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Synoptic Meteorology II: The Quasi-Geostrophic Height Tendency Equation 

Readings: Sections 2.4 and 2.5 of Midlatitude Synoptic Meteorology. 

 

The Quasi-Geostrophic Vorticity/Thermodynamic Equation System 

Including friction, which we neglected in our last lecture, the quasi-geostrophic vorticity equation 

is given by: 

∂𝜁𝑔

∂𝑡
= −𝐯⃗ 𝑔 ⋅ ∇𝜁𝑔 − 𝛽𝑣𝑔 + 𝑓0

∂𝜔

∂𝑝
− 𝐾𝜁𝑔 (1) 

 

Note that K, the frictional coefficient, is a function of pressure; it is highest near the surface and is 

positive-definite. 

Recall that the geostrophic relative vorticity ζg can be written in terms of the geopotential, i.e., 

𝜁𝑔 =
1

𝑓0
∇𝑝

2Φ (2) 

 

Substituting (2) into the left-hand side of (1), commuting the partial derivatives, and multiplying 

both sides by f0, we obtain: 

∇2 (
∂Φ

∂𝑡
) = 𝑓0(−𝐯⃗ 𝑔 ⋅ ∇𝜁𝑔) − 𝑓0𝛽𝑣𝑔 + 𝑓0

2
∂𝜔

∂𝑝
− 𝑓0𝐾𝜁𝑔 (3) 

 

Since f does not vary in the x-direction (i.e., -f0ug ∂f/∂x = 0), the first two terms on the right-hand 

side of (3) can be combined into a single term, i.e., 

𝑓0(−𝐯⃗ 𝑔 ⋅ ∇𝜁𝑔) − 𝑓0𝛽𝑣𝑔 = 𝑓0 (−𝐯⃗ 𝑔 ⋅ ∇(𝜁𝑔 + 𝑓)) (4) 

 

Substituting (4) into (3), we obtain: 

∇2 (
∂Φ

∂𝑡
) = 𝑓0 (−𝐯⃗ 𝑔 ⋅ ∇(𝜁𝑔 + 𝑓)) + 𝑓0

2
∂𝜔

∂𝑝
− 𝑓0𝐾𝜁𝑔 (5) 

 

Likewise, recall that the quasi-geostrophic thermodynamic equation is given by the following: 

∂𝑇

∂𝑡
+ 𝐯⃗ 𝑔 ⋅ ∇𝑇 − 𝑆𝑝𝜔 =

1

𝑐𝑝

𝑑𝑄

𝑑𝑡
 (6) 
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Sp is the static stability and equals σp/R. We desire to rewrite (6) in terms of potential temperature 

rather than temperature. To do so, we make use of Poisson’s relationship, 

𝜃 = 𝑇 (
𝑝0

𝑝
)

𝑅
𝑐𝑝

 (7) 

 

It can be shown that a function h can be defined as: 

ℎ(𝑝) =
𝑅

𝑝0
(
𝑝0

𝑝
)

𝑐𝑣
𝑐𝑝

 (8) 

 

Plugging (7) and (8) into (6), the quasi-geostrophic thermodynamic equation becomes: 

∂(ℎ𝜃)

∂𝑡
+ 𝐯⃗ 𝑔 ⋅ ∇(ℎ𝜃) − 𝜎𝜔 =

𝑅

𝑝𝑐𝑝

𝑑𝑄

𝑑𝑡
 (9) 

 

where 

𝜎 = −ℎ
𝑑𝜃0

𝑑𝑝
 (10) 

 

and θ0 is the background potential temperature. Likewise, plugging (7) and (8) into the hydrostatic 

relationship, we obtain: 

∂Φ

∂𝑝
= −ℎ𝜃 (11) 

 

If we plug (11) into the left-hand side of (9) and commute the partial derivatives, we obtain: 

−
∂

∂𝑝
(
∂Φ

∂𝑡
) + 𝐯⃗ 𝑔 ⋅ ∇(ℎ𝜃) − 𝜎𝜔 =

𝑅

𝑝𝑐𝑝

𝑑𝑄

𝑑𝑡
 (12) 

 

Rearranging (12) to leave only the term involving Φ on the left-hand side, we obtain: 

−
∂

∂𝑝
(
∂Φ

∂𝑡
) = −𝐯⃗ 𝑔 ⋅ ∇(ℎ𝜃) + 𝜎𝜔 +

𝑅

𝑝𝑐𝑝

𝑑𝑄

𝑑𝑡
 (13) 

 

The quasi-geostrophic vorticity (5) and thermodynamic (13) equations represent two equations 

containing two unknowns – vertical motion ω and geopotential height Φ. While variables such as 

the geostrophic relative vorticity ζg and potential temperature θ are also present in (5) and (13), we 

can diagnose these variables using (2) for ζg and (11) for θ once we know ω and Φ. 
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To obtain the quasi-geostrophic height tendency equation, we wish to combine (5) and (13) in a 

way that eliminates ω, leaving a single equation for Φ (and, more specifically, the time tendency 

of Φ). 

