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Introduction to Data Assimilation 

Learning Objectives 

Following this lecture, students will be able to: 

• Distinguish between sequential and continuous data assimilation. 

• Define model-state vectors, observation vectors, forward operators, innovations, and 

analysis residuals. 

• Derive the least-squares formulation for one-dimensional data assimilation. 

• Extend the one-dimensional data assimilation framework to multiple dimensions. 

 

Fundamental Principles of Data Assimilation 

As defined previously, data assimilation is the process by which observations are assimilated to 

update a first guess for the initial conditions that is typically drawn from a short-range (1-6 h) 

model forecast. Data assimilation methods seek to obtain the best-possible estimate of the initial 

atmospheric state while, hopefully but not necessarily intrinsically, satisfying an appropriate 

atmospheric balance condition. Using a short-range numerical model forecast as the first guess 

enables atmospheric phenomena on scales of those resolved by the model grid and larger to be 

partially represented in the initial conditions (e.g., a warm-start initialization). It also allows for 

approximate initial conditions to be available in locations where few or no observations exist.  

Data assimilation involves modifying the first guess based on an observation’s characteristics. 

Consider the assimilation of a wind observation in the core of an upper-tropospheric jet streak. 

This observation should first update the kinematic fields at the observation’s location. However, 

because most atmospheric fields are continuous, we know that this observation is closely related 

to the kinematic fields at other nearby locations (both horizontally and vertically). Likewise, as 

the atmosphere typically approximates some sort of balance, this observation is also closely 

related to the thermodynamic fields at its location and other nearby locations (also both 

horizontally and vertically). Thus, this observation should also update these other fields. How it 

does so, however, significantly varies between assimilation techniques. 

Further, data assimilation methods should update the first guess more in locations of higher data 

density than in locations of lower data density. In the former, the observations provide a tighter 

constraint upon the ‘true’ values of the relevant model variables, whereas in the latter the ‘true’ 

values of the relevant model variables are less certain. In other words, the first guess forms the 

basis for the initial conditions in the absence of observations to the contrary. 
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Sequential vs. Continuous Data Assimilation 

There are two categories of data assimilation: sequential and continuous. With sequential data 

assimilation methods (Figs. 1 and 2), observations are assimilated in batches at a single analysis 

time. For instance, all observations valid at a time deemed sufficiently close to the model’s 

initialization time (typically within +/- 30-60 min) are assimilated as if they were taken at the 

initialization time.  

Given a reasonable estimate for the resolved-scale kinematic fields, time-to-space conversion can 

be used to identify where a given observation would have been taken if it were taken at 0000 

UTC, thus allowing for observations to be assimilated at their ‘correct’ locations.  

Sequential data assimilation methods are typically known as cycled methods, with the cycling 

interval reflecting how frequently observations are assimilated to update the first guess for the 

initial conditions. 

 

 

Figure 1. Flowchart of sequential data assimilation. Observations centered on a given analysis 

time are used to update the first guess for the initial conditions obtained from a previous model 

forecast valid at the analysis time. Figure reproduced from Warner (2011), their Fig. 6.5. 
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Figure 2. Sequential data assimilation as manifest in operational numerical weather prediction. 

Observations centered on a given analysis time are binned and assimilated at a fixed analysis 

time (e.g., 0000 UTC, 0600 UTC, 1200 UTC, or 1800 UTC) to obtain updated initial conditions. 

Figure reproduced from Warner (2011), their Fig. 6.6b. 

 

By contrast, continuous data assimilation methods (Fig. 3) assimilate observations at the times at 

which they are valid. As compared to sequential methods, continuous methods more frequently 

update the first guess, but do so using fewer observations since they are not all lumped into a 

single assimilation time. Forecasts launched from initial conditions updated using continuous 

methods can theoretically be launched at any time; however, in practice, forecasts are typically 

launched only at synoptic times (i.e., when the most observations are available for assimilation). 

