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ABSTRACT

How can looking for mathematical structure help us with
sound synthesis? This question is at the core of this paper.
First we review some past work where attention to vari-
ous kinds of mathematical structure was employed in the
context of physical modeling synthesis. Then we propose
a first few steps towards algebraisation of abstract sound
synthesis using very basic constructions of abstract alge-
bra and category theory.

1. INTRODUCTION

Mathematics has been used in sound synthesis in many di-
verse ways for a rather long time. We have used the prop-
erties of computations that have auditory consequences in
many different way to create and manipulate sounds. At
the same time mathematics is also a language that helps us
classify a problem with respect to certain properties and
hence allows us to understand the problem and reduce it
to hopefully more easily manageable pieces.

This paper talk about the interplay of sound synthesis
and mathematics with physics as a supporting actor.

First we discuss past and current work where mathe-
matics and sound synthesis overlap — leaning towards the
authors own interests and thinking. Then we discuss a first
few steps towards algebraisation of sound synthesis and
we give some concrete examples of synthesis algorithms
that naturally derive from abstract structures.

1.1. Mathematics as a study of structure

The last century has seen a development in mathemat-
ics that constitutes a rather significant shift in the outlook
and goal of mathematics. This change began already in
the 19th century where general properties and their struc-
turing power came to the forefront. Algebraic properties
were seen as providing a way of classifying what kinds of
computations belong together and explain the properties
of certain mathematical scenarios. The concept of a group
was crucial in the development of Abel and Galois in the
work on the solutions of algebraic equations [1]. Klein’s
Erlangen Program was really a realization that different
types of geometries could as well be described by such al-
gebraic properties of geometric transformations [12]. This
was then combined with a drive to axiomatization first
by Hilbert and then by a group of French mathematicians
working under the pseudonym Nicolas Bourbaki (and also

under their own name). At the same time one might argue
there has been a certain fork between mathematics as an
applicable language for other sciences and pure mathe-
matics. The idea of structure often is more emphasized in
the latter. Here we will describe the interplay of mathe-
matical structure and applied problems in sound synthesis
to give an indication of its practical usefulness.

2. PHYSICAL MODELING AND MATHEMATICS

Physical modeling developed into a very active field of
research with the serendipitous discovery of the Karplus-
Strong algorithm for plugged strings and its physical inter-
pretation by Smith [3, 16]. The algorithms are now known
as “waveguide synthesis” and have rather stunning proper-
ties. They are accurate at sample points and show a com-
putational efficiency which is constant and independent of
spatial sampling [16]. Additionally if one models devia-
tions from the ideal case in a lumped fashion, numerical
problems are confined and easy to handle.

One may well be amazed at the fact that waveguides
are so efficient and well-behaved, especially because fi-
nite difference methods also simulate the same situation,
but are numerically more sensitive and their efficiency is
determined linearly by the spatial sampling.

Essentially waveguides discretize the form of the so-
lution, whereas finite differences discretize the differen-
tial operators. Ultimately both integrate the solution over
time. The great advantage is that the form of the solution
of the ideal string, classically known as the d’Alembert so-
lution has a specific simple form that allows one to avoid
computation:

y(x, t) =
1
2

(f(x + t) + f(x− t))

+
1
2

∫ x+t

x−t

g(s) ds.
(1)

where f(·) is a function generated by an initial dis-
placement and g(·) is the response to initial velocity. To
simplify notation the speed of sound on the string c is
rescaled to equal 1. Hence the solution travels left and
right, and with boundary conditions we get a wave peri-
odically traveling the length of the string. The simplicity
now comes from the fact that keeping track of traveling
disturbances that do not chance shape is equivalent to re-
ordering elements and this can be done with a constant
number of operations.



Looking at waveguides suggest a certain methodology
if one wants to find comparable solution to other situations
than are immediately solved by waveguides. The insights
and steps are roughly:

• Forms of solutions are not arbitrary.

• Solutions carry certain properties.

• Formulating the solution to highlight structure.

• Separate problem into aspects that are easier to han-
dle.

