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ABSTRACT

The principle of closed wavetrains asserts the equiv-
alence of the condition of a traveling wave closing onto
itself in phase to the occurrence of a mode. This prin-
ciple provides a direct conceptual link between spectral
descriptions of dynamic responses and a path-based dy-
namic description. In this paper we present the his-
tory and development of the idea since d’Alembert first
proposed traveling functional forms to solve the string
equation. The subsequent argument between Daniel
Bernoulli, Euler and him which led to the development
of Fourier analysis and contemporary theories of par-
tial differential equations. Other related developments
include the development of chaos theory connected to
Poincaŕe and others, asymptotic solutions associated
with Rayleigh, Wenzel, Kramers, Brillouin, and Keller
and Kac’s famous isospectral problem. Then we dis-
cuss how the traveling functions have been utilized in
the numerical simulation of musical instruments through
work by Julius Smith, Karplus, Strong and other. This
work has recently been extended to additional instru-
ments types, in particular idiophones, which not only
are more efficient than finite element based simulations
but have the desirable property of stability and ease of
interpretation under perturbations. We conclude with
outlining possible research based on the advantages and
drawbacks of the method.

This principle provides a direct conceptual link be-
tween modal synthesis and waveguide-style physical
models. In addition it suggests the importance of un-
derstanding the link between geometry and modes for
efficient dynamical simulation. This paper explores
these connections with regards to banded waveguide
models.

1. INTRODUCTION

How do musical instruments behave? What is re-
sponsible for the audible aspects of their behavior? How
can we predict, recreate and modify this behavior to
create music? These questions are at the very core of
musical acoustics. In this paper we explore aspects of
the evolution of mathematical formulation of the dy-
namical behavior of sounding objects in general and
musical instruments in particular. Within this history a

particular principle will be the main focal point of the
discussion, namely theprinciple of closed wavetrains
also called theprinciple of equal phase closure. Both
these phrases can be found in [1] to describe the con-
nection between a closed trajectory of a traveling wave
and the occurrence of resonances. More precisely the
principle asserts that if a traveling wave closing onto
itself in phase a resonant response will result.

This principle is of interest precisely because it links
spectral theory with mathematical modeling of the dy-
namics in a direct way. This is a rarely seen connec-
tion in approaches to musical acoustics questions. This
paper in part hopes to draw attention to this link by
exploring how it has developed over the years and sug-
gest, how in part the separate developments of partial
differential equations and functional analysis and dy-
namical theory can be understood. We will point at
separate strands of past and ongoing research and sug-
gest the benefit of bringing them together.

2. PAST: FROM D’ALEMBERT TO
WAVEGUIDES

The history of the principle of closed wave trains
probably starts in the 18th century with d’Alembert’s
famous first formulation of the perfectly elastic string
in it’s current form as partial differential equation. Along
with it he also presented a solution of two functions
traveling left and right1. This solution ensued an argu-
ment about the validity of the assumptions of the ar-
bitrariness of these functions between d’Alembert, Eu-
ler and Daniel Bernoulli. Bernoulli proposed as an al-
ternative solution the sum of sinusoids, yet left open
how the coefficients were to be computed. This so-
lution in turn came under criticism by both Euler and
d’Alembert. Only with the work of Fourier that then
solidified the idea of spectral analysis did Bernoulli’s
solution recover full acceptance [2].

This early development really produced two focus
arguments. One was concerned with the nature of al-
lowed functions in d’Alembert’s solution. The other
had to do with the details of spectral theory. The first

1Throughout this paper we will give preference to review litera-
ture if available. The reader is encouraged to follow the reference of
the review articles of books for details and particular publications.



should then lead via the work of Cauchy, Dirichlet and
others to modern functional analysis. These were how-
ever for the most part treated separate, a separation
which is commonly still seen today.

Maybe this has to do with the localized description
of Newton’s form of classical mechanics which sug-
gests forming the dynamical equations of a problem as
a sum of local forces, which are then to be studied.
Alternative forms of describing the classical mechan-
ics were developed through the 18th and 19th century
by Euler, Maupertuis, Lagrange, Hamilton and Jacobi.
These forms, often called the Lagrangian and Hamilto-
nian mechanics, emphasizes the finding of trajectories
of motion. In particular in the Hamilton’s mechanics
the evolution, theflow, of the dynamics is described
by the variables of position and momentum which are
driven by the gradient of the energy surface of the sys-
tem calledthe Hamiltonian[3].

While acoustical problems were arguably an cen-
tral driving force in the development of physics and
mathematics during the 18th and 19th century the focus
shifted around the turn of the 19th to the 20th century
with the advent of quantum physics.

