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ABSTRACT

Efficient physical models of bar percussion instruments
which preserve spatial sampling are not yet available.
In this paper, banded waveguides are proposed as an
efficient method for simulating the physics of bars in-
cluding spatial sampling. In addition two other models
are investigated. One is a generalization of the wave-
guideideareplacing unit delays by all-passfilters mod-
eling the phase delay characteristics. The other extends
on existing finite difference (FD) methods. According
to this study all-pass filter chains show no advantages
over FDs in terms of performance and physical real-
ism. Finally, real bars were the target of experimental
measurements.

1. INTRODUCTION

Recently the technique of bowing bar percussion in-
struments has become popular among composers and
percussionists. However, sound generationin these sys-
tems has not yet been studied. Existing physical mod-
els with computational efficiency [1, 2, 3, 4] model
only the modes of the bar and hence remove spatial
sampling. In order to interface with anon-linearly cou-
pled excitation, the physical quantities at spatial points
are necessary inputsto the non-linearity.

While there is no previous work on the bowed bar,
the bowed string has been intensively studied [5, 6] and
physical modeling has been successfully applied to the
problem [7]. The concept of digital waveguide filters
[8] has led to models which are efficient enough to be
used in performance. The struck bar has been modeled
either using sinusoidal [1, 2] or modal [3, 4] methods
for efficient computation or by finite difference meth-
ods[9] if high accuracy is desired or transient behavior
is of interest.

In the work described here the mechanism behind
the bow-bar interaction is investigated. In particular
thereisinterest in creating a computer-simulated phys-
ical model for the purpose of supporting the theoretical
understanding. Also, a computationally efficient phys-
ical model is sought for use in musical performance,
which alows general (i.e. linear and nonlinear) spa-
tially localized physical excitations. In the following
sections the physics of barsis briefly reviewed, the is-
sue of modeling the system is discussed, and then mea-
surements of bowed and struck bars are reported.
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2. PHYSICSOF BARS

Transverse vibration of bars is well described by the
1-D Euler-Bernoulli-model [10], given that the bar is
thin compared to itslength and the exact frequencies of
very high order partialsis not important:
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ET istheflexura rigidity (£ being Young's modu-
lus and I being the cross-sectional moment of inertia)
and p A isthe mass term (p being mass density per unit
length and A being the cross-sectional area). In general
these quantities are not constants but may depend on .
f(z,t) isan externaly applied transverse force on the
bar. In order to model friction additiona terms have
to be added (see [9]). If cross section and elasticity
properties are uniform, (1) becomes a linear 4th order
partial differential equation which lends itself easily to
analytical solution. In particular, when inserting the
solution of asingle frequency y = Y (x)e/“! the wave
velocity can be calculated from (1) with f(x,¢) = 0

lettinga = /E1/pA:

v =+aw 2

The wave velocity depends on the frequency of the
traveling wave and hence arbitrary wave shapes dis-
perse as higher frequencies propagate faster than lower
ones. The genera solution of (1) for constant coeffi-
cients and in the absence of an externa force can be
derived to be [10]:

y = ejwt(Aekx +Be—lm + Cejlm _‘_De_j]m) (3)

The first two terms are stationary oscillations (the
so-called “near-field” terms) and the second two terms
are left- and right-going propagation terms. The con-
stants A, B, C' and D depend on the particular bound-
ary conditions. The “free-free” boundary condition, as
is typical for bars in musical instruments, yields the
well-known stretched and inharmonic partials of a uni-
form bar (1 : 2.756 : 5.404 : 8.933 : ...) as heard
from glockenspiels. Marimba, xylophone and vibra-
phonebars are undercut, stretching the partialsinto har-
monic ratiosof either 1: 4:100r1: 3: 6.



3. PHYSICAL MODELING OF BARS

In the literature, the struck bar has been modeled ei-
ther using sinusoidal modeling, modal filter synthesis,
or finite difference/element methods. Sinusoidal and
modal filtering methods are efficient. The eigenmodes
are directly modeled, but spatial sampling of the bar
is lost. Even though the modeling of the behavior of
spatially different excitationsis possible for struck ex-
citations, where the produced oscillations are freg, it is
not clear how the problem of interfacing a non-linear
bow interaction at a spatial point with amodal synthe-
sis model can be solved. Finite difference and finite
element methods are not efficient, yet these preserve
spatial sampling. By discretizing the solution of the
Euler-Bernoulli equation, two models are investigated
in order to arrive at a physical model which achieves
both spatial sampling and efficient computation.