 

The Quasi-Geostrophic Height Tendency Equation 

First, take −𝑓0
2 ∂

∂𝑝

1

𝜎
 of the quasi-geostrophic thermodynamic equation (13): 

𝑓0
2

∂

∂𝑝
[
1

𝜎

∂

∂𝑝
(
∂Φ

∂𝑡
)] = −𝑓0

2
∂

∂𝑝
[
ℎ

𝜎
(−𝐯⃗ 𝑔 ⋅ ∇𝜃)] − 𝑓0

2
∂𝜔

∂𝑝
−

𝑓0
2𝑅

𝑐𝑝

∂

∂𝑝
[
1

𝜎𝑝

𝑑𝑄

𝑑𝑡
] (14) 

 

If we then add (5) and (14), the terms involving ∂ω/∂p cancel out, leaving only one equation for 

the time tendency of the geopotential height. Doing so, we obtain the quasi-geostrophic height 

tendency equation, as given by: 

∇2
∂Φ

∂𝑡
+ 𝑓0

2
∂

∂𝑝
[
1

𝜎

∂

∂𝑝
(
∂Φ

∂𝑡
)] = 𝑓0 (−𝐯⃗ 𝑔 ⋅ ∇(𝜁𝑔 + 𝑓)) − 𝑓0

2
∂

∂𝑝
[
ℎ

𝜎
(−𝐯⃗ 𝑔 ⋅ ∇𝜃)] 

−𝑓0𝐾𝜁𝑔 −
𝑓0

2𝑅

𝑐𝑝

∂

∂𝑝
(

1

𝜎𝑝

𝑑𝑄

𝑑𝑡
) 

(15) 

 

Equation (15) is a partial differential equation describing the local change of the geopotential 

height Φ on an isobaric surface with respect to time. There are four forcing terms on the right-hand 

side of (15): geostrophic vorticity advection, differential potential temperature advection, friction, 

and differential diabatic heating.  

Note that this equation is applied to the study of troughs and ridges in the middle troposphere – 

often at 500 hPa – and not at the surface. In later lectures, we will discuss appropriate frameworks 

for studying the evolution of surface cyclones and anticyclones. 

If we make the substitution that χ = ∂Φ/∂t, then (15) becomes: 

∇2𝜒 + 𝑓0
2

∂

∂𝑝
[
1

𝜎

∂𝜒

∂𝑝
] = 𝑓0 (−𝐯⃗ 𝑔 ⋅ ∇(𝜁𝑔 + 𝑓)) − 𝑓0

2
∂

∂𝑝
[
ℎ

𝜎
(−𝐯⃗ 𝑔 ⋅ ∇𝜃)] 

−𝑓0𝐾𝜁𝑔 −
𝑓0

2𝑅

𝑐𝑝

∂

∂𝑝
(

1

𝜎𝑝

𝑑𝑄

𝑑𝑡
) 

(16) 

 

The left-hand side of (16) expresses χ in terms of the Laplacian (∇2) and a second partial derivative 

with respect to pressure. Because the second partial derivative of a local maximum is negative and 

that of a local minimum is positive, the left-hand side of (16) can be approximated as: 
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∇2𝜒 + 𝑓0
2

∂

∂𝑝
[
1

𝜎

∂𝜒

∂𝑝
] ∝ −𝜒 (17) 

 

The ∝ symbol means “is proportional to,” such that the left-hand side of (16) is proportional to     

–χ. Therefore, where the right-hand side of (16) is positive, χ is negative, implying a local decrease 

in the geopotential height with time on a given isobaric surface. Likewise, where the right-hand 

side of (16) is negative, χ is positive, implying a local increase in the geopotential height with time 

on a given isobaric surface. 

 

Interpretation of the Quasi-Geostrophic Height Tendency Equation 

We now wish to interpret the contributions to the local geopotential height tendency from each of 

the four forcing terms on the right-hand side of (16). 

Geostrophic Vorticity Advection 

The contribution to the local geopotential height tendency exclusively due to geostrophic vorticity 

advection can be expressed by: 

𝜒 ∝ −𝑓0 (−𝐯⃗ 𝑔 ⋅ ∇(𝜁𝑔 + 𝑓)) (18) 

 

The term inside of the outermost set of parentheses is an advection term. It depicts the advection 

by the geostrophic wind of the geostrophic relative (ζg) and planetary (f) vorticity.  

