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Aliasing 

Note: There are several sign errors within the course textbook in its mathematical formulation 

for aliasing. Any discrepancies between the notes below and the course textbook should be 

reconciled in favor of the notes below, which are believed to be correct.  

 

Learning Objectives 

Following this lecture, students will be able to: 

• Describe what is meant by aliasing and how it differs from linear numerical instability. 

• Demonstrate how the effects of aliasing can be quantified, the negative impacts that 

aliasing has on a model solution, and the wavelengths at which aliasing preferentially 

negatively impacts a model solution. 

 

Introduction 

Our consideration of numerical instability to this point has emphasized determining the stability 

criteria for linear forcing terms, where linear numerical stability exists when the solution’s 

amplitude does not grow exponentially with time (e.g., 1
tIe

 ). 

The primitive equations, however, contain non-linear advection terms. Consider, for instance, a 

one-dimensional advection equation for the zonal velocity u: 
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This equation is non-linear since the forcing term contains two components that are each related 

to the zonal velocity u. This equation’s stability can be evaluated using the methods developed 

earlier in the semester, from which a stability criterion may be obtained. The resulting stability 

criterion is dependent on the chosen combination of temporal and spatial finite-differencing. 

However, there exists a second potential source of non-linear instability that must be considered 

when determining numerical stability. Aliasing occurs when two waves represented on a model 

grid interact and produce fictitious waves and an erroneous redistribution of energy across 

wavelengths.  

Aliasing can arise in any model that discretizes the primitive equations with finite-difference 

approximations in an Eulerian framework. Note that aliasing does not impact models that use 

semi-Lagrangian methods, wherein non-linear terms are encapsulated within the total derivative. 
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Aliasing also does not impact models that use spectral methods, wherein model variables and 

their partial derivatives are treated analytically and potentially troublesome wave interactions are 

not permitted. The absence of aliasing with these methods is one of several reasons why they 

have gained widespread use in operational numerical weather prediction. 

The byproduct of aliasing is the accumulation of erroneous wave energy at short wavelengths 

(generally speaking, ≤ 4∆x), which can lead to the model solution becoming unstable with time. 

As with truncation error, linear numerical stability, and numerical dispersion, aliasing is another 

reason why short-wavelength features are particularly problematic in numerical models and thus 

why implicitly or explicitly damping these wavelengths can be beneficial, even if non-physical. 

 

Analytic Framework for Aliasing 

We follow the example of the course text. Consider the non-linear one-dimensional advection 

equation above. Assume a wave-like solution for u. For simplicity, assume that this wave-like 

solution only contains real-valued components, such that the complex exponential function we 

previously used to define wave-like solutions only contains a cosine component (through Euler’s 

formula). Rather than write this as a single wave, as before, let us write it as the linear 

superposition of waves with varying wavenumbers, e.g., 

( )


=
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In the above equation, wavenumber km = 2πm/L, where m is a zonal wavenumber and L is the 

domain length. Note the slight difference in how this k is defined relative to that in our lecture on 

linear numerical stability, where k = 2π/L (where L was wavelength). Here, km is defined specific 

to a given wavelength. The ratio of m to L is the inverse wavelength, such that the ratio of L to m 

defines the wavelength (e.g., m = 1 defines a wave with wavelength L, m = 2 defines a wave with 

wavelength L/2, etc.). In other words, m is the number of waves over the domain length L. Thus, 

this formulation for km is functionally equivalent to that for k before. 

The first partial derivative of u with respect to x can be obtained analytically and is given by: 
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Note that by representing the derivative analytically, this discussion of aliasing is independent of 

the temporal and spatial finite-differencing methods used in a model! 

Our forcing term thus becomes: 
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Note that the indices m and n may be switched without changing the result. The separate notation 

for each term (m for u, n for its partial derivative with respect to x) is used to indicate that a wave 

in u of a given wavelength may interact with a wave in ∂u/∂x of another wavelength. 

Expanding the summation notation, we obtain: 
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In the above, for m = 0, cos(kmx) = cos(0) = 1, so that a0 cos(k0x) = a0. For n = 0, sin(knx) = sin(0) 

= 0, so that a0k0 sin(k0x) = 0. 

