
PHYSICAL WAVE PROPAGATION MODELING

FOR REAL-TIME SYNTHESIS OFNATURAL

SOUNDS

GEORGESSL

A D ISSERTATION

PRESENTED TO THEFACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE

BY THE DEPARTMENT OF

COMPUTERSCIENCE

NOVEMBER 2002



c© Copyright by Georg Essl, 2002. All rights reserved.



iii

Abstract

This thesis proposes banded waveguide synthesis as an approach to real-time sound

synthesis based on the underlying physics. So far three main approaches have been

widely used: digital waveguide synthesis, modal synthesis and finite element methods.

Digital waveguide synthesis is efficient and realistic and captures the complete dynamics

of the underlying physics but is restricted to instruments that are well-described by the

one-dimensional string equation. Modal synthesis is efficient and realistic yet abandons

complete dynamical description and hence cannot used for certain types of performance

interactions like bowing. Finite element methods are realistic and capture the behavior of

the constituent physical equations but on current commodity hardware does not perform

in real-time.

Banded waveguides offer efficient simulations for cases for which modal synthesis

is appropriate but traditional digital waveguide synthesis is not applicable. The key

realization is that the dynamic behavior of traveling waves, which is being used in waveg-

uide synthesis, can be applied to individual modes and that the efficient computational

structure can be utilized to achieve an approximate dynamical description in the neigh-

borhood of modes. Secondly this realization is connected to related work on the theory

of asymptotics and periodic orbits and hence shown to apply to higher dimensions also.

This theoretical approach is studied in applications to bowed bar percussion instru-

ments, complex stroke patterns on Indian Tabla drums as well as rubbed wine glasses

and Tibetan singing bowls. None of these instruments and performance types has been

synthesized efficiently before. The simulations are compared to experiments.
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Chapter 1

Introduction

There are two things which I am confident I can do very well: One is an

introduction to any literary work, stating what it is to contain, and how it should

be executed in the most perfect manner; [..]1 – Samuel Johnson2

Let me introduce to you three of my friends: the red herring called insight, the

blue trout called hindsight, and the translucent amoeba called blindsight.

1.1 The Thesis Stated

The core of the thesis is to propose the usefulness of a certain algorithm, a certain filter

structure or a certain numerical method for the real-time synthesis of sounds on the

computer. This method is depicted using a block-diagram style typical for digital filters

in Figure 1.1

1Quote continued in the concluding chapter.
2James Boswell, “Life of Samuel Johnson,” (1755) available athttp://newark.rutgers.edu/

˜jlynch/Texts/BLJ/blj55.html or according to [147, p. 371, q. 17] in vol. 1, p. 292 (1755)

1
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Figure 1.1: The object of the thesis.

Throughout this thesis, I will discuss properties of this structure, various forms of

conceptual interpretation and connection to physically systems as well as the relation of

this structure to prior work and knowledge. I will argue that this structure is a gener-

alization of prior methods and by this generalization allows for an extended domain of

application. I will also argue that this structure is useful for thinking about notions of

efficiency and stability for numerical simulation. Finally I’ll compare the usefulness of

the method in application and with respect to alternative methods.

The statement of my thesis is that the method, which I like to call “banded digital

waveguides,” is a significant advance in the field of physical sound simulation, by offering

a number of theoretical and practical contributions.

1.2 Contributions of this Thesis

In thesis, I propose a physical modeling method for musical instruments and other sound-

ing objects. The method itself is a generalization of previous methods and broadens their



CHAPTER 1. INTRODUCTION 3

realm of application. In particular, this method extends the class of possible interactions.

It also broadens the types of materials that can be modeled. In addition it allows for

simulation of some two and three-dimensional geometries in real-time.

I have illustrated the practical application of the method for bowed bar percussion,

Indian Tabla drums, the glass harmonica, and the Tibetan prayer bowl. All of these

examples share complex performance patterns and are examples of objects of different

geometries. In all cases, the simulation is validated by experiments on real instruments.

In addition, the relation to alternative simulation methods are investigated. This

highlights the differences, advantages, disadvantages, and limitations of the respective

methods. In the case of modal and waveguide synthesis, it is shown that the proposed

method generalizes both and extends the applicability to dynamic modeling of solid

objects in higher dimensions. In the case of frequency warping, the proposed method

shows a significant performance advantage. Finite difference and finite element methods

are more general in application than the proposed method, though they are significantly

slower in comparable applications.

1.2.1 Publications and their Place in this Thesis

The bowed bar research (section 4.1) was first presented at a conference [60] and in its fi-

nal version in an archival journal [61]. Finite element methods (section 6) as an alternative

solution was investigated in collaboration with James F. O’Brien of UC Berkeley [135].

The generalization of the simulation method to higher dimensions and examples of Tabla

and glass harmonica (sections 4.2 and 4.3) is in preparation for publication, though an

unpublished manuscript has been circulated [62]. The work on the glass harmonica and

Tibetan prayer bowls (section 4.4) as well as theoretical considerations (parts of chapters

3 and 5) have been submitted for review for a conference [63, 64]. Real-time interaction
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work with Ajay Kapur, Philip Davidson and Perry Cook for the Tabla drums [98] will not

be discussed here beyond the Tabla simulation.

1.3 Thesis Outline

I will first discuss the background, prior art and related literature chapter 2. Then the

theory of propagation modeling using banded waveguides will be discussed in chapter

3. Then, in chapter 4, four examples will be discussed: bar percussion instruments (sec-

tion 4.1), Indian Tabla drums (section 4.2), glass harmonicas (section 4.3), and Tibetan

singing bowls (section 4.4) with relevant experimental work. Then the simulation method

is compared with alternative methods in chapter 5 and the case of finite element methods

is described and discussed in detail in chapter 6. Finally possible future directions and

applications of the method are proposed in chapter 7.



Chapter 2

Background, Previous Art and Related

Literature

Only the more rugged mortals should attempt to keep up with current litera-

ture. – George Ade1

The combined collections total more than six million printed works, five million

manuscripts and two million nonprint items, and increase at the rate of about

10,000 volumes a month. – History of the Princeton University Library

Online2

Six months in the lab can save you a day in the library. – old reference

librarian proverb (according to Sally Jo Cunningham3) or by Albert

Migliori (according to Julian D. Maynard 4)

Information come and stay, sink in and if you don’t — go away.

1As attributed athttp://www.geocities.com/˜spanoudi/topic-I5.html
2http://libweb.princeton.edu/about/history.php as retrieved on April 14, 2002.
3http://www.cs.waikato.ac.nz/GradConf/talks/sallyjo/
4Julian D. Maynard, “Resonant Ultrasound Spectroscopy,” Physics Today 48(1) 26-31, January 1996.

5
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This work is interdisciplinary in nature. The background of this work is not solely

placed in firmly established fields within Computer Science, but rather draws on a wide

range of different disciplines, knowledge and ideas. Traditionally work along these lines

has been connected with an emerging discipline called “Computer Music” [202]. More

specifically within the sound synthesis community, this line of work falls into the category

of “physical modeling” [165, chapter 7].

The work to be presented draws from a wide range of different fields. Yet I first

want to present only the background and prior art as understood in the Computer Music

community and I would like to introduce relevant texts that are not commonly known

in the community as part of the theoretical discussion or, if applicable, in other sections

throughout this thesis. The purpose of this approach is mostly to motivate the relevance

of these works with the development of the ideas, so it can be appreciated by the commu-

nity5.

Wave phenomena are so ubiquitous that a review of knowledge pertaining to this

phenomena can be a daunting and overwhelming task and in the end it seems to me that

claims to completeness would imply proof of insanity. Still, I made an attempt to be as

broad as I possibly could be in finding material and the search for literature was confined

mostly by basic ideas presented in this thesis. Literature deemed worthy of investigation

have some connection to a number of questions:

• Who has studied wave propagation analytically and numerically and how?

• What is known about stick-slip interactions and perceptible noise generated from

it?
5This is also connected with problems of presentation of interdisciplinary work, as for example noted

by Margrit Eichler [59, p. 59] of translation, language and reception. I hope of a benefit in reception if
unfamiliar literature is presented along familiar lines of arguments rather than in isolation.
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• What is known about certain sounding objects, like bars, membranes, tuned bars,

tuned membranes, Tabla drums and wine glasses?

• What is known about measurement, parameter estimation of responses of the above

objects?

Also before the background search took on its full depth I knew already that in my

immediate community, people who study physical modeling of musical instruments —

a fairly small community of mostly electrical engineers, acousticians, musicians and

computer scientists — the ideas proposed in this thesis were novel. There was hence

also the question:

• Which of these ideas are known in what form outside my core community?

And finally the literature search is also a foundation of the research presented in this

thesis:

• How can literature answer questions that arise in my way of framing and investi-

gating the problem?

Investigating these last two questions leads to an assimulation of various strands of

research that are apparently (sometimes only partly) unaware of each other. For example,

the mode-ray duality is known in as diverse fields as structural engineering, seismology,

electromagnetism, theoretical physics, and applied and pure mathematics. All these fields

have, however only a partial overlapping in awareness of the connection of their work and

progression of insight in other fields. While traveling wave methods are widely used in

structural engineering [126] there seems to be little awareness of the correspondence of

their approach to asymptotic theory [139] or periodic orbits in chaos theory [48]. Even
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within mathematical physics the interaction between U.S. [103], Western Europe [58],

and Russia [110] is evidently not always present (see for example remarks in [58]).

This contributes to the fact that very similar concepts in literature have very different

nomenclatures and attributions (for example, an asymptotic traveling wave Ansatz can

go by any of the following names or acronyms: LG, WKB, JWKB, EBK, periodic orbits,

traveling wave method, wave method, ray method, ray tracing method, billiard, phase

integral method, asymptotic method.) A brief glossary trying to unravel some of this

confusion can be found in Appendix A6. One contribution of this thesis is a shy attempt

to unearth these connections and find a synthesis that is approachable by the researcher

in physical modeling for sound synthesis.

All these questions will be addressed throughout the thesis. Next I would like to

review the prior art of sound synthesis as a precursor to this work.

2.1 Sound Synthesis Methods

Sound synthesis methods can be classified into various groups. The previously used

methods with direct relation to this work are generally classified asphysical modeling

synthesis[165]7. Though Roads [165] classifies many separate categories of methods

within the field, many are conceptually very closely related. For instance McIntyre,

Schumacher, and Woodhouse synthesis [122], Karplus-Strong synthesis [100, 94, 99,

195] and Waveguide synthesis [185, 187, 188] are very closely related. In the case of

Karplus-Strong and Waveguide synthesis, the difference can be seen as mere physical

interpretation of the structure.

6The confusion that is part of the process of unifying various lines of research is nicely described by
Daubechies in the case of the evolution of wavelets [51].

7A related taxonomy can also be found in [198].
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McIntyre, Schumacher, and Woodhouse realized that separation of non-linear ex-

citation and linear resonant instrument response with a persistence on a time-domain

view allows for quite efficient and qualitatively good simulation that captures the rich

behavior of the overall dynamics very well. The work of Karplus and Strong then

highlighted that, in fact, the traveling wave that gives rise to the resonant behavior of

strings under tension and air-filled pipes can be very efficiently modeled using delay-

lines. This efficient implementation of a delay line uses a circular buffer [55, p. 227][194,

p. 258-260], something that had been realized by Schroeder and others while studying

synthetic reverberation and room-acoustic simulation [105, 75, 76, 12, 175, 90, 28].

In the remainder of the thesis I will refer to all of these categories simply aswaveguide

synthesis8.

Another line of physical modeling are methods which are concerned with direct

discrete simulation of the local dynamics responsible for sound generation. These in-

clude methods using finite differencing [174, 33, 20, 113, 35, 146], mass-spring-damper

networks [30, 71, 31], finite element methods [27, 21] and transmission-line methods for

solving differential equations [214, 18] (which includes highly scattering digital waveg-

uide simulations and digital waveguide meshes)9. Again, all these methods are in close

relationship to each other. For instance there is a direct correspondence between finite

differencing and scattering networks [18]. Though not necessarily known in the Com-

puter Music community, the matrices arising in solid mechanics finite element methods

have a direct mass-spring-damper interpretation [222] and finite elements can be seen as

generalization of finite difference methods [222, 5, 201].

8Julius Smith often uses the termwaveguide digital synthesisto indicate that this is a digital synthesis
method, throughout this thesis all methods are digital in the sense that are all numerical discretization on
digital computers.

9This is an important note to make. Digital waveguide meshes are, for the purpose of these thesis, not
classified with waveguide simulations but rather with finite element methods.
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For the purpose of this thesis I will refer to all of these methods as instances offinite

element methods.

The final class of physical synthesis methods models the spectral response of the

physical system. This can be achieved through additive sinusoidal modeling [182, 210],

resonant filter modeling [219, 42], model decomposition modeling [1].

These methods will be referred to asmodal synthesis methodsthroughout this thesis10.

Other methods of sound synthesis, as found in [165, 55, 198], are not reviewed as

they are not relevant to this thesis. They are either not physically informed or stochastic

in nature.

2.1.1 Waveguide Synthesis

There are many references which comprehensively review waveguide modeling at it

current state [188, 45, 187, 99, 8]. Here I will only mention the key ideas and ideas

in previous work that are relevant to this thesis.

The derivation of the basic idea of waveguide synthesis is usually presented starting

with the ideal wave-equation which describes the perfectly elastic string under tension

and oscillations in an air-tube or related wave-guiding structure for small displacements

[132, 194, 188]:

∂2y
∂t2 = c2∂2y

∂x2 (2.1)

10Note that modal means different things to different communities. The wordmodalwas chosen over
spectralbecause the later usually is used in the Computer Music community in a context that is not
physically motivated, for instance in spectral shaping methods, whereasmodal implies an underlying
physical system. This means however thatmodal may only correspond to eigenfrequencies and does
not necessarily imply eigenfunctions. I will make sure when appropriate if the latter is included in the
discussion.
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wherec is a material constant. The “generalized solution” [111, p. 636] — also

known as d’Alembert solution — has the form:

y(x, t) = f−(x−ct)+ f +(x+ct) (2.2)

wheref− and f + are any twice-differentiable functions that satisfy imposed boundary

conditions. As can be seen, with increasing timet, the solution has two functionally

described waveforms traveling in the positive and negative spatial dimensionx at speed

c.

Figure 2.1: Reflection of a traveling wave on a boundary.

The fixed string (or reflective wall of air tube) (or open air tube) are important cases

of boundary conditions11 and it can easily be shown [194] that:

f +(xB, t) =− f−(xB, t) for a fixed end reflection at positionxB (2.3)

f +(xB, t) = f−(xB, t) for a lose end reflections at positionxB (2.4)

11These boundary conditions are also referred to as Dirichlet and von Neumann boundary conditions
[111, p.651]



CHAPTER 2. BACKGROUND, PREVIOUS ART AND RELATED LITERATURE12

that is, the traveling waveform reflects with a sign-change at fixed ends and without

one at open ends. This can also be interpreted as a virtual wave traveling in from behind

a rigid boundary has to match an incoming wave with a sign-change. This is depicted in

Figure 2.1.

Discretizing time of this solution with boundary conditions imposed on both ends

immediately yields a waveguide simulation for the ideal, lossless case (Figure 2.2).

Figure 2.2: Waveguide synthesis of ideal lossless string

Arbitrary bounded function shapes discretized over time are then represented as sam-

pled data points of that function at distancec∆t where∆t is the chosen discrete time step.

Advancing per time step corresponds to shifting by one memory cell per propagation

direction. Data-points reflect by copying and possibly inverting sign.

Of course in a more physically realistic situation, certain assumptions made when

deriving the wave-equation do not exactly hold. Physical strings dissipate energy and are

not perfectly elastic or perfectly thin. While intuitively all these effects happen at each

local point on the string, if exact local representation at every point is not necessary, all

losses can be accumulated (“lumped”) and modeled at one position in the model. If the
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structure is seen as a filter, one can interpret that the lumped losses, bending stiffness [6,

for a review] as filters.

The classical Karplus-Strong synthesis method (Figure 2.3) can then be seen as a

waveguide synthesis method including losses. Note that the boundary reflections have

been lumped too, which, in the case of two fixed ends, correspond to a double sign

inversion which overall cancels.

Figure 2.3: The Karplus-Strong algorithm as waveguide synthesis.

The delay lines used in this model are of integer length. Hence, at a fixed time

step of1/44100corresponding to CD quality audio [155] with shorten string length, the

frequency resolution suffers. A filter modeling the fractional delay between the integer

and actual length is necessary to accommodate for accurate tuning. This is achieved by

using various filter design methods [114].

A number of modifications to the ideal waveguide have been studied to achieve

more realism. These extensions are usually instrument-specific, for instance the bending

stiffness of piano-strings [6] has little relevance for most plucked string instruments [99]

(for physical as well as perceptual reasons [96]) whereas tension modulation (the change

of tension with displacement) is more important for the latter where the strings are under

less overall tension than piano strings [199].
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2.1.2 Finite Element Methods

Finite element methods are a vast field with general applications. For a very recent and

exhaustive reference see the three-volume work by Zienkiewicz and Taylor [222, 223,

224]. A review specific to finite difference methods can be found in [5].

In the computer music community, finite element style methods are used in two

settings. One is the study of musical acoustics, in the evaluation and theory-forming

of the dynamical behavior of musical instruments. Finite differencing has been used by

to study piano-strings [33, 34], bar percussion instruments [20, 35, 56], and square plates

[36, 115]. Finite element methods have been used to study tuning of bar percussion

instruments [27, 21] and the kettledrum [162]. These studies focus on accuracy and

validity and not on performance parameters relevant for synthesis.

The other setting is simulation. Ruiz studied the finite differencing of the string

equation [174]. Interest in this approach re-emerged, usually in the context of the one-

dimensional wave-equation [112, 113, 146]. Cadoz and co-workers don’t explicitly start

with model differential equations, but rather build ad-hoc networks of masses, springs,

dampers and other coupling mechanisms [30, 71, 31]. Finally, waveguide meshes were

proposed to model higher-dimensional structures [214]

The core to all of these methods is that the object to be simulated is discretized

spatially and the local interactions between discretization points are modeled. In the

case of finite differencing, the mesh is usually uniform [5]. An example can be seen in

Figure 2.4. Non-uniform meshes are usually simulated by the more general finite element

method [222]. For a typical mesh structure see for example Figure 2.5.

The dynamics of the system that is set up is problem-dependent. However finite

element methods are usually set up as a three-stage process [222, chapter 20], a prepro-

cessing stage which takes mesh connectivity, element specification, constraints, and force
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Figure 2.4: A finite difference simulation of a tuned bar (using the method of Chaigne
and Doutaut [35])

Figure 2.5: Tetrahedral mesh for anF]3 vibraphone bar. In (a), only the external faces
of the tetrahedra are drawn; in (b) the internal structure is shown. Mesh resolution is
approximately1cm.
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Figure 2.6: Computational molecules of (a) second order and (b) fourth order
discretizations leading to banded entry in the model matrix of a finite element solver.

inputs and assembles them into a global matrix formulation. The second step is solution

of the system for each time-step in case of time-dependent problems or until convergence

in relaxation problems. The third stage is postprocessing which consists of extracting the

solution from the global vectors and reinterpreting as element data.

