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Synoptic Meteorology II: The Quasi-Geostrophic Vorticity Equation 

Readings: Section 2.2 of Midlatitude Synoptic Meteorology. 

 

Refresher on the Geostrophic Approximation 

Last semester, we introduced the Rossby number: 

𝑅𝑜 =
𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠
=

𝑈2

𝐿
𝑓0𝑈

=
𝑈

𝑓0𝐿
 (1) 

 

We also introduced characteristic values of U, L, and f0 for midlatitude, synoptic-scale motions: 

Variable Characteristic Value Description 

u, v U ≈ 10 m s-1 Horizontal velocity scale 

x, y L ≈ 106 m Length scale 

f f0 ≈ 10-4 s-1 Coriolis scale 

 

Based on these values, we find that the characteristic Rossby number for midlatitude, synoptic-

scale motions is 0.1. This defines geostrophic balance, representing the force balance between the 

horizontal pressure gradient and Coriolis forces: 

�⃗⃗� 𝑔 =
1

𝑓
�̂� × 𝛻𝑝𝛷 (2) 

 

where the geopotential Φ = gz, with horizontal gradients of z on an isobaric surface corresponding 

to horizontal gradients of p on a constant height surface. At the same time, (2) denotes that along-

flow accelerations have small magnitudes as compared to the magnitudes of the horizontal pressure 

gradient and Coriolis forces and thus can be neglected.  

The total wind can be decomposed into its geostrophic and ageostrophic components: 

�⃗⃗� = �⃗⃗� 𝑔 + �⃗⃗� 𝑎𝑔 (3) 

 

Because along-flow accelerations are neglected in the geostrophic wind, along-flow accelerations 

are uniquely associated with the ageostrophic wind. Returning to (1), this allows us to state that 

the ageostrophic wind vag is much smaller than the geostrophic wind vg, such that: 

‖�⃗⃗� 𝑎𝑔‖

‖�⃗⃗� 𝑔‖
= 𝑂(𝑅𝑜) (4) 
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The Quasi-Geostrophic Approximation 

There are three principles underlying the quasi-geostrophic approximation: 

1) Advection is primarily horizontal and dominated by the geostrophic wind. 

This allows us to write the total derivative as a function of only the geostrophic wind, i.e., 

𝐷

𝐷𝑡
≈

𝐷𝑔

𝐷𝑡
≡

𝜕

𝜕𝑡
+ 𝑢𝑔

𝜕

𝜕𝑥
+ 𝑣𝑔

𝜕

𝜕𝑦
 

Since the geostrophic wind is entirely horizontal, the total derivative does not contain any 

vertical motion terms (which are exclusively associated with ageostrophic motions). 

2) The Coriolis parameter at a given latitude ϕ0 can be expressed in terms of a constant 

value f0 plus a small perturbation that is based on the product of the local meridional 

variability in f and the physical distance from ϕ0, i.e., 

 

𝑓 = 𝑓0 + 𝛽𝑦, where 𝛽 =
𝜕𝑓

𝜕𝑦
|
𝜙0

=
2𝛺 cos𝜙0

𝑎
 

 

The βy term is approximately one order of magnitude less than f0, which allows us to write 

(2) in terms of f0 rather than f. This is equivalent to stating that the meridional length scale 

of the feature being studied is small relative to the Earth’s radius. In addition, substituting 

f with f0 makes the geostrophic wind in (2) entirely non-divergent. Although we previously 

assumed this to be the case, this is only formally true when f is constant.  

 

3) Localized (in time and space) vertical temperature perturbations are negligibly small.  

Altogether, these approximations help to simplify the complex dynamics of synoptic-scale weather 

systems without a significant loss of accuracy. 

 

The Quasi-Geostrophic Primitive Equations 

To apply principles of quasi-geostrophic theory to the study of midlatitude, synoptic-scale weather 

systems, we must rewrite the full primitive equations. 

Horizontal Momentum Equations 

For purely geostrophic flow, the horizontal momentum equations simplify to geostrophic balance. 

However, the flow is never exclusively geostrophic, such that the horizontal momentum equations 

are somewhat more complex. 
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Assume that advection by the ageostrophic wind and that changes in the ageostrophic wind along 

the flow are small. Neglecting curvature terms and substituting �⃗⃗� = 𝒗𝑔⃗⃗ ⃗⃗ + 𝒗𝑎𝑔⃗⃗⃗⃗ ⃗⃗  ⃗ into the horizontal 

momentum equations, we can obtain the quasi-geostrophic form of the horizontal momentum 

equations. This is given by: 

𝐷𝑔 �⃗⃗� 𝑔

𝐷𝑡
= −𝑓0�̂� × �⃗⃗� 𝑎𝑔 − 𝛽𝑦�̂� × �⃗⃗� 𝑔 + �⃗⃗�  (5) 

 

where f = f0 + βy, an approximation known as the midlatitude beta-plane approximation. Here, f0 

= f at some reference latitude ϕ0, β = (df/dy) evaluated at ϕ0, and y = 0 at ϕ0. F represents friction 

and is often neglected, a legitimate assumption above the boundary layer. 