Generally, the product of any two waves can be expressed as: 

( ) ( )xkxkkaa mnnnm cossin    or, equivalently,  ( ) ( )xkxkkaa nmmmn cossin  

We can simplify this expression. Note that sin c cos d, where c and d are generic variables, can 

be expressed using a trigonometric identity: 
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For c = knx and d = kmx, we obtain: 
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Or, substituting for kn and km, 
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There exist two waves defined by the above – the n + m wave and the n – m wave. As before, the 

indices m and n may be swapped without changing the result. 

In physical space, where all wavenumbers are possible, this is not a problem. However, on a 

model grid, only waves of wavelength 2∆x and larger may be represented. This will pose a 

problem, specifically for the n + m wave. 
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Recall that the ratio of L to m describes a wave’s wavelength. Consider a one-dimensional model 

grid with jmax grid points, such that jmax∆x = L. Thus, for the 2Δx wave, we can determine m as 

follows: 

x
m

xj
=


2max  

Solving for m, we obtain jmax/2. This represents the maximum value of n + m that may be 

represented on a model grid. You can prove this by considering other wavelengths longer than 

2∆x in the above – e.g., for the 3∆x wave, m equals jmax/3, which is smaller than jmax/2. Thus, the 

following inequality must hold for the n + m wave, as defined by the product of u and ∂u/∂x, to 

be represented on the model grid: 

2
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Or, stated in the inverse, the following inequality describes the case where the n + m wave, as 

defined by the product of u and ∂u/∂x, cannot be represented on the model grid: 
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Let us consider this unresolvable wave. The inequality can alternatively be written as: 

sjmn −=+ max  

Here, s is some generic wavenumber, where 
2

maxj
s  . Thus, all values of jmax – s are greater than 

jmax/2. If we substitute this relationship for n + m, we obtain: 
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However, because we previously defined L = jmax∆x, we can also substitute for L in the above. 

Further, the position x along the wave is equal to the product of the grid index j and the grid 

spacing ∆x. Making these substitutions, we obtain: 
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Simplifying the terms inside of the sin function, we obtain: 
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We can now apply another trigonometric identity, 

dcdcdc sincoscossin)sin( −=−  

Doing so, we obtain: 
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However, for all grid indices j (which are positive integers), sin(2πj) = 0 and cos (2πj) = 1. Thus, 

the above expression simplifies to the following: 
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Noting again that x = j∆x and L = jmax∆x, this can be rewritten as: 
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Because this expression results from the unresolvable m + n wave, we state that the unresolvable 

wave shows up on the model grid as one that has wavenumber s, where ( )mnjs +−= max . 

What does this mean? Let us consider the interaction of two waves, such as a 2∆x wave and a 

4∆x wave. Using the definition of m (and thus n) earlier in this lecture, m = jmax/2 for the 2∆x 

wave and n = jmax/4 for the 4∆x wave. Thus, 
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This defines a wave with wavelength x
3

4
, which cannot be resolved on the model grid. But, 
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This defines a wave with wavelength 4∆x, which can be resolved on the model grid! The 

unresolvable wave is resolved on the model grid, but in a non-physical way: it is aliased to a 

wavelength that is resolvable. Stated differently, the energy associated with the wave that is 
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unresolved is folded (to borrow a term from radar meteorology) over the shortest-resolvable 

wave (the 2∆x wave) into a wave that is resolved on the model grid. 

Let us consider the idea of folding in a bit more detail. Consider a model grid with jmax = 24 grid 

points. We can obtain the values of m and n for the 2∆x and 4∆x waves on this grid as follows. 

Recall that L = jmax∆x = 24∆x and the ratio of L to m (or n) defines the wavelength of the wave. 

Thus, for the 2∆x wave, 
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And, for the 4∆x wave, 
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Thus, m + n = 12 + 6 = 18. As a result, s = jmax – (n + m) = 24 – 18 = 6. Since this is equal to n, 

the wave with wavenumber s in this case is the 4∆x wave, as before. The unresolved 

wavenumber was 6 greater than the maximum-resolvable wavenumber (12, defined by the 2∆x 

wave), while the wavenumber to which it is aliased is 6 smaller than the maximum-resolvable 

wavenumber. This is the manifestation of folding over the shortest-resolvable wavelength, which 

is illustrated in Fig. 1. 