The core computational step is hence the solution of a matrix equation where the size

of the matrix is (at least in the basic case) at least as large as the number of elements. In

special cases, like one-dimensional string and bar equations on a uniform grid [35], the

formulation leads to a banded matrix (in the case of strings the band is 3 and in case of

bars the band is 5 as depicted in Figure 2.6), in which case the solution of the system is

O(NM) with N being the number of spatial mesh points andM being the width of the

band [156, pp. 50-55].

Higher dimensional and more complex domains and meshes generally don’t form

well-structured matrices, which increases the complexity. Multigrid methods [220, 22,

190, 217, 204] address this problem by solving on a coarse scale and adding refinement

steps. Other possibilities are matrix preconditioning techniques [77, pp. 532ff] and

manipulation (sparsing) [177]. In any case, usually the optimal performance is assumed
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Figure 2.7: A mass-spring damper system and connected digital filter simulation

to beO(N) (for diagonal or band-diagonal matrices [156, 37]) orO(N logN) for dense

matrices [37].

2.1.3 Modal Synthesis

Modal sound synthesis refers to modeling the sound of an object as a sum of exponentially

decaying sinusoids. Physically this corresponds to simple damped harmonic oscillators,

like mass-spring-damper systems (see Figure 2.7). These second-order resonant struc-

tures have a simple representation in the form of two-pole filters, which are very efficient

to model, and hence a large number of modes can be modeled with ease.

The digital filter equation corresponding to Figure 2.7 for each time stepn is:

y(n) = a1 ·y(n−1)+a2 ·y(n−2)+g·x(n) (2.5)

The massm, spring constantk and dampingd can be used to derive the digital filter

coefficientsa1, a2 and g. In fact this digital filter is a discrete physical model of the

mass-spring-damper system.
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As can be seen each filter only requires a small and constant number of multiplications

and additions and memory operations and hence the complexity of this method isO(M)

whereM is the number of modes modeled.

Models of this type have been proposed and used on a wide array of objects and

instruments [1, 219, 182, 210, 211, 208, 212].

Modal shapes can be reconstructed by sampling the surface and hence reconstructing

the modal shapes through an amplitude envelope as function of discrete spacek. Then

equation 2.5 becomes:

y(n,k) = a1(k) ·y(n−1)+a2(k) ·y(n−2)+g(k) ·x(n) (2.6)

This approach has recently been used by Pai and co-workers (see for example [208],

and note that their equation (1) is a sum of sinusoid form of equation 2.6, and a derivation

showing the connection can be found in [212]).

There are approaches which analytically derive the modal shapes for the dynamics

using transfer function methods [157, 200]. This method was also proposed to arrive at

the full solution over the whole spatial domain. By doing so, oscillation related to spatial

sampling is reintroduced and the computational complexity becomesO(NM), whereN

is the number of spatial sampling points. Hence the transfer function method is assumed

to belong to the class of finite element methods for the purpose of this discussion.
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2.2 Excitations

The vast majority of sound-producing physical events as used in musical instruments

can be well-separated into excitations and a responding sounding object [165]. In a

performance sense, this relates to control of the instrument (because the excitation drives

the sound production it provides control over the production) and in a physical sense, it

relates to energy input or transfer.

This energy transfer can be classified in two ways. One is that it happens independent

of the state of the driven system (i.e. excitation and production are “decoupled” [165, p.

269]) or they are not. Then the energy transfer depends on the state of the system and

excitation and production are “coupled” (Wawrzynek classifies a similar distinction as

“driven” versus “nondriven” [219].)

While Roads emphasizes the performance aspect of this separation [165, p.269] there

is a good physical reason for this distinction affecting sound production, control and

performance.

The distinction has to do with interactions which classify as linear as opposed to those

that don’t.

2.2.1 Linear or Impulsive Excitation

The definition of a linear excitation is that the variables driving an interaction are not

affected by the state of the system that is being interacted with.

Note, that this explicitly refers to the interaction rather than the system being inter-

acted with. The system could be non-linear, meaning that it does not respond to twice

the input with twice the output, but the interaction remains unaffected. For the following

discussion I will, however, assume that the system is linear and time-invariant too. This
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means that the the interactions can be divided into separate linear contributions12 and that

the system is invariant under a time-delay operation [142, p. 19].

It is easy to show that any discrete linear time invariant system can be completely

described by the system’s impulse response [142, p. 21].

In this light, a linear interaction refers to an interaction where the driving physical

quantity (for example the impact force of a strike) is, to a good approximation, unaffected

by interaction itself and hence directly relates to a digital impulse in the simulation.

In a finite element formulation this corresponds to a force functionF which is inde-

pendent of any state variables of the system.

A wide class of instruments have been modeled with their typical types of interac-

tions. The interactions which are well approximated as linear interactions are plucking,

striking with hard beaters, and certain rough-surface frictions (those where the rough

surface action is well-captured by periodic impulses) [210, 209, 211, 163, 54, 208, 212,

42, 44].

2.2.2 Nonlinear or Friction Excitation: Stick-Slip

For non-linear excitations, the independence of excitation from the state of the system

does not hold. Hence, the force function of a finite element approximation is a function

of the state of the system and weighted impulse input to discrete-time linear time-invariant

systems are dependent on the filter state.

The discussion will be limited to a class of non-linear friction phenomena called

“stick-slip” friction [3]. A particular instance of stick-slip friction is the action of a violin

bow on a bowed object (typically a string). Early work has been performed by Helmholtz

12This condition is usually divided into linearity within one input, called homogeneity or scaling property
and linearity between multiple different inputs, called additivity or superposition property [142, p. 18].
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[86], Rayleigh [159] and Raman [158], though early mentionings can be traced back

to Galileo Galilei [69, p. 331] and Chladni [40, 218]. Keller and Friedlander [101, 72]

independly developed the theoretical foundation of bowed string action that is still widely

used today in computer models [186, 133]. The friction characteristic used by them is

depicted in Figure 2.8. This basic model was subject to a number of refinements taking

into account the width of the bow [150] and more detailed knowledge of the action of

rosin on the bow [183, 184] and has been used in waveguide synthesis [180].
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Figure 2.8: Friedlander-Keller friction diagram (from [188]).

It has been known since Chladni [40, 218] that other objects (in particular bars and

plates) can be bowed using a rosined bow. In particular this has been recently used to

study the glass harmonica [172]. Nonetheless the specifics of the musical application of

the violin bow to other systems remains largely unexplored. A notable and fascinating
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example is the Chinese Dragon Wash which includes not only the friction-induced sound

production but also water waves [53, 52].

Stick-slip friction as excitation of sound is in other contexts considered undesirable.

Examples are brake noises [3, 87], propeller shaft noises of submarines [69], squeals from

train wheels [84, 82], friction noises of insects [3] and more. This lead to a large corpus

of research on friction-based oscillations [3, 69, 92, 93, 203, 123, 87] is concerned with

the damping (i.e. control) of such sounds [83, 197, 85].



Chapter 3

Theory of Propagation Modeling Using

Banded Digital Waveguides

Anybody else could have told me this in advance, but I was blinded by theory.

– Bertrand Russell1

I hear that you write poetry as well as working in physics. How on earth

can you do two such things at once? In science one tries to tell people, in

such a way as to be understood by everyone, something that no one ever

knew before. But in poetry, it’s the exact opposite. – Paul Dirac to Robert

Oppenheimer2

Junta ist totz (sic) der langen Regeln einfach zu erlernen3 – From the Ger-

man instructions to the board game Junta4

1In “The Autobiography of Bertrand Russell,” vol. 2, chap. 5, p. 288 (1967).
2Attributed by Leo Moser in H. Eves, “Mathematical Circles Adieu,” Prindle, Weber and Schmidt, p.

70 (1977).
3Junta is easy to learn, despite the long rules.
4By ASS/Schmidt, 1986.

23
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3.1 Overview and Motivation of Propagation Modeling

for Sound Synthesis

In the real world, sound is generated through a wide variety of interactions between

objects. Some interactions can be modeled easily, using simple and efficient methods,

whereas others cannot. In a virtual world it is desirable that all interactions are captured

by real-time simulation methods. In this chapter I study and generalize propagation mod-

els to explore possible intermediate solutions between simple resonant modal methods

and slow but general finite-element methods.

3.1.1 Local Displacement to Moving Disturbance

Traditionally, when thinking of numerical simulation of elastic vibration, we are used

to describing the change of displacement in the form of partial differential equations,

which are derived from the constituent equations of general elasticity. Then these dif-

ferential equations are approximated by discretization, which creates a finite sampling

of the displacements in and on the physical objects. The finite difference operators

describe how one sampling point moves depending on its neighbors. In this approach,

the perspective of oscillation is a stationary one — the focus of observation is on the

displacement of the local data points. There is, however, a different perspective possible:

How do disturbances propagate in a medium? This question suggests keeping the focus

on the position or the behavior of the disturbance itself, rather than focusing on the local

displacements of the medium. This is the approach that is being taken in this thesis and

will be described in the following sections.
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3.1.2 Propagation of Sound in Air

Wave propagation as a way of thinking is by no means new to sound modeling. Some

acoustical phenomena strongly suggest looking at propagation directly. Imagine you want

to model an echo effect: A person calls into a valley and the call returns at various delays

of time, having traveled down and up the valley and reflected at the side and bottom

rocks. Propagation modeling of this kind is well known and widely used in simulating

room acoustics [74]. As this propagation has a finite speed, air as a medium delays the

arrival of sound . The listener does not really know or need to know the peculiarities or

details of the sound traveling down the valley and returning but only how long it takes and

how the sound changes. It does not matter when exactly a change in temperature affects

the traveling speed, but that the delay was decreased or increased. It does not matter so

much that there was a strong cross-wind in the valley as much as its effect on the heard

sound. To abstract this picture, one can see the calling as input into a propagation system

(the air confined in the valley) and the sound returning to the listener is the output (Figure

3.1).

Figure 3.1: Input, propagation system, output.
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3.1.3 Guided Waves

Air waves in tubes also propagate at a finite speed and get attenuated over time due

to losses, but because of the constraints of the tube walls, the propagation direction

is confined and or “guided.” So-calledwaveguidemodels of musical instruments use

this knowledge. It turns out that disturbances traveling on elastic strings have the same

property and that string instruments can also be modeled using the same method.

Waveguide models assume that all frequencies travel at the same speed. This is not

true for many media, in particular it is not true for solid objects of almost any material.

However, the waveguide model can be modified and extended to accommodate slight

variations in propagation speeds. Low piano strings, for instance, are thick enough so

that the bending stiffness becomes important and does introduce noticeable effects on

the sound. High frequencies travel slightly faster than low frequencies and the resulting

effect on wave shapes is called dispersion. This effect is relatively weak and can either

be modeled by spreading the reflection function [122] or by adding an all-pass filter

which introduces the appropriate propagation response [187]. If the dispersion becomes

a dominant behavior, as in the transverse oscillation of solid bars, both these approaches

becomes expensive.

3.1.4 Limits and Alternatives to Propagation Modeling so Far

So it might seem like the propagation idea is in trouble when it comes to modeling

vibration of solid objects. This is a large class of real-world objects of interest for

musical and non-musical sound simulation. In this case, we have two approaches that

don’t explicitly use the propagation idea. A very general approach is to discretize the

object in space and simulate the constituent equation that describes the interactions in
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the object using finite or boundary-element methods [135]. At present, these methods

are computationally expensive and not suitable for real-time application. A second ap-

proach uses just the modal frequencies of objects to simulate their sound. These modal

frequencies are typically derived from measurements [208] but could also be derived

from the general equations used for finite element methods. This method is efficient and

works well for all types of linear interactions. This means that the interaction can be well

described by impulsively adding energy to the system. For many complex interactions,

however, this assumption is not true. Rather the interaction does depend on the physical

state (i.e. force, velocity, displacement) of the object, like multiple bounces of interacting

objects or strongly non-linear interactions like stick-slip friction. The following section

discusses how this limitation can be overcome using propagation modeling.

3.2 A Sketch: Generalizing the Propagation Idea

We have previously proposed for one-dimensional objects that, in fact, the propagation

idea can be preserved and leads to efficient simulation [61]. Here we would like to extend

the idea to sounding objects of two and three dimensions. In later sections, we will

explain the application of this idea to bars, Indian Tabla drums, and glass harmonicas,

each being an example of one, two and three-dimensional structures, respectively.

The key point of our method is to maintain the sound propagation interpretation in

objects and use an understanding how this propagation gives rise to the sound response

of the object.

In essence there are two possible sound responses of an object to interaction:

• Resonant mode:After the wave has traveled through the object and come back,

the wave closes onto itself in its original phase. In the absence of damping, the
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energy of that frequency will be maintained while traveling on the object because

this situation constitutes “constructive self-interference.” This principle is called

the principle of closed wavetrains [47] or simplywavetrain closure.

• Anti-modal response:The traveling wave does not close onto itself in phase. The

energy will dissipate quickly at that frequency due to destructive self-interference.

Hence, there is an intimate connection between the modal response of an object to

excitation and the propagation of frequencies in the object.

To be valid, propagation modeling has to observe these two points. Sound waves

at resonant frequencies have to close on themselves in phase after traveling through the

objects and returning, or an anti-modal response occurs otherwise.

Generalized propagation modeling takes these constraints literally. The propagation

of frequency bands is modeled in such a fashion that at the wavetrain closure exactly

matches the modal response of the system and that at other frequencies the waves are

damped out quickly. A digital structure which has exactly this property is a frequency-

band-limited delay line, which closes onto itself. As described before, a delay line which

closes onto itself is a basic building block of waveguide models. We have named this

structure the “banded waveguide” [61]. However, this physical analog is valid only for

structures where waves are strictly guided: essentially one-dimensional structures like

solid bars. For higher-dimensional structures it would be more appropriate to refer to

wave-paths than wave-guides. Banded waveguides can be implemented efficiently : delay

lines have constant execution time per time step. The band-limiting can be achieved by

using a simple band-pass filter, as most applications do not require modeling the anti-

modal response precisely5. Finally, fine tuning of the length of the delay is necessary,

5A higher order filter design could be used if precision is desirable.
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especially for high frequencies. This can be achieved by adding a simple fractional delay

filter [187]. The computation time for these filters is negligible.

Figure 3.2: A single banded wave-path.BP is a band-pass filter.

The relationship between frequency and traveling speed is not unique, because it

depends both on the traveling distance and the traveling time, so knowledge of both is

necessary to maintain the proper relationship between propagation and frequency. The

additional information to remove this ambiguity can either be measured or derived from

constituent equations. When the traveling speed and the traveling length is known, the

traveling time can uniquely be calculated. If this information is not known, we can take

a good guess and use that guess in the simulation. The system spectrum will be modeled

correctly, but the response time may differ. This affects only the transient response of the

system, as the modes come in either too fast or too slow, but once the mode is established,

it physically looks no different. For non-linear interactions this means that an object may

lock to a mode more quickly or not as quickly as expected, but it won’t affect that it locks

to the mode. Hence, the result sounds and behaves qualitatively correct.

The minimal structure of a complete model consists of one “banded wavepath” per

mode of the structure. The sought physical quantity is the sum of the output of all

paths. Simplifications can easily be achieved by ignoring less significant modes, which
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is analogous to only considering the most prominent eigen-frequencies of a system in

principle component analysis. The total computational complexity depends only on the

number of significant modes of the objects, which for many real-life objects is very small,

as we will see in the examples described in the following sections.

Figure 3.3: A simple banded waveguide system.

More complex structures are possible, if details of propagation are known and deemed

necessary for improved simulation. Figure 3.4 shows two concatenated banded waveg-

uide structures to show the propagation of waves to a reflection point, the reflection

interaction being explicitly modeled and the propagation back to the start. Also note,

that by splitting traveling paths, interaction and observation points can be made different

as can also be seen in the location of the output in Figure 3.4.
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Figure 3.4: A banded waveguide system including explicit modeling of the reflection.

3.3 Description of Abstract Banded Waveguides

Banded waveguidescan be viewed in various different ways. In this section, I will present

them in their most abstract form, without additional interpretation. In the following

sections, I will then go on discussing them in various interpretations.

In the most abstract sense, banded waveguides are frequency-domain decompositions

of propagation phenomena. The complete behavior is separated into sub-domains and

the overall behavior is assumed to be the sum of contributions of each sub-domain. More

formally, banded waveguides start with the assumption that the closed frequency domain
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Ω of a propagation phenomenon can be decomposed intoN = 1. . .n sub-domainsΩn

such that:

Ω =
N

∑
n=1

Ωn (3.1)

The operatorF when acting onΩ has the property of returningΩn for all n and

hence will be called the domain sub-division operator. This operator may or may not be

separable into operationsFn such that:

FnΩ = Ωn ∀n (3.2)

Secondly, it assumes that within each sub-domainΩn the modeled behavior can be

separated into one or more componentsDi
n with i ∈ I of wave-propagation of constant

speed withinΩn and zero or more componentsH j
n with j ∈ J which don’t observe that

property.

Thirdly, each sub-domain component structure (the set of allDi
n,H

j
n, which may or

may not includeFn, for a particularn) or the sum of all substructures (includingF for

separation and the summation for combinationΣ6) is cyclic, in general. That is, the

domainΩ and also the domainsΩn each have their boundaries connected.

The cyclic domains, with or without the equation 3.1, can be seen in Figure 3.5.

6May also be denoted byF−1. TheΣ is preferred as it corresponds to the definition of recombination in
equation 3.1
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Figure 3.5: Abstract depiction of the cyclic property of domains and their decompositions

According to the above definition, the minimum banded waveguide consists of domain-

decompositionF , and a set of constant-speed wave-propagatorsDn, one per sub-domain

Ωn.

3.3.1 Notation

As a notational convention7, Di
n and H j

n refer to abstract components (one could also

think of them as continuously defined within the domainΩn). An indexω in parenthesis

following the components denotes the frequency response of the component, i.e.H(ω) j
n

usually withω∈Ωn
8. The z-transform [194, 142] will be denoted caligraphic script letter

followed byz in parenthesis byH (z) j
n. In all instances, indices and parenthesis may be

omitted if properties are discussed which are true for all instances of a component, that is

7See also [48, section 10.2] for a related symbolic notation. I chose a different notation to relate more
closely to filter theory and also because I would like to capture more than just the transition dynamics with
this notation.

8Note that in cases of non-exact decomposition into sub-domains this may be loosened toΩ, that is the
frequency over the whole domain may be considered.
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H describes properties of allH (z) j
n with n = 1. . .N and j = 1. . .J. Also an index may

be dropped if the size of the index set is one. For example, ifN = 1 then we writeH (z) j .

OperatorΣ should usually be read as summation over indexn corresponding to equa-

tion 3.1.

3.4 Banded Digital Waveguides as Filters

The abstract model described in the previous section can readily be turned into a digital

filter model by assuming that the domainsΩ andΩn are discretized and that all operators

are discrete linear operators. In fact, we’ll assume uniform discretization of the domain

or a mapping to a uniform discretization. Hence all structures involved are indeed linear

time-invariant digital filters [142].