Continuous methods are more computationally intensive than are sequential methods, and as a 

result most (but not all) operational data assimilation systems are sequential in nature. 

 

Figure 3. Continuous data assimilation as manifest in operational numerical weather prediction. 

Observations are assimilated as they are received. In this example, forecasts are launched every 6 

h, though they may be launched more or less frequently. Figure reproduced from Warner (2011), 

their Fig. 6.6a. 
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Definitions 

Before we consider the data assimilation problem, whether in one or many dimensions, we wish 

to first introduce some common terms encountered in the data assimilation literature. These 

include the following:  

• State vector ( x ): the vector that defines the simulated atmospheric state. It and the other 

vectors noted below contain all model variables at all model grid points at a given time. 

• True state vector ( tx ): the best-possible representation of the atmospheric state on the 

model grid. Discretizing the atmosphere onto a discrete model grid and the errors 

associated with doing so keep the true state vector from matching reality.  

• Perfect state vector ( px ): the unknowable reality. 

• Background ( bx ): the first-guess estimate of the initial atmospheric state. 

• Analysis ( ax ): the post-assimilation estimate of the simulated atmospheric state; i.e., an 

updated background. 

Each of these vectors are of dimension n, where n is equal to the product of the number of model 

grid points and the number of model variables. Note that boldface and vector notation are 

equivalently used to refer to vector quantities throughout the remainder of this document. 

Ideally, xa = xt. This is generally not feasible, however, due to observing-network limitations 

(e.g., observation density, observation precision, representativeness errors, etc.). Instead, we seek 

to minimize the error in xa, i.e.,  

0− at xx  

The analysis and background are related to each other by an analysis increment x , i.e., 

tba xxxx +=   

As we will demonstrate shortly, the analysis increment is dependent on characteristics of the 

observations, namely their specific values and error characteristics.  

• Observation vector ( y ): a vector of dimension p (equaling the number of observations) 

of all observations to be assimilated. 
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Data assimilation starts by comparing the background xb to the observations y. This is done in 

observation space, meaning that it is done at the locations of the observations for the variables 

represented by the observations. This requires the use of a… 

• Forward/transform operator ( ( )xH ): an operator to transform a model field x to 

observation space. In its simplest form, where the observed variable is a model variable, 

the forward operator is a spatial interpolation operator. More commonly, however, it also 

invokes retrieval algorithms to convert a model variable to the observed quantity. 

• Innovation ( ( )bxHy − ): the difference between the observations and the background. It 

is an estimate of the needed correction to the background state. This is equal to x , 

except in observation (rather than model) space. 

• Analysis residual ( ( )axHy − ): the difference between the observations and the analysis 

(transformed into observation space).  

The analysis will depart from the observations in the absence of perfect observations of every 

variable at every location on the model grid. Instead, we seek to minimize the analysis residual, 

( ) 0− axHy  

This is the observation space equivalent to minimizing the error in the analysis xa relative to the 

true state xt. 

 

One-Dimensional Statistical Framework for Data Assimilation 

We now wish to develop a one-dimensional statistical framework for data assimilation. To do so, 

we use a form of linear regression known as least-squares estimation.  

Consider the temperature in Milwaukee with a true value of Tt. There are two estimates of this 

temperature: the background or first-guess value Tb and the observed value To. Both are 

imperfect measurements of Tt, with a background error εb and observational error εo. The 

background error may be drawn from climatology, whereas the observational error is typically 

specified empirically based on instrument characteristics and the expected representativeness of 

the observation.  

To obtain the analysis temperature Ta, we wish to optimally combine Tb and To based on their 

individual error characteristics. We start by defining Tb and To relative to Tt: 

btb TT +=   oto TT +=  
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In other words, each estimate is equal to Tt plus the error in the estimate. 

We assume that errors in Tb and To are random, assuming unbiased methods to obtain Tb and To. 

We also assume that we know or can estimate the background and observational errors εb and εo. 

