
Appendix A: Defining the Yanai Apparent Heat Source Q1 and Apparent 

Moisture Sink Q2 

The spatial distribution of net heating across the tropics drives motion within the tropical latitudes. Before 

showing this using a simple dynamical model of the atmosphere, however, we first need to use basic 

principles of thermodynamics to introduce the concept of heat sources and heat sinks. 

We first define dry static energy s and moist static energy h as follows: 

(A1) 𝑠 = 𝑐𝑝𝑇 + 𝑔𝑧 

(A2) ℎ = 𝑐𝑃𝑇 + 𝑔𝑧 + 𝐿𝑣𝑞 

where cP, g, and Lv are constants, T is temperature, z is height, and q is the mixing ratio of water vapor. The 

dry static energy is a measure of enthalpy plus potential energy and the moist static energy is a measure of 

dry static energy plus latent energy (e.g., energy released as water changes phases). 

Dry static energy is approximately conserved following the motion for dry-adiabatic processes. Moist static 

energy is approximately conserved following the motion for dry- and moist-adiabatic processes. However, 

the presence of diabatic processes leads to neither dry nor moist static energy being conserved. In particular, 

the first law of thermodynamics states that changes in dry static energy following the motion are a function 

of the heating rate. In the troposphere, this heating is a function of the net radiation (e.g., incoming minus 

outgoing) and latent heating (particularly condensation and evaporation, as these are associated with much 

greater latent heats than phase changes between liquid and solid water). 

In its simplest form, the apparent heat source Q1 (positive for increased dry static energy) is defined by this 

heating rate, such that: 

(A3) 𝑄1 =
𝐷𝑠

𝐷𝑡
= 𝑄𝑅 + 𝐿𝑣(𝑐 − 𝑒) 

where QR is the heating rate due to radiation, c is the rate of condensation per unit mass of air, and e is the 

rate of evaporation of cloud droplets per unit mass of air. 

In (A3), Q1 is defined with respect to s, which is applicable independent of scale. However, we wish to 

instead derive an expression for 𝑠, or the contribution to s from only large-scale processes (or those that we 

can readily measure, in contrast to the turbulent scales which we cannot readily measure). We can write 

any variable as the sum of a large-scale mean (overbar) and local perturbation (prime), such as: 

𝑠 = 𝑠 + 𝑠′ 

Further, the total derivative can be written in flux form, where: 

𝐷( )

𝐷𝑡
=
𝜕( )

𝜕𝑡
+ 𝛻 ⋅ (𝒗( )) 

The flux form of the total derivative is identical to the advection form of the total derivative so long as the 

continuity equation holds. 



If we write s, c, and e in terms of their large-scale mean and local perturbation quantities, expand the total 

derivative, apply Reynolds’ averaging to separate the large (resolvable) and small (unresolvable) scales of 

motion, and apply Reynolds’ postulates to simplify the result, we obtain: 

(A4a) 𝑄1 =
𝜕�̄�

𝜕𝑡
+ 𝛻 ⋅ (𝒗′𝑠′) = 𝑄𝑅 + 𝐿𝑣(�̄� − �̄�) 

The flux-form term in the middle of this equation has three components: two horizontal (u’s’ and v’s’) and 

one vertical (ω’s’). These represent the transport of perturbation dry static energy by turbulent eddies. If 

we assume that the horizontal components of this term can be neglected, we can rewrite (A4a) as: 

(A4b) 𝑄1 = 𝑄𝑅 + 𝐿𝑣(�̄� − �̄�) −
𝜕

𝜕𝑝
(𝑠′𝜔′) 

The third right-hand-side term of (A4b) represents the large-scale average of the turbulent vertical sensible 

heat transport on the small, or unresolvable, scales of motion. In the aggregate, (A4) shows that the apparent 

large-scale heating is a function of large-scale radiative heating, the large-scale release of latent heat due to 

net condensation, and the large-scale-averaged turbulent vertical sensible heat transport. Because the left-

hand side of (A4b) is related to s, Q1 can be related to changes in temperature or, through Poisson’s law, 

potential temperature, following the motion. 

Vertically integrating (A4b) between the surface (psfc) and tropopause (ptrop), we obtain: 

(A5) < 𝑄1 >=< 𝑄𝑅 > +𝐿𝑣𝑃 + 𝑆 

where P is the precipitation rate (where the net condensation is assumed to fall out as precipitation), S is 

the vertical surface sensible heat flux, and brackets represent vertically integrated quantities. This equation 

enables us to readily demonstrate the impact of diabatic processes upon the vertically integrated horizontal 

heating distribution. 

We can also define an equation of moisture continuity as follows (Yanai et al. 1973, their Eqn. 7): 

 (A6) 
𝐷𝑞

𝐷𝑡
= 𝑒 − 𝑐 

where the rate of change of water vapor mixing ratio q following the motion is a function of net evaporation. 

If we multiply (A6) by Lv, re-arrange the right-hand side, use the flux form of the total derivative, and apply 

Reynolds’ averaging, we obtain an expression for Q2, the apparent moisture sink: 

(A7) 𝑄2 = −𝐿𝑣
𝐷𝑞

𝐷𝑡
= 𝐿𝑣(𝑐 − 𝑒) + 𝐿𝑣

𝜕

𝜕𝑝
(𝑞′𝜔′) 

As the name moisture sink implies, Q2 is positive for a reduction of q (or reduction in moist static energy) 

following the motion. The last term on the right-hand side of (A7) represents the large-scale average of the 

turbulent vertical latent heat transport on smaller scales. 

Next, we vertically integrate (7) to obtain a relationship for <Q2> similar to that for <Q1> in (A6): 



(A8) < 𝑄2 >= 𝐿𝑣(𝑃 − 𝐸) 

where E is the surface evaporation rate per unit area, commonly referred known as the vertical surface latent 

heat flux. 

  