The left-hand side of (5) indicates that it describes changes in the geostrophic wind following the 

geostrophic flow. Thus, the total derivative on the left-hand side of (5) takes the general form: 

𝐷𝑔

𝐷𝑡
( ) ≡

𝜕

𝜕𝑡
( ) + �⃗⃗� 𝑔 ⋅ 𝛻( ) ≡

𝜕

𝜕𝑡
( ) + 𝑢𝑔

𝜕

𝜕𝑥
( ) + 𝑣𝑔

𝜕

𝜕𝑦
( ) 

Recall that the geostrophic wind is purely horizontal; since the geostrophic wind is non-divergent, 

vertical motion is uniquely associated with the ageostrophic wind. Thus, the advection term is two-

dimensional in the geostrophic total derivative’s definition. 

The right-hand side of (5) describes three forcings that can change the geostrophic wind following 

the geostrophic flow: two related to the Coriolis force and one related to friction. If we expand the 

two Coriolis-related terms into their components, we obtain: 

−𝑓0�̂� × �⃗⃗� 𝑎𝑔 = 𝑓0𝑣𝑎𝑔�̂� − 𝑓0𝑢𝑎𝑔𝒋̂ 

−𝛽𝑦𝒌 × �⃗⃗� 𝑔 = 𝛽𝑦𝑣𝑔�̂� − 𝛽𝑦𝑢𝑔𝒋̂ 

The first term indicates that the ageostrophic wind can change the geostrophic wind following the 

motion. The second term indicates that the meridional variation in the Coriolis force can change 

the geostrophic wind following the motion. 

Note that (5) does not contain a horizontal pressure gradient term or a standard Coriolis term (i.e., 

the product of the Coriolis parameter and the geostrophic wind). These forcings define geostrophic 

balance, whereas (5) represents forcings that change geostrophic balance.  

Because of the relative magnitudes of vag and βy as compared to vg and f0, respectively, the Coriolis 

terms in (5) are one order of magnitude smaller than the product of f0 and vg (the Coriolis force). 

Since the Coriolis and horizontal pressure gradient forces inherently have equal magnitudes under 

geostrophic balance, the forcings in (5) are also one order of magnitude smaller than the magnitude 

of the horizontal pressure gradient force. 
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Vertical Momentum Equation 

The quasi-geostrophic vertical momentum equation is given by the hydrostatic equation: 

𝜕𝛷

𝜕𝑝
= −

𝑅𝑇

𝑝
 (6) 

 

Note that this form of the hydrostatic equation differs slightly from that which we are most familiar 

with – here, the ideal gas law has been substituted for density, and the definition of the geopotential 

has been substituted for gz. 

To interpret (6) in the context of the quasi-geostrophic approximation, it is useful to recall precisely 

what is meant by the concept of hydrostatic balance. Nominally, hydrostatic balance is defined in 

the absence of vertical accelerations as the balance between the gravitational force and the vertical 

component of the pressure gradient force. Thus, by invoking hydrostatic balance, we are implicitly 

stating that synoptic-scale vertical motions are of small magnitude. 

Continuity Equation 

The quasi-geostrophic form of the continuity equation is given by: 

𝛻 ⋅ �⃗⃗� 𝑎𝑔 +
𝜕𝜔

𝜕𝑝
= 0 (7) 

 

Why does only the ageostrophic wind appear in the first term of (7)? We previously demonstrated 

the geostrophic wind to be non-divergent (i.e., 𝛻 ⋅ �⃗⃗� 𝑔 = 0). Thus, upon substituting (3) for the full 

wind in the continuity equation, only the ageostrophic component remains: 

𝛻 ⋅ �⃗⃗� = 𝛻 ⋅ (�⃗⃗� 𝑔 + �⃗⃗� 𝑎𝑔) = 𝛻 ⋅ �⃗⃗� 𝑔 + 𝛻 ⋅ �⃗⃗� 𝑎𝑔 = 𝛻 ⋅ �⃗⃗� 𝑎𝑔 

The primary deduction from (7) is straightforward: synoptic-scale vertical motion is a function of 

only the ageostrophic wind. We will return to this principle at times throughout the course. 

