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Truncation Error 

Learning Outcomes 

Following this lecture, students will be able to: 

• Understand the impacts of truncation error on the quality of finite-difference 

approximations. 

 

Truncation Error 

Defining truncation error for spatial derivatives is conceptually straightforward: it is the error 

in approximating a partial derivative of some function f with finite differences that results from 

truncating the Taylor series expansion of f. Lower-order accurate approximations truncate more 

terms from the Taylor series expansion and use a smaller number of grid points to calculate the 

finite difference. As a result, lower-order accurate finite difference approximations are associated 

with larger truncation error than their higher-order accurate counterparts. Truncation error also 

exists in time, manifest as variability between individual model timesteps that is not accounted 

for during the model integration. 

We can consider truncation error qualitatively. Consider a generic function f(x) = cos x. It has a 

first partial derivative with respect to x that is exactly equal to –sin x. In Fig. 1a, a nine-point grid 

with grid points every π/4 radians is used to represent this function (blue); its first derivative with 

respect to x (orange); and the forward (brown), backward (green), centered (yellow), and fourth-

order (black) finite difference approximations to its first derivative with respect to x. As the order 

of accuracy increases, the match to the true solution improves and truncation error decreases. For 

this example, the fourth-order finite difference approximation is almost exact, and a sixth-order 

finite difference approximation (not shown) is an even better match to the analytic solution. 

In Fig. 1b, a seventeen-point grid with grid points every π/8 radians is used to represent the same 

function as above. Note that the function and its first derivative with respect to x are smoother 

owing to the decreased grid spacing. The decreased grid spacing also has the benefit of 

improving each finite difference approximation’s match to the analytic solution. Here, both the 

centered and fourth-order approximations are nearly exact matches to the analytic solution. From 

this, we can deduce that the truncation error is also a function of the horizontal grid spacing 

relative to the wavelength of the feature being represented on that grid. 
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(a) 

 

(b) 

 

Figure 1. (a) A nine-point grid with grid points every π/4 radians is used to represent f(x) = cos x 

(blue); its first derivative (-sin x, orange); and the forward (brown), backward (green), centered 

(yellow), and fourth-order (black) finite difference approximations to its first derivative. (b) As 

in (a), except on a seventeen-point grid with grid points every π/8 radians. 
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We can also consider truncation error quantitatively. For instance, let f(x) = A cos(kx), where A is 

amplitude, k is a wavenumber equal to 2π/L, and L is the wavelength. The exact value of the first 

partial derivative of this function with respect to x is f’(x) = –Ak sin(kx). A centered finite 

difference approximation to this derivative, evaluated at a generic point x, is given by: 

Δ𝑓

Δ𝑥
=
𝐴 𝑐𝑜𝑠(𝑘(𝑥 + Δ𝑥)) − 𝐴 𝑐𝑜𝑠(𝑘(𝑥 − Δ𝑥))

2Δ𝑥
 

The cos terms in the approximation above can be rewritten using trigonometric identities, where 

𝑐𝑜𝑠( 𝑎 + 𝑏) = 𝑐𝑜𝑠 𝑎 𝑐𝑜𝑠 𝑏 − 𝑠𝑖𝑛 𝑎 𝑠𝑖𝑛 𝑏 and 𝑐𝑜𝑠( 𝑎 − 𝑏) = 𝑐𝑜𝑠 𝑎 𝑐𝑜𝑠 𝑏 + 𝑠𝑖𝑛 𝑎 𝑠𝑖𝑛 𝑏. Doing so, 

we obtain: 

Δ𝑓

Δ𝑥
=
𝐴((𝑐𝑜𝑠 𝑘 𝑥 𝑐𝑜𝑠 𝑘 Δ𝑥 − 𝑠𝑖𝑛 𝑘 𝑥 𝑠𝑖𝑛 𝑘 Δ𝑥) − (𝑐𝑜𝑠 𝑘 𝑥 𝑐𝑜𝑠 𝑘 Δ𝑥 + 𝑠𝑖𝑛 𝑘 𝑥 𝑠𝑖𝑛 𝑘 Δ𝑥))

2Δ𝑥

=
−𝐴 𝑠𝑖𝑛 𝑘 𝑥 𝑠𝑖𝑛 𝑘 Δ𝑥

Δ𝑥
 

One way of computing the truncation error is to compute the ratio of the finite difference 

approximation to the analytic or exact solution, i.e., 

Δ𝑓
Δ𝑥⁄

∂𝑓
∂𝑥
⁄

 

Where this ratio is approximately equal to 1, truncation error is small. Where this ratio departs 

from 1, truncation error is large. 