From the definition of the properties of the operator in the previous section, a number

of properties of the digital filters can be inferred. This connection will be discussed in the

following sections for all operators.

3.4.1 Domain Decomposition Filtering

Though the filter structure for achieving domain decomposition is quite general, I will,

in this thesis restrict the considerations to single-rate systems. Hence time-domain deci-

mation as in decimation filterbanks and wavelets [204] are not considered. While in the

abstract notion of banded waveguides there is little motivation to this restriction, I will

justify this decision when discussing physical interpretation of the structure (section 3.6)

and computational performance (section 3.11).

While, per se, in the abstract definition, the functional form of the propagating wave

of the decomposition is not prescribed, we will assume that a sum of sinusoids (that is
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a Fourier basis) is a good basis. Hence any frequency band decomposition observes this

assumption and the definition of section 3.3.

F (z) then could be any type of bandpass filterbank or a discrete Fourier transform,

and F (z)n would correspond to individual bandpass filters or bins in a discrete trans-

form. Which particular structure should be chosen depends on the desired decomposition,

which in turn will depend on the application and interpretation of the structure. This

choice will be discussed in sections 3.5–3.10.2

3.4.2 Constant-Speed Wave Propagation Filter: Delay line

The decomposition chosen in the previous section separates into Fourier subdomains,

so Ωn can be read as a discrete band-limited frequency domain. As by definition, the

propagation operatorsDn propagate waves at constant speed independent of frequency

content, the corresponding filter has to delay all frequencies by the same amount within

the frequency band defined by the respective subdomainΩn. One operator which satisfies

this condition can be written by the z-transform [194, compare p. 69]:

D(z)n = z−d with d ∈ R (3.3)

whered is the delay in samples per time-step. I will limit myself to this operator in the

following discussion. In particular the delay operator can be split into two parts, a delay

part of integer length (we will choose the largest integer less than or equal tod) di and a

non-integer or fractional delay partdf :
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D(z)n = z−(di+df ) with di ∈ N anddf ∈ [0,1) ∈ R (3.4)

D(z)n = z−di z−df (3.5)

The integer time delay is simply a queue9 of length di . The fractional delay is a

sub-sample delay operator whose practical realization is reviewed in [114].

3.4.3 The Perturbation Filter

By definition in section 3.3, the operatorsHn are not restricted, except that they contain

behavior that cannot be modeled by the propagation operatorsDn with the sub-domain

Ωn. The only real restriction ofHn is that it operates within the sub-domain and hence can

be any filter structure with this condition. Here we will add another restriction, namely,

that ofH (z)n being a linear time-invariant filter. The meaning of this restriction and its

possible loosening will be discussed in the context of the interpretation of the concrete

interpretation ofH (z)n in application. The same is true for the actual form of the filter

which again is highly dependent on the application and interpretation and hence will be

revisited in sections 3.5-3.10.2.

3.4.4 Domain Reconstruction Filtering

Domain reconstruction can either be derived from the abstract combination equation 3.1,

where the reconstruction is simply the sum of the sub-domains, or one could also see the

reconstruction as the inverse to the decomposition operatorF (z), that is a reconstruction

filterbank or an inverse Fourier transform.
9More precicely a queue with first-in, first-out property.
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3.5 Banded Digital Waveguides as Phase-Corrected Modal

Synthesis

As discussed in the background chapter in section 2.1.3, modal synthesis simulates the

decaying modal frequencies of sounding objects using either additive sinusoidal synthe-

sis or resonant filterbanks. The advantage of the latter is that it has a direct physical

interpretation as equivalent mass-spring-damper oscillators and hence force inputs can

be converted conveniently into appropriate digital units.

Modal synthesis is a degenerate form of the banded waveguide structure, lacking

closed loop delaysDn or perturbation filtersHn. Hence, the domainΩ of this structure is

simply a point. The total model equation is:

F ·F−1 (3.6)

In particularF is a resonant filter bank andF−1 is the sum over all the output of the

filter bank.

Compare this structure with the structure of the decomposed domains of an abstract

banded waveguide (Figure 3.5), which can be symbolically written as:

F · [D1 · · ·Dn] ·F−1 (3.7)

where[ ] implies that the operatorsDn are applied to the sub-domains created by operator

F .
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The operatorsDn are all-pass filters and hence only modify the phase of the signal

within each frequency band and as theF−1 is only a linear combination of the separate

bands, the difference between modal synthesis and banded waveguides of the form of

equation 3.7.

F ·D ·H ·F−1 = D ·H (3.8)

That is, there is only one subdomain which is equal to the original domain (hence both

the decomposition and reconstruction operators are unity) and there is only one chain of

propagation.

3.6 Banded Digital Waveguides as Generalized Digital

Waveguides

Digital waveguides as introduced in section 2.1.1 have the following abstract notation:

D1 ·H1 ·D2 ·H2 · · ·D j ·H j (3.9)

or, if all H j can be commuted it has the abstract “Karplus-Strong” equation:

D ·H (3.10)
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As can be seen the digital waveguide structure simply is a banded waveguide structure

without domain-decomposition (which is equivalent to saying over one sub-domain,N =

1).

3.7 Banded Digital Waveguides as Multi-scale Numeri-

cal Method

The abstract definition of the banded waveguide structure as introduced in section 3.3

does not directly specify a physical interpretation of the structure. It does contain a notion

of delay which in a physical sense does link to a notion of time. Assuming thatD∗n is

the total accumulated delay operation of the subdomainsΩn then the original definition

leaves undefined the relationship between these delays. The case of equal delay of all

sub-bands has been treated in the previous section and simply corresponds to the standard

digital waveguide structure. In this case, digital waveguide filters also carry a physical

interpretation of space. The d’Alembert solution describes the propagation of waves

along the spatial extension of a string. Correspondingly a unit time delay∆t represents

a unit of spatial length∆s, which can be calculated from the time-delay via the wave-

velocityc (compare to equation 2.1):

∆s= c·∆t (3.11)

In the more interesting case of sub-domain having distinctive delays, if a subset is

interpreted to follow the same spatial trajectory of lengthl then, given a defined temporal

unit ∆t, the speedcn within each sub-domain is:
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cn =
l

d∗n ·∆t
(3.12)

whered∗n is the accumulated delay ofD∗n from equation 3.3. Then the spatial unit∆sn

of each sub-domain, using these two equations, can be calculated as:

∆sn =
l

d∗n
(3.13)

which by definition ofd∗n being different between sub-domains andl being constant

implies that∆sn is different between sub-domains. This means that different sub-domains

describe different spatial scales within such a spatial interpretation. This property is

depicted in Figure 3.6 using two delay lines of lengthn andm. As can be seen the second

delay line has a coarser spatial resolution than the first one.

Figure 3.6: (a) Constant time representation and (b) constant space representation of a
banded wave-path.
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3.8 Banded Digital Waveguides as Discrete Asymptotics

Simulation

The principle of wavetrain closure states that a mode will occur when a traveling wave

after following some path closes onto itself and the wave is in phase with itself at the

closing point of the path. Otherwise no mode occurs. In essence, the mode comes about

as constructive interference of a traveling wave with itself.

3.8.1 Previous Work: Traveling Wave Solutions

The idea of constructive and destructive interference of linearly independent traveling

waves is a long known phenomenon, that has explained many observations involving

waves, like diffraction patterns.

The d’Alembert solution of the ideal finite string is maybe the first specific example

of a description of a dynamical system that follows the wavetrain closure principle.

Extension of this type of description to other dynamical systems happened in the

middle of the last century independently in the acoustics community and the mathemat-

ical physics community. Among the acousticians who developed the idea were Mead

[124, 125, 126, 127], Cremer and Heckl [47]. The focus was primarily on bar structures

but attempts were made to extend to square plates.

Another line of research again comes from the eminent scientist Joseph Keller who

is in the community mostly known for his work on theoretical non-linear friction be-

havior of the bowing violins [101] and the friction characteristic is generally known as

Friedlander-Keller diagram [188] (it has been simultaneously and independently studied

by Friedlander [72]).
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Keller studied asymptotic approximations to dynamical systems, in particular optics

and quantum mechanics. In joint work with Rubinow, he proposed that the method could

also be used to find eigenvalues of dynamic structures [104]. The idea is that the dynamics

of structures can be well approximated by studying the behavior of traveling wave rays.

This is similar to using principles of geometric optics to describe general optical wave

phenomena asymptotically, as Keller did in his geometric theory of diffraction [102].

Keller and Rubinow showed how, using their approach, circular membranes and elliptical

domains can be solved. They also showed how whispering gallery modes and bouncing

ball modes can be derived on more arbitrary two-dimensional domains. Though the

theory of asymptotics has found a lot of interest and applications in many fields [103],

the study of structural dynamics as relevant for many musical instruments has been quite

limited, the exception seems to be work by Chen, Coleman and co-workers who study the

effect of bending stiffness using Keller’s approach [39]. In less direct form, this approach

has seen extensive interest in the mathematics and physics community. Finding a closed

path on a closed domain of some shape can be seen as a billiard ball rolling on a surface

and bouncing off the walls and returning to its starting position. In this setting, billiard

balls are said to be on periodic orbits, and the task is to find them. On the convex domain

this has been extensively studied by Birkhoff and others [109].

Traveling wave methods are studied and used in a vast number of different fields.

Connected theories have been developed in pure and applied mathematics with various

motivations. Among them is approximate and exact solutions of ordinary and partial

differential equations, even when they may not be integrable [139, 215, 68] often mo-

tivated by equations that arise in classical mechanics [205, 108] or quantum mechanics

(the asymptotic approach is usually referred to as “semiclassical mechanics” for the limit

of the asymptotics establishes the correspondence between classical results and quantum
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mechanical formalism) [103, 25] and has been instrumental in both areas (and others)

in the study of chaos [48]10. Even in simple integrable dynamical systems, a traveling

wave Ansatz usually has points where a unique solution cannot be derived (referred to

as caustics, see also Appendix A). Solutions at and in the neighborhood of these points

are sought via connection formulas [13] and special functions [139, 14], as topological

projection [129, 110]11 and via hyperasymptotic expansions [78, 24, 89] [38, for a de-

tailed review including the connection to rays in two-dimensional elasticity dynamics].

Asymptotic methods find applications in electromagnetics [23] and seismology [50].

3.8.2 Previous Work: Numerical Traveling Waves

Numerical simulation based on discretized traveling waves for the wave-equation was

accidentally discovered by Karplus and Strong and was quickly recognized to be a very

efficient method of simulating the dynamics of strings and air-tubes. This method is

called “digital waveguide filter method” [187]. It is an accurate simulation for ideal

strings and other idealized waveguide systems that are basically one-dimensional. It

can be seen as discrete implementation of the d’Alembert solution of the governing

equation. However, it is probably much more intuitive to consider the d’Alembert so-

lution a proper dynamical description rather than a solution. Deviations from the ideal

are then introduced while maintaining the traveling wave picture. Local damping and

dissipation are described as damping and dissipation of a traveling wave along its path and

at boundary reflections. Stiffness is introduced as a change in propagation characteristic,

and so on. If the perturbations from the ideal case are small, this works quite well:

10The usefulness of asymptotics in studying phenomena has also been the focus of interest within
the philosophy of science [10] especially as a way of reasoning between different levels of details with
quantitatively different behavior. For a short and popular account see [15, 73].

11A very brief but lucid review of the the connection between “Lagrange manifolds” and caustics through
projection can be found in [58].



CHAPTER 3. THEORY OF PROPAGATION MODELING 44

the digital waveguide filter method is widely successful for many musical instruments.

Digital waveguide filters have a number of additional advantages over finite differencing.

Stability considerations are much more simple and intuitive, as in the case of waveg-

uides, the deciding factor is simply whether the loop gain is below or above unity. The

transportation within the waveguide is “numerically safe” as disturbances are transported

multiplication-free, i.e. they are simply copied and hence even a gain of unity yields a

perfectly sustained oscillator which is difficult to achieve with “algebraic propagation”

involving multiplications and additions, as in the case of finite differencing. The key

benefit though is that, in addition, or rather because of this condition, waveguides can

be implemented with constant numbers of operations (read, write and pointer updates)

independent of the length and hence the spatial sampling, whereas finite differencing

schemes depend on the spatial sampling resolution.

Figure 3.7: A digital waveguide filter.

An interesting note to make is that we are, in fact, using an asymptotic method that is

valid for the short wave-length limit and ceases to be strictly valid for long wavelengths.

One might hence be tempted to conclude, that all this should not work. Surprisingly

though it has repeatedly noted, that even for the long wavelength solutions (that is the low

eigenmodes), the asymptotic method performs well [104, 178]. In specific cases, like the

d’Alembert solution for the wave equation, the “asymptotic” traveling wave Ansatz is in

deed exact.
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3.8.3 Discrete Asymptotic Simulation

The relationship between banded waveguides and traveling-wave, ray or Wenzel-Kramers-

Brillouin (short WKB) methods12 can be seen using the following line of reasoning.

Starting with the minimal banded waveguide equation 3.7 and letting the number of sub-

domains go towards infinity, one arrives at a function defined inω ∈ R+
0 over the initial

domainΩ:

d(ω) = lim
n→∞

F · [D1 · · ·Dn] ·F−1 (3.14)

(3.15)

d(ω) can then be interpreted as a continuously (though not necessarily smoothly) defined

function of delays over the domain. Writing the delay using an exponential propagator

and interpretingω as frequency one gets:

e−i·d(ω)ω (3.16)

This form corresponds to the Keller-Rubinow-form of the WKB-asymptotics found

in their seminal treatment of oscillatory problems in two dimensions [104, eq. (3)]

describing the sum of all paths:

u =
N

∑
j=1

ei·kSj
[
A j +O(1/k)

]
(3.17)

12For a glossary of terms used in the asymptotics literature also refer to Appendix A of this thesis.
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If the the loop described by the domainΩ is interpreted as two parts, a forward

propagating half and a backward propagating half, then this becomes:

e+i d(ω)
2 ω +e−i d(ω)

2 ω (3.18)

This form corresponds to the oscillatory (that is imaginary part) of the Olver-form

[139, p. 190, eq. (1.02)] of the WKB-asymptotics13:

w∼ A·ex
√
{ f (x)}+B·e−x

√
{ f (x)} (3.19)

Hence, in the limit of infinite sub-domains, banded waveguides can be considered

equivalent to WKB-asymptotics, and, in the finite case, it is a finite approximation of

it. It should be noted though that this does not imply that the method is necessarily just

approximative to any dynamics. In the case of the wave equation the d’Alembert solution

of the exact dynamics, the traveling-wave Ansatz are exactly equivalent (derivation of the

d’Alembert solution can be found in many standard textbooks, for example [111, chapters

11.3 and 11.4]).

The correspondence between WKB-asymptotics and banded waveguides is of imme-

diate relevance because the known results of properties of asymptotics, ray and traveling-

wave methods become immediately relevant to the mathematical and physical under-

standing of banded waveguides. This correspondence will become relevant in the follow-

13Which Olver calls LG approximation, see Appendix A.
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ing section discussing banded waveguides in dimensions higher than the one-dimensional

line-model14

3.9 Banded Digital Waveguides in Higher Dimensions

In previous sections, I have introduced a spatial interpretation (section 3.6), and the

domain composition has been given a spectral interpretation (section 3.4) of the abstract

banded waveguide model of section 3.3. However, the domain separation of operatorF

can also be interpreted geometrically. Then operatorF can be interpreted as:

FmΩ = Ωm (3.20)

with Ωm being geometric sub-domains, which in turn each can be decomposed into

spectral domains:

FnΩm = Ωmn ∀m (3.21)

For the remaining discussion, the geometric sub-domains will be assumed to be

ray or line domains, and hence the discussion that has previously been carried out in

one dimension can be interpreted as applying to the one-dimensional trajectory of that

domain.
14Dimension here refers to the number of spatial dimensions of the dynamical system under

consideration or, equivalently, the number of independent spatial dimensions in the constituent differential
equations describing the dynamics. The time and possibly orthogonal deflection dimensions are excluded.
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3.9.1 Previous Work: Single-band Multi-path or Multi-dimensional

Models

Waveguides have been used in higher dimensions under a ray-casting paradigm. This

work mostly relates to work in room reverberation algorithms as already mentioned in

section 2.1, where delay-lines were introduced. Not all works in the field that use delay-

lines use them beyond a listener-receiver path description [90, p. 38, for example]. The

use of multiple connected feedback delays has been introduced by Stautner and Puckette

[191] and is now generally referred to as feedback delay networks (FDN) [170, and

references therein]. In the early work of Stautner and Puckette, the delay-paths were

associated with channels and only loosely associated with the geometry of the room,

though the association of geometry to room response has been introduced by Allen and

Berkeley [12, see p. 183-185 for a brief review]. The “room of mirrors” idea behind their

“image” or “image-source” method describes how a reflected source is equivalent to a

mirror image acting as a source through the reflected wall. This topological mapping of a

reflected path to an unreflected path corresponds to the construction of a resonant torus as

introduced by Keller and others [104, 25]15 (see section 3.9.2). The connection between

resonant response of a geometric enclosure and its shape has been realized in this context

by Rocchesso and studied in the case of a rectangular box[166, 170] and sphere [167].

An alternate approach to multi-path feedback delay models can be found in the lit-

erature of physical models for string instruments. Until recently, the focus has been on

studying physically separate but coupled structures like coupled piano strings [8, 9, 6] or

sympathetic strings in plucked string instruments [99]. Here two separate paths couple

at some point. These paths are geometrically independent otherwise. A more interesting

15I’m unaware that this connection has previously been pointed out.
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recent example is the detailed modeling of the action of a bow on a string as presented by

Serafin and Smith [180]. This work showed that strings are not ideally thin but have in

fact finite thickness. Torsion in direction of the bow is introduced though torsional waves

in a linear string traveling independedly from transverse waves. Hence Serafin and Smith

arrive at a two-path waveguide model with one path for each wave type. In fact, a four

waveguide model has been suggested by Smith to implement waves in two orthogonal

planes for transverse oscillation, longitudinal waves and torsional waves [187].

3.9.2 Topology of Resonant Paths

In general, the problem presents itself in the form of a given geometric shape that is

responsible for the sound-generating dynamic (e.g., the shape of the membrane of a

drum) and by ray-casting on that shape, finding closed paths which then correspond to

eigenfrequencies. This is a very general problem that is still under intensive investigation

(for detailed pointers into review literature I refer to Appendix A). Here I will confine

myself to 2-dimensional discussion of square and circular domains. There two are fully

treated domains in Keller and Rubinow’s seminal paper on the subject [104]16. A more

contemporary and generalized treatment of the subject not confined to these particular

domains and dimensions can be found in [25, p. 78 ff.].

For simplicity we will assume just the finding of a closed path and will ignore the

propagation dynamics in this treatments.

Taking a rectangular domain, we assume that the behavior of the boundary of the

domain is complete geometric reflection. Starting of with a family of parallel rays shoot-

ing of at some angle, geometric reflection just means an inversion of the travel direction

normal to the boundary.

