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Vertical Grids and Upper Boundary Conditions 

Learning Outcomes 

Following this lecture, students will be able to: 

• Understand the key physical considerations for choosing a model vertical coordinate. 

• Describe strengths and weaknesses of constant height, constant pressure, constant 

potential temperature, and terrain-following vertical coordinates. 

• Describe the importance of maintaining consistency between horizontal and vertical grid 

spacing (or resolution) in numerical simulations. 

• Describe special considerations associated with how the model’s upper boundary is 

represented. 

 

Introduction to Vertical Coordinate Systems 

Numerical models can be formulated with one of many vertical coordinates, with the primitive 

equations’ partial derivatives in the vertical direction transformed to this vertical coordinate. 

However, a given model is typically based on a single vertical coordinate. This, a model user 

does not have the ability to choose the vertical coordinate apart from choosing the model. 

There are three primary considerations to vertical coordinates:  

• Does the chosen vertical coordinate system permit unevenly distributed vertical 

levels? Nearly all numerical models used for real-data simulations allow for unevenly 

distributed vertical levels, and strictly speaking this consideration lies with the model 

itself and not with the choice of vertical coordinate.  By contrast, some models used for 

idealized simulations only permit a fixed distribution – with constant spacing – between 

vertical levels.  

 

Variable vertical resolution allows for more levels to be placed at altitudes where sharp 

vertical gradients in meteorological quantities exist, such as the boundary layer, without 

having to add more vertical levels throughout the atmosphere. 

 

• What is the relationship between the chosen vertical coordinate system and terrain? 

In models with sloping terrain, it is possible for the vertical surfaces of selected vertical 

coordinate systems to intersect the terrain. This poses a computational challenge that 

must be addressed in some fashion to ensure robust results. We prefer that vertical 

coordinate surfaces not intersect the ground; i.e., that they follow the terrain. 
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• In transforming the horizontal pressure gradient terms in the momentum equations 

to the chosen vertical coordinate system, do one or two terms result? While it is fairly 

straightforward to transform the terms in the primitive equations between chosen vertical 

coordinate systems, the transformation itself can result in an added term. 

 

For example, when we introduced the WRF-ARW model equations, we transformed the 

horizontal pressure gradient term in the u-momentum equation from constant height 

surfaces to the terrain-following η vertical coordinate used by the WRF-ARW model: 
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(constant height)  (terrain-following, coupled to the dry air mass) 

 

Adding an extra partial derivative to be approximated using finite differences adds 

another source of truncation error to the model. This is particularly troublesome for 

horizontal pressure gradient terms since truncation errors in computing the horizontal 

pressure gradient can be of similar magnitude to horizontal variability in the horizontal 

pressure gradient itself. Modern models such as WRF-ARW typically address this by 

recasting pressure, geopotential height, and dry-air mass into their perturbation forms, so 

that the terms themselves and the associated truncation errors are smaller. However, 

generally speaking, we prefer to not add partial derivative terms. 

We now wish to consider the strengths and weaknesses of several vertical coordinate systems in 

light of the aforementioned considerations. 

 

Height Above Sea Level – Constant Height (z) Coordinate 

This coordinate is perhaps the most intuitive: sea level is at a height z = 0, and the height z 

increases with increasing distance above sea level. It is the vertical coordinate that we are first 

introduced to when considering the primitive equations as undergraduate students. 

The horizontal pressure gradient term in this vertical coordinate is of the form: 

pz−


1
 

where the subscript of z on the gradient operator indicates that it is applied on a constant height 

surface. There is only one horizontal pressure gradient term in the u- and v-momentum equations 

when formulated on constant height surfaces. Thus, our third criterion above is met. 
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This vertical coordinate system poses no intrinsic inhibition against having unevenly distributed 

vertical levels, such that it meets our first criterion above so long as the model permits unevenly 

distributed vertical levels.  

This leaves our second criterion. An example of unevenly distributed height surfaces relative to a 

hypothetical sloping terrain is given in Fig. 1. This figure illustrates the primary shortcoming of 

the constant height vertical coordinate: except for flat terrain at sea level, it is a terrain-

intersecting vertical coordinate. 