Thermodynamic Equation 

Finally, the quasi-geostrophic form of the thermodynamic equation is given by: 

𝜕𝑇

𝜕𝑡
+ �⃗⃗� 𝑔 ⋅ 𝛻𝑇 − 𝑆𝑝𝜔 =

1

𝑐𝑝

𝑑𝑄

𝑑𝑡
 (8) 

 

where Sp is the static stability (which can be approximated by -∂θ/∂p) and dQ/dt is the diabatic 

heating rate (e.g., radiative input or loss, moisture phase changes, etc.). 
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From left to right in (8), the terms represent the local temperature tendency, horizontal advection 

of temperature by the geostrophic wind, adiabatic warming and cooling, and diabatic warming and 

cooling. The primary difference between the full and quasi-geostrophic thermodynamic equations 

is the presence of the geostrophic wind in the horizontal advection term of the latter.  

The adiabatic warming/cooling term, Spω, reflects temperature changes associated with vertical 

motions (which, again, are exclusively associated with the ageostrophic wind) under adiabatic (i.e., 

θ-conserving) conditions. We presume a statically stable atmosphere, or one in which the potential 

temperature increases upward, such that Sp is positive-definite. Dry-adiabatic ascent (ω < 0) results 

an air parcel cooling (∂T/∂t < 0) by adiabatic expansion. Dry-adiabatic descent (ω > 0) results in 

an air parcel warming (∂T/∂t > 0) by adiabatic compression. Though vertical motion is typically 

small on the synoptic-scale, consistent with the ageostrophic wind being an order of magnitude 

weaker than the geostrophic wind, this term cannot be neglected as the static stability is typically 

relatively large. 

 

Defining the Geostrophic Relative Vorticity 

Recall that the geostrophic wind on isobaric surfaces takes the form given by (2). If we expand (2) 

into its components, we obtain: 

𝑢𝑔 = −
1

𝑓0

𝜕𝛷

𝜕𝑦
 (9a) 

𝑣𝑔 =
1

𝑓0

𝜕𝛷

𝜕𝑥
 (9b) 

 

Recall that the relative vorticity, or ζ, is given by:  

𝜁 = �̂� ∙ (∇ × �⃗⃗� ) =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 (10) 

 

The geostrophic form of the relative vorticity can be expressed similarly as: 

𝜁𝑔 = �̂� ∙ (∇ × 𝒗𝒈⃗⃗ ⃗⃗  ) =
𝜕𝑣𝑔

𝜕𝑥
−

𝜕𝑢𝑔

𝜕𝑦
 (11) 

 

Because we have definitions for both ug and vg, as given by (9), we can go a step further than this. 

Plugging (9) into (11), we obtain: 

𝜁𝑔 =
𝜕

𝜕𝑥
(
1

𝑓0

𝜕𝛷

𝜕𝑥
) −

𝜕

𝜕𝑦
(−

1

𝑓0

𝜕𝛷

𝜕𝑦
) (12) 
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Because f0 is a constant with respect to both x and y, the factors of 1/f0 can be pulled out of each 

derivative. Therefore, (12) simplifies to: 

𝜁𝑔 =
1

𝑓0
(
𝜕2𝛷

𝜕𝑥2
+

𝜕2𝛷

𝜕𝑦2
) =

1

𝑓0
𝛻𝑝

2𝛷 (13) 

 

In (13), 𝛻2 is known as the Laplacian operator. The subscript p denotes that it is computed on an 

isobaric surface. 

Before we proceed, a brief digression about the meaning of (13). It denotes that if you know the 

geopotential on an isobaric surface, because of geostrophic balance you can obtain the geostrophic 

relative vorticity and geostrophic winds on that isobaric surface. Conversely, the geostrophic wind 

(and thus the geostrophic relative vorticity) is known, you can obtain the geopotential field on that 

isobaric surface. This concept, known as invertability, is something that we’ll explore further when 

we discuss potential vorticity.  

Furthermore, (13) also gives us insight into the distribution of geostrophic relative vorticity with 

respect to the geopotential field. The Laplacian operator 𝛻2, or second partial derivative, can be 

viewed as a measurement of the curvature of a field. Nominally, where 𝛻2𝛷 is a maximum, Φ 

itself is a minimum (and vice versa). As a result, maxima in 𝛻2𝛷 (and thus also ζg) correspond to 

minima in Φ. Likewise, minima in 𝛻2𝛷 (and thus also ζg) correspond to maxima in Φ.  

Since Φ = gz and g is a constant, these assessments can be interpreted in terms of the height field 

rather than just the geopotential… 

• Geostrophic relative vorticity is maximized (or is cyclonic) at the base of a trough on an 

isobaric surface. 

• Geostrophic relative vorticity is minimized (or is anticyclonic) at the apex of a ridge on 

an isobaric surface. 