Next we will look at ways to incorporate these steps in
various ways into work on physical models away from the
ideal string. The presentation will pick different aspects
of the problem and discuss them separately and are hence
by this very nature examples of subproblems of a bigger,
more complex problem.

2.1. Propagation in Stiff Structures

Waveguides, at least in the idealized case, assume that the
speed of propagation of disturbances is constant. Some
small perturbations to this are possible and can be mod-
eled by all-pass filters [16]. However a number of sound-
ing structures, like marimba bars, bells or dinner tables,
do not have this property. The stiffness of the coupling
within the object leads to frequency-dependent propaga-
tion of disturbances. So rather than having the speed of
sound c be a constant we assume a frequency dependent
propagation speed within the media c(ω).

One approach to this problem is to take this literally
and try to implement this locally, meaning that everywhere
all frequencies are propagated according to c(ω). This
can be done by replacing unit delays in waveguides with
all-pass filters. The problem with this approach is, how-
ever, that the desirable properties of waveguides, numeri-
cal convenience and computational efficiency are lost. But
our guiding philosophy is “preserve desirable structure
if possible”. Hence we want to preserve the desirable
waveguide structure while accommodating the changed
behavior. This can be done by discretizing c(ω) and as-
suming that within discrete bands propagation is in fact
constant. Then one arrives at substructures that have the
properties of waveguides. This idea is the essence of band-
ed waveguides [8] and is depicted in Figure 1.

2.2. Abstraction of Structure

Another interesting aspect of considering structure is the
possibility of multiple interpretation. One can have one
and the same structure but it may be interpreted differently
and hence be seen to be in different contexts. An exam-
ple of this comes about with banded waveguides. Origi-
nally banded waveguides were conceived to simulate the
physics of structure-borne stiff one-dimensional systems
like marimba bars. But once the structure to do the simu-
lation was in place and was set up to preserve the kind of

Figure 1. The banded waveguide structure

properties we do find interesting, there was the question of
the applicability of this structure. More precisely, the ba-
sic question arises, can this method be applied outside the
original domain of application. Here the part that comes
to hold is the realization which part of the final structure
is not a strictly necessary feature to retain validity of the
simulation. In the case of banded waveguides the original
interpretation of the separate waveguide loops is that they
essentially occupy the same spatial direction and space.
They model behavior that comes about through repeated
traversal of one direction in this space. The abstraction
of this model is the lifting of this requirement. If we
abstract the structure and allow paths to stand for some-
thing else than a confined spatial domain we can get to
resonant behaviors in more complex spaces. Now closed
loops do not stand for confined propagation in physical
space but stand for ensemble propagation in more higher-
dimensional physical space that repeats itself to form res-
onances. Given this easing of interpretation it became
possible to find physically meaningful interpretations of
banded waveguides in two and three dimensions [8, 3].

2.3. Topology

Interestingly enough there is basic structure that all waveg-
uide and banded waveguide simulations share, indepen-
dent of the specific details of the implementation. All
these simulation have a basic loop connectivity and these
loops are loaded at certain points for excitation. The speci-
fics define how these disturbance then propagate, while
not changing the fact that the propagation remains con-
fined to the loop. Hence a common feature can be seen as
the connectivity of the loop. One can then consider study-
ing loop spaces directly and try to figure out properties
that in fact hold for all loop configurations.

The study of connectivity is called topology. Basic
operations like stretching or shrinking do not change the
topology, which would correspond to a chance in length
in the geometry or a change in propagation speed, while
certain changes in the connectivity of the geometry do
change. My interest here was to come up with a way to en-
code excitations topologically so that the generic features
of excitations on loop spaces can be found.