 

Figure 1. Hypothetical depiction of unevenly distributed constant height (z) surfaces relative to 

an idealized sloping terrain profile. 

Consider partial derivatives in both the horizontal and vertical directions evaluated adjacent to 

the terrain along a constant height surface such as the z = 2000 m surface in Fig. 1. Evaluating 

these partial derivatives involves one or more points where atmospheric quantities are undefined 

due to being below ground. Furthermore, the discontinuous nature of atmospheric fields adjacent 

to the terrain along constant height surfaces make it impossible to evaluate horizontal partial 

derivatives using spectral methods with this vertical coordinate. 

While there are methods to address computing partial derivatives along constant height surfaces 

near sloping terrain, these can be computationally expensive. Alternatively, one can use forward 

or backward finite differences to compute partial derivatives adjacent to sloping terrain, but these 

are associated with an unacceptably high amount of truncation error. Furthermore, each of these 

alternatives require different methods to compute the partial derivatives adjacent to terrain from 

those in the free atmosphere. Consequently, they pose a technical challenge to implement in a 

numerical model.  
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As a result of this shortcoming, the constant height vertical coordinate is typically not used 

within modern models. The primary exception to this lies with models used exclusively for 

idealized simulations that do not incorporate terrain information. 

 

Pressure – Isobaric (p) Surfaces 

We are also likely quite familiar with the primitive equations cast into the isobaric, or constant 

pressure, vertical coordinate. Pressure, a function of the mass of the air above you, is highest at 

the surface and decreases log-linearly with increasing distance upward from the surface. 

Transforming the primitive equations to the isobaric coordinate results in only one term for the 

horizontal pressure gradient in each of the horizontal momentum equations. This term takes the 

form  p , where the geopotential Φ = gz and the gradient operator’s subscript of p indicates 

that it is applied on an isobaric surface. As a result, our third criterion is met, just as it was with 

the z vertical coordinate. 

As did the constant height vertical coordinate, the isobaric coordinate system poses no inhibition 

against having unevenly distributed vertical levels, such that it meets our first criterion above so 

long as the model itself permits such a distribution of vertical levels. An example of unevenly 

distributed isobaric surfaces relative to a hypothetical sloping terrain surface is given in Fig. 2.  

 

 

Figure 2. Hypothetical depiction of unevenly distributed isobaric surfaces relative to an 

idealized sloping terrain profile. The slope of the isobaric surfaces depicted here is a function of 

the prevailing meteorology, indicating relatively high (low) pressure to the left/west (right/east). 
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This figure, however, also highlights the primary shortcoming of the isobaric vertical coordinate: 

it is also a terrain-intersecting vertical coordinate. The same challenges with computing partial 

derivatives adjacent to sloping terrain noted for the height coordinate hold for the isobaric 

vertical coordinate for both grid-based and spectral models. The isobaric vertical coordinate 

poses an additional challenge, however, in that the isobaric surfaces themselves change altitude 

with time as a function of the prevailing meteorology. In other words, at a given horizontal grid 

point, a given isobaric surface may be above ground at one time but below ground at another 

time. As a result, the isobaric vertical coordinate is typically not used within numerical models. 

 

Potential Temperature – Isentropic (θ) Surfaces 

As an undergraduate student, you were introduced to potential temperature, which is a function 

of temperature T and pressure p as expressed by Poisson’s equation: 
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where p0 is a reference-state pressure and is typically equal to 1000 hPa. Potential temperature 

typically (but not always) increases with increasing height. 

Under dry-adiabatic conditions, potential temperature is conserved following the motion. This 

makes potential temperature an appealing vertical coordinate: flow across isentropes, which 

constitutes vertical motion in the isentropic vertical coordinate system, is small and only occurs 

when diabatic heating is occurring. If vertical motion is small, vertical advection is also small, 

which is also appealing since it means that truncation errors from computing vertical advection 

will be small. 