Cyclonic geostrophic vorticity advection is defined by −𝐯⃗ 𝑔 ⋅ ∇(𝜁𝑔 + 𝑓) > 0. Because f0 is positive 

in the Northern Hemisphere, cyclonic geostrophic vorticity advection on an isobaric surface results 

in χ < 0, implying a local decrease in geopotential height with time. 

Likewise, anticyclonic geostrophic vorticity advection is defined by −𝐯⃗ 𝑔 ⋅ ∇(𝜁𝑔 + 𝑓) < 0. Thus, 

anticyclonic geostrophic vorticity advection on an isobaric surface results in χ > 0, implying a local 

increase in geopotential height with time. 

In the idealized scenario in Fig. 1, geostrophic relative vorticity is maximized (minimized) in the 

base (apex) of each trough (ridge). The westerly geostrophic wind in the base of the trough results 

in height falls to the east (cyclonic advection) and height rises to the west (anticyclonic advection). 

Conversely, the westerly geostrophic wind in the apex of the ridge results in height rises to the east 

(anticyclonic advection) and height falls to the west (cyclonic advection). In this sense, geostrophic 

vorticity advection does not change trough/ridge amplitude in this example; rather, it only results 

in the movement of the trough/ridge pattern. This interpretation is identical to that offered with the 

advection terms in the quasi-geostrophic vorticity equation.  
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Figure 1. Conceptual view of the movement of middle-tropospheric ridges and troughs from the 

perspective of the geostrophic vorticity advection forcing term. 

However, the geopotential height field – and thus the geostrophic wind and geostrophic relative 

vorticity – are rarely as simple as in the idealized example above. Section 2.4 of the Lackmann 

text, particularly Figs. 2.13-2.15 (pgs. 51-53), illustrate two examples in which the geostrophic 

vorticity advection term can result in the amplification or deamplification of troughs and ridges. 

In these examples, isohypse packing – and thus the magnitude of the geostrophic wind – is not 

uniform between the upstream and downstream sides of a trough or ridge. As Lackmann notes, 

however, other effects are often important, and in general the geostrophic vorticity advection term 

is chiefly responsible for trough and ridge motion rather than amplification. 

Differential Potential-Temperature Advection 

The contribution to the local geopotential height tendency exclusively due to differential potential-

temperature advection can be expressed by: 

𝜒 ∝ 𝑓0
2

∂

∂𝑝
[
ℎ

𝜎
(−𝐯⃗ 𝑔 ⋅ ∇𝜃)] (19) 

 

The term inside the parentheses is the geostrophic advection of potential temperature. However, it 

is encapsulated within a partial derivative with respect to pressure – a vertical coordinate – thus 

giving rise to the name “differential potential-temperature advection.” Thus, the local geopotential 

height tendency on the isobaric level on which the quasi-geostrophic height tendency equation is 

applied depends on the vertical structure of the geostrophic advection of potential temperature. In 

general, this requires evaluating potential-temperature advection at isobaric levels both above and 

below the level on which the equation is applied (e.g., we evaluate potential-temperature advection 

at 700 hPa and 300 hPa to diagnose the 500 hPa height tendency).  

Before proceeding, note that warm (or, more accurately, positive) potential-temperature advection 

is given by −𝐯⃗ 𝑔 ⋅ ∇𝜃 > 0. Conversely, cold (or, more accurately, negative) potential-temperature 

advection is given by −𝐯⃗ 𝑔 ⋅ ∇𝜃 < 0. Since the geostrophic vorticity advection term generally only 
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influences trough/ridge motion, the differential potential-temperature advection term must be non-

zero for the amplitude of a middle-tropospheric trough or ridge to change. 

First, consider the case of potential-temperature advection becoming more positive with increasing 

height (or, more accurately, decreasing pressure). This corresponds to where (a) warm advection 

increases in magnitude upward or (b) cold advection decreases in magnitude upward. The change 

in potential-temperature advection is positive in both scenarios. The denominator, representing the 

change in pressure over this layer, is negative. From (19), this implies χ < 0, signifying a local 

decrease in the geopotential height in time on the isobaric surface on which the equation is applied. 

Likewise, consider the case where potential-temperature advection becomes more negative with 

increasing height (or, more accurately, decreasing pressure). This corresponds to where (c) warm 

advection decreases in magnitude upward or (d) cold advection increases in magnitude upward. 

The change in potential-temperature advection is negative in both scenarios. The denominator, 

representing the change in pressure over this layer, is negative. Thus, from (19), this implies χ > 

0, signifying a local increase in the geopotential height in time on the isobaric surface on which 

the equation is applied. 