The first question is: How to structurally code the ex-



citation point in the sense of the topology of loop spaces?
In some sense this is immediately suggested by what hap-
pens to excitations in waveguides. At the point of exci-
tations initial disturbances coincide at the same spot in
space, a fact that does not change by change of topol-
ogy and then splits to travel to different slots in space.
However there are also other points in space where these
disturbances meet again. These points look exactly as if
there had been an excitation there. So it is rather natu-
ral to shift to the notion of studying points of coincidence
of disturbances of loops. To code coincidence topologi-
cally, we glue the loop together at points of coincidence
and hence arrive at something that looks like a glued knot.
A basic 8 figure is an example of a loop glued in the
middle. The loops form the trajectories of the dynamics.
Hence one can construct the basic glued knot types that
one can observe from the dynamical situation and show
that changing the dynamical properties does or does not
change the knot type. It turns out that in 1-dimensional
cases, which would cover strings, marimba bars, tubes or
objects that turn out to be in some sense “topologically”
one-dimensional, there are only two basic glued knot con-
figurations: the pure 8 shape for a topological center con-
figuration and a sort of double 8 with two crossings for
topological off-center configurations [5] (see also figure
2). The pure 8 is the singular case where the two cross-
ings of the double 8 fall onto the same spot and hence
topologically coincide in the middle.

It turns out that the situation is much more complicated
in the two-dimensional plane. Small perturbations do not
preserve the topological type of the coincidence glue knot.

So basically we get the basic distinction between sim-
plicity in one and complexity in 2 dimensions purely from
loop topologies. But there are even simpler and more rich
results to be had with very similar thinking. For example
one can also code the sign of a displacement topologically.
If an impulse points upward, it has one sign and if it points
downward, it has another. If now these two states are de-
fined by a cut, with the additional rule that points where
the sign flips remain uncut, one can construct glued knots
that now represent orientation in connectivity. Using this
construction one can derive rather intriguing results, like
the existence of inertia for certain loop types as opposed to
sign-neutral and hence overall non-inertial loops for oth-
ers. These can then be brought back to boundary con-
ditions that are physically seen as sign-inverters. By the
change in loop period, spectral information can be de-
duced from these very basic topological shapes. Hence
we get a good number of observable dynamical properties
just from the connectivity of the problem. These prop-
erties are not dependent in their quality on the additional
information needed to describe a specific situation.

2.4. Geometry

The notion of structure also play an important role in re-
cent developments on synthesis for drums. Again the mo-
tivation comes from waveguides. Waveguides can be seen
as a discrete method that maintains the structure of the

Figure 2. Two possible cases of coincidence knots from a
loop related to a waveguide-like structure.

continuous solution, because it in fact discretizes the con-
tinuous solution, in form of the d’Alembert solution, di-
rectly.

One important question here would be: What is the
structure of the solution in 2 dimensions and in what sense
is it comparable to the one-dimensional case. To cover this
fully here would be too lengthy, and we refer the curious
reader to two recent papers [6, 7]. But for this discus-
sion I will just mention one conclusion. For one there is
similar geometric structure. The waveguide can be inter-
preted as transporting “characteristic circles on the line
under reflection” and in two dimensions the wave front
is transported as “characteristic circles in the plane under
reflection”.

To understand the similarity, the interesting object that
needs clarification is what I mean by the phrases in quotes,
namely “characteristic circle in X under reflection”.

The classical and informal definition of a circle is:

Definition 2.1. A circle consists of “all points at equal
distance from a point in the plane.”

What we mean by the above definition is really very
much the same thing except that we generalize the options
how two things come about or are assumed to be. These
two things are “distance” and “plane”.

The generalization of distance is rather intuitive. Cur-
rently I’m sitting away from a wall. If I still assume straight
lines to be the shortest, then the distance from me to the
wall and back well defines a distance just like the distance
that we pluck into the standard definition. The difference
is now that we allow for the direction in which we mea-
sure distance to abruptly change multiple times. Such an
abrupt change happens for example when we hit the wall.
If we used a measuring rod we would have to change the
direction there. Hörmander uses the adjective “broken”
for this property [10]. Now we can even generalize what
we mean by going straight. If we define as straight the di-
rection in which singularities propagate, then under inho-
mogeneity the direction in which a singularity will prop-
agate may well be curved, or split or do other fun things.
The propagation direction of singularities are called “char-
acteristics”. If we now connect all points of equal “bro-
ken” distance. we get a “circle” formed through these
characteristics. Hence we said “characteristic circles” to
indicate how these circles are formed. The side phrase
“under reflection” would encode the fact that these char-
acteristics are broken.