16The derivation has been repeated in many places, for instance [103, 39].
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(a) Reflections of a single ray (b) Type of Reflections for ray family

Figure 3.8: Reflection of a ray at the boundary

This behavior is depicted in Figure 3.8. Figure 3.8 (a) shows the first for reflections of

a ray starting with the configuration in the lower right corner and going around counter-

clockwise. Figure 3.8 (b) shows the same general behavior for a whole family of rays.

This picture should be interpreted as states rather than as actual ray paths, meaning that

there are four possible propagation configurations that change depending on reflections at

the boundary. Any family of rays with an angle different than90◦ will eventually reflect

and change directions. As a ray propagates through the domain it can reflect many times

until it closes onto itself but it still can only be in one of these configurations. Up-down

reflections are cyclically repeated as well as left-right reflections17. As is widely known

in signal processing, an open infinite domain with regular repeating substructure (e.g.

periodic sampling) can be mapped onto a closed circular domain (e.g. the z-transform of

a periodically sampled signal) [194, chapter 11]. The same holds here, though there is

17This resembles the familiar picture of alternating configurations of image-sources for increasing orders
of reflections in the image-source method. For a related depiction see [12, Figure 4.55, p. 185].
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repetition in two dimensions, hence the circular folding has to happen along both axis.

The first folding turns the two-dimensional sheet into the surface of a cylinder by gluing

the top and the bottom edge together and the second folding merges the ends of the

cylinder to form a torus (see Figure 3.9).

Figure 3.9: Resonant torus of EBK quantization of two-dimensional closed paths.

More generally any integrable system can be brought into the form of anN-torus

embedded in a2N-space by canonical transformation [25, p. 79 ff].

The torus structure has an intuitive appeal as it highlights that there are two topo-

logically independent dimensions that lead to closed curves. In the 2-torus case the first

follows along the outer rim to close onto itself and the second follows the radius of the

thickness to close onto itself18. A general path will wind around both dimensions (and

hence the related numbers are sometimes called “winding numbers” [48]) to close back

onto the same position on the torus. It also illustrates that the actual starting position

18Hence authors describing two-dimensional domains often use two-number labelings to identify closed
paths. For an example in the square case see [154], for one on circles and circle-segments see [161].
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does not matter due to the symmetry of the structure which justifies the initial treatment

of families of rays rather than rays with specific positions. Finally, as the surface area

on the torus is the same as the area traveled on the original domain, short and long

closed path configurations can be intuitively observed. For instance if the angle is very

flat with regards to one topological dimension, then the path will have to wind around

this dimension many times before having traveled around the other dimension once.

Finally it can be immediately seen that closure can only occur if and only if the ray has

traveled through an integer number of windings in all topological dimensions (because if

a winding number in a dimension is not integer the winding is incomplete).

This yields the closure condition, which by requiring integer solution, and by attribu-

tion to early contributions to this technique by Einstein, Brillouin and Keller is usually

called EBK quantization.

We are interested in total ray length and its relationship to the frequency of standing

waves, but we have so far ignored the effect of the boundary.

Classical Dirichlet boundary conditions correspond to a sign inversion in the ampli-

tude, which in turn can be written as a phase-contribution ofπ because:

ei·π =−1 (3.22)

The principle of equal phase closure demands that the phase is single-valued after one

round-trip on a closed path. If∆Sdenotes the change in phase, then it can be written as:

∆S−µ· π
2
−b·π = 2π ·n (3.23)
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for all n in N+
0 , which leads to the common form of the quantization rule:

∆S=
(

n+
µ
4

+
b
2

)
·2π (3.24)

whereµ is called the Maslov index, which counts the number of touched turning points

inside the domain (also called caustics, see Appendix A), andb is the number of Dirichlet

boundaries reached.19 In the case of the rectangular domain, there is no caustics, and

henceµ = 0, and there are multiple of two reflectionsb. The caustic will be revisited in

the case of the circular domain.

Returning to the two-dimensional case described by the torus, this quantization rule

must hold for both dimensions. Rescaling the quantization condition by the path-length

2· ln (the domain is transitioned twice for each winding) and using the relation:

f =
c
l

(3.25)

and using the triangle inequality to calculate combined path contributions we get:

f =
c
2
·
(

m1
2

l1
2 +

m2
2

l2
2

)
(3.26)

wherec is the speed of the traveling wave andl1 andl2 are the dimensions of the rect-

angular domain.m1 andm2 are positive integer quantization numbers. This corresponds

to the classical solution of the square plate [132, p. 205].

19Note that some authors include the contribution ofb in µ.
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3.10 Theory to Application: Use of Banded Waveguides

With all this theoretical description, the question remains, how practical synthesis meth-

ods can be achieved using it. In other words, how are the components of the theory

described in previous sections practically combined. First, I will talk about practical

aspects of reaching implementations of simulations from actual physical instruments

through the theory so far discussed. Then I will mention that the application does not

necessarily require the physical interpretation of the previous section.

3.10.1 Physical Simulation

Figure 3.10: Relationship of geometry and dynamics to modes.

If the goal is to arrive at the simulation of actual musical instruments or physical

but non-musical sound production mechanisms, then the question remains, how one

arrives at specific implementable structures (section 3.4) from the theoretical approach

to describing the dynamic (sections 3.8 and 3.9).
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The connection between geometry and dynamics and modes as primary components

of sound production is summarized in Figure 3.10.

In fact, the connection between components in Figure 3.10 can follow two directions.

First, if following the direction of the arrows, this corresponds to a construction of a

simulation from complete dynamical and geometrical description. Then the tasks are:

• Find periodic orbits.

• Identify boundary conditions and turning points and their phase contribution to

periodic orbits.

• Find wave propagation speed characteristics.

However, this is not necessarily the most practical approach. Finding periodic orbits

can be difficult, and the theoretical dynamics of a complex instrument may not be known.

Hence it may be difficult to find the wave propagation speed characteristics. Finally this

construction is not precise.

More realistically, if the physical instrument is available, certain parameters can be

measured. Other parameters may be known only approximately. Thirdly, not a complete

construction may be desirable.

In this context, the relationship between measured modes and theoretically constructed

modes is of interest. As said, the theoretically constructed modes are approximate. The

measured modes are, however, precise within measurement accuracy. The proposal

is, to tune closed wave-paths to the precise frequencies. Then, the deviation between

approximate theoretical, exact theoretical, and actual behavior is bridged by introducing

the theoretical deviation from the measurement in form of a path-length correction to the

theoretical path.
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3.10.2 Application as Non-physical Entities

The abstract structure, and even the filter interpretation thereof, does not necessarily need

a physical interpretation. In this case, banded waveguides can be seen as a purely ab-

stract synthesis methods with certain properties. The choice of parameters then becomes

aesthetically motivated rather than physically.

Here I only want to mention one example of non-physical application of this structure

that was discovered by accident. If the output of the reconstruction operator is numeri-

cally integrated (accumulated sum), and the appropriate “physical” interpretation of the

result of reconstruction would have been displacement, one arrives at a quantity that is not

properly physically informed. If this integrated displacement is then fed into a standard

bowing interaction model, rich, chaotic sounds can be produced in a stable manner using

this method.

3.11 Performance and Critical Sampling

The performance of banded waveguide synthesis is defined by the behavior of the various

building blocks. In general, the delay operator for integer sample delay can be cheaply

implemented using circular buffers (as mentioned already in section 2.1). In fact, the

performance is independent of the length of the delay and henceO(1). The remaining

parameters defining the computational complexity of the algorithm is the number of sub-

domainsn, the number of separate delay and perturbation blocksi and j.

Hence a driving parameter for the performance is the number of non-delay blocks that

are incorporated in the model.

In fact, the asymptotic WKB ansatz is equivalent to neglecting coupling of in- and

outgoing waves [32]. The interplay between precise differential equations, couplings
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(also referred to as scatterings) and discrete traveling wave approximations has been ex-

tensively studied by Bilbao [18], though the treatment of scattering in digital waveguides

has long been known [188]. Hence one critical area for performance gain is the process of

deciding when neglecting local scattering in a dynamical system is a good approximation

or not (physically and perceptually).

Finally, the implementation of the domain decomposition, perturbation filters and

fractional delays also affect performance.

In this thesis I do not consider decimation in time for sub-bands. This is justified

by the realization that the critical performance improvement fromO(M) to O(1) (where

M is the spatial sampling) has already been achieved and that the computational load

(i.e. the constant inO(1) of time-stepping a delay line is very small). In the same vein,

inexpensive second-order bandpass filters can be used for domain-decomposition making

this method overallO(N), whereN is the number of modeled subdomains with a small

multiplicative constant only. Whether a trade-off with decimation and interpolation op-

erators versus sub-domain time-stepping yields significant gains remains to be explored

(see section 7.6.3).

3.12 Interaction Models

Physical interactions usually take place on the whole domainΩ. Hence either at in-

teraction points the whole domain has to be reconstructed or the interaction needs to

be translated into contributions to each sub-domain. If the latter is a choice depends

whether or not the interaction implies local scattering. In general, scattering should be

assumed for non-linear interactions and may be absent for linear ones (see section 2.2).

The implications will be discussed by example in chapter 4. Here it should only be
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mentioned that in case of modeling the contribution separately to the various spectral

sub-domains implies contributions to spatial samplings of different scales (as described

in section 3.7), and hence the contribution has to follow the same scaling.

3.13 Conclusions

We introduced propagation modeling using banded waveguides to the spectrum of meth-

ods to simulate sounds of objects. The guiding question with regards to this and other

methods is: What is the least amount of information we have to consider to get the

desired result? The propagation idea allows for significant reduction of complexity and

dimensionality while allowing for retaining essential features. It allows for complex, non-

linear, yet natural interactions which cannot be modeled by other comparably efficient

models. It does this at the price of making a direct geometric interpretation specific and

potentially difficult.



Chapter 4

Applications of the Banded Digital

Waveguides

Grau, teurer Freund, ist alle Theorie,

Und grün des Lebens goldner Baum1. – Johann Wolfgang von Goethe2

Few things are harder to put up with than the annoyance of a good example.

– Mark Twain 3

Trust me, it sounded good before I improved the model. Now it sounds more

realistic.

In this chapter I will discuss application of the theory of banded waveguides to par-

ticular musical instruments. In general the progression will be an increase in spatial

dimensionality. In addition, experimental data will be presented to evaluate simulations.

1All theory, dear friend, is gray, but the golden tree of actual life springs ever green.
2In “Faust” pt. 1 (1808) according to [147, p. 309, q. 5]
3“Pudd’nhead Wilson,” chap. 19 (1894) available online athttp://www.cs.cofc.edu/˜manaris/

books/Mark-Twain-The-Tragedy-of-Puddnhead-Wilson.txt and according to [147, p. 706, q. 23]

59
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4.1 1-D Case: Rigid Bars

Bowed bar percussion instruments have found increasing interest and application in musi-

cal composition and performance in recent years. However, the excitation of a sustained

oscillation of a bar by means of a rosined bow for musical purposes has not yet been

studied systematically.

So far research on bar percussion instruments has focused on the issue of tuning by

removing material at various locations along the bar [143, 20, 149, 27], the influence

of the resonators on the vibrating bar and the radiated sound [20, 56], and the effect of

striking excitation using mallets [35]. Material properties have also been studied [29, 88].

Numerical simulations use either finite difference [20, 35, 56]4 or finite element methods

[143, 27, 21]. Summaries and reviews of the research on bar percussion instruments are

available [131, 171, 70]. When the sound of bar percussion instruments is synthesized

for real-time performance using electronic sound generation, the above mentioned finite

difference and element methods lack the necessary efficiency on current hardware to

be appropriate. Hence, current techniques only model the modes of the system, using

modal filters [219, 42] or additive sinusoidal synthesis [182, 210] ignoring the modal

shapes. Hence, the notion of physical shape and interaction is lost, and a direct way

to use these approaches for bow interactions is not possible. In essence, the spatial

dynamics is removed by replacing the actual physical system by an equivalent mass-

spring system which models the same modal response. However, the dynamics (in

particular the propagation of disturbances) of the original system is lost. Hence it cannot,

in general, be expected that non-linear interactions are captured by the simplified mass-

spring model. If the modal shapes are known, the spatial information can be maintained

4Since the writing of this passage for archival journal publication [61] finite differencing through
corresponding wave digital filters as been proposed by Bilbao [18] and others [2].
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and bowing interactions remain meaningful. This approach has not yet been tried for

bars of musical instruments, but was used to study the stick-slip interaction [183, 184].

To use this method, the modal shapes have to be known a priori. These are difficult to get

analytically because the undercutting of tuned bars make the equations non-linear, and

experimental measurement is much more costly than simple frequency analysis.

This section describes how banded waveguides can be used for simulation for the

purpose of preserving a notion of spatial shape while achieving real-time performance.

An a priori knowledge of modal shapes is not necessary. These results have also been

presented in [60, 61, 62] and will be discussed in section 4.1.1.

The action of the bow has only been studied extensively when exciting strings [46,

91]. Numerical simulations typically use an efficient time-domain approach which fol-

lows from the constant phase delay characteristic of the ideal string equation [122] and

this approach has been refined for synthesis purposes [186, 181]. The string has also been

studied using a finite difference approach [33, 34, 146]. The action of the bow on solids is

known to be able to excite a sustained oscillation and is especially famous in the creation

of Chladni figures [218]. However, a study of the dynamics and kinematics of this

system is lacking as is a study of parameters which are relevant for musical performance.

The violin bow has also been used to study the excitation of glass harmonicas [172].

Experimental work on the action of a bow in rigid bars will be presented in section 4.1.2.

4.1.1 Simulations

Propagation Model Implementation

As noted in section 3.10.1, for the implementation of banded waveguides for a physical

system, three tasks have to be performed. Periodic orbits have to be found. Boundary
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conditions and turning points with their phase contribution have to be identified. Finally

the wave propagation speed characteristics has to be found. Starting with the uniform

bar, the first two tasks are trivial. The latter can, in this case, be derived from the known

constituent equation of the system. Transverse vibration of bars is well described by the

1-D Euler-Bernoulli-model [47], given that the bar is thin compared to its length and the

exact frequencies of very high order partials is not important:

∂2

∂x2

(
EI

∂2y
∂x2

)
+ρA

∂2y
∂t2 = f (x, t) (4.1)

EI is the flexural rigidity (E being Young’s modulus andI being the cross-sectional

moment of inertia) andρA is the mass term (ρ being mass density per unit length and

A being the cross-sectional area). In general these quantities are not constants but may

depend onx. f (x, t) is an externally applied transverse force on the bar. In order to

model friction additional terms have to be added (see [35]). If cross section and elasticity

properties are uniform, (4.1) becomes a linear 4th order partial differential equation which

lends itself easily to analytical solution. In particular, when inserting the solution of a

single frequencyy = Y(x)ejωt the wave velocity (that is the propagation characteristic)

can be calculated from (4.1) withf (x, t) = 0 lettinga =
√

EI/ρA:

v =
√

aω (4.2)

The wave velocity depends on the frequency of the traveling wave and hence arbi-

trary wave shapes disperse as higher frequencies propagate faster than lower ones. An

illustration of the idea of the approximation in the banded waveguide method is depicted

in figure 4.1 using the propagation delay of equation (4.2). The depicted constancy of the

phase delay within a frequency band is only for illustration purposes, as the actual delay
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depends on the band-pass filtersF (z)n and possible perturbation filtersH (z) j
n used. It is

depicted because it shows the effect of using the constant delayD(z)n per subdomain.

Figure 4.1: Discretization of the phase delay in a banded waveguide simulation.

This flat quantization over a region in the phase response (see figure 4.1) makes

the phase delay constant in that region which can be cheaply modeled using a standard

waveguide filter. If the loop delay is tuned to a mode of the system, this corresponds to an

exact simulation of the wave train closure and approximation in the neighborhood of that

mode. To avoid large errors in this neighborhood approximation, the higher harmonic

resonances of the waveguide should not be within the modeled frequency band. This

criterion guides the choice of the bandwidth of the bandpass filterF (z)n.

Figure 4.2 shows the structure of a single banded waveguide and the frequency char-

acteristic. The dashed curve is an ideal bandpass filter response which windows the
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Figure 4.2: One banded waveguide (top) and its spectrum.

desired frequency band. The dash-dotted curve depicts the filter response of the second

order resonant filter used as a bandpass filter approximation (for implementation details

see Appendix B).

As can be seen, the propagation characteristic is, by construction, modeled exactly at

modal frequencies. This is helpful as it allows precise simulation of modal responses even

if one or more of the implementation tasks cannot be exactly performed. For example,

exact phase effects at the boundaries may be unknown or the actual instrument may

differ from the ideal. This explains the usefulness of the method for undercut bars. If

the undercutting is not too deep, the physics of the bar can be expected to be close to
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the behavior of the uniform bar and this method is appropriate. The wavetrain closures

change with the undercutting and the banded waveguides have to be tuned to the changed

frequencies. However, it is important to observe that for severe undercutting, reflections

at the points of changing impedance have to be expected that are not captured in a

straightforward way in an unmodified banded waveguide. In this case local scatterings

and modifying effects would have to be modeled.

The nature of this correcting property of frequency tuning to the approximate nature

of the starting assumption can be seen in the case of the uniform bar. The general solution

of (4.1) for constant coefficients and in the absence of an external force can be derived to

be [47]:

y = ejωt(Aekx+Be−kx+Cejkx +De− jkx) (4.3)

The first two terms are stationary oscillations (the so-called “near-field” terms) and

the second two terms are left- and right-going propagation terms. The constantsA, B, C

andD depend on the particular boundary conditions.

As only propagation is modeled, the near-field oscillations are not modeled directly.

If the wavetrain-closure frequencies containing the are modeled, then the contribution of

the near-field terms to the frequency is modeled as propagating waves (that is, as phase

contributions) and not as standing waves. Hence, it can be seen that this approach models

the spatial shape only approximately. The near-field contribution, which should spread

over the whole domain is localized into phase points. The propagation delay, modeled

frequency and overall loop dynamics remain, however, exact. The same reasoning holds

for other deviations and one can say that modifications to the uniform propagation are not

exactly localized in this method.
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In implementation the frequencies can either be measured, theoretically tuned or

derived. In case of the uniform bar, using the “free-free” boundary condition, as is typical

for bars in musical instruments, yields the well-known stretched and inharmonic partials

of a uniform bar (1 : 2.756 : 5.404 : 8.933 :. . .) as heard from glockenspiels. Marimba,

xylophone and vibraphone bars are undercut, stretching the partials into harmonic ratios

of either1 : 4 : 10or 1 : 3 : 6[131].

Interaction Model Implementation

In the case of bowing on the narrow side of the bar, disturbances leave only in one

direction and only this propagation has to be modeled.

