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Synoptic Meteorology II: Introduction to Isentropic Potential Vorticity 

Readings: Sections 4.1, 4.2, and 4.3.1 of Midlatitude Synoptic Meteorology.  

 

The Relationship Between Relative Vorticity and Static Stability 

To date, we have typically considered relative vorticity (a kinematic field) separately from static 

stability (a thermodynamic field). However, the two quantities are inextricably linked through 

the thermal wind relationship. 

Let us consider a vertically localized maximum of relative vorticity, which is approximately 

equal to the geostrophic relative vorticity. A vertical cross-section through this feature along an 

east-west axis indicates northerly flow to the west and southerly flow to the east, each of which 

are maximized on the isobaric surface of the relative vorticity maximum (Fig. 1). To the west, v 

(or vg) is less negative above and below the isobaric level of the relative-vorticity maximum; 

thus, the change in v with height is negative below and positive above this isobaric level. To the 

east, v is less positive above and below the isobaric level of the relative-vorticity maximum; thus, 

the change in v with height is positive below and negative above this isobaric level. 

The thermal wind is the vector difference in the wind – specifically, the geostrophic wind – 

between two isobaric levels. The meridional component of the thermal wind is expressed as: 
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where p0 > p1 (i.e., p0 closer to the surface). The thermal wind links the change in geostrophic 

wind with height – here manifest through our relative-vorticity maximum – to horizontal 

variability in the layer-mean virtual-temperature field. 

In Fig. 1, vT is negative below the level of the relative-vorticity maximum to the west and above 

the level of the relative-vorticity maximum to the east. Likewise, vT is positive above the level of 

the relative-vorticity maximum to the west and below the level of the relative-vorticity maximum 

to the east. This is depicted in black text on Fig. 1. 

As a result, from (1), vT

x




< 0 below the level of the relative-vorticity maximum to the west and 

above the level of the relative-vorticity maximum to the east and that vT

x


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the relative-vorticity maximum to the west and below the level of the relative-vorticity maximum 
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to the east. In other words, virtual-temperature is a local minimum below and a local maximum 

above the level of the relative-vorticity maximum. This is depicted in purple text in Fig. 1. 

If we assume that virtual temperature on an isobaric surface is closely approximated by potential 

temperature, we can infer the structure of the isentropes across the relative-vorticity maximum. 

As potential temperature typically increases upward, a local potential-temperature minimum 

implies lower-valued isentropes bowing up and a local potential-temperature maximum implies 

higher-valued isentropes bowing down. This is depicted in gold on Fig. 1. 

Finally, recall that static stability is defined as the partial derivative of potential temperature with 

respect to pressure. As can be inferred from Fig. 1, the magnitude of the static stability is largest 

at the level of the relative-vorticity maximum and is smaller to the west and east. Thus, relative-

vorticity maxima and static-stability maxima are inextricably linked (in geostrophic conditions) 

by thermal wind! 

Why do we care? Let us begin by deriving isentropic potential vorticity… 

 

Figure 1. Vertical cross-section through a mid-tropospheric cyclonic relative-vorticity maximum 

(blue). The red arrows denote the associated meridional component of the geostrophic wind to its 

west and east; thicker arrows denote faster flow. The sign of the thermal wind in each layer to 

the west and east are given in black text and the relative magnitudes of Tv and θ are given in 

purple text. The isentrope configuration associated with the implied θ distribution is depicted by 

the gold contours. Please refer to the text above for more details. 
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Isentropic Potential Vorticity Derivation 

We start by casting the horizontal momentum equation, neglecting friction and presented without 

derivation, into isentropic coordinates: 
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In (2), the subscript of θ implies that the gradient operator is applied on an isentropic surface. M 

is the Montgomery streamfunction. 

On an isentropic surface, the total derivative in (2) takes the form: 
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where dθ/dt =   is the diabatic heating rate, which we have sometimes also referred to as Q or 

dQ/dt. This term states that cross-isentropic flow occurs only when there is local diabatic heating 

(dθ/dt non-zero) contributing to potential temperature not being conserved following the motion. 