Recall that the sample variance can be defined generically as: 

( )
2

2

1

x

N




−
=

−


 

Here, x is some estimate of the variable being considered. In this application, x can be viewed as 

analogous to either Tb or To. In statistical terms, μ is the mean of the variable being considered. 

In this application, μ can be viewed as analogous to Tt. N defines the population size, or number 

of estimates x. There can be one or many such estimates. The variance defines the mean squared 

error and, for unbiased methods for x and μ, can be expressed as: 

( )( )22  −= xE  

where the expected value E( ) is analogous to the mean of an infinitely sampled discrete random 

variable. This holds here, except that our estimates x are finite in number. 

With this information, we can write: 

( )( ) ( )222

btbb ETTE  =−=  

( )( ) ( )222

otoo ETTE  =−=  

where we have used the definitions for εb and εo given above to obtain the final expressions. Note 

that errors in the background and observations are said to be uncorrelated, such that: 

( ) 0=boE   

The least-squares best fit of Tb and To, defining the analysis Ta, is given by: 

oobba TaTaT +=  where 1=+ ob aa  

This represents the optimal linear combination of Tb and To, where ab and ao represent the 

weights applied to Tb and To, respectively. We choose these weights to minimize the mean 

squared error of Ta, defined by 2

a , i.e., 

( )( )22

taa TTE −=  
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This expression can be expanded by substituting for both Ta and Tt, noting that totbt TaTaT +=  

(a decomposition of Tt solely for algebraic purposes): 

( )( ) ( ) ( )( )( )
( ) ( )( )( )2

22

tbbtoo

totboobbta

TTaTTaE

TaTaTaTaETTE

−+−=

+−+=−
 

The second step above simply involves grouping like ao and ab terms. Noting that To – Tt is equal 

to εo and that Tb – Tt is equal to εb, we obtain: 

( )( )22

bbooa aaE  +=  

If we expand this, we obtain: 

( ) ( )( )222 2 bbboboooa aaaaE  ++=  

However, we stated earlier that errors in the observations and background are uncorrelated. Thus, 

the 2aoabεoεb term (involving the product of these errors) is zero. Since ( ) ( ) ( )beaEbaE +=+ , 

we can write: 

( ) ( )( ) ( )( ) ( )( ) 222222222

bboobboobbooa aaaEaEaaE  +=+=+=  

We applied the definitions of both 2

o  and 2

b  to obtain this final expression. Consequently, this 

expression indicates that the analysis error variance is given by a linear combination of the 

observation and background error variances. 

Recall that we are trying to find the ao and ab that minimize the mean squared error in Ta (
2

a ). 

Let ao = k, such that ab = 1 – k, where k is the optimal weighting factor. Substituting, we obtain: 

( ) 22222 1 boa kk  −+=  

Calculus gives us a means of obtaining an expression that minimizes 2

a  relative to the optimal 

weighting factor k. By definition, 2

a  is minimized when its first partial derivative with respect 

to k is equal to zero, i.e., 

0
2

=




k

a
 

Plugging in to this expression, we obtain: 

( )( ) 01 2222

2

=−+



=




bo

a kk
kk



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The expansion of (1 – k)2 is given by k2 – 2k + 1. Thus, we obtain: 

( ) 02222 222222222 =−+=+−+



bbobbbo kkkkk

k
  

Solving for k, we obtain: 

22

2

bo

bk




+
=  

In other words, k is equal to the background error variance divided by the total error variance, 

representing the observational plus background error variances. k will be relatively large where 

the uncertainty in the background is large relative to the uncertainty in the observations, whereas 

k will be relatively small where the uncertainty in the background is small relative to the 

uncertainty in the observations.  