In the implementation used for simulations used here, Smith’s method of applying the

bow-nonlinearity to a waveguide simulation [186] was used. This simplified approach

simulates the behavior of sticking and sliding friction. During sticking, the friction

coefficient is independent of the input velocity but once the differental velocity exceeds a

certain value, the friction characteristics drops rapidly to a weak sliding friction. Figure

4.3 depicts the actual functional shape used. This model does not contain the hysteresis

effect which arises in a slightly more detailed model [122]. Yet the model used seemed

to capture the measured phenomena and an extension to incorporate the hysteresis rule

has not been found to be necessary. Only the wavetrain closures of the lowest four modes

were modeled by banded waveguides. This is reasonable considering the stretching of

the partials in a bar. Hence, higher modes quickly fall outside the audible range. In

addition, higher frequency modes are severely damped. For higher accuracy additional

modes could easily be added for low computational cost.
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Figure 4.3: Friction characteristic used in the banded waveguide simulation. For a
relative velocity around zero, the bow exerts a nearly constant strong static friction on
the bow whereas when exceeding the relative break-away velocity, the characteristics
drops quickly to low dynamic friction.

Simulation Results

In order to evaluate the dynamic validity of the simulation, measurements were performed

and compared to simulation runs. The measurements are discussed in full detail in section

4.1.2. As input to the model and independent physical quantity for measurements, bow

velocity and bow force were used. These parameters have been chosen because they

are the main control parameters of bowed string dynamics, which has been extensively

studied [46]. From the simulated output and the recorded dynamic response of the

measurement procedure, the following response parameters are calculated: the amplitude

(as a measure of loudness), onset time (the time it takes from the start the bowing action
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to reach a maximum amplitude self-sustained oscillation), fundamental pitch (lowest

dominant peak in measured spectrum) and spectral centroid (the center of gravity of

the spectrum as measure of spectral content). All these are descriptive of the dynamic

behavior.

Simulations using banded waveguides were performed in 12 steps between normal-

ized input parameters of velocity and force yielding 144 data points. At each point, the

amplitude, onset time, fundamental and spectral centroid were extracted from the data.

The simulations show qualitative similarity with the measured parameters (see sec-

tion 4.1.2). The output amplitude shows a clear positive correlation with velocity and

is largely independent of the force (figure 4.4) which mirrors experimental behavior

(Figures 4.8 and 4.9). A separation of regions of oscillations and non-oscillation can

also be seen in this figure. The onset time decreases with increasing force (Figure 4.5

is at a normalized input velocity of0.75) which is also seen in experiment (see Figure

4.16). However the surface plot reveals a more complicated dependency of the onset time

with force and velocity which goes beyond the measurements made. The fundamental

frequency is independent of both force and velocity in simulation and measurement. The

observed spectrum is harmonic in either case. The simulations show that the spectral

centroid is independent of both force and velocity, as found in the measurements (see

Figure 4.15). The details of the experiments will be discussed in the next section. In

addition to the experimental comparison, the model shows additional behavior that is

observed in qualitative performance and theoretically known for non-linear systems. For

instance it is possible to lock to various modes depending on the input parameters, just as

it is possible to lock to higher modes in performance.
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Figure 4.4: Amplitude as a function of input force and velocity in a bowed bar simulation
using the banded waveguide method.

4.1.2 Experimental Measurements

Now I will discuss experiments that have been performed to study the behavior of bowing

on rigid bars. This is the first time that such experiments have been performed and I

describe here the complete results.

The primary goal of the experiment was the measurement of parameters which are

of importance for musical performance when bowing bar percussion instruments. The

parameters in control of the performer are primarily bowing velocity and bowing force.

Parameters like angle, type of bow, amount of rosin were not considered in detail in

these experiments. The performance parameters of interest were assumed to be loudness,

temporal responsiveness, pitch, timbre and brightness. Other interesting parameters like
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Figure 4.5: Onset time as a function of input force in a bowed bar simulation using the
banded waveguide method.

ease of performance and “feel” of the bowing action were not investigated directly. From

the measured parameters the region of oscillation is derived, but effects like the ease of

locking to higher modes were not considered at all.

Loudness was measured by calculating the energy of the signal. Temporal respon-

siveness was measured as the time it took from starting the bowing action to reaching

a maximum amplitude self-sustained oscillation. This time will be referred to as onset

time. Pitch was measured by finding the fundamental in spectra taken from the measured

signals. Timbre and brightness was measured by calculating the spectral centroid of the

spectra of the measured signals.
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Two distinct measurement setups were used. First, a number of bars of different size,

shape and material were bowed by hand using a double bass bow. These measurements

were performed to get a qualitative result of most of the described quantities.

In order to get more quantitative and reproducible measurements, a bowing machine

was built and one bar was systematically studied for quantitative relationships between

input (bow) velocity and force to output amplitude, energy, fundamental frequency, spec-

tral content and onset time. These results will be described in section 4.1.2.

Measurements by Hand Bowing

Experimental Setup

For hand bowing, two different types of bars were used. One set of bars consisted of bars

taken from real musical instruments. These bars are undercut to tune the upper partials to

be close to harmonic. In this set, a bar representing the xylophone and marimba family

and bars for vibraphones were used. Xylophone and marimba bars are made of wood

(typically rosewood) whereas vibraphone bars are metal (typically aluminum).

The second set of bars consisted of wood and aluminum bars of uniform cross-section.

These have inharmonic partials. The measurement of bars of uniform thickness has two

purposes. For one it serves as comparison to the behavior measured for undercut bars.

Secondly the Euler-Bernoulli equation for constant cross-section and homogeneous ma-

terial is a linear fourth-order partial differential equation which lends itself to analytical

treatment, which is otherwise not easily possible.

A sketch of the typical shape of a bar can be found in figure 4.65. Table 4.1 shows

the dimensions of the measured bars and table 4.2 shows the position and size of the

5Figure 4.6 has been corrected compared to [61]. The positions of the cord holesx1r , x1l , x2r andx2l

were wrongly indicated.
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l w h l1 l2 h1 E ρ
(cm) (cm) (cm) (cm) (cm) (cm) (GPa) (km/m3)

Uniform wood 38.1 4.05 1.95 N/A N/A N/A 10 640
C#

4 wood 30.7 3.5 1.6 17.3 7.0 0.5 16 740
Uniform 17.8 3.8 0.3 N/A N/A N/A 70 2710
aluminum
F#

4 aluminum 29. 3.9 1.36 11.95 5.3 0.6 70 2710
F#

3 aluminum 36.4 5.1 1.36 16.4 9.3 0.5 70 2710

Table 4.1: Dimensions and material constants of measured bars

cord holes. The material constants (Young’s modulus and the mass density) were taken

from a standard reference (see Table 19.1 p. 625) [70] and were not measured for the

experimental bars.

Figure 4.6: Sketch of shape and dimensions of a bar.

The bar to be measured was suspended using two stiff cords under tension between

two vices. The microphone was placed underneath the middle of the bar. The typical

6The thickness of the vibraphone bars was misprinted as1.8 in [61] and has been corrected.
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x1r (cm) x1l (cm) x2r (cm) x2l (cm) d (cm)
Uniform wood 3.9 3.9 3.9 3.9 0.7
C#

4 wood 5.8 5.8 6. 5.6 0.5
Uniform aluminuma 4. 4. 4. 4. N/A
F#

4 aluminum 5.7 5.8 5.6 6.2 0.6
F#

3 aluminum 7.3 7.4 7.5 6.8 0.6

Table 4.2: Positions and diameter of cord holes in bars
aThe aluminum bar had no cord holes. Instead if was held in place by rubber bands on thin plastic rods

which were wrapped with felt at the given positions.

bowing point when bowing xylophone or vibraphone bars in a complete instrument is on

the narrow end, as this is the only side which can be conveniently reached with a bow

by the performer. Hence our measurements concentrate on bowing positions on the end

of the bar. In some bowing strokes, especially when high bowing forces are applied, the

oscillation of the mass spring system of the cords and the bar had to be damped by placing

one hand on one of the cords and pulling down. The typical setup is depicted in figure

4.7. A rosined double bass bow was used for all hand bow measurements.

Measurement results

First, the response of the measured bars to impulsive excitation was measured using both

a force hammer and a hard plastic glockenspiel mallet. Table 4.3 shows the frequencies

of the dominant partials of each test bar along with the theoretical values for uniform bars

as well as the usual tuning frequencies for undercut bars. As can be seen, the uniform

aluminum bar is very close to the values predicted by the Euler-Bernoulli theory. The

uniform wooden bar deviates substantially from the theoretical values, for two likely

reasons. One is that the bar is not perfectly uniform due to the holes drilled3.95cmfrom

both ends with a diameter of0.75 cm. Second, the thickness is comparable to the width
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Figure 4.7: Experimental setup for hand bowing measurements of bars.

of the bar, in which case the application of the Timoshenko theory is more appropriate,

which lowers the frequency of the upper partials [70].

The bowed bar exhibits a harmonic spectrum, though often weaker partials at the

possibly inharmonic eigenfrequencies can be seen. This behavior can also be seen when

bowing at positions other than one of the free ends. Bowing at the side is easily possible

only with sufficient distance to the suspension holes. When bowing in the middle, the

fundamental of the bar can also be excited. For the F#
3 vibraphone bar bowing in the

middle will often lock to the second eigenfrequency of the bar, which lies two octaves

above its fundamental eigenfrequency. This tendency to lock to the higher mode can

usually only be overcome with increasing friction by tilting the bow or by other means.
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Wooden Aluminum Usual C#4 F#
3 F#

4
n Theory (uniform) (uniform) tuning xylo vibra vibra
f1 693.9 487. 280.6 187.3 373.6
2 2.756 2.572 2.756 4. 3.932 3.984 3.997
3 5.404 4.644 5.423 10. 9.538 10.668 9.469
4 8.933 6.984 8.988 16.688 17.979 15.566
5 13.346 9.723 13.448 24.566 23.679 20.863
6 18.6408 18.680 31.147 33.642 29.440

Table 4.3: Spectral frequencies of dominant partials of measured bars and theoretical
values given asfn : f1. The left side of the table contains the theoretical prediction for
uniform bars and the actually measured ratios of the two measured bars. The right side
contains the usual tuning and the measured ratio for tuned bars. The first row contains
the actual fundamental frequencyf1 of the bars.

Another possible way of excitation is to contact the top surface of the bar. By bowing

with little bowing force a proper regime of oscillation can be excited.

Using hand bowing, a qualitative relationship between bowing velocity and amplitude

as well as between bowing force and amplitude was investigated. It should be noted that

constancy of velocity and force within each measurement as well as across measurements

(when applicable) were not possible as they are highly dependent on the subjective per-

ception and the skill of the performer. As will be seen in the quantitative measurements

using a bowing machine, the lack of constancy of bowing force is likely not a problem as

the amplitude appears to be independent of the bowing force.

Figures 4.8 and 4.9 show the time domain envelopes of bowing strokes with increas-

ing velocity and increasing force. From the length of the bow and the stroke time,

which can be retrieved from the time-domain plot, an average input velocity can be

deduced. Setting this velocity in relationship to the amplitude of the signal shows an

approximately linear increase of amplitude with increasing velocity. Force was held

nearly constant in the velocity measurement. The force measurement shows no clear
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Figure 4.8: Time-domain amplitude envelope of hand strokes with increasing velocity
and force held approximately constant.

influence on the amplitude. This finding was later validated by the bowing machine

measurements. The time-domain shapes of the force-amplitude relation also hint at a

decrease of onset time with increasing force. This result was also quantified using bowing

machine measurements, as described in the next section.

Measurements using the Bowing Machine

Experimental Setup

The F#
3 aluminum vibraphone bar under investigation (see table 4.1) was suspended in a

rigid bar holder. The holder has two effects. First it removes the cord modes or other

movements which are not of interest while keeping the important degrees of freedom.
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Figure 4.9: Time-domain amplitude envelope of hand strokes with increasing force and
velocity held approximately constant.

Second, it allows very high bowing forces to be applied by the bowing machine. As

shown in Figure 4.10 angled screws were screwed into a wooden base at the positions of

the cord holes of the bar. Rubber tips were placed between the metallic holder and the

bar to minimize the friction noise and keep a flexible interface. The wooden base was

shaped to allow bowing at the narrow side and at the wide side at positions between the

suspension holes. In the bowing machine measurement, the bar was pulled towards the

bowing machine (which will be described in the next section), by means of a cord which

was tied to a hook on one narrow side of the bar holder. When the applied force was

measured, the cord was replaced by a spring scale with a scale range of0 to 2000grams.
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Figure 4.10: Experimental setup for bowing machine measurements of bars.

The microphone position for these measurements was above the middle of the bar as the

bar holder didn’t leave enough space underneath the bar.

Bowing Machine

The bowing machine consisted of a standard variable speed power drill, a cylindrical

drum of hard rubber with a2.6 cm radius and width of3.75 cm around which a band

of horse hair was wound and glued together at the open ends using super-glue to form a

loop. The typical loop width and thickness was comparable to the width of the double

bass bow. The horse hair was then rosined. In order to calibrate bowing speed, a bicycle

speedometer was added to the drill. The magnet was placed on the rotating part and
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the pickup sensor was glued to the non-rotating casing of the drill reaching over the

magnet. In measurement, the bowing drill was held in place by a vice and the bar was

pulled against it. The noise of the drill was damped from the recording by placing sound-

absorbing foam between the drill and the microphone. Also the microphone position was

generally facing away from the drill and towards the primary sound radiation direction

of the bar, enhancing the signal to noise ratio. The microphone position was adjusted to

maximize the signal from the bar while avoiding saturation.

Measurement procedure

Figure 4.11: Bowing machine measurement series 1: Measured input parameters: Force
and velocity.

Two series of measurements were performed using the bowing machine described

in the previous section. Before each series the bowing drum had to be rehaired and
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Figure 4.12: Bowing machine measurement series 2: Measured input parameters: Force
and velocity.

new rosin was applied. Hence it should be noted that direct quantitative comparisons

between these two series are not easily possible. The reason for the need to rehair the

bowing machine stems from the fact that the high force measurements at the end of each

series resulted in breaking of the hair loop and hence rendered the loop useless for more

measurements. There is another reason why the measurements should not be compared

between measurement series. The microphone was moved and recalibrated between the

series and hence the attenuation of output levels between series should be expected to be

different.

The unevenness and change of stiffness of the hair loop at the glue joint yielded an

overlap of impulsive excitations over the total bowing excitation. This effect can be ex-

pected to influence some of the behavior measured. The impulses overlaying the overall
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sound were used as an independent measure of velocity because of the occurrence of

one impulse per revolution. Later this measurement was correlated with the independent

velocity measurement using a speedometer to get an error estimate.

The first series consisted of nine runs starting at a particular bowing speed in gradually

increasing forces between0 and14 Newtons (or0 and2000grams spring scale readings

with a relative force contribution of
√

2 due to an angle of45degrees). Forces were taken

at the following spring scale readings if oscillations occurred:125, 250, 500, 1000, 1250,

1500, 1750and2000grams. In this measurement series, the oscillation was not damped

out and restarted at each measurement point, but the force was steadily increased with the

bowing machine continuously in contact. The setting of the drill speed was not adjusted,

which resulted in a decrease of the actual bowing speed due to the reduced drill speed

from the increased force load. All measurement points can be seen in figure 4.11. As

can be seen, the velocity of each run decreases as a function of input force. The velocity

was derived from the recording as described before. The last run (run 9) didn’t result in

oscillation and hence indicates points lying beyond the upper velocity limit.

These measurements were aimed towards finding the regions of oscillation as a func-

tion of velocity and force. In addition relative energy as a function of velocity and force

was calculated from the recorded sounds and the change in spectral content was charac-

terized using the spectral centroid, which is the center of gravity of the spectrum. The

spectral centroid correlates roughly with brightness. Finally, the fundamental frequency

of the recorded sounds was also measured. The results will be discussed in subsequent

sections.

The second series consisted of three runs again starting at a particular bowing speed.

This time the oscillation was damped out after recording for each measurement point and,

using the attached speedometer, the input velocity was adjusted in the attempt to keep
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Figure 4.13: Bowing machine measurement series 1: Recorded radiation energy as a
function of bowing velocity.

the actual bowing speed roughly constant. If a measurement point yielded oscillation

the recording was taken long enough to measure the full oscillation build-up until the

maximum and a significant part of the steady state oscillation. Hence in addition to all

the measures derived from series 1, the onset transient time until maximum oscillation

was reached was measured in this series. The force range was extended for the first two

runs of this series to a maximum force of about20 Newtons (or a spring scale reading of

2000grams at0 degrees angle).

All measurement points of this series can be found in figure 4.12. The velocities

were measured both using the measure of the speedometer and from the recording. A

correlation between the two independently measured velocity values shows the average

error to be2.21 cm/s (or 1.2%) with a standard deviation of2.06 cm/s (or 1.1%). As
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can be seen, the error is very low. This has to do with the high number of revolutions

measured in both cases yielding a good resolution.

Results of bowing machine measurements

Region of oscillation

Figure 4.14: Bowing machine measurement series 2: Recorded radiation energy as a
function of bowing force.

As can be clearly seen from figure 4.11 the minimum bowing force increases as a

function of velocity. A maximum bowing force could only be found for the first two runs

of series 1, which are at velocities below50 cm/s. At higher bowing speeds an upper

force limit could not be found within the measurement range. The minimum speed at

which steady oscillation was found was23.83 cm/s with a force of13.87 N. It should



CHAPTER 4. APPLICATIONS OF THE BANDED DIGITAL WAVEGUIDES 84

Figure 4.15: Bowing machine measurement series 1: Spectral centroid as a function of
bowing force. Only measurement point with a clear steady-state oscillation are shown.

be noted that using the undamped measurement approach of series 1, very low velocities

can be achieved even for high forces (as can be seen from run 3 in figure 4.11. This point

is the highest measured force point in this run). The maximum bowing speed from series

one is found to be above203.72cm/sand below261.14cm/s.

Energy and power, spectral content, fundamental frequency and onset times

Both measurement series show that the energy of the fully developed steady state oscil-

lation increases as a function of velocity and the relationship seems to be approximately

linear (the measurements of the first series can be seen in figures 4.13). Taking this linear

velocity dependency into account, the energy radiation seems to be independent of the

input bowing force (this effect can be seen more clearly in series two, where the force-
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Figure 4.16: Bowing machine measurement series 2: Onset time as a function of bowing
force.

energy relationship as depicted in figure 4.14 correlates closely with the force-velocity

relationship as depicted in figure 4.12).

The spectral centroid of series 1 seems uncorrelated with the input force and velocity.

No clear upward trend was observed with increasing force (see figure 4.15) in contrast to

known behavior of the bowed string. Series 2 verifies this result.

The measurements of the fundamental frequency as a function of velocity and force

result in minor fluctuations without a clear trend. In series 1, the mean frequency was

186.67Hzwith a standard deviation of0.26Hz (33 data points) and in series 2, the mean

frequency was186.73 Hz with a standard deviation of0.27 Hz (25 data points). The

measurements as a function of velocity seem to indicate a trend towards flattening with

increasing velocity, whereas there is no trend observable in dependency of force. In any
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Figure 4.17: Bowing machine measurement series 2: Onset time as a function of bowing
velocity.

case, the effect is very small (less than10cents) even over the full range. High velocities

should be difficult to achieve by hand-bowing and hence within the usual bowing domain,

the dependency of the fundamental on the bowing parameters is negligible.