Another benefit of the isentropic vertical coordinate is that vertical levels – i.e., isentropic 

surfaces – are naturally packed where vertical temperature gradients are large, such as with 

fronts. A representative example is given in Fig. 3. At left, a vertical cross-section from San 

Diego, CA to Medford, OR in isobaric coordinates is depicted. The cold front is located between 

700-600 hPa near San Diego and slopes upward to the north, intersecting the tropopause between 

400-300 hPa near Oakland, CA. The isentropes are tightly packed through the frontal zone. From 

thermal wind balance, there is also strong vertical wind shear with the front, particularly between 

Point Arguello, CA and Oakland, CA. Thus, there exist sharp horizontal and vertical gradients in 

both potential temperature and wind across the front. 
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Figure 3. Vertical cross-sections (south-north) of a cold front in (left) isobaric and (right) 

isentropic coordinates. In both panels, isentropes (every 5 K at left, every 10 K at right) are given 

by the solid lines and isotachs (every 10 m s-1) are given by the dashed lines. The shaded grey 

area in the center of each panel spans the same physical volume of atmosphere encompassed by 

the cold front between Point Arguello, CA and Oakland, CA. Figure reproduced from Benjamin 

(1989, Mon. Wea. Rev.), their Fig. 1. 

 

Figure 4. (left) 0000 UTC 3 July 2012 skew T-ln p diagram for Norman, OK. The temperature 

(dewpoint temperature) trace is given by the rightmost (leftmost) thick black line. (right) Tabular 

display of data from below 913.2 hPa from the 0000 UTC 3 July 2012 Norman, OK skew T-ln p 

diagram. Note the superadiabatic lapse rate at the surface at left and the corresponding decrease 

in potential temperature (THTA) between 973 hPa and 964 hPa at right. Figure and data obtained 

from the University of Wyoming. 
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At right, the same data are plotted, except using an isentropic vertical coordinate system. The 

cold front is found between the 300-320 K isentropic surfaces, as expected from the left panel. 

For a chosen vertical-level distribution, this inherently allows higher vertical resolution where 

the sharpest gradients exist. The same is true across any temperature inversion, and thus our third 

criterion is met without the need to explicitly specify unevenly distributed vertical levels. This 

reduces the magnitudes of both horizontal and vertical wind gradients are reduced, though the 

coordinate transformation introduces relatively sharp horizontal gradients in height, pressure, and 

temperature (not shown). 

There are three primary shortcomings of the isentropic vertical coordinate, however, that limit its 

use for numerical weather prediction: 

• Where the lapse rate is greater than dry adiabatic, such as in Fig. 4, an isentropic surface 

is not uniquely identified with a given altitude and thus meteorological conditions. This 

frequently occurs with strong surface sensible heating during the local daytime hours in 

the warm season. While a correction term can be added to prevent the lapse rate from 

becoming superadiabatic, such a term is non-physical and may result in inaccurate model 

results near the surface. 

 

• As with isobaric surfaces, isentropic surfaces can intersect the ground, and whether a 

given grid point is above or below ground can change as a function of the meteorology. 

This issue is arguably more common with isentropic surfaces than with isobaric surfaces 

given the isentropic coordinate’s direct link to temperature. 

 

• Transforming the horizontal pressure gradient term into isentropic coordinates results in 

the addition of a second term. Specifically, the horizontal pressure gradient term 

applicable on isentropic surfaces takes the form: 

( )pgz c T− +  

The subscript of θ on the gradient operator indicates that it is applied on isentropic 

surfaces. As sharp horizontal gradients in both z and T on an isentropic surface (such as 

with fronts) may exist, large truncation errors may result when finite-difference methods 

are used. Since these errors may not cancel, this results in a potentially large error source. 

As a result of these shortcomings, isentropic vertical coordinates are rare in modern NWP. 

 

Terrain-Following Vertical Coordinates 

As we discovered with the WRF-ARW model in an earlier lecture, it is possible to utilize a 

terrain-following vertical coordinate. The primary advantage of doing so is to eliminate the 
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possibility for vertical coordinate surfaces to intersect terrain, which was a major shortcoming 

with the constant height, isobaric, and isentropic vertical coordinates noted above.  