This implies vertical motion between isentropic surfaces. (Note, as we did in the last lecture, that 

vertical motion in isentropic coordinates can also be along an isentropic surface, or dry-adiabatic 

in nature.) 

Note the similarity of (2) to its form in isobaric coordinates: 
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In our last lecture, we demonstrated how the Montgomery streamfunction on an isentropic 

surface is an analog to the geopotential height on an isobaric surface. Therefore, it makes sense 

that the term on the right-hand side of the horizontal momentum equation in isentropic 

coordinates would be formulated based upon the Montgomery streamfunction rather than the 

geopotential height. 

If we expand the total derivative in (2) by using (3), we obtain: 
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We now wish to obtain the vorticity equation for the isentropic coordinate system. Recall that the 

vorticity equation on an isobaric surface is obtained by taking k̂  of the horizontal 



Introduction to Isentropic Potential Vorticity, Page 4 

 

momentum equation. In component form, this is equivalent to finding ∂/∂x of the v-momentum 

equation and subtracting ∂/∂y of the u-momentum equation from it. Doing so, we obtain: 
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If we assume that potential temperature is conserved (purely dry-adiabatic flow), then the 

diabatic heating rate   is zero. Thus, the third term on the left-hand side of (6) and the only term 

on the right-hand side of (6) are both zero. Simplifying, 
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The first term of (7) can alternately be written in terms of ζ + f because f does not change locally 

with time. As a result, 
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We can write the continuity equation in isentropic coordinates as: 
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We now wish to combine (8) and (9) in such a way to eliminate the divergence term v

  from 

the system of equations. To do so, we multiply (8) by -g∂θ/∂p and add to it (9) multiplied by -

g(ζ+f). Doing so, we obtain: 
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The inverse of the chain rule for partial derivatives may be used to combine the first two terms of 

(10) as well as the last two terms of (10). This allows us to write: 
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We define P, the isentropic potential vorticity, as: 
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where η = ζ + f, the absolute vorticity. Because g is a constant, we can take it into the partial 

derivatives of (11), allowing us to substitute (12) into (11) and obtain: 
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The Conservation of Isentropic Potential Vorticity 

Equation (12) states that the isentropic potential vorticity is conserved following the motion 

along an isentropic surface (i.e., under dry-adiabatic conditions, such that diabatic heating is 

zero). Since we neglected friction in the horizontal momentum equation, isentropic potential 

vorticity is also conserved only under frictionless conditions (i.e., not near the surface). The non-

conservation of isentropic potential vorticity following the motion along an isentropic surface 

thus can be used to infer where diabatic heating is occurring and/or where friction is important. 

The isentropic potential vorticity P is a multiplicative function of two factors: 

• Absolute vorticity η – a rotational constraint 

• Static stability -∂θ/∂p – the vertical isentrope packing 

Isentropic potential vorticity is a large positive value when cyclonic rotation is strong (η > 0) and 

static stability is large, representing isentropes that are tightly packed in the vertical (-∂θ/∂p >> 

0). Normally, -∂θ/∂p > 0 (except near the surface with strong surface sensible heating, both 

conditions that are neglected in this formulation), such that P < 0 only occurs where η < 0.  

Localized maxima in isentropic potential vorticity are known as positive potential vorticity 

anomalies, whereas localized minima in isentropic potential vorticity are known as negative 

potential vorticity anomalies. 

Since isentropic potential vorticity is conserved following the flow, if static stability or absolute 

vorticity change in value, the other must change in the opposite manner to keep the value of the 

isentropic potential vorticity constant. 

• If the static stability increases, the absolute vorticity must decrease. 

• If the static stability decreases, the absolute vorticity must increase. 