Recall that k is the coefficient on 2

o  in the definition of 2

a . Thus, observations are given more 

weight when k is large whereas the background is given more weight when k is small. Because of 

the definitions for Ta and k given earlier, we can write: 

( ) ( )boboboobba TTkTkTTkTaTaT −+=+−=+= 1  

In other words, the analysis temperature Ta is equal to the background temperature Tb plus an 

optimally weighted innovation (reflecting the departure of the background from the observation, 

noting that no transform is needed between model and observation space in this 1-D example). 

The weighted innovation k(To – Tb) is equal to the analysis increment. 

We can plug in for k in the above: 

( ) o

bo

b
b

bo

b
oboobba TTkTTkTaTaT

22

2

22

2

11








+
+














+
−=+−=+=  

However, because ao + ab = 1, 

22

2

22

2

1
ob

o

ob

b









+
=














+
−  

Thus, we obtain: 

 

 
o

bo

b
b

bo

o
a TTT

22

2

22

2









+
+

+
=
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The analysis temperature Ta depends on the background and observation error variances. The 

background temperature Tb gets larger weight where the observation error variance is large, 

whereas the observation temperature To gets larger weight where the background error variance 

is large. Thus, accurately specifying the observation and background error variances is crucial to 

obtaining the best-possible estimate for the analysis temperature Ta.  

The observation error variance is typically specified relative to instrument error characteristics, 

typical magnitudes for representativeness error, and typical uncertainties associated with the use 

of a retrieval algorithm (if applicable). Specification of the background error variance is far more 

challenging and is discussed in more detail later. 

Recall that ( ) 22222 1 boa kk  −+= . Plug in to this expression for k to obtain: 

( ) ( )
( )222

222222

2

2

22

2

2

2

22

2

2

ob

boob

b

ob

o

o

ob

b

a
















+

+
=














+
+














+
=  

The numerator of this expression can be rewritten as ( ) 2222

obob  + . Thus, 

( )22

22

2

ob

bo

a





+
=  

Applying the definition for k, we can write: 

22

oa k =    or, equivalently,  ( ) 22 1 ba k  −=   

Because k ≤ 1, this means that the analysis error variance is smaller than or equal to either the 

observation or background error variance! For a multi-dimensional problem, this implies that the 

spread across the ensemble analyses will be smaller than the spread in either the observations or 

the ensemble backgrounds. 

We can also state this in terms of the precision, or the inverse variance. Take the inverse of the 

relationship for 2

a  to obtain: 

( )
2222

22

2

111

boob

ob

a 




+=

+
=  

Here, the precision of the analysis is equal to the sum of the precisions of the background and 

observations. Estimates with less error in the background and observations have higher precision. 

Combining two good estimates results in a very good (in theory, at least) analysis estimate!  

Least-squares minimization is one common approach to data assimilation and is used in many 

Kalman filter implementations (e.g., the ensemble adjustment Kalman filter in NCAR’s Data 
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Assimilation Research Toolkit). A closely related approach is given by cost-function 

minimization, which is often used by variational data assimilation. Here, we wish to find the 

analysis that minimizes the combined squared errors in To and Tb, each as weighted by the 

precision of their measurements.  

We define the combined squared error in terms of a cost function J(T) as follows:  

( ) ( ) ( ) ( ) ( )2
2

2

2

11
b

b

o

o

bo TTTTTJTJTJ −+−=+=


 

Note that this is expressed relative to a generic T and not to Tt or Ta. The cost in the observations 

or the background is relatively small when T ≈ To or Tb and/or when the precision of the 

observations or background is relatively large. These characteristics are illustrated in Fig. 4. 

 

Figure 4. Schematic of J(To), J(Tb), and the total cost function J(T) relative to T and J. The cost 

functions J(To) and J(Tb) are minimized where T – To = 0 and T – Tb = 0, respectively. (Note that 

the representation of J(To) above is formally not accurate at T = To.) The total cost function J(T) 

is simply equal to the sum of the two cost functions. The analysis temperature is defined as the 

temperature where the cost function is minimized with respect to temperature, which can be 

determined by finding where the first partial derivative equals zero. Figure reproduced from 

Warner (2011), their Fig. 6.7. 