Figure 3. Reflections of a circular wavefront on a rect-
angular domain. The form of an ever expanding circle is
maintained though segments are reflected at the wall.

Hence we have come up with a definition of a circle
that is perfectly good, but generalizes to any dimensions
and different geometric backgrounds (euclidean, curved,
bounded...). General wave fronts on the line and in the
plane nicely fit this generalized definition of the circle and
this property is shared.

To see an example of these “characteristic circles un-
der reflection” see Figure 3. Because of the boundary be-
ing straight lines, once a circle segment intersects, it folds
back onto the interior of the rectangular domain, but the
shape of the curve segment always stays a traditional eu-
clidean circle segment. For general boundaries this is not
the case and a circle under reflection looks locally rather
different from a euclidean circle.

However, not all properties are shared between the line
and the plane in this fashion. In the plane the wave equa-
tion creates solutions behind the wavefront singularity call-
ed a wake. This wake is present for solutions to the wave
equation in even spatial dimensions, is simple in one spa-
tial dimensions and is absent in all solutions of odd spatial
dimensions greater or equal to 3. For some preliminary
discussion of the wake in the plane in this context see [7].

3. ABSTRACT SYNTHESIS AND MATHEMATICS

So far the discussion was a review of past, sometimes re-
cent, work in the context of physical modeling for sound
synthesis. From here on we will not confine ourselves to
simulating physical situations anymore, but rather look at
abstract sound synthesis and we want to look into explor-
ing mathematical structures in this context.

Basically we’ll use some abstract algebra, and here pre-
dominantly very basic arrow-theoretic constructions to fo-
rm on the one side a rigorous foundation to the classifica-
tion of synthesis algorithm and on the other hand as a way
to suggest new synthesis algorithms given the classifica-
tion. This is indeed just a first step in this direction, and
a general classification may have a rather different flavor
once things are set and done.

3.1. Algebraisation of Sound Synthesis

What is the relationship of synthesis algorithms? By ask-
ing this question we are lead to wonder about classifica-
tion. How can algorithms be distinguished or grouped to-
gether?

Classification is a task that is understood to be of in-
terest in mathematics for a good while now. An example

of the 19th century would be Klein’s Erlangen Program,
which basically asks for the classification of geometries
by their algebraic properties.

The classification of the algebraic structure of digital
signal processing algorithms, specifically Fourier trans-
forms have also lead to structured ways of discovering
new algorithms with desirable properties [14].

3.2. Algebraic Structure with Respect to Time

A first question of classification is of course, with respect
to what properties we classify? Sometimes the properties
are intrinsic to the objects to be classified, but sometimes
this may not be the case. For this purpose assume that an
audio signal essentially consists of two parts: information
about time and information about the signal. Henceforth
we will call T the time object and S the signal object.

The basic distinction now comes about how these two
objects are generated or what their relationship is. The
notation is arrow theoretic. Instead of going into detail of
what it means we can read these diagrams rather casually.
An arrow means, that there is a way to make what is at
the arrow’s tip from what is at the arrow’s tail (a map,
a morphism, a function, or whatever one may call this).
Indicies mean different specific objects, or mappings. If
there is a chain of arrows one can think of it as there being
a way to get from the start of the chain to the end. Giving
these basic ideas we are well equipped to look at these
possible structures and give some concrete examples. At
the same time we have snuck our way into basic notions
of category theory [13].

3.3. Time-Signal Structures

3.3.1. Signal Driven Algorithms

First lets assume that essentially we have a way to progress
between different signal objects Si with i ∈ [1 . . . n]. Ad-
ditionally we’ll know a way to create related time objects
Ti using some method πi. So we can think of this as a
situation where the signal objects drive the time behavior.
For this reason we could call this “signal driven”. Alter-
natively because time is not explicitly used to drive the
signal, this is a “time implicit” situation.