Why are we interested in the geostrophic relative vorticity? The evolution of geostrophic relative 

vorticity, both in space as well as in time, provides vital information that can be used to diagnose 

the movement of synoptic-scale meteorological phenomena and the synoptic-scale vertical motion 

associated with such phenomena. Such information can be used to describe the formation, motion, 

and evolution of midlatitude cyclones. Much of our discussion of quasi-geostrophic theory follows 

directly from these tenets, as we will explore in upcoming lectures.   

 

The Quasi-Geostrophic Vorticity Equation 
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We obtain the quasi-geostrophic vorticity equation by finding ∂/∂x of the y (or j) component of the 

quasi-geostrophic momentum equation and subtracting from it ∂/∂y of the x (or i) component of 

the quasi-geostrophic momentum equation. 

Neglecting friction, (5) can be written as: 

𝐷𝑔 �⃗⃗� 𝑔

𝐷𝑡
= −𝑓0�̂� × �⃗⃗� 𝑎𝑔 − 𝛽𝑦�̂� × �⃗⃗� 𝑔 (14) 

 

Expanded into its components, (14) becomes: 

𝐷𝑔𝑢𝑔

𝐷𝑡
= 𝑓0𝑣𝑎𝑔 + 𝛽𝑦𝑣𝑔 (15a) 

𝐷𝑔𝑣𝑔

𝐷𝑡
= −𝑓0𝑢𝑎𝑔 − 𝛽𝑦𝑢𝑔 (15b) 

 

To form the quasi-geostrophic vorticity equation, we thus compute ∂/∂x of (15b) - ∂/∂y of (15a). 

Start by operating on the left-hand side of (15a) and (15b): 

𝜕

𝜕𝑥
(
𝐷𝑔𝑣𝑔

𝐷𝑡
) −

𝜕

𝜕𝑦
(
𝐷𝑔𝑢𝑔

𝐷𝑡
) =

𝐷𝑔

𝐷𝑡
(
𝜕𝑣𝑔

𝜕𝑥
−

𝜕𝑢𝑔

𝜕𝑦
) =

𝐷𝑔𝜁𝑔

𝐷𝑡
 (16a) 

 

 Now repeat for the right-hand side of (15a) and (15b), setting it equal to the result of (16a): 

𝐷𝑔𝜁𝑔

𝐷𝑡
=

𝜕

𝜕𝑥
(−𝑓0𝑢𝑎𝑔 − 𝛽𝑦𝑢𝑔) −

𝜕

𝜕𝑦
(𝑓0𝑣𝑎𝑔 + 𝛽𝑦𝑣𝑔) (16b) 

 

Expanding (16b) and grouping like terms, we obtain: 

𝐷𝑔𝜁𝑔

𝐷𝑡
= −𝑓0

𝜕𝑢𝑎𝑔

𝜕𝑥
− 𝑓0

𝜕𝑣𝑎𝑔

𝜕𝑦
− 𝛽𝑦

𝜕𝑢𝑔

𝜕𝑥
− 𝛽𝑦

𝜕𝑣𝑔

𝜕𝑦
− 𝛽𝑣𝑔 

= −𝑓0 (
𝜕𝑢𝑎𝑔

𝜕𝑥
+

𝜕𝑣𝑎𝑔

𝜕𝑦
) − 𝛽𝑦 (

𝜕𝑢𝑔

𝜕𝑥
+

𝜕𝑣𝑔

𝜕𝑦
) − 𝛽𝑣𝑔 

(17) 

 

Because the divergence of the geostrophic wind, when f is held constant (f = f0), is equal to zero, 

the –βy term in (17) will vanish. Likewise, the continuity equation (7) can be used to rewrite the 

terms involving uag and vag in terms of the vertical partial derivative of the vertical motion. Thus, 

(17) becomes: 

𝐷𝑔𝜁𝑔

𝐷𝑡
= 𝑓0

𝜕𝜔

𝜕𝑝
− 𝛽𝑣𝑔 (18) 

 

The total derivative on the left-hand side of (19) is expanded as: 
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𝐷𝑔𝜁𝑔

𝐷𝑡
=

𝜕𝜁𝑔

𝜕𝑡
+ �⃗⃗� 𝑔 ⋅ 𝛻(𝜁𝑔) (19) 

 

Using (19), (18) may be written as: 

𝜕𝜁𝑔

𝜕𝑡
= −�⃗⃗� 𝑔 ⋅ 𝛻𝜁𝑔 − 𝛽𝑣𝑔 + 𝑓0

𝜕𝜔

𝜕𝑝
 (20) 

 

Equation (20) is the quasi-geostrophic vorticity equation. It is a prognostic (or predictive) equation 

for the geostrophic relative vorticity. It states that the local change of geostrophic relative vorticity 

is a function of three terms: the geostrophic horizontal advection of geostrophic relative vorticity, 

the geostrophic meridional advection of planetary vorticity, and the vertical stretching of planetary 

vorticity. 