 

We wish to minimize the cost function J(Ta) with respect to the analysis temperature, i.e., 

( )
0=





a

a

T

TJ
 

This enables us to obtain an expression the analysis temperature Ta. For completeness, note that: 
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( ) ( ) ( ) ( ) ( )baba

b

oaoa

o

ba

b

oa

o

a TTTTTTTTTTTTTJ 2
1

2
111 22

2

22

2

2

2

2

2
−++−+=−+−=


 

Thus, we obtain: 

( )
( ) ( ) 022

1
22

1
22

=−+−=



ba

b

oa

oa

a TTTT
T

TJ


 

Grouping Ta terms and dividing through by a common factor of 2, we obtain: 

2222

b

b

o

o

b

a

o

a TTTT


+=+  

Operate on the left-hand side to obtain: 

( )
2222

22

b

b

o

o

bo

oba TTT




+=

+
 

Isolate Ta and simplify to obtain: 

( )
( ) bob

ob

o
o

ob

b

b

b

o

o

ob

bo
a TkkTTT

TT
T −+=














+
+














+
=













+

+
= 1

22

2

22

2

2222

22












 

This is identical to that obtained from the least-squares minimization problem described above, 

albeit coming at the problem from a slightly different starting point. Differences in how each are 

implemented for multidimensional problems lead to non-identical results in practice. 

 

Data Assimilation in Multiple Dimensions 

In one dimension, the observation and background error variances determine the weighting given 

to the observation when assimilating it to update the background. In other words, they influence 

the magnitude of the analysis increment, i.e., 

( ) ( )bo

bo

b

bboba TTTTTkTT −
+

+=−+=
22

2




 

In the multidimensional problem, they also influence the analysis increment’s spread. This is 

manifest as (1) updates to the same variable at other locations, (2) updates to different variables 

at the same location, and (3) updates to different variables at other locations. To first order, the 

spread of the analysis increment is a function of the (mathematical, though also ideally physical) 

relationship, as manifest via their covariance, between the updated variable and other variables 
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or locations. It is crucially dependent on accurately specifying the background error covariance 

matrix. 

The multidimensional analog to the background error variance 2

b  is the background error 

covariance matrix B. The background error covariance matrix translates information from an 

innovation vector ( )bxHy −  into a spatially varying analysis increment x  and applies it to the 

background to minimize the analysis error. This is the same conceptual framework as in one 

dimension, except with the added dimensionality. 

In the one-dimensional problem, the background error variance 2

b  is defined as: 

( ) ( )222

tbbb xxE −==   

Similarly, the multi-dimensional background error covariance matrix B is defined as: 

( )( )Ttbtb xxxxB −−=  

Equivalently, if the background errors are unbiased, the true state can be approximated by the 

mean of some collection of background estimates (such as that provided by an ensemble), i.e., 

bt xx = . Thus, the above expressions can be rewritten as: 

( ) ( )222

bbbb xxE −==   

T

bbbb xxxxB 





 −





 −=  

In the above, T denotes the transpose of the matrix. The background error covariance matrix is an 

n x n square matrix, recalling that n is the product of the number of grid points and the number of 

model variables. The diagonal of B is populated by the error variances for a given background 

estimate at a given location. The off-diagonal terms of B are populated by the covariances 

between errors in two separate background estimates. For the case where n = 3, i.e., three 

variables at one grid point or three grid points for a single variable, B takes the form: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 
















=

33231

23221

13121

var,cov,cov

,covvar,cov

,cov,covvar

eeeee

eeeee

eeeee

B  

where e# = ,#bx , or the background estimate of variable #.  
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As stated before, the specification of the covariance terms defines both the spread of and the 

weight given to analysis increments. The variance terms define the weight given to analysis 

increments only for the variable being updated at the location that it is updated. 