A generalized terrain-following vertical coordinate σ may be formulated with respect to either 

pressure p (left) or height z (right): 
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Note that p need not be the full pressure but can be some derivative thereof, such as dry 

hydrostatic pressure as in the WRF-ARW model. The pressure pt or height zt at the top of the 

model is specified by the user. The surface height zs is fixed to the terrain, whereas the surface 

pressure ps can change by a small amount through the simulation as a function of the prevailing 

meteorology. 

For both pressure- and height-based formulations, σ = 0 at the top of the model and σ = 1 at the 

terrain surface. The terrain influence on the coordinate surfaces’ slope decreases linearly with 

increasing altitude.  

As introduced in an earlier lecture, the WRF-ARW model uses a terrain-following vertical 

coordinate η that is defined primarily as a function of dry hydrostatic pressure (i.e., the pressure 

of dry air under hydrostatic balance): 
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 (where 0 ≤ η ≤ 1) 

In the above, pdh is the dry hydrostatic pressure, pdht is the dry hydrostatic pressure at the top of 

the model (generally a user-defined parameter), pdhs is the dry hydrostatic pressure at the surface, 

p0 is a reference sea-level pressure, and B(η) defines the relative weighting between a purely 

isobaric vertical coordinate and a terrain-following vertical coordinate. At locations where pdhs ~ 

p0 (where the surface is near sea-level), the vertical coordinate reduces to the first right-hand side 

term in the equation above. In all cases, η is 0 at the top of the model (where pdh = pdht and B(η) = 

0) and 1 at the surface (where pdh = pdhs and B(η) = 1). 

Because surface pressure can change through a model simulation, there exists a slight preference 

to height-based rather than pressure-based terrain-following vertical coordinates. However, most 

modern models use pressure-based terrain-following vertical coordinates. Examples include the 

WRF-ARW, RAP/HRRR (both currently WRF-ARW-based), GFS, NAM, and ECMWF models. 

Representative examples of models that use height-based vertical coordinates include the CM1 

and MPAS models. 

Models that use terrain-following vertical coordinates typically allow non-uniform vertical level 

distribution, so that our first consideration related to the choice of vertical coordinate is met. Fig. 
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5 depicts an example of pressure-based terrain-following vertical coordinate surfaces distributed 

between the terrain surface and the model top. The terrain-following coordinate surfaces means 

that our second consideration related to the choice of vertical coordinate is also met. 

 

 

Figure 5. Cross-section of terrain-following pressure-based vertical coordinate surfaces for pt = 

500 hPa. Figure reproduced from Warner et al. (1978, Mon. Wea. Rev.), their Fig. 9. 

 

This leaves only our third consideration, the computation of the horizontal pressure gradient. The 

generalized form of the transform operator between constant height z and terrain-following σ 

surfaces takes the form: 

( ) ( )
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where subscripts of z and σ indicate the coordinate surface on which the quantity is evaluated. 

The original and transformed versions of the horizontal pressure gradient term in the u-

momentum equation for the terrain-following pressure-based vertical coordinate used by the 

WRF-ARW model were given above and are reproduced below for convenience: 
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After the basic conversion to the terrain-following vertical coordinate, the second term was 

further manipulated to arrive at the form depicted above at right. Similar results would be 

obtained if a height-based terrain-following vertical coordinate were used or if a different 

model’s formulation of the governing equations were considered. 

Horizontal changes in pressure p and geopotential Φ along the terrain-following coordinate 

surface are particularly large in the presence of sharp horizontal gradients in terrain height. This 

can be understood given the definitions of pressure (related to the weight of the air above you) 

and the geopotential (related to the geometric height z). Consequently, the horizontal pressure 

gradient can be comparatively large near sloped terrain, and thus truncation error arising due to 

computing two horizontal pressure gradient terms may also be large. As noted above, WRF-

ARW and other models typically address this by recasting the relevant terms into perturbation 

form to reduce the truncation error’s magnitude.  

It is also possible to devise a terrain-following vertical coordinate that is a function of potential 

temperature. Generally speaking, such vertical coordinates are terrain-following near the surface 

and transition to isentropic surfaces at some specified distance above the terrain. However, with 

a few exceptions – the now-replaced RUC model being one notable exception – terrain-

following isentropic-based vertical coordinates are not used in modern models. 