Onset time as a function of velocity and force was measured in series 2 only. As

was already noted from the time-domain shapes of hand-bowed measurements, there is

a clear decrease of the onset times with increasing bowing force (see figure 4.16). The

onset time appears uncorrelated with the input bowing velocity (see figure 4.17).
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4.2 2-D Case: Indian Tabla Drums
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Figure 4.18: Indian Tabla drums played by Ajay Kapur.

The Tabla is a pair of drums with a number of interesting characteristics. The modes

of the first four to six partials are harmonic, unlike what one might expect from a circular

membrane. To achieve this harmonic tuning, the Tabla drums are manufactured using

membranes of non-uniform thickness [173]. There are a number of typical performance
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strokes to Tablas. One interesting stroke is a modulating form of the “Ga” stroke, which

is performed on the larger, right drum, called “bayan.” The palm of the hand resides

on the drum. After the drum has been excited with a quick impact with the finger-

tips, the player pushes her palm down and towards the center of the drum and hence

achieves a characteristic upward pitch-bending sound [173]. Figure 4.18 shows Ajay

Kapur performing this stroke. The small drum is called dahina.

Using propagation modeling for this example highlights a number of issues. First, a

membrane of a Tabla is essentially a two-dimensional structure, and we no longer have

the simple direct interpretation of a banded waveguide as was possible for the bar. We

do know, however, that the modes correspond to closed wavetrains. To remove the men-

tioned ambiguity, we need additional information beyond the modal frequencies. One

possibility would be to try to derive this information from measured impulse responses.

Alternatively one can try to derive an analytical solution for the propagation of waves.

The drum head of the Tabla is non-uniform so analytical solutions of this sort are hard.

Also, modal frequencies which are usually separate are tuned to be aligned with each

other. This can be seen in Figure 4.19. Distinct modal patterns are tuned to be harmonic.

These modal patterns may indeed contain the information necessary to derive wave-

train closure paths. Circular modes are radially symmetric, hence the wavetrain closure

path has to go from the boundary through the center and back. Diagonal modal lines,

however, don’t follow that simplified one-dimensional interpretation.

In our model we chose to simply ignore the difficulties and approximate the propa-

gation. This could be interpreted as disregarding the multiplicity of eigen-modes or as

disregarding modal shapes with diagonal modal lines. However, it leaves us with a simple

one-dimensional model of the Tabla.
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Figure 4.19: The nine nodal patterns of the Tabla tuned to harmonic modes (after Rossing
[173]).

Bayan Dahina
n measured simulated measured simulated
2 2.00 2.02 2.89 2.87
3 3.01 3.03 4.95 5.01
4 4.01 4.05 6.99 6.73
5 4.69 4.72 8.01 8.00
6 5.63 5.65 9.02 8.70

Table 4.4: Spectral frequencies of dominant partials of measured and simulated Tablas
given asfn : f1.

In this case, the pitch-bending technique directly corresponds to shortening the phys-

ical path of waves traveling on the membrane, which can be directly implemented in a

propagation style simulation.

This is not a direct geometric correspondence, but rather a resemblance which is

modeled. Whether or not a precise geometric interpretation exists remains open.
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The results of modal comparison between real drums and propagation simulations can

be found in Table 4.4. The strokes performed are open membrane strokes in the center

on both the bayan and the dahina. This was in turn modeled as impulsive excitation.
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Figure 4.20: Spectrogram showing the upward bending of a modulatedGa stroke. The
fundamental bends from 136 to 162 Hz (measured) and 134 to 171 Hz (simulated).

The results for the more complicated pitch-bending strokes can be seen in Figure 4.20.

The simulation shows good resemblance and sound comparable to the recorded stroke. It

should be noted that the simulation method is robust to the pitch-bending manipulation.

In fact, much more extreme bends than the one depicted here are possible. High pitched

large-scale bends on our propagational model perceptually closely resemble water-drop

sounds, suggesting a much wider range of interesting application for behaviors of this

type.

Hence, despite the forced reduction in dimensionality and loss of geometric interpre-

tation, the simulation achieves good results for complex interactions.
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4.2.1 Periodic Orbit on Circular Domain

In order to recover a more full notion of spatial location, the topology of periodic orbits

on the domain have to be constructed.

The circular domain is an often studied canonical example [104, 25]. It can be seen

that in fact the circular domain is very similar to the rectangular domain discussed in

section 3.9.2. Both examples have two independent spatial dimensions and are integrable

systems7. Hence EBK quantization via a resonant torus applies and a canonical transform

from domain variables to torus dimensions can be found.

Figure 4.21: Radial and angular variables on a circular domain and their connected
turning properties.

The difference between dimensions in the rectangular domain and the circular domain

is the independent variables of radiusr and angular positionφ already are topologically

connected (as illustrated in Figure 4.21). For the case of the radius, this can be seen

7A system is integrable if it admits the maximum number of integrals of motion (for a rigorous definition
see [25, p. 60]).
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following a diagonal trajectory through the origin of the circle. Towards the center the

radial variable decreases until atr = 0 the radial variable “turns” and then increases until

the boundary is reached. Also the angular variable repeats itself after2π. Whereas the

position of the radial turning point has a defined position on the domain (namely the

center), the reference of the circular repetition is a matter of definition and the point

indicated in Figure 4.21 is just a possibility. Hence looking at the circular domain the

set of paths with inward and outward radial motions and connecting these two sets at the

boundary yields the EBK resonant torus of Figure 3.9.

As mentioned in section 3.9.2 the class of all turning points inside the domain of a

family of rays is called caustics. In this case, these are the radial turning points, which

form a circle inside the domain8 (see Figure 4.22).

In the case of the rectangular domain, the family of rays with equal winding properties

on the torus were defined by the ratiox1 : x2 and now this property is defined by the ratio

r : φ. Hence all rays with the same reflection angle at the boundary belong to a family of

rays with the same resonant properties.

Any ray with a non-zero radial propagation component (see Figure 4.22(a)) hence

alternates between reflecting at the boundary and touching the caustic and hence in the

quantization condition (3.24), the Maslov indexµ, counting caustic turning points, and

the number of boundaries reached,b, are both equal and1 or more.

The special case of a purely angular propagation component neither reaches a bound-

ary nor turns radial components (see Figure 4.22(b)) and hence bothµ andb are zero and

the path length is simply the circumference of that circular path2πa0 (compare [104, eq.

(23)]):

8The general theory of caustic phenomena is a rich and complex field and will not be discussed fully
here. See [110] for a mathematical treatment of caustic phenomena.
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Figure 4.22: Keller-Rubinow path construction on the circular domain (compare [104,
Fig. 3 and 5]). (a) Closed path touching the interior caustic. (b) Radius of the caustic
circle. (c) Path containing rays traveling from caustic to boundary and back.

2πa0 = 2πn1 n1 ∈ N+
0 (4.4)

The phase on the caustics is multi-valued as it both is defined by the purely angular

propagation paths, and by paths which leave the caustics and return back to it. Hence

there is also a phase closure condition between the arc-length traveled on the caustics

and a ray leaving the caustics, reflecting at the boundary and returning to the end of the

caustic arc (see Figure 4.22(c)). Ifa is the radius of the domain, then the arc-length can

be calculated as2a0cosa0
a and the outward and inward rays each travel

√
a2−a2

0. With

the quantization condition (3.24) this yields (compare [104, eq. (24)]):

2·
√

a2−a2
0−2a0cos

a0

a
= 2π

(
n2 +

µ
4

+
b
2

)
n2 ∈ N+

0 (4.5)
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Then the multi-valuedness is removed by eliminatinga0 from equations (4.4) and

(4.5):

2·
√

a2−n2
1−2n1cos

n1

a
= 2π

(
n2 +

µ
4

+
b
2

)
n1,n2 ∈ N+

0 (4.6)

This equation corresponds to [25, p. 88, eq. (2.153)]. The quantization numbers

n1 andn2 correspond to the nodal numbers depicted in Figure 4.19 and established the

connection between ray paths and spatial modes.

In order to follow the derivation simplifying assumptions are made and hence the

topological construction is an approximate one.

4.3 3-D Case I: Wine Glasses and Glass Harmonicas

Drinking glasses, in particular wine glasses, can be made to ring in many different ways.

They can be excited by impact, by rubbing the top rim with a wet finger, or by radially

bowing with a violin bow. While impact can easily be simulated using modal models,

rubbing and bowing cannot. Geometrically, a wine glass is a three-dimensional object

and disturbances travel along the object in all dimensions. The object is symmetrical,

however, and the dominant modes are essentially two-dimensional [173]. One is left with

bending modes along the cylindrical axis, which can be excited by rubbing, plucking

or bowing, but most of the energy really goes into flexural modes of the circumference

of the glass. This is a closed path — essentially a bar being bent into a circular shape,

closing onto itself. Hence the path is quasi one-dimensional. The path traced along the

wine glass can be seen in Figure 4.24.
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Figure 4.23: Benjamin Franklin’s glass harmonica, which he called “armonica”, as seen
in the Franklin Institute Science Museum in Philadelphia.

From the distance to be traveled along the rim, the circumference of a circlel = 2πr,

and the wave velocity from equation (4.2) we can derive the actual frequency and its

connection to traveling length [173], which completely determines the wavetrain closure

to be modeled:

1
ω

=
l
v

=
2πr√
aω

ω =
a∗

r2

(4.7)
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(a) 3-D model view (b) Top view

Figure 4.24: The wavetrain closure on the rim of a wine glass and corresponding flexural
waves as seen from the top (after Rossing [173]).

Due to the circularity of the path, the banded waveguide system makes no reference

to the actual position on the rim. In practice, however, the point of interaction provides

this reference. If the glass is struck, the point of excitation is defined along the circle. The

same is true for bowing, which usually happens at one point radially to the rim. Rubbing

the rim is a peculiar case because the point of interaction is moving slowly along the

path. In our model, we make no distinction between rubbing and bowing as the rubbing

is a very slow motion compared to the wave traveling on the path, and hence treating the

rubbing interaction as stationary does not significantly alter the non-linear behavior. The

effect of the slowly shifting interaction point is measurable, though not audible as it is

too slow [173].
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Struck Rubbed Bowed
n measured sim. measured measured sim.
2 2.32 2.31 2.00 2.00 2.00
3 4.25 4.20 3.00 2.99 3.00
4 6.63 6.69 4.00 4.00
5 9.38 8.81 5.00 5.00 5.00

Table 4.5: Spectral frequencies of dominant partials of measured and simulated struck,
rubbed and bowed wine glass given asfn : f1.

Results of measurements and simulations are presented in Table 4.5. The struck

excitation was a quick sharp strike with a finger nail against the glass, which was modeled

using a simple impulse. Bowing on the real glass was performed using a rosined violin

bow. The rubbing was performed with a wet finger. With the violin bow it is possible

to excite the second harmonic as the fundamental frequency of the bowing response.

The same result can also easily be achieved using the simulation model. The simulation

model captures both the harmonic spectra as well as a other non-linear effects of the real

interaction. We did not model a rubbed interaction separately as we assume it follows in

principle the same mechanism as bowing [69]9.

4.4 3-D Case II: Tibetan Singing Bowl

The Tibetan singing bowl are geometrically close to spherical segments. A discretized

mesh version of the bowl can be seen in Figure 4.25). In typical performance, the bowl is

rubbed with a wooden stick wrapped in a thin sheet of leather along it’s rim. Depending

on the rubbing velocity and initial state of the bow (i.e. certain modes may be already

9After the completion of the thesis I became aware of work by Serafin and co-workers who
independently implemented a Tibetan bowl using banded waveguides — the object of study of the next
section — in the context of demonstrating a novel rubbing board controller. The paper [221] does not give
technical details, but the sounds presented at the conference were impressive.
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Figure 4.25: Mesh of simulated bowl.

ringing), various frequencies can be made to oscillate. Behavior is comparable to rubbing

or bowing a wine glass in terms of dynamic envelope, mode locking, mode duplication

and related phenomenon as a result of the non-linear interaction of the stick-slip-based

rubbing.
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Figure 4.26: Simulated mode shapes of the bowl.

If struck, the bowl will show a modal response of circular-symmetric form. The first

few modal shapes are depicted in Figure 4.26 with exaggerated amplitudes. These shapes

will oscillate around the circular rest position comparable to circular flexing motion of

the wine glass depicted in Figure 4.24. The circularly repeating pattern is depicted in

Figure 4.27. This picture also shows non-circular modes, which tend not to be excited by

the circular rubbing motion.
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Figure 4.27: Path of circular mode on bowl (used with permission from (Cook 2002).)

The measured spectra of the struck bowl can be seen in Figure 4.28 for various impact

positions. As can be seen, there are a number of higher modes which lie close together

yielding audible beating. The beating can be seen more clearly in Figure 4.29.

4.4.1 Beating Banded Waveguides

While beating modes in physically separate structures have been studied in the case of

coupled piano strings [8, 9, 6] and plucked strings with sympathetic coupling [99], the

modeling of beating within the banded waveguide remains unexplored.

The beating modes combined with the very weak damping poses the main challenge

for modeling the dynamics using banded waveguides (as depicted in Figure 3.3.)

For two neighboring banded wavepaths whose center frequencies get close, the re-

spective frequency-bands start to overlap strongly. This means that energy will con-

tribute to traveling waves in both bands simultaneously. To guarantee stability within

the frequency region the sum gain of both waveguides cannot exceed unity as both are
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Figure 4.28: Spectra of different excitations (used with permission from (Cook 2002).)

summed together for interaction or feedback. More specifically the gain of the respective

banded wavepaths can be calculated from the maximum of the overlapping bandpass

filter amplitude characteristics. This maximum has to be tuned to the desired gain and the

respective gain of the bandpasses is adjusted by the weight of the overlap. The resulting

simulation of an isolated beating mode pair can be seen in Figure 4.30. The relative ratio

between the modes is1 : 1.05.

The beating modes following this construct, combined with plain modes then yields

the complete simulation of the Tibetan bowl, which can be achieved with17 banded

wavepaths including beating mode-pairs.

The modal data was extracted using a method proposed by van den Doel, which is

based on a spectral tracking method including a linearized decay estimation [207].
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Figure 4.29: Beating upper partials in spectrogram of a recorded Tibetan bowl.
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Figure 4.30: Left: Evolution of an isolated simulation of a beating mode pair. Right:
Initial transient and the first beating period.



Chapter 5

Comparison with Alternative Methods

Is it progress if a cannibal uses knife and fork? – Stanislaw J. Lec1

One of the symptoms of an approaching nervous breakdown is the belief that

one’s work is terribly important. – Bertrand Russell2

This book fills a much-needed gap. – Moses Hadas3

5.1 Modal Synthesis

Modal synthesis [208] and propagation modeling are conceptually very close. The main

difference between the two is that the latter maintains the relative phase responses of

the modes and approximates the phase response between modes. In terms of physical

interpretation, modal synthesis is blind to the mechanism that gives rise to the resonance,

whereas propagation synthesis is not. Modal synthesis is inflexible with regards to in-

teraction and observation points, whereas propagation modeling allows for constructions

1In “Unkempt Thoughts,” Funk & Wagnalls, p. 78 (1962)
2In “The Conquest of Happiness,” chap 5. according to [147, p. 551, q. 10]
3Attributed by J. E H. Shaw, “Some Quotable Quotes for Statistics,” 2001, available athttp://www.

warwick.ac.uk/statsdept/Staff/JEHS/data/jehsquot.pdf
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which give a physically meaningful interpretation to interaction points and observation

points, at least in the one-dimensional case. In higher-dimensional cases, the spatial

interpretation is difficult and symmetries have to be exploited. Computationally, both

methods share the same complexity. Banded waveguides model the same number of

modes but with the addition of one inexpensive delay-line per mode.

5.2 Waveguide Synthesis

Waveguide synthesis [187] can be seen as a special case of propagation modeling in

which the group delay of all frequencies is constant and hence band-limiting and sep-

aration of modes become unnecessary. Both methods share an obvious physical inter-

pretation and justification. For both, results of linear transmission line and digital filter

theory can be utilized. Two and three-dimensional waveguide meshes differ from propa-

gation modeling, as waveguide meshes maintain the physical space, whereas propagation

models reduce dimensionality to wavetrain path analogues. It should be noted, however,

that waveguide meshes are not computationally efficient as the commutability is lost.

Propagation modeling maintains efficiency even for higher-dimensional simulations. An-

other way of comparing traditional waveguide models and propagation models is by the

way they handle dispersion. In waveguide models dispersion effects are lumped together

and modeled in one all-pass filter [187] whereas in propagation models the dispersion

is distributed. Propagation models hence more closely model the physical qualities at

local points with regards to dispersion. This difference is relevant as waveguide models

become inefficient with increasing dispersion as the filter order to implement appropriate

lumped all-pass filters becomes high.



CHAPTER 5. COMPARISON WITH ALTERNATIVE METHODS 105

5.3 All-pass Chains and Frequency Warping

An alternative approach to the banded waveguide structure to model non-constant wave-

propagation is to replace the unit delay with all-pass filters that model the non-constant

propagation characteristics. In [60] we called this structure “generalized waveguide”

although in this thesis I referred to banded waveguides as “generalized digital wave-

guides” (see section 3.6). Here I will rather call the first “all-pass waveguides” to note

the distinction.

The all-pass waveguide is the spatial discretization of the propagation equation (see

3.14). As can be seen, the phase velocity depends on the frequency. Starting from the

picture of the usual waveguide, the unit delays are replaced by frequency dependent

delays as symbolically depicted in figure 5.1.R is the appropriate reflection-function

at the boundary.

Figure 5.1: All-pass-chain or warped frequency waveguide.

If losses are modeled separately, the frequency dependent delays are all-pass filters

with an appropriately modeled phase delay response. This has strong connections to and

is strongly motivated by work on modeling the stiffness of strings starting from a mixed

bar/string-equation using all-passes [94, 145, 213, 169].
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The effect of all-passes replacing unit delays has long been studied and is classically

known as frequency warping [192, 141, 140] and has been theoretically extended until

today [216, 138]. To the same extent, the design of all-passes has been extensively studied

[116]. An example design can be seen in Figure 5.2.

Figure 5.2: All-pass filter design for a given delay characteristic (following Lang [116]).

In fact, the early work regards a special case of second-order all-passes which relate

to the Laguerre transform [141] and later also the Kautz transform [79]. The stretching

effect on partials of this kind of structure has been repeatedly observed and suggested

for synthesis [81, for an example]. In different form musical application of this approach

has been used for warped linear prediction [117, 80], instrument body modeling [148],
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reduction of dispersion errors in waveguide meshes [176], audio effects [66, 65] and

warping to perceptual scales [189]. Otherwise it’s been studied in modeling room impulse

responses [107], the approximation of delay systems [119, 118] and system identification

[7, 67], filter design [120], and image compression [41]. Cascaded all-passes, possibly

mixed with delays have long been used in reverberation algorithms [49, for example].

In the case of all-pass waveguides, depending on the order of the all-passes used,

good approximation to the propagation characteristics can be achieved, this approach

shows poor performance. The number of all-passes needed depends on the fundamen-

tal frequency of the instrument. It was found that for the same spatial and temporal

sampling, 10th order all-pass chains require more computation than an implicit finite

difference method implementation (after [35]). This performance comparison matches

the counted number of floating-point multiplications and additions as found in the all-

passes and the band-diagonal solver used in the finite difference implementation. While

this model preserves spatial sampling and hence would allow for non-linear spatially

localized interactions, it is neither useful for musical performance nor advisable for

acoustical modeling purposes, because finite differencing also model local coupling terms

at the same complexity.