How is the background error covariance matrix specified? There exist two primary approaches 

that are used to do so: 

• Flow-dependent: Consider an ensemble of short-range numerical forecasts valid at some 

analysis time. These comprise the background estimates. For unbiased background 

estimates, the true state can be approximated by this ensemble’s mean. Departures of the 

ensemble estimates from the ensemble mean define B. This specification is implicitly 

flow-dependent (i.e., the covariances are likely to be larger following the flow) and is 

explicitly temporally varying. See Fig. 5 for an idealized example.  

• Flow-independent: Consider a climatology of short-range numerical forecasts valid at a 

common lead time (e.g., 6 h). These comprise the background estimates. The true state 

can then be approximated by their mean if we crudely assume that these estimates are 

unbiased. Departures of the short-range forecasts from their climatological-mean errors 

define B. This specification is explicitly flow-independent (i.e., the covariances become 

smaller uniformly away from the location and variable being considered). See Fig. 6 for 

an idealized example. A version of this method was operationally used by NCEP for 

many years. 

Most data assimilation systems employ some means of localization to place an upper bound on 

the outward spread of the analysis increment to avoid spurious updates that may arise from small 

non-physical covariances (e.g., 500 hPa temperature near Milwaukee to the 850 hPa zonal wind 

over Antarctica, as one hypothetical example) whether flow-independent or flow-dependent 

methods are used to specify B. Specifying an innovation influence (or covariance) of zero 

beyond a certain radius in Figs. 5 and 6 is an illustrative example of localization. 
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Figure 5. The hypothetical spatial spread of the innovation, defining the analysis increment, for 

a flow-dependent specification of the background error covariance matrix. In this example, the 

background errors are better correlated following the large-scale westerly flow, and thus the 

analysis increment’s decay away from the observation location is non-isotropic (i.e., less rapid 

following the flow and more rapid perpendicular to the flow). Figure reproduced from Warner 

(2011), their Fig. 6.9b. 

 

 

Figure 6. The hypothetical spatial spread of the innovation for a flow-independent specification 

of the background error covariance matrix. The analysis increment is maximized at the location 

of the observation and decays isotropically (uniformly in all directions) independent of the large-

scale flow. Figure reproduced from Warner (2011), their Fig. 6.9a. 

 

For completeness, we present the multidimensional analogs to the other variables defined for the 

one-dimensional data assimilation problem: 
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• Observation error covariance matrix (R): the multidimensional analog to 2

o . 

Typically, it is assumed that any two observation errors are uncorrelated, such that the 

covariance terms of this matrix are all zero. Thus, R is a diagonal matrix of dimension p 

x p, where p is equal to the number of observations, and is comprised only of error 

variances. 

• Analysis error covariance matrix (A): the multidimensional analog to 2

a . 

• Forecast error covariance matrix (Q): the multidimensional analog to the forecast error 

variance ( ) ( )( )222

tfff TTEE −==  , where subscripts of f denote forecast quantities. 

• Weighting matrix (K): the multidimensional analog to k, defining both the weight and 

spread of analysis increments. 

These definitions allow us to state, without formally deriving them, the analogous expressions 

for the analysis and optimal weight in the multidimensional problem. Recall that the analysis for 

the one-dimensional problem was expressed as: 

( )boba TTkTT −+=  

In the multidimensional problem, the analogous expression is: 

( )( )bba xHyKxx −+=  

Here, the analysis state is equal to the background state plus the weighted innovations, defined as 

the observations minus the transformed background estimates. Note that the transformation of 

the innovation back to model space is implicit to the above formulation. 

Recall that the weight for the one-dimensional problem was expressed as: 

22

2

bo

bk




+
=  

In the multidimensional problem, the analogous expression is: 

RHBH

HB
K

T

T

+

=  

Here, the weighting matrix is equal to the ratio of the background error covariance matrix to the 

sum of the background and observation error covariance matrices. The H and HT are transform 

operators between model and observation space. 