Applying this to f’(x) and its centered finite difference approximation, we obtain: 

−𝐴 𝑠𝑖𝑛 𝑘 𝑥 𝑠𝑖𝑛 𝑘 Δ𝑥
Δ𝑥

−𝐴𝑘 𝑠𝑖𝑛 𝑘 𝑥
=
𝑠𝑖𝑛 𝑘 Δ𝑥

𝑘Δ𝑥
 

Because k = 2π/L, 𝑘Δ𝑥 ∝ Δ𝑥/𝐿. Thus, as we stated before, truncation error is a function of the 

horizontal grid spacing relative to the wavelength of the feature being represented on that grid. 

The small angle theorem states that as sin k∆x approaches zero, 𝑠𝑖𝑛 𝑘 Δ𝑥 ≈ 𝑘Δ𝑥. Thus, when Δx 

is small relative to the wavelength (e.g., a large number of grid points over the wavelength), sin 

kΔx approaches sin (0), which is zero. Thus, for small Δx, 𝑠𝑖𝑛 𝑘 Δ𝑥 ≈ 𝑘Δ𝑥and the ratio between 

the approximate and exact solutions approaches 1. Thus, truncation error in this case is small. 

The inverse is true as ∆x becomes large relative to the wavelength. The maximum allowable 

value for ∆x is L/2 (i.e., a domain with three grid points on which only a wave with wavelength 

2∆x may be resolved). There, 𝑘Δ𝑥 = 2𝜋Δ𝑥/𝐿 = 2𝜋𝐿/2/𝐿 = 𝜋, for which sin k∆x = sin π = 0. 
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Stated equivalently, truncation error for short wavelength features is large, whereas it is small 

for longer wavelength features (for a given ∆x)! 

Analogous expressions to the one above can be obtained for any finite differencing scheme. For 

the forward, backward, and fourth-order finite difference approximations, these take the form: 

−𝑐𝑜𝑠 𝑘Δ𝑥

𝑘Δ𝑥 𝑡𝑎𝑛𝑘𝑥
+

1

𝑘Δ𝑥 𝑡𝑎𝑛𝑘𝑥
+

𝑠𝑖𝑛 𝑘Δ𝑥

𝑘Δ𝑥
 (forward) 

−
1

𝑘Δ𝑥 𝑡𝑎𝑛𝑘𝑥
+

𝑐𝑜𝑠 𝑘Δ𝑥

𝑘Δ𝑥 𝑡𝑎𝑛𝑘𝑥
+

𝑠𝑖𝑛 𝑘Δ𝑥

𝑘Δ𝑥
 (backward) 

𝑠𝑖𝑛 𝑘Δ𝑥(4−𝑐𝑜𝑠 𝑘Δ𝑥)

3𝑘Δ𝑥
 (fourth-order) 

All three are dependent on k∆x, or the horizontal grid spacing relative to the wavelength. The 

forward and backward approximations are also dependent on kx, or the position along the wave. 

A graph of the ratios for the centered and fourth-order finite difference approximations is 

provided in Fig. 2. Depicted along the x-axis is wavenumber n, equal to the wavelength L 

divided by the horizontal grid spacing Δx. For smaller values of n, a feature’s wavelength is 

small relative to the model grid spacing and thus has greater truncation error. In this sense, model 

resolution can be defined relative to the truncation error; e.g., the wavelength of the smallest 

feature that can be represented on the model grid with a minimum of truncation error (e.g., where 

the ratio is greater than or equal to ~0.95). For the fourth-order approximation, this appears to be 

~8∆x, whereas for the centered approximation, this appears to be ~13∆x. 

Furthermore, for any given n, the fourth-order finite difference approximation is associated with 

less truncation error than the centered approximation. Again, this is particularly evident at 

smaller wavelengths. Thus, the horizontal grid spacing for a given model simulation must be 

chosen in light not just of the smallest features desired to be resolved on the model grid but also 

the order of accuracy used by the finite difference approximations available in the model. 

As we will see through the remainder of our discussion of numerical methods, short wavelengths 

– those below which the model can reasonably resolve, whether defined considering truncation 

error or some other means – pose a particular challenge to model accuracy and stability. Later, 

we will consider methods for addressing this in numerical model simulations. 
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Figure 2. The ratio of the value of the finite difference approximation of the first partial 

derivative of f(x) = A cos kx to its exact value, as a function of the number of grid points n used 

to resolve the wave, for the centered (blue) and fourth-order (red) finite difference 

approximations. Adapted from Warner (2011), their Fig. 3.22. 