In fact, it should be noted that an interesting conceptual difference between all-pass

waveguides and banded waveguides is the spatial sampling. All-pass waveguides use

uniform spatial sampling with each all-pass unit corresponding to a spatial unit. As

was discussed in section 3.7 banded waveguide have multi-scale spatial sampling. This

difference provides the crucial performance improvement.
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5.4 Modal Decomposition & Green’s Function

Propagation modeling is a simplification and possibly an approximation to full modal

decomposition or Green’s function modeling. By full modal decomposition modeling,

we mean the modal description of the system which keeps both the modal frequencies

(as modal synthesis does) and modal shapes (corresponding to eigenvectors of the sys-

tem) [134]. In a propagation perspective, eigenvectors can intuitively be interpreted as

capturing the details of the wave-path which gives rise to the closed wavetrain. Propa-

gation modeling keeps only the total roundtrip time and drops the local variations. This

corresponds to a tradeoff between detail and computational speed. Eigenvectors contain

values for all data points in the mesh-discretization, whereas the propagation models only

preserve a highly reduced set of data. Whether or not piecewise propagation modeling

in higher dimensions has an obvious physical interpretation remains an open question.

Full decomposition is obviously more desirable if the oscillation of an object should be

visible and hence the motion of all geometric points has to be modeled. Both methods

require explicit prior knowledge of the means that give rise to the modal response, though

both could be automatically derived before the simulation starts from the general system

describing the objects.

5.5 Finite Element Methods

Finite element methods (see chapter 6 and [135]) solve for the modal response implicitly,

whereas propagation modeling carries the modal response explicitly. Solving for the

modal response is only necessary, however, if it can change during the simulation and the

mechanisms of the modal response change are not known. A good example where the

modal change is very hard to predict is brittle fracture. An example of modal change that
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is explicitly understood is the Tabla pitch-bending described earlier. Also, finite element

methods can be used to solve some distributed non-linear systems, for which any linear

propagation assumption is in general invalid.

The difference between general finite element methods, and methods which use delay-

lines as modeling structures or substructures can be seen by bringing the function of a

delay-line into matrix notation. Assume a numbering of the delay-line cells as depicted

in figure 5.3.

Figure 5.3: Labeling of delay-line cells for matrix notation.

Then at each time step the content of each element gets copied into the neighboring

cell, which leads to a matrix of the form:

Zn =




0 0 0 · · · 0 0
1 0 0 · · · 0 0

0 1 0 0
... 0

...
... .. . .. . . . .

...
0 · · · 0 1 0 0
0 · · · 0 0 1 0




(5.1)

This is a matrix with1’s in the first subdiagonal and zeros elsewhere. This matrix type

is calledlower shift matrixin [37]. If the delay-line forms a closed loop then there is an

additional one in the upper-right corner (corresponding to the copy operation of the last
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delay-cell into the first one. The resulting matrix is called is calleddownshift permutation

matrix [77, p. 202]:

Sn =




0 0 0 · · · 0 1
1 0 0 · · · 0 0

0 1 0 0
... 0

...
... . .. . .. .. .

...
0 · · · 0 1 0 0
0 · · · 0 0 1 0




(5.2)

Then the speed-enhancing realization of waveguide methods is that vector multipli-

cation unit-subdiagonals4 of a matrix can be computed inO(1) if sub-diagonal elements

are arranged in a queue structure.

yt = Zn ·yt−1 (5.3)

with y = [y1,y2, · · · ,yn−1,yn] according to Figure 5.3.

The key condition for the running timeO(1) to hold is that there be no individual

access to more than a constant number of elements out ofy. For instance, an exhaustive

radiation sum following Huygen’s principle as used in the finite element calculations of

section 6.1.3 would not be possible as it accesses alln elements ofy. In other words

waveguide style methods have high performance only ifa constant number of elements

are observed at every timestep. This is obviously a necessary condition and it should be

noted that it does not restrict what the observation points at every time step are5.

4More generally this is also true of any row-permutation of matricesZn and Sn, for instance an
“upshifting” matrix can be constructed by rotatingSn upward two rows.

5Implications for future work are mentioned in section 7.6.2.



Chapter 6

Geometric Simulation Using Finite

Elements

When ideas fail, words come in very handy. – Johann Wolfgang von Goethe1

Sometimes when reading Goethe I have the paralyzing suspicion that he is

trying to be funny. – Guy Davenport2

In this chapter the limitations of the proposed method will be outlined more clearly

by showing simulations using more general finite element techniques. It is based on joint

work with James F. O’Brien and Perry R. Cook [135] that investigated the simultaneous

finite element simulation of motion dynamics and sound generation. In addition, perfor-

1A commonly used loose translation of a passage in “Faust”, pt 1. The original is “Denn eben, wo
Begriffe fehlen, Da stellt ein Wort zur rechten Zeit sich ein.,” (in “Faust” Benno Schwabe Verlag, Basel,
line 1995 (1949)). Note that “Begriff” doesn’t translate easily. The translation of Anna Swanwick is
“For there precisely where ideas fail, A word comes opportunely into play,” Faust, part 1, lines 1673-
1674, Harvard Classic, Barertleby.comhttp://www.bartleby.com/19/1/4.htm . Bayard Taylor, Boston
(1871) translates it as “comprehension” whereas George Madison Priest, Covici-Friede Publishers, New
York (1932) translates it as “concept”.

2Often cited on the world-wide web, though I failed to find a believable attribution. Hence it should be
considered hearsay.
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mance numbers will be presented that illustrate the performance deficit of finite element

methods compared to banded waveguides, as already mentioned earlier (see section 5.5).

The starting point of a finite element simulation is a mesh discretization and a dynamic

discription. The technique does not make use of specialized heuristics, assumptions about

the shape of the objects, or prerecorded sounds. The audio is generated automatically as

the simulation runs and does not require any additional implementation work. This in fact

is a significant difference from banded waveguide methods. As has been seen in previous

chapters, banded waveguides require additional path constructions, which in addition are

not known for arbitrary geometries.

The remaining sections of this chapter provide a detailed description of the finite

element technique that was developed, several examples of the results we have obtained,

and a comparisons to banded waveguide and other methods.

6.1 Sound Modeling

6.1.1 Motions of Solid Objects

The first step in the technique used requires computing the motions of the animated

objects that will be generating sounds.

The method models the motions of solid objects using a nonlinear finite element

method similar to the one developed by O’Brien and Hodgins [136, 137]. This method

makes use of tetrahedral elements with linear basis functions to compute the movement

and deformation of three-dimensional, solid objects. (See figure 2.5.) Green’s nonlinear

finite strain metric is used so that the method can accurately handle large magnitude de-

formations. Both these conditions already show the difference from banded waveguides.

For one, arbitrary meshes are used. Also, the finite element method has been refined to



CHAPTER 6. GEOMETRIC SIMULATION USING FINITE ELEMENTS 113

allow simulation outside the linear realm of small displacement. Banded waveguides as

presented here require this linearity and hence don’t allow for large deformations.

This particular method was selected because it is reasonably fast, reasonably accurate,

easy to implement, and treats objects as solids rather than shells. However, the sound gen-

eration process is largely independent of the method used to generate the object motion.

So long as it fulfills a few basic criteria, another method for simulating deformable objects

could be selected instead. These criteria are

• Temporal Resolution— Vibrations at frequencies as high as about20,000 Hz

generate audible sounds. If the simulation uses an integration time-step larger than

approximately10−5 s, then it will not be able to adequately model high frequency

vibrations.

• Dynamic Deformation Modeling— Most of the sounds that an object generates

as it moves arise from vibrations driven by elastic deformation. These vibrations

will not be present with techniques that do not model deformation (e.g. rigid

body simulators). Similarly, these vibrations will not be present with inertia-less

techniques.

• Surface Representation— Because the surfaces of the objects are where vibra-

tions are transmitted from the objects to the surrounding medium, the simulation

technique must contain some explicit representation of the object surfaces.

The tetrahedral finite element method we are using meets all of these criteria, but

so do many other methods that are commonly used for physically based animation. For

example, a mass and spring system [31] would be suitable, provided the exterior faces of

the system were defined.
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6.1.2 Surface Vibrations

After computing the motion of the objects, the next step in the process requires analyzing

the surface’s motions to determine how it will affect the pressure in the surrounding fluid.

Let Ω be the surface of the moving object(s), and letdsbe a differential surface element in

Ω with unit normaln̂̂n̂n and velocityvvv. If we neglect viscous shear forces then the acoustic

pressure,p, of the fluid adjacent tods is given by

p = zvvv· n̂̂n̂n (6.1)

wherez= ρc is the fluid’s specific acoustic impedance. From [106], the density of air at

20◦C under one atmosphere of pressure isρ = 1.21kg/m3 , and the acoustic wave speed

is c = 343m/s, giving z= 415Pa·s/m.

Representing the pressure field overΩ requires some form of discretization. We

will assume that a triangulated approximation ofΩ exists (denotedΩ− ) and we will

approximate the pressure field as being constant over each of the triangles inΩ−.

Each triangle is defined by three nodes. The position,xxx , and velocity,̇ẋẋx , of each node

are computed by a physical simulation method as discussed in the previous section. We

will refer to the nodes of a given triangle by indexing the positionxxxn with n∈ 1,2,3. The

surface area of each triangle is given by

a = ‖(xxx[2]−xxx[1])× (xxx[3]−xxx[1])‖/2 (6.2)

and its unit normal by

n̂̂n̂n =
(xxx[2]−xxx[1])× (xxx[3]−xxx[1])

2a
(6.3)



CHAPTER 6. GEOMETRIC SIMULATION USING FINITE ELEMENTS 115

The average pressure over the triangle is computed by substituting the triangle s

normal and average velocity,̄v̄v̄v , into Equation (6.1) so that

p̄ = zv̄̄v̄vn̂̂n̂n = z

(
1
3

3

∑
i=1

ẋ̇ẋx[i]

)
· n̂̂n̂n (6.4)

The variablep̄ tells us how the pressure over a given triangle fluctuates, but we are

only interested in fluctuations that correspond to frequencies in the audible range.

6.1.3 Wave Radiation and Propagation

Once the pressure distribution is known over the surface of the objects it is computed how

the resulting wave propagates outward towards the listener.

Huygen’s principle states that the behavior of a wavefront may be modeled by treating

every point on the wavefront as the origin of a spherical wave, which is equivalent to

stating that the behavior of a complex wavefront can be separated into the behavior of a

set of simpler ones. Using this principle, we can approximate the result of propagating

a single pressure wave outward fromΩ by summing the results of many simpler waves,

each propagating from one of the triangles inΩ−:

s=
p̃aδx̄−r

‖x̄̄x̄x−rrr‖ cos(θ) (6.5)

wherer is the location of the receiver,̄x̄x̄x is the center of the triangle,θ is the angle

between the triangle s surface normal and the vectorrrr − x̄̄x̄x, andδx̄−r is a visibility term

that is one if an unobstructed ray can be traced fromx̄̄x̄x to rrr and zero otherwise.

To account for propagation delay we make use of a delay line. All entries in the buffer

are initially set to zero. When we computes for each of the triangles inΩ− at a given

time, we also compute a corresponding time delay
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d =
‖x̄̄x̄x−rrr‖

c
(6.6)

with c being the acoustic wave speed (speed of sound) in the fluid. Thes values are then

added to the entries of the buffer that correspond to the current simulation time plus the

appropriate delay.

As the simulation advances forward in time, values are read from the entry in the

accumulation buffer that corresponds to the current time. This value is treated as an

audio sample that is sent to the output. This radiation method would not be possible for

banded waveguides without pushing the computational complexity of the method up to

calculations per sample point and hence would eliminate the performance advantage.

6.2 Results

Using the described technique for generating audio, several examples were tested. For

all of the examples, two listener locations were used to produce stereo audio. The

locations are centered around the virtual viewpoint and separated by20cm— roughly the

separation of human ears — along a horizontal axis that is perpendicular to the viewing

direction. The sound spectra shown in the following figures follow the convention of

plotting frequency amplitude using decibels, so that the vertical axes are scaled logarith-

mically.

Figure 6.1 shows an image taken from an animation of a bowl falling onto a hard

surface and a spectrogram of the resulting audio. In this example, only the surface of the

bowl is used to generate the audio, and the floor is modeled as rigid constraint. Variations

in the degree to which each of the modes are excited occur because different parts of the

bowl hit the surface on each bounce.
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Figure 6.1: The top image shows a multi-exposure image from an animation of a metal
bowl falling onto a hard surface. The lower image shows a spectrogram of the resulting
audio for the first five impacts.
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The bowl’s shape is arbitrary and there is no known analytical solution for its vibra-

tional modes. The bowl could also be replaced with an arbitrary shape without additional

work. This generality is a clear advantage over banded waveguides.

However this generality entails cost beyond increased computation time. In addition,

the conditions of stability (of error accumulation), convergence (approaching a stable

solution in the limit of infinitesimal elements) and consistency (converges to the correct

differential equation) have to be satisfied, which can be non-trivial or laborious to check

[5]. In case of banded waveguides, the stability condition is checked easily by calcu-

lating the loop gains. The response converges and is consistent in the sense that modal

parameters have been chosen to that end. By the asymptotic and lumped properties the

banded waveguide does not necessarily converge to the detailed dynamics though it does

converge to a continuous wave-propagation solution of the WKB type (as has been shown

in section 3.8.3).

A verification of the finite element method used has been performed and is described

in detail in [135].

Of particular interest is the simulation of a vibraphone bar that has been tuned by

undercutting. A mesh has been constructed (see Figure 2.5) based on the bar also used in

the measurements presented in section 4.1.2.

The undercutting results in a change in transverse impedance between the thin and

thick portions of the bar, which prevents an analytical solution. Two simulations of the

bar have been computed with mesh resolutions of1 cm and2 cm, and compared them

to a recording of a real bar being struck. (The1 cm mesh is shown in Figure 3.) To

facilitate the comparison, the simulated audio was warped linearly in frequency to align

the first partials to that of the real bar at187Hz ( F]3), which is equivalent to adjusting

the simulated bar’s density so that it matches the real bar. The results of this comparison
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Figure 6.2: The top image plots a comparison between the spectra of a real vibraphone bar
(Measured), and simulated results for a low-resolution (Simulated 1) and high-resolution
mesh (Simulated 2). The vertical lines located at 1, 4, and 10 show the tuning ratios
reported in [70].

are shown in figure 6.2. Although both the simulated and real bars differ slightly from

the ideal tuning, they are quite similar to each other. All three sounds also contain a

low frequency component below the bar’s first mode that is created by the interaction

with the real or simulated supports. The discrepancy here is of interest mostly because it

highlights the fact that the results of finite element methods depend on the detail of the

model description and the accuracy of the mesh. Scatterings at impedance changes are
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Figure 6.3: These figures show a round weight being dropped onto two different surfaces.
The surface shown in (a) is rigid while the one shown in (b) is more compliant.

Figure 6.4: A slightly bowed sheet being bent back and forth.

implicitly solved for and carried through, whereas in banded waveguide simulation these

scatterings would either have to be explicitly added or neglected.

Finally I would like to mention examples which are not directly possible using banded

waveguides but can be achieved directly using the finite element method discussed here.

Because the finite element method does not make additional assumptions about how

waves travel in the solid objects, it can be used with nonlinear simulation methods to

generate sounds for objects whose internal vibrations are not modeled by the linear wave
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Example Figure Time-step Nodes Elements Surface Total Time Audio Time
(10−7s) Elements (min) (min)

Bowl 6.1 10 387 1081 742 91.3 4.01 4.4%
Clampled Bar [135, 5] 1 125 265 246 240.4 1.26 0.5%
Square Plate [135, 6.a] 10 688 1864 1372 245.0 8.14 3.3%
(on center)
Square Plate [135, 6.b] 10 688 1864 1372 195.7 7.23 3.7%
(off center)
Vibraphone Bar 6.2 1 539 1484 994 1309.7 5.31 0.4%
Swinging Bar [135, 8] 3 130 281 254 88.4 1.42 1.6%
Rigid Sheet 6.3.a 6 727 1954 1438 1041.8 7.80 0.7%
Compliant Sheet 6.3.b 20 727 1954 1438 313.1 7.71 2.5%
Bent Sheet 6.4 1 678 1838 1350 1574.2 6.45 0.4%

Table 6.1: Computation times for the finite element simulations. The total times indicate
the total number of minutes required to compute one second of simulated data, including
graphics and file I/O. The audio times listed indicate the amount of the total time that
was spent generating audio, including related file I/O. The percentages listed indicate the
time spent generating audio as a percentage of the total simulation time. Timing data were
measured on an SGI Origin using one 350 MHz MIPS R12K processor while unrelated
processes were running on the machine’s other processors.

equation. The finite element method we are using employs a nonlinear strain metric

that is suitable for modeling large deformations. Figure 6.3 shows frames from two

animation of a ball dropping onto a sheet. In the first one, the sheet is nearly rigid and

the ball rolls off. In the second animation, the sheet is highly compliant and it undergoes

large deformations as it interacts with the ball. Another example demonstrating large

deformations is shown in figure 6.4 where a slightly bowed sheet is being bent back and

forth to create a crinkling sound. Animations containing the audio for these, and other,

examples have been included on the proceedings video tape and DVD of [135].

All simulations times, including the examples discussed here and those discussed in

[135], are listed in table 6.1. As can be seen, none of the rendered examples is close to

real-time performance. This is true even for simple examples as a clamped uniform bar.

This has to do with the small time-steps required for stability (which in some examples

is smaller than perceptually necessary) in this method but largely because of the mesh

discretization and the required solution of linear systems equations of related size.



Chapter 7

Conclusions, Future Directions and

Applications

[..] the other is a conclusion.

shewing from various causes why the execution has not been equal to what

the author promised to himself and the publick (sic).1 – Samuel Johnson2

I hate quotations. Tell me what you know. – Ralph Waldo Emerson3

Don’t let it end like this. Tell them I said something. – (maybe not the) last

words of Pancho Villa4

1First half of the quote to be found in the introduction chapter.
2James Boswell, “Life of Samuel Johnson,” (1755) available athttp://newark.rutgers.edu/

˜jlynch/Texts/BLJ/blj55.html or according to [147, p. 371, q. 17] in vol. 1, p. 292 (1755)
3In “Journals of Ralph Waldo Emerson”, Houghton Mifflin Company, Boston, vol. 8, May 3, (1849),

last entry.
4Though this quote is usually attributed to Villa on many web-pages, online information by the Tucson-

Pima public library claims no. Seehttp://www.lib.ci.tucson.az.us/government/infoline/
archivesq15.htm . K. S. Guthke (in “Last Words,” Princeton University Press, p. 10, (1992)) is undecided
and writes: “Whether authentic or not, this often-cited remark pointedly plays up the collective fascination
with last words.”
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7.1 Conclusions

The principle of closed wavetrains, also known as the principle of equal phase closure

has been one of the main guiding principles for the work in this thesis.