S1
g1−−−−→ S2

g2−−−−→ S3yπ1

yπ2

yπ3

T1 T2 T3

· · ·

gn−−−−→ Snyπn

Tn

(2)

Probably the simplest meaningful example written in
functional form would look like this:

t = |y|+ ε (3)

Time is directly derived from a signal level. We only
enforce that time is strictly positive by taking the absolute
value of the signal and adding a non-zero positive term ε.
This basic example is depicted in Figure 4.
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Figure 4. A basic signal driven example, where the ab-
solute value of the signal determines the time interval be-
tween samples.

A more general version of the same form would be:

t = |f(y)|+ ε (4)

Of course y can be something else besides the tradi-
tional function on the real numbers R a discrete version
thereof. It can be any manifold of any dimensions, given
that a mapping can be defined to bring it down to time.

A familiar example of a signal driven effect would be
silence removal, where the presence of silent passages
reparametrize time.

3.3.2. Time Driven Algorithms

We can invert the situation and assume time objects Ti

and a known relation between them and derive the signal
Si from the time objects. In this case the signal is “time
driven” or we have a situation where time is explicit.

S1 S2 S3xΠ1

xΠ2

xΠ3

T1
f1−−−−→ T2

f2−−−−→ T3

· · ·

SnxΠn

fn−−−−→ Tn

(5)

It turns out that many classical synthesis algorithms are
time driven.

Classical examples include Additive Synthesis [15]:

y =
∑

n

Aneiωnt, (6)

all sorts of varieties of modular synthesis, like AM or
FM:

y = An(t)eiωn(t)t, (7)

and wavetable synthesis, where A(t) is the wavetable
lookup function:

y = A(t). (8)

Coincidentally, this symbolically looks like the general
form of this mapping written as function. The signal y is
any signal that can be created from time t via any arbitrary
function.

What is common for all these is that the signal is di-
rectly generated from time , i.e. time is a parameter to
the function. A most confining definition could include
requiring that it is the only variable parameter.

This priority to time in many classical algorithms may
not be so surprising if one thinks of sound as a time series.
Of course many traditional methods use one sampling rate
throughout. In this case the time progression mappings
f1, f2, . . . , fn could be replaced by a single mapping f .
The time progression maps also may depend on the cur-
rent form of signal representation. For example if the sig-
nal is short-time Fourier transformed, the time progres-
sion then is defined to be the time step between Fourier
transform blocks. This temporal adaptivity with respect
to representation has recently been explored in the con-
text of audio data flow by the name of “implicit patching”
[2].

The idea of generalized abstraction of the time-relation
goes back to a classic article by Dannenberg [4] which
gives many more detailed examples of the variation one
can introduce by discretely or continuously altering the
time progression. A detailed discussion of time mappings
with many examples can be found in [9].

3.3.3. State Driven Algorithms

Finally one can envision a joint object from which both
time and signal are derived. I abuse notation 1 here by
writing this as a product Si × Ti of time Ti and signal Si.

Explicit Signal and Time or State Driven:

S1 S2xΠ1

xΠ2

S1 × T1
h1−−−−→ S2 × T2yπ1

yπ2

T1 T2

· · ·

SnxΠn

hn−−−−→ Sn × Tnyπn

Tn

(9)

A basic state driven example are filters. Filters can be
written as operators that act on the state by convolution.
Hence if a configuration of filters Hi is applied at an in-
stance i to a state Si we get the new state Si+1 using the
basic relationship:

Si
Hi−−→ Si+1 (10)

1 The abuse lies with the possibility that this joint object is in fact not
a product of time and signal.
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Figure 5. Example of a state driven algorithm using a
rotating line projected onto the signal and the time axis.

or written as product and for all instances i [13]:

H × S → S (11)

At first glace this notation suggests that this is in fact
a signal driven method, but time was implicitly used as
well. This is most obvious when the filter H itself is time-
varying. To highlight this we can explicitly notate this and
get:

S × T
H−→ S × T (12)

H × S × T → S × T (13)

Lets take an example that makes the generation of time
by mapping rather more obvious. Consider the following
geometric state driven synthesis example. A line is ro-
tated in the plane. The signal is generated by projecting
that line in one direction and time is generated by project-
ing the same line in another (here orthogonal) direction
and making sure that the result of the projection is strictly
positive (see also Figure 5):

t = r| cos α|+ ε (14)
y = r sinα (15)

Generally any object P for which a mapping P
Π−→ S

exists can be used to construct signal or state driven syn-
thesis algorithms. If we confine ourselves to geometric
objects, P can be any geometry of any dimensions for
which we can write down a projection to a range on the
real line, which is S.

