥𝑏,𝑢 + 𝛽 [𝜇𝑎,𝑜 + (𝑥𝑏,𝑜 − 𝜇𝑏,𝑜)√(
𝜎𝑜2

𝜎𝑜2 + 𝜎𝑏,𝑜
2 ) − 𝑥𝑏,𝑜] 

In this form of the equation, the first two terms inside the brackets are equivalent to 𝑥𝑎,𝑜 (as 

defined on pg. 12). 
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This approach assumes that the linear regression line between the two sets of background 

estimates realistically represents the true relationship between the observed and unobserved 

variables. This assumption is good when the linear correlation coefficient between the observed 

and unobserved variables is close to -1 or +1. It is not a good assumption when the linear 

correlation coefficient is close to 0 and the number of ensemble members n is small (less than 

100, as is often the case for atmospheric and geophysical applications), however. In this case, the 

difference of the sample and true linear correlation coefficients – and thus also the sample and 

true linear regression lines – can be quite large, potentially negatively impacting the final 

analysis’ quality. How to best handle such cases is an active area of research within the data 

assimilation community, and we will discuss a few methods for doing so in a later lecture. 