These statements also hold true in the inverse; changes in absolute vorticity must be 

accompanied by changes in the static stability to keep the value of the isentropic potential 
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vorticity constant. We can demonstrate this graphically via a vertical column of absolute 

vorticity between two isentropic surfaces, as depicted in Fig. 2. 

 

Figure 2. Schematic of a column of absolute vorticity between two isentropic surfaces at an 

initial (left) and a subsequent (right) time after the vorticity column has been stretched vertically. 

 

The rotation rate at the initial time, as measured by the absolute vorticity, is given by η0. The two 

isentropic surfaces θ and θ + ∂θ are separated by a known increment ∂θ. Likewise, the pressure 

difference between these two surfaces, ∂p is also known. If this column of vorticity is stretched 

vertically, the absolute vorticity increases. This can be shown using the vorticity equation, 

whether in its full or quasi-geostrophic form. 

After stretching, the new absolute vorticity is given by η1, where η1 > η0. The separation between 

the two isentropic surfaces, under dry-adiabatic conditions, remains ∂θ. Because we vertically 

stretched the column, however, the difference in pressure between these two isentropic surfaces 

has increased. Thus, since ∂p is larger, ∂θ/∂p is smaller, meaning that the static stability 

decreased to conserve isentropic potential vorticity. 

Note that this relationship does not contradict the correspondence between relative-vorticity and 

static stability demonstrated earlier in this lecture: even after stretching, the rotation maximum is 

still associated with locally higher static stability as compared to its surroundings (which are not 

explicitly shown in Fig. 2 but can be inferred from the same thought experiment that went into 

obtaining Fig. 1).  

On the synoptic-scale, isentropic potential vorticity anomalies evolve through a combination of 

translation, rotation, and deformation by the synoptic-scale flow. For these processes, isentropic 

potential vorticity is conserved following the motion. However, friction and diabatic processes 

can also impact isentropic potential vorticity. When these processes are important, isentropic 
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potential vorticity is not conserved following the motion. We will examine this concept in 

greater detail in a later lecture.  

 

Introducing the Dynamic Tropopause 

The units of P are relatively complex: 
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For typical midlatitude, synoptic-scale flow, g ≈ 10 m s-2, η ≈ f ≈ 1 x 10-4 s-1, and ∂θ/∂p ≈ -10 K 

per 100 hPa (or 10000 Pa). It should be noted, however, that the actual value of the static 

stability is typically less than this scale value except with strong temperature inversions. If we 

plug these values into (12), we obtain a characteristic value of P = 1 x 10-6 m2 K s-1 kg-1. For 

simplicity, we term this value to be equal to 1 PVU, where PVU defines potential vorticity unit. 

In the troposphere, P is typically less than or equal to 1.5 PVU. Exceptions are typically confined 

to smaller-scale phenomena such as tropical cyclones with strong cyclonic rotation. In the 

stratosphere, where the static stability is very large as potential temperature rapidly increases 

with height, P is typically greater than 2 PVU. The tropopause is the transition region between 

the lower tropospheric values and higher stratospheric values of isentropic potential vorticity.  

This gives rise to the construct of the dynamic tropopause (DT), which is commonly represented 

by the 1.5 PVU or 2 PVU surface. The DT is the representation of the tropopause by a surface of 

constant P. Just as the isentropic potential vorticity is conserved following the flow on an 

isentropic surface, the inverse must also be true: potential temperature is conserved following the 

flow on a surface of constant P. Consequently, where potential temperature changes following 

the flow on the DT, one can infer that diabatic processes (e.g., latent heat release) are ongoing 

and potentially important to the evolution of the synoptic-scale pattern. 

Since potential temperature generally increases with height, analyses of potential temperature on 

the DT can be used to infer the relative height of the tropopause. Where potential temperature is 

relatively high on the DT, the tropopause itself is at a relatively high altitude, inferring an upper-

tropospheric ridge. Where potential temperature is relatively low on the DT, the tropopause itself 

is at a relatively low altitude, inferring an upper-tropospheric trough.  