 

Variable Vertical Grid Resolution 

Most modern models use variable grid resolution in the vertical. This is typically achieved with 

smaller vertical grid spacing near the ground (and sometimes near the tropopause) and larger 

vertical grid spacing elsewhere. An example is given in Fig. 6. However, some numerical models 

allow for variable grid resolution between domains, with more vertical levels and reduced 

spacing between levels on the inner nests. This helps maintain consistency between horizontal 

and vertical grid increments where other means of variable grid resolution would not. 
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Figure 6. An example of a hybrid terrain-following vertical coordinate over a region of sloped 

topography. In this example, which is representative of the vertical coordinate in the Model for 

Prediction Across Scales, vertical levels follow the terrain below approximately 12 km above sea 

level. At higher altitudes, vertical levels closely resemble constant height surfaces. Image 

obtained from https://mpas-dev.github.io/. 

 

The Consistency Between Horizontal and Vertical Grid Spacing 

Greater attention has historically been given to the horizontal grid spacing and how well it is able 

to faithfully represent a feature or features of interest. However, we know that features such as 

cold and warm fronts on synoptic scales, cold pools, density currents, and inversions on the 

mesoscale, and gravity and inertia-gravity waves on the meso- to microscales slope horizontally 

with height. We want these sloping features to be represented smoothly on the model’s grid. If a 

feature is insufficiently resolved in the vertical relative to its horizontal representation, the model 

may generate spurious gravity waves to try to balance the feature in the model. 

The atmospheric dynamics for a given phenomenon can be used to help determine the best 

vertical grid spacing for that feature. For example, at midlatitudes, the vertical grid spacing 

needed to vertically resolve a feature can be related to the horizontal grid spacing by the 

following expression (Pecnick and Keyser 1989, Meteor. Atmos. Phys.): 

z
s

x





 

where s is the vertical slope of an atmospheric phenomenon to be studied, such as a front. For the 

example of a front, as well as many other phenomena, s is ~0.005 to ~0.02 (e.g., rise 1 km for 

every 50 km to 200 km in the horizontal). This equation states that the slope of the model grid 

(given by ∆z/∆x) should be less than or equal to the slope of the feature the model grid needs to 

resolve – which is rather intuitive. 

https://mpas-dev.github.io/
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The slope s of a given feature can be estimated from observations (e.g., vertical cross-sections) 

or may be estimated from dynamical principles. For example, s can be estimated from the ratio 

of the atmospheric scale height (∆z ~ H0) to the Rossby radius of deformation (∆x ~ ∆L; see also 

Lindzen and Fox-Rabinovitz 1989, Mon. Wea. Rev.): 

z f

x N





 

In the above, f is the Coriolis parameter and N is the Brunt-Väisälä frequency, a measure of static 

stability. 

Consider a simulation that contains a cold front somewhere in its domain. Let us assume that the 

slope s is equal to 0.01 for this front and that ∆x is 20 km. Per the above equation, ∆z then should 

be equal to 0.2 km, or 200 m. For a model domain with a model top at 20 km AGL, this suggests 

that 100 vertical levels are required to appropriately resolve the cold front. However, most 

models with Δx ~ 20 km typically use 30-80 vertical levels. Thus, one might conclude that the 

vertical grid spacing used in most simulations is too coarse, and this is true to a point. However, 

because most models use a variable vertical grid spacing, with finer spacing in regions where the 

sharpest vertical gradients typically exist (which, for a cold front, tend to be near the surface), the 

discrepancy between the chosen horizontal and vertical grid spacings is not as large as the initial 

evaluation would suggest.  