This term can be interpreted utilizing thickness arguments, where we recall that the thickness of a 

vertical layer is directly proportional to the temperature of that layer. Consider first the case where 

warm potential-temperature advection decreases in magnitude upward. Here, warm advection is 

largest below the isobaric surface on which we evaluate the height tendency, and thus the greatest 

increase in thickness due to this vertical structure of warm potential-temperature advection is in 

the layer below the isobaric surface on which we evaluate height tendency. Increasing the thickness 

of this layer forces the isobaric surface on which the height tendency is evaluated upward to a 

higher altitude. This results in a local increase in geopotential height on this isobaric surface with 

time, in agreement with our previous interpretation. This is illustrated in the left half of Fig. 2. 

Conversely, consider the case where cold potential-temperature advection decreases in magnitude 

upward. In this case, cold advection is maximized below the isobaric surface on which we evaluate 

the height tendency. The greatest decrease in thickness due to this structure of cold potential-

temperature advection is below the isobaric surface on which we evaluate the height tendency. 

Decreasing the thickness of this layer forces the isobaric level on which the height tendency is 

evaluated downward to a lower altitude. This results in a local decrease in geopotential height on 

this isobaric surface with time, in agreement with our previous interpretation. This is illustrated in 

the right half of Fig. 2. 
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Figure 2. Idealized schematic of the thickness-based interpretation of the effects of (left) warm 

potential-temperature advection (or WAA) decreasing in magnitude upward and (right) cold 

potential-temperature advection (or CAA) decreasing in magnitude upward on height tendency at 

500 hPa. The black arrows indicate the influence of potential temperature advection upon the local 

thickness, with larger arrows denoting a larger change in thickness (of either sign); arrows pointing 

in opposite directions indicating increasing thickness, and arrows pointing toward each other 

indicating decreasing thickness. At left, the 500 hPa height increases more due to the increased 

thickness below than it decreases due to the increased thickness above, and thus height tendency 

is positive. At right, the 500 hPa height decreases more due to the decreased thickness below than 

it decreases due to the decreased thickness above, and thus height tendency is negative. 

 

Note the h inside the partial derivative of (19). As given in (8), h is inversely related to pressure. 

This acts as a scaling parameter: it reduces the influence of the potential-temperature advection in 

the lower troposphere more than in the upper troposphere. For example, the potential-temperature 

advection is reduced by more than twice as much at 700 hPa than at 300 hPa! Thus, though this 

term is a differential advection term, it is often dominated by the potential-temperature advection 

on the uppermost of the two isobaric surfaces. However, we typically neglect this dependency or 

simplicity. 

In addition, note the σ inside the partial derivative of (19). As given in (10), σ is related to h and 

thus (like h) is inversely related to pressure. However, we typically also neglect this relationship 

when evaluating this forcing term. 

Friction 

The contribution to the local geopotential height tendency from friction is given by: 

𝜒 ∝ 𝑓0𝐾𝜁𝑔 (20) 
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In (20), K represents the effects of friction and is positive. K is non-zero only within the boundary 

layer, or close to the surface, where the frictional effects of the land-surface can be meaningfully 

communicated to the troposphere; it varies as a function of the land-surface’s characteristics. 

Because K is positive, χ has the same sign as ζg. Thus, in the base of a trough (minimum Φ) with 

cyclonic geostrophic relative vorticity (ζg > 0 in the Northern Hemisphere), χ is positive, implying 

a local increase in geopotential height with time. Conversely, at the apex of a ridge (maximum Φ) 

with anticyclonic geostrophic relative vorticity (ζg < 0 in the Northern Hemisphere), χ is negative, 

implying a local decrease in geopotential height with time.  

Thus, in the lower troposphere where friction is important, friction acts as a ‘brake’ on the intensity 

of both lower-tropospheric troughs (cyclones) and ridges (anticyclones). However, in the middle 

troposphere, where the quasi-geostrophic height tendency equation is typically applied, friction is 

often negligible and thus has no direct effect on height tendency. 

Differential Diabatic Heating 

The contribution to the local geopotential height tendency exclusively due to differential diabatic 

heating can be expressed by: 

𝜒 ∝
𝑓0

2𝑅

𝑐𝑝

∂

∂𝑝
(

1

𝜎𝑝

𝑑𝑄

𝑑𝑡
) (21) 

 

Here, dQ/dt is the diabatic heating rate. Diabatic warming refers to the situation where dQ/dt > 0, 

while diabatic cooling refers to the situation where dQ/dt < 0. This term is non-zero only when 

there is diabatic heating, such as from radiation or latent heat release. On the synoptic-scale, where 

atmospheric motions are largely adiabatic in nature and the atmosphere is subsaturated, this term 

is often neglected. 