3.1. Generalized Waveguide M odel

The generalized waveguide is the discretization of the
propagation terms of equation (3). As can be seen from
equation (2), the phase velocity depends on the fre-
guency. Starting from the picture of the usual waveg-
uide, the unit delays are replaced by frequency depen-
dent delays as symbolically depicted in figure 1. R is
the appropriate reflection-function at the boundary.
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Figure 1. Generalized Waveguide: Waveguide with
frequency-dependent phase delay.
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If losses are model ed separately, the frequency de-
pendent delays are all-passfilters with an appropriately
model ed phase delay response. This has strong connec-
tionsto and is strongly motivated by work on modeling
the stiffness of strings starting from amixed bar/string-
equation using all-passes [11, 12, 13, 14]. These ref-
erences discuss details of the all-pass design. While,
depending on the order of the all-passes used, good ap-
proximation to the phase delay characteristics of bars

can be achieved, this approach shows poor performance.

The number of all-passes needed depends on the fun-
damental frequency of the bar. It was found that for the
same spatia and temporal sampling, 10th order al-pass
chains require more computation than an implicit finite
difference method implementation (after [9]). This per-
formance comparison matches the counted number of
floating-point multiplications and additions as found in
the all-passes and the band-diagonal solver used in the
finite differenceimplementation. Whilethis model pre-
serves spatial sampling and hencewould allow for non-
linear spatially localized interactions, it is neither use-

ful for musical performance nor advisable for acousti-
cal modeling purposes, because finite differencing also
modelsthe near-field terms.

3.2. TheBanded Waveguide M odel

A lesson learned from generalized waveguides is that
attempting to closely approximatethe phase delay char-
acteristicsis costly. One can take two viewsin motivat-
ing the idea of banded waveguides:

(2) Discretization view: the phase delay character-
istics are approximated by a less accurate model. This
can be achieved by quantizing the phase delay charac-
teristics. Thisfrequency quantization is a second quan-
tization introduced in addition to the spatial/temporal
quantization. (2) Physical view: model the system by
modeling propagation of the wave train closures which
would then result in the correct system modes. Natu-
ral vibrations (modes) occur if the wave train closes on
itself after one round trip [10]. If that's not the case
the corresponding frequency component is damped by
destructive interference.
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Figure 2: Quantization of phase delay characteristics.

A flat quantization over a region in the phase re-
sponse (see figure 2) makes the phase delay constant
in that region which can be cheaply modeled using a
standard waveguide filter. However, only frequencies
in the corresponding band should enter the waveguide.
Hence an additional bandpass filter is required. If the
loop delay is tuned to amode of the system, this corre-
sponds to an exact simulation of the wave train closure
and approximation in the neighborhood of that mode.
To avoid large errors in this neighborhood approxima-
tion, the higher harmonic resonances of the waveguide
should not be within the modeled frequency band.

Figure 3 showsthe structure of asingle banded wave-
guideand the frequency characteristic. Thedashed curve
isan ideal bandpassfilter response which windows the
desired frequency band. The dash-dotted curve depicts
alow-Q biquad filter response used as a bandpass fil-
ter approximation. A complete system can be assem-
bled by taking multiple banded waveguide structures,
tuned to the respective modes they model. In the ab-
sence of nonlinearities each banded waveguideis com-
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Figure 3: A banded waveguide (top) and its spectrum.

pletely decoupled from al other ones. If the sampling

rates of all banded waveguides are the same, then they

will be of different lengths even though they are rep-

resenting modes in a single bar. Hence dependent on

the mode, the spatial sampling is different for each fre-

guency band. If the spatial sampling is uniform, the

sampling rate for each banded waveguide must be dif-

ferent. This multi-resolution is the result of the sam-

plingin both thetime and the frequency domain. Pickup
points and points of excitation hence have to be lo-

cated in the banded waveguides using the phase veloc-

ity (equation (2)). Fractionsin the spatial sampling can

be dealt with in the same way as for ordinary waveg-

uides. The physical quantity can be calculated as the

sum of all left- and right-going contributionsof all wave-
guides.
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Figure 4: A simplified banded waveguide model.