This is demonstrated by Fig. 3. Relatively high potential temperature on the DT is found across 

the eastern United States and relatively low potential temperature on the DT is found across the 

western United States. The wind field is anticyclonically curved across the eastern United States 

whereas it is cyclonically curved across the western United States, in agreement with what we 
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would expect given the theory above. As one might expect, the strongest winds on the DT are 

found in conjunction with the largest horizontal gradients of potential temperature along the DT. 

We can confirm these insights by comparing Fig. 3 to Fig. 4. At 300 hPa, a trough is found 

across the western United States whereas a ridge is found across the eastern United States. At 

any given latitude, air temperatures are relatively cold near the trough and relatively warm near 

the ridge. Since pressure is inherently constant on an isobaric surface, this implies relatively low 

upper-tropospheric potential temperature in the western United States and relatively high upper-

tropospheric potential temperature across the eastern United States. The strongest winds are 

found along the periphery of the trough and ridge, where the horizontal height and potential-

temperature gradients are at their largest. 

Before proceeding, it is worth stating a cautionary note. Air temperature typically increases – or 

at least remains constant – across the tropopause. As a result, air temperature in the heart of an 

upper-tropospheric trough on an isobaric surface intersecting the tropopause may appear warm 

compared to its surroundings at locations that are above the tropopause. Therefore, care must be 

taken when analyzing features on isobaric surfaces intersecting the tropopause. The same does 

not hold true on the DT, however, since it is defined by the tropopause (and thus does not cross 

it); low (high) potential temperature always corresponds to a lower (higher) tropopause height. 

 

Figure 3. Potential temperature (shaded; units: K) and wind (barbs; half: 5 kt, full: 10 kt; 

pennant: 50 kt) on the dynamic tropopause, as represented by the 1.5 PVU surface, at 1200 UTC 

10 November 2012. Also depicted is the 925-850 hPa layer mean relative vorticity (contours; 

every 5 x 10-5 s-1). Image courtesy Heather Archambault. 
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Figure 4. Streamlines (black contours), horizontal winds (shaded; units: kt), and upper air 

observations (barbs: wind in kt, red numbers: air temperature in °C, green numbers: dewpoint 

temperature in °C) at 1200 UTC 10 November 2012. Image courtesy Storm Prediction Center. 

 

Potential Vorticity on Isobaric Surfaces 

Note that P is conserved following the flow only on isentropic surfaces; it is not conserved on 

isobaric surfaces. Given that most meteorological data are obtained, displayed, and interpreted 

on isobaric surfaces, it is fair to ask whether a similar quantity is conserved on isobaric surfaces.  

The Ertel potential vorticity, or EPV, is conserved following the full three-dimensional flow on 

isobaric surfaces if the flow is dry adiabatic and frictionless. EPV can be expressed as: 
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In (14), subscripts of 3 refer to the gradient being evaluated in all three dimensions: x, y, and p.  

If we complete the vector operations in (14) to expand the EPV into its components, we obtain:  
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If we presume that the horizontal vorticity – the terms involving ω and the partial derivatives of 

u and v with respect to p, representing rotation about the x and y axes – is small, we can simplify 

(15). This presumption is equivalent to stating the vertical motion and its horizontal gradients are 
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relatively small on the synoptic-scale and that the troposphere is approximately barotropic such 

that horizontal wind speed and direction are nearly constant with height.  

This simplified form of (15) is thus given by: 

p
gEPV
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(16) is identical to (10), except applied on an isobaric surface and is explicitly an approximation. 

The basic interpretation of midlatitude, synoptic-scale weather phenomena is identical whether 

isentropic or Ertel potential vorticity are used. However, care should be taken to remember that P 

is conserved following the motion on isentropic surfaces, whereas EPV is conserved following 

the motion on isobaric surfaces. (Both are conserved only for frictionless, dry-adiabatic flow.)  