Alternatively, so long as the model can faithfully represent the underlying dynamics, one may 

evaluate the model’s kinetic energy spectrum to identify the vertical grid spacing below which 

the kinetic-energy spectrum does not significantly change. In the literature, this is referred to as 

convergence. A representative example is given by Fig. 7. For the model used (∆x = 15 km), a 

vertical grid spacing of 200 m is the vertical grid spacing at which convergence occurs. At 

coarser ∆z, sloping atmospheric features are insufficiently resolved, resulting in spurious gravity 

waves that transfer kinetic energy from larger scales (evidenced by the red and black lines lying 

below the green and blue lines on the synoptic scale) to smaller scales whereupon the kinetic 

energy is dampened. 
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Figure 7. Kinetic energy times the latitudinal wavenumber k raised to the 5/3rd power (y-axis) as 

a function of latitudinal wavenumber k (inversely related to wavelength; smaller k indicates 

larger wavelength) at three altitudes (z = 10 km, 16 km, 24 km) from ∆x = 15 km, day 6-7 global 

forecasts from the Model for Prediction Across Scales. Outputs from forecasts with vertical grid 

spacings of 800 m, 400 m, 200 m, and 100 m are given by the black, red, green, and blue curves, 

respectively. Note the similarity between the green and blue curves at each altitude, indicating 

convergence of the kinetic-energy spectra. Figure reproduced from Skamarock et al. (2019, Mon. 

Wea. Rev.), their Fig. 2. 

 

Spurious gravity waves are generated when insufficient vertical resolution is used. These 

spurious waves superpose on the physical solution and degrade forecast quality. Consider Fig. 8. 

In Fig. 8a, where an appropriate vertical grid spacing is used, the model solution is smooth. In 

Fig. 8b, which differs from Fig. 8a only in that a vertical grid spacing that is three times coarser 

is used, the model solution is contaminated by spurious gravity waves. When the horizontal grid 

spacing is also coarsened, as in Fig. 8c, a smooth solution is obtained, but with reduced 

amplitude compared to Fig. 8a because of the coarsened horizontal grid. 



Vertical Grids and Upper Boundaries, Page 14 

 

 

Figure 8. Vertical cross-sections (x, p) of vertical velocity ω (solid lines, μbar s-1) and potential 

temperature θ (dashed lines, K) at the time of maximum upward velocity from three numerical 

simulations of a case of conditional symmetric instability (a slantwise instability): (a) ∆x = 10 

km, 75 vertical levels; (b) ∆x = 10 km, 25 vertical levels; and (c) ∆x = 30 km, 25 vertical levels. 

In (b), note the high-frequency wave structure in the vertical velocity field, indicative of gravity 

waves, with no such structure in (a) and (c). In (c), the model’s coarser resolution contributes to 

weaker vertical velocities compared to (a) and (b). Figure obtained from Persson and Warner 

(1991, Mon. Wea. Rev.), their Fig. 5. 

 

Upper Boundary Conditions 

Numerical models generally do not simulate the atmosphere’s full depth; i.e., from the surface to 

where p = 0 hPa. Rather, the atmosphere’s depth is typically truncated to a stratospheric isobaric 

surface. However, vertically propagating internal gravity waves, such as may be generated by 

intense thunderstorm updrafts impinging on the tropopause or by flow passing over sloped 

terrain, can propagate over a large vertical distance and potentially reach the model’s top. What, 

then, should happen as these internal gravity waves reach the model’s uppermost limit? 

Most modern models use a rigid lid to represent the boundary at the top of the model 

atmosphere. This requires specifying an appropriate upper boundary condition. In the WRF-

ARW model, this is often specified by the input meteorological data. However, this level is 

generally not at or close to the top of the atmosphere. This can pose a problem for radiation 

parameterizations, which must account for radiative transfer between the top of the atmosphere 

and the top of the model atmosphere. The most common approach for handling this is to assume 

a layer with thickness equal to the distance between the top of the modeled and actual 

atmospheres, though parameterizations differ in terms of how to specify the atmospheric 
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conditions over this layer (e.g., should values be uniform over this layer, possibly matching those 

at the top of the model atmosphere, or should they vary, possibly linearly between the top of the 

model atmosphere and a top-of-atmosphere climatology?). More details on upper boundary 

specification in the context of radiation parameterizations can be found in Cavallo et al. (2011, 

Mon. Wea. Rev.). 

Using a rigid lid at the top of the model atmosphere means that, in theory, vertically propagating 

waves can be reflected by the rigid upper boundary. To mitigate the non-physical reflection of 

vertically propagating waves as they impinge on the rigid lid, an absorbing or damping layer can 

be added to the top of the model atmosphere. There are many forms for this layer, with the two 

most common being viscous and Rayleigh damping. 