 

 

Figure 1. Conceptual illustration of how the interaction of two waves with m + n  > jmax/2 

produces aliasing, manifest as the folding of wave energy across the shortest-resolvable 

wavelength, for jmax = 24. Here, the unresolvable wavenumber that results from the interaction of 

two waves is folded over the lowest-resolvable wave (the 2Δx wave) to a resolved wavelength. 

Adapted from Warner (2011), their Fig. 3.32. 
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However, the interaction between two waves does not always result in aliasing. Consider, for 

instance, the interaction of two well-resolved waves on this grid: the 12∆x wave (m = 2) and the 

8∆x wave (n = 3). Here, m + n = 2 + 3 = 5, which defines a wave with wavelength 4.8∆x that can 

be resolved on the model grid. Only where m + n > jmax/2 does aliasing result. This is generally 

limited to interactions between two resolved but short-wavelength features. 

For this model grid with jmax = 24 grid points, the allowable values of m and n each range from 0 

to 12. There exist 42 distinct combinations of m and n that result in aliasing (i.e., m + n > 12): 

Value(s) of n (or m) Value(s) of m (or n) 

12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

11 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 

10 3, 4, 5, 6, 7, 8, 9, 10 

9 4, 5, 6, 7, 8, 9 

8 5, 6, 7, 8 

7 6, 7 

 

This listing does not count duplicates; e.g., aliasing for n = 11 can also occur for m = 12, but this 

case is already accounted for by n = 12 and m = 11. One could follow a similar procedure to 

identify the distinct combinations (totaling 49) of m and n which do not result in aliasing. 

Of these 42 combinations, 30 of them result in m + n ≤ 18: six each for n between 9 and 12, four 

for n = 8, and two for n = 7. Why are we interested in m + n ≤ 18? Consider Fig. 1. Unresolvable 

wavenumbers from 13 through 18 alias, or fold, to resolvable wavenumbers between 6 and 11. 

These identify waves with wavelengths of 2-4∆x, or those that are poorly resolved on the model 

grid. Thus, aliasing preferentially results in the artificial accumulation of wave energy at 

short, poorly resolved wavelengths. 

When we introduced the concept of effective resolution earlier in the semester, we defined it as 

the smallest wavelength at which the modeled kinetic energy spectrum matches that from theory 

and observations. At small but still resolvable wavelengths, the modeled kinetic-energy spectrum 

is ideally associated with less kinetic energy than that expected by theory and as measured by 

observations. As discussed above, however, aliasing can result in an excess accumulation of 

wave energy in short wavelengths, leading to a modeled kinetic energy spectrum with greater 

energy than that from theory and observations at short wavelengths (Fig. 2). 

This is problematic. Short wavelengths have large truncation error, significant numerical 

dispersion, and most rapidly become unstable if the numerical stability criterion is violated. 

Amplifying the amount of energy contained within these wavelengths only exacerbates these 

problems. This is another illustrative example of the utility of numerical diffusion, whether 

implicit or explicit in nature. 
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Figure 2. Examples of modeled kinetic energy spectra relative to theory and observations (i.e., 

the “correct spectrum”) for (a) a case where numerical diffusion dampens short wavelengths 

(large wavenumber k, here expressed on a logarithmic axis) and (b) a case where aliasing is not 

controlled for by numerical diffusion, resulting in an excess of kinetic energy at short 

wavelengths (or large k). Reproduced from Warner (2011), their Fig. 3.33. 

 

Our JupyterHub contains a Jupyter Notebook titled ‘Aliasing Example’ that demonstrates these 

concepts using the one-dimensional non-linear advection equation introduced above. An initial 

Gaussian wave for u is specified, and the model is run forward in time using the forward-in-time, 

backward-in-space finite-differencing schemes. Overall, the Gaussian wave is heavily dampened 

and deformed with time, with the damping expected from our discussion of these finite-

differencing schemes in the ‘Linear Numerical Stability’ lecture.  

However, although the power is small at short wavelengths – which are the ones that experience 

the greatest damping per time step from these differencing schemes – it increases with time in 

the model solution, similar to that depicted in Fig. 2b. This is a manifestation of aliasing, with 

the significant implicit damping per time step at short wavelengths unable to keep the solution 

amplitude from growing. Please feel free to copy this Notebook to your own directory and 

experiment with different initial wave structures (advective velocity, wave width, wave shape) 

and finite-differencing schemes to see aliasing for yourself!  