Like with the differential potential-temperature advection term, diabatic heating is encapsulated 

within a partial derivative with respect to pressure. Thus, the local geopotential height tendency 

on the isobaric level on which the quasi-geostrophic height tendency equation is applied depends 

upon the vertical structure of diabatic heating. As for differential potential-temperature advection, 

there is a scaling parameter of 1/p here that reduces the influence of lower-tropospheric diabatic 

heating relative to that aloft; however, below, we consider the idealized case of equal contributions 

from the lower and upper isobaric surfaces on which we evaluate potential-temperature advection. 

We also neglect the dependency on σ in our analysis. 

We first consider the case where diabatic warming (dQ/dt > 0) increases in magnitude upward (or 

diabatic cooling decreases in magnitude upward). This leads to a positive numerator on the right-

hand side of (21). Since the change in pressure is negative, χ < 0, resulting in a local decrease in 
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geopotential height with time. Conversely, if diabatic warming decreases in magnitude upward or 

diabatic cooling increases in magnitude upward, the numerator on the right-hand side of (21) is 

negative. Since the change in pressure is negative, χ > 0, resulting in a local increase in geopotential 

height with time. 

As with the differential potential-temperature advection forcing term, thickness arguments can be 

utilized to interpret the differential diabatic-heating term as well. The arguments are identical to 

those posed above, albeit with “diabatic heating” replacing “potential temperature advection.” 

 

A Digression: Why Another Equation? 

Because the geopotential height is linked to the geostrophic relative vorticity, we can use the quasi-

geostrophic vorticity equation to describe the motion and evolution of the middle tropospheric 

mid-latitude trough/ridge pattern. Therefore, it is fruitful to ask: why do we need another equation 

to also describe the motion and evolution of the middle tropospheric pattern, especially if the first 

forcing term of each (geostrophic relative vorticity advection) is practically identical between the 

two equations? 

The quasi-geostrophic height tendency equation provides an alternate means of expressing the 

∂ω/∂p term within the quasi-geostrophic vorticity equation. Rather than seeking to evaluate ∂ω/∂p 

to describe the evolution of the mid-latitude trough/ridge pattern, however, we seek to evaluate 

differential potential-temperature advection and differential diabatic heating. As we will see when 

we derive the quasi-geostrophic omega equation, two of the forcings resulting in vertical motion 

are potential-temperature advection and diabatic heating on a given isobaric surface. Thus, if these 

fields are related to ω, it stands to follow that the derivative of each with respect to p (the 

“differential” part in the quasi-geostrophic height tendency equation) is related to ∂ω/∂p! In other 

words, the quasi-geostrophic height tendency equation incorporates the underlying physical forces 

that lead to changes in the geopotential height. 

Additionally, when we described the quasi-geostrophic vorticity equation, we neglected friction. 

Conversely, when describing the quasi-geostrophic height tendency equation, we included friction. 

As a result, the quasi-geostrophic height tendency equation gives us a more complete view of the 

physical processes contributing to the evolution of the midlatitude, synoptic-scale trough/ridge 

pattern. Furthermore, given the above, it is entirely consistent with the quasi-geostrophic vorticity 

equation! These explain why the quasi-geostrophic height tendency equation is used to describe 

the motion and evolution of troughs and ridges rather than the quasi-geostrophic vorticity equation. 
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Evaluating the Quasi-Geostrophic Height Tendency Equation 

The quasi-geostrophic height tendency equation contains a partial derivative of the geopotential 

height with respect to time. As a result, this equation may be used to predict the evolution of the 

geopotential height field on a given isobaric surface. However, this is often not done. Why is this 

the case? The evolution of the geopotential height field with respect to time, as given by χ, depends 

upon the second derivative of χ with respect to x and y (as manifest through the Laplacian operator) 

as well as p. In other words, the local geopotential height tendency depends upon its value at 

adjacent locations in the horizontal and vertical. Thus, to solve this system requires an iterative 

approach, one that can be difficult to code and is computationally expensive to execute. Similarly, 

it is difficult to accurately compute the frictional and diabatic heating forcing terms that make up 

part of the right-hand side of (16). 

Conversely, geostrophic vorticity advection and differential potential-temperature advection can 

be computed or readily estimated from any available atmospheric data source, such as a numerical 

model analysis or forecast. This, in concert with the general proportionality stated in (17), enables 

us to diagnose the likely temporal evolution of the middle tropospheric geopotential height field. 