Figure 4 depicts a smplified version of a banded
waveguide implementation of a bar using four modes.
This system embodies a hybrid model of modal fil-
ter and waveguide synthesis. The “modal” filters are
however more broadband instead of high-Q in order
to achieve a sampling of the phase-delay characteris-
tics. The actual resonance behavior is modeled by the
waveguide. Low-Q biquad filters were used as band-
passfilters. It should be noted that this approach would
allow for high-order approximationsto the ideal band-
pass or even to filters which more closely approximate
the progression of the phase delay characteristicin each
band, but this would lead to the loss of computational
efficiency on current systems. It should be noted that
the computational complexity of banded waveguides

for a fixed number of modeled modes is independent
of the length (thus pitch) of the bar, whereasthisis not
the case for generalized waveguides, FDE and FEM.

4. MEASUREMENTS OF REAL BARS

Striking and bowing measurements were performed on
two aluminum vibraphone bars (low and medium reg-
ister), one medium register wooden xylophone bar, a
uniform wooden bar and a uniform thin bar of au-
minum. Impulse response and reference spectrum mea-
surements were performed using a force hammer. The
impul se responses of uniform bars show the character-
istic inharmonic partials in good agreement with the-
ory. The impulse responses of the tuned bars revea
the usua double octave tuning 1 : 4. The tuning of
the third partial is only reasonably accurate for the low
register vibraphone bar. All other tuned bars have in-
harmonic third partials at aratio of lessthan 1 : 10.
The bowing measurements were performed using
a double-bass bow machine consists of a motor-driven
rubber wheel 3cm wide and with a diameter of 5cm.
A band of horse hair is wound around the wheel once,
glued, and pressed flat. In hand-bowing, constancy of
vel ocity and force cannot be guaranteed and the dataiis
more approximate. Hand-bowing and the bowing ma-
chine were used to measure the spectral content and
form of the partials when bowed, dependency of am-
plitude on velocity (assuming constant force), depen-
dency of amplitude and spectral content on force (as-
suming constant velocity), and regions of oscillation
depending on velocity and force. Measuring the vibra-
tional shape by high-speed photography indicates an
upper bound of the vibrational amplitude. The mea
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Figure 5: Energy response with increasing velocity.

surements reveal that the amplitude of the steady-state
oscillation of the system increases with velocity (fig-
ure 5), whereas it is unaffected by variations in force.
Theinitial transient and the spectral content, however,
do increase with force. The regime of oscillation is
found to depend on both bowing velocity and bow-
ing force. In general, minimum and maximum bowing
velocity increases with increasing bowing force. All
the results mentioned so far correspond to measured
results known from the bowed string[5, 6]. However,



it should be pointed out that the usua intuition used
for the bowed string derived from Helmholtz motion to
understand the behavior regarding minimum and max-
imum bowing force, force dependent spectral content
from “corner rounding and sharpening” cannot be ap-
plied to the bowed bar. This is due to the fact that
the bar is strongly dispersive, unlike the weak stiff-
ness of violin strings, thus Helmholtz motion cannot
be assumed. The effect of near-fields remains an open
guestion and there is evidence in measurements at high
speeds with the bowing machine that the near-fields at
the free boundaries contribute significantly to the os-
cillation. Also in the bowed string case, a harmonic
spectrum for both the free oscillation and the steady-
state oscillation of a bow excitation is observed. This
allowed Helmholtz to treat the problem analytically as
free oscillation, even though it was found later that the
freeoscillation treatment is not exactly valid. The spec-
tra of bowed uniform and nonuniform bars show a har-
monic spectrum with the amplitude of the partials de-
pendent on the vicinity of an eigenfrequency of the bar.
This is to be expected from forced oscillation systems
[20].

5. PHYSICAL MODELING OF THE BOW-BAR
INTERACTION

Simulated models of the bow-bar interaction have been
added to an existing implicit finite difference approach
[9] using both adynamic (stick-slip) aswell asasimpli-
fied forced oscillation approach. Sustained oscillations
were achieved in both cases. In particular the forced
oscillation spectrum, minimum bowing force, and ve-
locity dependent amplitude have been reproduced by
these simulations. Also the banded waveguide model
for bowing was implemented following the scattering
view known from waveguide based bowed string mod-
els [15]. This model properly captures the behavior
of minimum and maximum bowing force and vel ocity.
The spectrum shows the characteristic harmonic forced
oscillation spectrum (figure 6). It should be noted that
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Figure 6: Spectra of real and simulated bowed bar.

in this simulation the steady state oscillation tends to
lock to higher modes of the bar. This phenomenon can
be observed experimentally when bowing a low regis-
ter bar in the middle. The nature of this mode locking
isnot yet well understood.
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