3.4. Relations of Modes of Generation

Given this separation of structures one may wonder as to
the relationship. For example, when can we find a way to
make time explicit? Before we go to look at this question
let’s give an easy example where the classification above
is not unique.

3.4.1. Ambiguity of Reference

We will call the possibility to classify an algorithm into
more than one of the above listed types as ambiguity of

reference. Let me explain this using the example of wave-
forms of temporal logic taken by Kauffman [11]:

J(t) = TFTFTFTFTFTFTFTF . . . (16)
¬J(t) = FTFTFTFTFTFTFTFT . . . (17)

We have a logic sequence J parametrized by t which
alternates truth value. Then we use a function ¬ to cal-
culate a equally parametrized sequence ¬J . This new
sequence has two possible interpretation as to what hap-
pened. Classically one would use what I’d call the spatial
interpretation:

J(t) ¬−→ ¬J(t) (18)

Hence the two objects J and ¬J relate to each other
through the operation ¬ and the parametrization remains
unchanged.

However, a second interpretation is possible. ¬J looks
like J with a shift in parametrization. Hence the sequence
can be interpreted temporally and the operation would be:

J(t) shift−−→ ¬J(t) (19)

The choice of reference is ambiguous hence allowing
for both interpretations. In our nomenclature the first case
would be signal driven whereas the second is time driven.
We can meet this ambiguity also when thinking about fil-
ters.

3.4.2. Making Time or Signal Explicit

In order to be able to make time explicit in a signal driven
situation, or alternatively give an explicit signal relation
in a time driven algorithm one tries to find a way to come
up with a mapping from Ti → Ti+1, hence one tries to
be able to find a way to draw the diagrams as follows for
signal driven synthesis of equation (2):

S1
g1−−−−→ S2

g2−−−−→ S3yπ1

yπ2

yπ3

T1
f1−−−−→ T2

f2−−−−→ T3

· · ·

gn−−−−→ Snyπn

fn−−−−→ Tn

(20)

This is obviously possible if the mappings πi is invert-
ible. If this is the case then one can use the compositions
πi ◦ fi ◦ π−1

i+1 = gi as equivalent progressing in time and
π−1

i+1 as the function which derives the signal from time.
Essentially the same argument and steps also work for

deriving a signal driven approach from time driven synthe-
sis of equation (5). In this case we complete the diagram
as follows:

S1
g1−−−−→ S2

g2−−−−→ S3xΠ1

xΠ2

xΠ3

T1
f1−−−−→ T2

f2−−−−→ T3

· · ·

gn−−−−→ SnxΠn

fn−−−−→ Tn

(21)



A full diagram that shows equivalent signal driven and
time driven mappings for a state driven situation (9) would
then look like this:

S1
g1−−−−→ S2xΠ1

xΠ2

S1 × T1
h1−−−−→ S2 × T2yπ1

yπ2

T1
f1−−−−→ T2

· · ·

gn−−−−→ SnxΠn

hn−−−−→ Sn × Tnyπn

fn−−−−→ Tn

(22)

In all these cases the crucial restriction is the existence
of a unique inverse to the mappings π and Π.

4. CONCLUSIONS

The structure of a problem can help us find ways to solve
it, or discover aspects that are yet unexplored. We sur-
veyed how the idea of mathematical structures as been
employed in the context of physical modeling of musi-
cal instruments. One can focus on different aspects of the
problem, be it computational efficiency, topology or ge-
ometry and learn new ways of doing things by studying
these aspects structurally.

Based on this idea, a few steps towards a possible alge-
braisation of abstract sound synthesis were proposed and
we gave a few simple example of a first classification of
synthesis methods with respect to the generation of time
evolution. We hope that these example do illustrate that
it is helpful to consider the abstract relation of algorithms
and still be able to derive concrete new instances of algo-
rithms from it.
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