Likewise, it should be reiterated that the EPV given in (16) is just that – an approximation. For 

greatest accuracy, P should be computed and interpreted exclusively on isentropic surfaces 

while the full, rather than approximate, EPV should be computed and interpreted exclusively on 

isobaric surfaces. Nevertheless, the form of potential vorticity given by the approximate EPV in 

(16) is that which is most often considered in synoptic-scale meteorology, largely because it is 

simpler to compute than its full form on isobaric surfaces and its counterpart on isentropic 

surfaces. 

 

Applying Isentropic Potential Vorticity to Synoptic Analysis 

Earlier, we stated that lower values of potential temperature on the DT imply lower tropopause 

heights and upper-tropospheric troughing. Meanwhile, higher values of potential temperature on 

the DT imply higher tropopause heights and upper-tropospheric ridging. This is demonstrated in 

Fig. 5. The DT is found at relatively low altitudes on relatively low isentropic surfaces near the 

poles and at relatively high altitudes and on relatively high isentropic surfaces near the Equator. 

These concepts can be understood from thickness arguments. Averaged over the course of a year, 

incident solar radiation is greatest at the Equator and lowest at the poles. Correspondingly, the 

annually averaged, tropospheric-mean temperature is greatest at the Equator and lowest at the 

poles. This implies relatively low thicknesses at higher latitudes and relatively high thicknesses 

at lower latitudes. Consider the case where the lower surface is taken to be the ground, which is 

at a constant altitude, and the upper surface is taken to be the tropopause. Lower thicknesses thus 

imply a lower tropopause height near the poles, while higher thicknesses imply a higher 

tropopause height near the Equator. 

Fig. 5 also demonstrates how one isentropic surface can be in the stratosphere at one location and 

in the troposphere at another. Take, for example, the 350 K isentropic surface. It is found 
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between 200-250 hPa at nearly all latitudes, particularly in panel (a). In the tropics, this is in the 

troposphere, beneath the DT. However, the 350 K isentropic surface intersects the DT at around 

30°N/30°S latitude, and at higher latitudes it is situated within the stratosphere. 

 

Figure 5. Vertical cross-sections of zonally averaged, climatological mean potential vorticity 

(dashed lines; units: PVU) and potential temperature (solid lines; units: K) for (a) January and 

(b) July. Reproduced from Synoptic-Dynamic Meteorology in Midlatitudes (Vol. II) by H. 

Bluestein, their Fig. 1.137. 

 

In Figs. 3 and 4, we demonstrated the link between potential-temperature anomalies on the DT 

and troughs and ridges on upper-tropospheric isobaric charts. Now, we demonstrate the link 
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between potential vorticity on an isentropic surface and troughs and ridges on upper-tropospheric 

isobaric charts. This is illustrated by Figs. 6 and 7. Equatorward extensions of the DT reflect 

upper- tropospheric troughs, the presence of cyclonically curved flow, and relatively cold 

temperatures. Poleward extensions of the DT reflect upper-tropospheric ridges, the presence of 

anticyclonically curved flow, and relatively warm temperatures. 

 

Figure 6. Isentropic potential vorticity (contours; every 1 PVU) on the 325 K isentropic surface 

valid at (a) 1200 UTC 16 May 1989 and (b) 1200 UTC 17 May 1989. Reproduced from 

Synoptic-Dynamic Meteorology in Midlatitudes (Vol. II) by H. Bluestein, their Fig. 1.138. 
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Figure 7. 500 hPa height (solid contours every 60 m), temperature (dashed contours every 5°C), 

and upper air observations (station plots of temperature in °C, dew point depression in °C, wind 

in kt, and height in dam) at (a) 1200 UTC 16 May 1989 and (b) 1200 UTC 17 May 1989. 

Reproduced from Synoptic-Dynamic Meteorology in Midlatitudes (Vol. II) by H. Bluestein, their 

Fig. 1.139. 