Viscous damping involves defining an absorbing layer in the upper reaches of the model. In this 

layer, the eddy viscosity coefficients Kh (horizontal) and Kv (vertical) have default values at the 

bottom of the layer that increase to a specified maximum value at the top of the layer. Eddy-

viscosity coefficients reduce horizontal and/or vertical gradients of meteorological fields where 

they exist in the model atmosphere. The influence of a viscous damping layer of 20-km depth in 

a model with a top at z = 50 km is depicted in Fig. 9. 

 

 

Figure 9. Vertical motion (contours; negative values shaded) from 2-D model simulations of 

flow over elevated topography (dark shading at bottom) for simulations with (a) a viscous 

damping layer of 20 km depth at the top of the model and (b) no viscous damping. Figure 

reproduced from Warner (2011), their Fig. 3.50. 
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The viscous damping option available within the WRF-ARW model takes the following form, as 

documented in section 4.4.1 of Skamarock et al. (2019): 
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In the above, the Kdh and Kdv are the eddy viscosity coefficients applicable in the damping layer; 

γg is a user-specified nondimensional damping coefficient, ztop is the height of the model top, and 

zd is the damping layer’s depth. The recommended values for γg range between 0.01 and 0.1 and 

the default value for zd is 5 km. At the model’s top, where z = ztop, the cos functions equal 1. At 

the bottom of the damping layer, where ztop – z = zd, the cos functions equal 0. 

Rayleigh damping involves defining an absorbing layer in the upper portions of the model. Here, 

however, model variables are relaxed (or nudged) toward a pre-defined reference state. For any 

model variable α, a generic formulation for a Rayleigh damping operator takes the form: 
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Here, the time tendency of α is a function of the damping operator τ (which is a function of 

height z) and the departure of α from its reference-state value  . 

The WRF-ARW model contains a form of this Rayleigh damping, as documented in section 

4.4.3 of Skamarock et al. (2019): 
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Reference-state fields are functions of only z. The reference-state vertical velocity is assumed to 

be zero. Because the heights of the vertical coordinate surfaces in the WRF-ARW model change 

with time (since they are based on pressure), the reference-state values on model coordinate 

surfaces must be adjusted accordingly at each time step. 

The Rayleigh damping function takes the form: 
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where the Rayleigh damping is applied only over the damping layer depth specified by zd. γd is a 

user-specified damping coefficient with a recommended value approximately equal to 0.003 s-1. 
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At the model’s top, where z = ztop, the sin2 function is equal to 1 and damping takes its maximum 

value of ( ) −− r
. At the bottom of the damping layer, where ztop – z = zd, the sin2 function is 

equal to 0 and damping is not applied. 

It is also possible to apply an implicit Rayleigh damping only to the vertical velocity. In this 

formulation, the Rayleigh damping is applied to the perturbation vertical velocity during the 

model’s integration. It influences the coupled vertical velocity W and, given that W appears in its 

definition, the geopotential Φ. This implicit Rayleigh damping takes the form given by equation 

(4.14) of Skamarock et al. (2019): 

( ) ''''
~

'' WzWW  −=  

Here, τ has the same form as for the traditional Rayleigh damping, albeit with a recommended 

value of γd of approximately 0.2 s-1. ''
~

W  is the value of W'' at the end of the acoustic time step 

while W'' is its value prior to the acoustic time step. This formulation is akin to including an 

implicit damping term in the vertical momentum equation and adding implicit vertical diffusion 

to the vertical velocity. Klemp et al. (2008, Mon. Wea. Rev.) should be consulted for more 

information regarding this formulation. 

Finally, there are two other ways in which the model’s top may be represented, although each are 

typically not used in modern models: representing the model’s top by a free surface across which 

there is no flow, or representing the model’s top by a radiative boundary condition, wherein the 

energy associated with vertically propagating waves is permitted to be radiated upward and out 

of the simulation domain. The former require an absorbing or damping layer whereas the latter 

do not. See Klemp and Durran (1983, Mon. Wea. Rev.) for more details regarding radiative 

boundary condition formulations. 