By using closed wavetrains as a starting point, the resulting simulations and the de-

scriptive dynamics give insights into the dynamics of musical instruments, the connection

between modal synthesis [1], digtal waveguide filter synthesis [187] and simulation based

on finite difference or finite elements. In this concluding notes, I would like to again

highlight the connections that have been made through that guiding principle.

7.2 Separation of Wavetrains and Geometry

Digital waveguide filters assume that the propagation speed of traveling waves is roughly

the same for all frequencies. Small deviations can be implemented using all-pass filters

but large deviations require high-order filters and the extension becomes computationally

expensive. This is equivalent to having one equal phase condition for all frequencies.

The effect is that all modes come about from the same closed wavetrain. As part of this

thesis, I showed that modeling one closed wavetrain per associated mode allows modeling

stiff systems, like bars, which don’t have a constant propagation speed (section 4.1 and

[60]). This separation of wavetrains has a second effect. It also allows for modes to arise

from different, independent paths. This is crucial to allow the idea to be used on dynamic

systems of higher dimensions like membranes, cymbals, or wine glasses (sections 4.2-4.4

and [62, 179]).

A square membrane can serve as illustration of this concept. The first mode corre-

sponds to the family of rays which bounce at the boundary at a 45 degree angle (or a total

of 90 degrees between incoming and outgoing ray). As can easily be seen in Figure 7.1
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Figure 7.1: Left: Closed paths with one reflection at each side. Right: Closed paths with
two reflection at the top and bottom and one at the sides.

all of the rays have the same length (the length of twice the diagonal), the same number of

boundary reflections (one on each side). The second mode is the result of rays bouncing

twice at the top and bottom and once on the sides. Again, the family of rays has the

same length and number of reflections. These are two distinct closed paths on the domain

leading to two distinct closed wavetrains and two contributions to the modal response.

The modes are not necessarily unique, however. If accurate modeling is the goal, these de-

generate modes have to be taken into account. If the propagation speed on the medium is

the same on both paths, a condition which is necessarily true in a homogeneous medium,

the two paths may in fact also dynamically be indistinguishable. In this case the necessary

care corresponds to noting, that even though the traveling paths have the same length and

speed, the interaction points may be distinct, as the paths are geometrically different.

If this is being taken care of this mode can in fact be modeled as a “fused” banded

wavepath. If the paths are distinguishable, this does not necessarily require separating

the wavepaths, though that is a possibility. It still requires only that the interaction points

are appropriately adjusted according to the separate wavepath geometries. This is of
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course the case only if there are no local scatterings, they are weak and can be ignored

or not significant for a dynamic response of interest. The efficiency of waveguide style

simulation is directly connected to the amount of modeled local scatterings. This can be

seen from Bilbao’s work on the connection of finite differencing and digital waveguide

networks [16, 17, 18]. This suggests that considering the perceptual and dynamical

relevance of scatterings is important when trying to achieve efficient models.

7.3 The Link Between Lumped Modal Synthesis and Dig-

ital Waveguide Synthesis

Adrien proposed an interpretive link between additive sinusoidal modeling and physical

modeling by giving additive sinusoids the physical interpretation of damped harmonic

oscillators (mass-spring-damper system) which correspond to the eigensolutions of the

actual physical system and the finite differencing scheme [1]. However, the point then

was, that physical modeling was understood as finite differencing and that modes corre-

sponded to decaying sinusoids.

Banded waveguides provide a similar interpretive link between modal synthesis and

digital waveguide filters. The key here is again the equivalence between the principle

of closed wavetrains and modal response. In essence, the principle explains how modes

come about dynamically, whereas in Adrien’s picture modes are solutions of the govern-

ing equations without a clear dynamic connection.

While previously we have discussed banded waveguides as a generalization of digital

waveguide filters for arbitrary linearly propagating media, banded waveguides can also

be viewed as generalized modal models. The bandpass filters correspond to the resonant

filters of a lumped modal model and the delays correspond to a “phase-delay correction”
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for the mode. That is in the lumped modal model, the spatial information has been

discarded and aspects of this spatial information is restored using banded waveguides.

Dynamically this can be seen as the time for a wave to travel one cycle to finally close

onto itself. This delay has been discarded in the lumped model and hence transients are

expected to be less accurate in lumped models.

7.4 The Link Between Geometry and Modes

As mentioned before, the connection between closed wavetrain paths and modes leads

to an immediate consideration of geometry. If the underlying dynamics is fixed, then

indeed the resulting modes directly depend on the geometry of the object. This direct

connection was highlighted by Kac’s famous question “Can we hear the shape of a

drum?” [97]. While this question has been answered with “no” for specific nonsmooth

constructions [57], the question remains open for most and very general classes of shapes

(like all smooth boundaries). Of course, one can reinterpret Kac’s question as referring

to perceptual equivalence between shapes rather than mathematical equivalence. This

question has started to get attention in the Computer Music community recently [168].

7.4.1 Geometry, Modes and Efficiency

The reason why the link between modes and geometry is relevant for physical models

of musical instruments has to do with the efficiency gap between modal, waveguide and

banded waveguide models, and mesh-based models like waveguide networks or finite

element methods. The first class of methods is independent of the spatial resolution of

the simulation [62]. The efficiency of the second is dependent on the number of mesh

points. The first class is however dependent on the number of perceptually relevant



CHAPTER 7. CONCLUSIONS, FUTURE DIRECTIONS AND APPLICATIONS127

modes. If this number gets too high, the method becomes inefficient. Hence there is

a trade-off between these two dimensions, which was first observed by Serafin and co-

workers, who proposed a hybrid method to accommodate high densities of modes by

modeling those regions with meshes of low spatial cost and low density regions in the

spectrum using the banded waveguide method [179]. But even in the case of low mode

density, the connection between modes and geometry remains an important one. One

could imagine using a banded waveguide approach blindly, that is, just as a form of phase-

corrected modal model, where the tuning parameters of the banded waveguides, band-

center frequency and delay-length are derived from measurements or precomputation.

Then the interpretation of spatial interaction away from the measurement point would

disappear, an aspect that is very important in the dynamic simulation of many musical

instruments (for the complex interaction with the Indian Tabla drums see [62]).

7.5 Summary

The summary of all these connections can be seen in figure 7.2. By generalizing both

waveguides and modal synthesis, banded waveguides overcome the respective limitations

of media/material type and interaction type. While finite element methods are slow,

they are the solution of choice for complex and highly non-linear media as well as for

arbitrarily complex geometries.
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Figure 7.2: Comparison of modal synthesis, waveguides, banded waveguides and finite
element methods.

7.6 Future Work

7.6.1 Perceptual Measures for Synthesis Methods

An interesting and important question has not been thoroughly addressed in this thesis:

the question of a quantitative measure of perceptual quality of a sound simulation. Per-

ceptual models have a history of research behind them [26, 130], though only recently

in the context of digital speech coding for wireless telephony [4, 11, 164] led attempts

at using them to arrive at quantitative measures. Another field where perceptual models

have found an application is music coding for compression (for a review see [144]). This

work has let to a wealth of experimental data which can be used as reference for recorded

music quality and in fact has been used to validate computational model measures by

Thiede and Kabot [196]. While this line of research definitely shows promise for the

use with synthesis methods, it does not directly address a number of specific problems.

In particular the focus of the mentioned work is that differences are imperceptible. In

simulation other determinants of quality may be more desirable. For instance, a simu-

lation may sound different from an actual instrument from which its model parameters
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have been derived as long as it is “believable” to the listener as being such an instrument

(assuming ignorance of the listener of the original instrument). In fact, Bonebright and

co-workers realized the multiplicity of perceptual qualities when proposing methods for

evaluating such qualities [19].

The perceptual dimension indeed has received some attention in very recent history

in the physical modeling community [95, 168].

I would like to propose taking the perceptual quality coding of Thiede and Kabot

as starting point but extending such a model to a “believability” measure by adding a

judgment of closeness in timbre space [43, chap. 7]. If a quantitative measure along this

lines or in other forms is possible, it still remains to be explored.

7.6.2 Waveguide Preconditioning for Matrix Methods

As seen in section 5.5, delay operations can be seen as a special type of matrix mul-

tiplication. A subdiagonal unitary matrix can be implemented using queues and the

multiplication (rather the shift operation that corresponds to the multiplication) can be

performed inO(1) and maintains this performance if no more than constant of the re-

sulting vector elements are observed at any time-step. Hence if the latter condition holds

one might assume that, given the original matrix or subspaces thereof can be brought

into subdiagonal form, that solution beyondO(N) are possible. This field remains to be

explored, and I just want to mention a number of guiding intuitions.

If indeed subspaces of this type can be found, then they should correspond to a scatter-

free dynamics. In such cases performance enhancing preconditioning is possible without

approximation. Another approach would be to identify scatterings, define a measure of

the strength of the scattering and discard “weak scatterings” to achieve sparsing heuris-

tics. Finally, an approach that is widely used in waveguide modeling is commutation. If



CHAPTER 7. CONCLUSIONS, FUTURE DIRECTIONS AND APPLICATIONS130

The observation points can be fixed, then the behavior between those points in a linear

dynamics can be commuted and can also be commuted into the observation or interaction

operations. Also the effect of “limited observation” that is imposed by the condition of

efficiency is worthy of exploration.

7.6.3 Multirate Banded Waveguides, Perturbations and Extensions

in the Banded Case

Also largely unexplored is the study of perturbations to ideal banded waveguide paths. In

particular there exist literature which study specific modifications to standard waveguides

which should be applicable to the banded waveguide case. For instance in this thesis

rate decimation (multirate modeling, critical sampling in time) was not discussed. Such

approaches have been proposed and implemented in the context of waveguides [206,

180]. Though it should be noted that time-decimation may or may not yield performance

gain [9]. All these questions remain to be explored.



Appendix A

Glossary for Terms in Asymptotic and

Traveling Wave Methods

The purpose of this glossary is mostly to facilitate the reading of related literature for

readers who are not familiar with the nomenclature as it is not part of conventional

textbooks in the computer music and signal processing community.

As introductory books introducing the topic I recommend mostly Brack and Bhaduri’s

recent textbook [25] which guides the mathematics with physical intuition and Dahlen

and Tromp [50] who despite treating seismological problems explain the method in a

way that is appealing to engineers in general. Bouche, Molinet and Mittra [23] provide a

gentle applied mathematics perspective with emphasis on optics and electromagnetism.

Classical texts include Olver [139], Bender and Orszag [13]. Cvitanović et al [48]

provide a comprehensive treatment, though with emphasis on chaos. More advanced

mathematical texts include Fedoryuk [68], Mishchenkoet al [129], Kravtsov and Orlov

[110] and Kozlov and Treshchëv [109]. A related text in pure mathematics treating the

scattering problem is Melrose [128].
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Asymptotics an Ansatz that approaches the exact solution in the limit of some vari-

able. More precisely the generalized Poincaré definition of asymptotics is:f (z) =

∑n−1
s=0 asφs(z) + O(φn(z)) with (z→ c in R) for all non-negativen with c being a

finite limit point, f (z) being the exact function,φ(z) being the asymptotic sequence

andas being asymptotic amplitudes (from [139, p. 25, eq. (10.03)], which in the

case of a ray asymptotics (here I write the Keller-asymptotics [104, eq. (3)] has

the formu = ∑N
j=1eikSj [A j +O(1/k)] with k being the wave-number andSj andA j

being phase and amplitude. Obviously the expansion is a good one ask→ ∞, that

is for short wave-lengths. See also WKB.

Caustics usually higher dimensional turning points [103, p. 492].

Conjugate points see turning points [25, p. 79].

EBK short for Einstein-Brillouin-Keller [103, p. 493] [25, pp. 78-82], corresponds

to the derivation of the Maslov index by finding closed windings around anN-

torus, whereN is the number of dimensions of the dynamic space. For membranes

and other two-dimensional structures the 2-torus looks like a doughnut. See also

resonant torus.

JWKB short for Jeffreys-Wenzel-Kramers-Brillouin [121, p. 27], same as WKB.

Lagrangian manifold a topological structure in phase-space that relates the dynamics

of the system to the occurance of caustics in physical space [58] also [129, P. 28],

[110, p. 15].

LG approximation short for Liouville-Green approximation [139, p. 190 and 228] al-

ternative term for WKB or JWKB. Refers to the exponential Ansatz in the absence

of turning point treatment which is attributed to Liouville (1837) and Green (1837)



APPENDIX A. GLOSSARY FOR ASYMPTOTICS TERMS 133

though earlier work is traced to Carlini in 1817. JWKB and also Gans (1915) and

Rayleigh [160] treated approximate connection formulas across turning points.

Maslov index counts the number of turning points [25, p. 77] and other phase correc-

tions along a periodic orbit [25, p. 218].

Mode-ray duality also eigenvalue-periodic orbits duality [48, pp. 131ff] the correspon-

dence of modes to closed ray-paths [50, chap. 12].

Periodic orbit a dynamic trajectory that closes onto itself [109, p. 53] or [48]. The

periodic orbit condition [48, p. 259] corresponds to the principle of equal phase

closure.

Principle of equal phase closurerefers to the condition that a taveling wave, following

a closed trajectory, has to return to it’s initial phase at the starting point for reso-

nance to occur [25, p. 79] or [47, 126].

Principle of wavetrain closure same as the principle of equal phase closure.

Quasi-periodic orbits is an orbit on an integrable domain (and hence on the EBK reso-

nant torus) which does not close onto itself in finite length [25, p. 92].

Resonant torus is the topological structure which can be constructed using canonical

transforms for integrable dynamical systems and which lead to EBK quantization

conditions [25, p. 78ff] and are used in the study of chaos [25, p. 98].

Stationary points see turning points [205, p. 11].

Turning points points at which WKB becomes invalid due to singularity [13, p. 497],

similar to caustics, though it also refers to boundaries that induce phase-shifts [25,
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p.434]. Caustic turning points inside the domain are also referred to as “smooth”

turning points and fixed boundaries are referred to as “hard” turning points [25, p.

88].

Winding number number of windings along a topological dimension of the EBKN-

torus [25, p. 81].

WKB short for Wenzel-Kramers-Brillouin [13, p. 486] [121, p. 27] but going back

to Rayleigh [160] (see [13, p. 486]) and Jeffreys (see [13, p. 486][121, p. 27]).

Wigner-Kramers-Brillouin [25, p. 63]. Refers to the traveling wave Ansatz to solve

differential equations. Specifically, Olver [139] defines WKB to refer to this Ansatz

in the presence of treatement across turning points. See also LG approximation.
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Implementation

All application examples have been implemented within the framework of the synthesis

toolkit (STK) developed by Perry R. Cook and Gary Scavone and is available with Perry

Cook’s recent book [45] and online athttp://www-ccrma.stanford.edu/software/

stk/ .

STK uses C++ for implementation of the synthesis algorihms. Graphical user inter-

faces are provided using Tcl/tk. In addition, STK provides an input interface for MIDI.

The core routine to be performed at every time step is exactly the banded waveguide

structure of Figure 1.1.

The primitives used in this filter diagram are implemented using already existing

classes in STK. Each banded wave-path is constructed from a second-order resonant filter

(BiQuad.cpp ) and a delay-line (Delay.cpp ). The free parameters are the length of the

delay-line and the three filter coefficients of the second-order infinite impulse response

filter [193]:
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yt = A0xt +(2Rcosθ)yt−1−R2yt−2 (B.1)

These then can be recalculated to gain, resonant frequency and bandwidth [194, p.

92]:

R≈ 1−B/2 (B.2)

cosθ =
2R

1+R2 cosω (B.3)

A0 = (1−R2)sinθ (B.4)

The the overall delayd in feedback (forming a comb filter structure[194]) shows a

harmonic resonant response and fundamental frequencyf0 and harmonicsfm correspond

to the delay lengthd:

fm =
m·Nr

d
m∈ N+

0 (B.5)

whereNr is the sampling rate. The resonant frequency and one resonant peak of the

of the comb filter must coincide as they both follow from the same closure condition.

Usually the resonant filter frequency is tuned using modal esimation and the multi-

valuedness of B.5 by knowing the quotient of propagation speedcn to path lengthl . This

can be derived from equations 3.11 and 3.12 as the delay lengthd∗n is calculated from this

quotient plus the sampling rate:



APPENDIX B. IMPLEMENTATION 137

d∗n =
l ·Nr

cn
(B.6)

The bandwidth of the resonant filter is a non-physical parameter and defines the

spectral neighborhood of a mode. In general a fairly wide bandwidth is used as the actual

frequency response is achieved throught the closure condition of the wave-path (compare

section 4.1).

The sum of all wave-paths defines both the output as well as the interaction point. This

point can be used for impulsive excitations or can be fed into an interaction algoritm. In

our implementation the bow excitation algorithm (BowTabl ) provided by STK is used.

The collection of all these parameters then can be controlled either via MIDI or

through a graphical user interface as depicted in Figure B.1. This example shows the

graphical user interface written in Tcl/TK for the one-dimensional and quasi-one-dimensional

instruments discussed in this thesis.
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Figure B.1: STK graphical user interface for bars and bowls using banded waveguides.
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To none more grateful than to me; escaped

From the vast city, where I long had pined

A discontented sojourner; now free,

Free as a bird to settle where I will. – William Wordsworth 1

1In “The Prelude,” bk. 1, l. 1, (1850) according to [147, p. 746, q. 17]
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[99] M. Karjalainen, V. V̈alimäki, and T. Tolonen. Plucked-String Models: From the
Karplus-Strong Algorithm to Digital Waveguides and Beyond.Computer Music
Journal, 22(3):17–32, 1998.

[100] K. Karplus and A. Strong. Digital synthesis of plucked string and drum timbres.
Computer Music Journal, 7(2):43–55, 1983.

[101] J. B. Keller. Bowing of Violin Strings.Communications on Pure and Applied
Mathematics, 6:483–495, 1953.

[102] J. B. Keller. A Geometrical Theory of Diffraction. In L. M. Graves, editor,
Proceedings of Symposia in Applied Mathematics, volume 8, pages 27–52.
American Mathematical Society, 1958.

[103] J. B. Keller. Semiclassical Mechanics.SIAM Review, 27(4):485–504, December
1985.

[104] J. B. Keller and S. I. Rubinow. Asymtotic Solution of Eigenvalue Problems.Annals
of Physics, 9:24–75, 1960.

[105] G. S. Kendall, W. L. Martens, and S. L. Decker. Spatial Reverberation: Discussion
and Demonstration. In M. V. Mathews and J. R. Pierce, editors,Current Directions
in Computer Music, chapter 7, pages 65–87. MIT Press, 1991.

[106] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders.Fundamentals of
Acoustics. John Wiley and Sons, Inc., New York, fourth edition edition, 2000.

[107] P. Kovintavewat. Modeling the Impulse Response of an Office Room. Master’s
thesis, Chalmers University of Technology, 1998.



BIBLIOGRAPHY 154

[108] V. V. Kozlov. Symmetries, Topology, and Resonances in Hamiltonian Mechanics,
volume 31 ofA Series of Modern Surveys in Mathematics, Series 3.Springer
Verlag, 1996.
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