Physicist faced an inverse problem of sort to the
earlier acoustical work. Instead of solving known con-
stituent dynamical equations to match observed spec-
tra, now spectra were observed (of for example black
body radiation) and the task was to find dynamical equa-
tions that would yield these spectra under upon solu-
tion. Of course this happened after the classical dy-
namical equations failed to yield the correct results. At
that time Bohr, Sommerfeld, Einstein and others de-
vised quantization rules based on classical dynamics
and Planck’s energy quantization to describe the spec-
tra. This work still is basis today for a field called semi-
classical physics, which studies how classical methods
can be utilized to find quantum mechanical solutions
[4].

However there remained startlingly simple problems
of classical dynamics for which no general solutions
could be found with conventional methods. Among
these problems were was the three-body problem as
it applies to the motion of the moon in the constella-
tion with the sun and earth. The first calculations date
back to Newton, it was not until the late 19th century,
that substantial progress was made by George William
Hill. His calculation started with a known solution
of periodic orbits, closed smooth trajectories, and he
would investigate other solutions in its neighborhood.
By finding that these periodic orbits are densely dis-
tributed among all possible trajectories, Poincaré sug-
gested that periodic orbits were in fact the right starting
points for these other possibilities. These possibilities
were later found to be potentially chaotic [3].

If a dynamical system can be described by inde-
pendent periodic orbits all allowed paths can be repre-
sented by a torus topology of the order of independent
orbits. This was realized through work by Poincaré

and Einstein around the turn of the century. Dynam-
ical systems of this type are calledintegrable. Einstein
used the torus structure to both argue that separation
of variable is too stringent a condition for the classical
solution of dynamical systems and that most dynam-
ical systems don’t have a corresponding torus struc-
ture. Regardless, a number of integrable systems have
been solved by Keller and Rubinow and related work
was performed by Brillouin. The procedure of cal-
culating dynamical solutions through quantization on
tori topologies are hence calledEBK quantizationafter
Einstein, Brillouin and Keller. Keller and Rubinow’s
work in particularly interesting because they provide
explicit solutions for the cases of rectangular, circular
and elliptical membranes [3]. Recently Chen, Coleman
and Zhou presented solutions for stiff bars and plates
using this approach [5].

There may be regions in the dynamics where a trav-
eling waves assumption does not hold without reserva-
tions. In particular the solution can become singular
in some regions. The development of methods treating
this problem has a long and somewhat complex history.
Early work goes back to Carlini, Liouville and Green
and is hence sometimes called Liouville-Green approx-
imation. The connection across singular regions was
studied by Gans, Rayleigh, Jeffreys, Wenzel, Kramers
and Brillouin and is hence often referred to as WKB or
JWKB. The interested reader is referred to [6] for de-
tailed historical context of mathematical developments
until the 1970s. The following mathematical theories
of relevance are often referred to asasymptotic theory
andcatastrophe theory.

These so-calledinvariant tori were then used to
study the emergence of chaos in a more general setting
by Kolmogoroff, Arnold and Moser in the 1950s and
60s. TheKAM theorem, named after its contributors,
establishes the robustness of tori under small pertur-
bation as long as resonances are sufficiently separated.
Similar to Poincaŕe’s idea of starting with periodic or-
bits, they start with tori and study it’s stability under
perturbations [4].

There exists an intimate connection between the ge-
ometry of the dynamical system and the existence of
invariant tori. Exact analytical solutions of arbitrary
boundary contours is an unsolved problem in general
and hence also this approach is yet limited in the type
of geometries that have been solved for. This prob-
lem was highlighted by the question Kac posed in the
1960s: “Can we hear the shape of a drum?” [7]. While
this question has been answered to be no for specific
non-smooth constructions [8], the question remains open
for most and very general classes of shapes (like all
smooth boundaries).

It is not clear that acousticians were always aware
of these developments and how they related to classi-
cal acoustic problems. However, similar ideas can be
found in the acoustics literature of the time. Among
the acousticians of the 20th century who developed the



idea were Mead [9], Cremer and Heckl [1]. While they
state that the approach of finding resonances by study-
ing closed wavetrains works for higher-dimensional prob-
lems, only one dimensional problems of strings and
bars are explicitly presented.

Keller is known in the violin acoustics community
for his work on the bowed string and the friction char-
acteristics he and Friedlander used in their calculations
often bears their name. His other work seems to have
gone mostly unnoticed. The development of chaos the-
ory did find its way into acoustics [10].

The view of chaos however focuses its attention to
the occurrence of chaotic states and the role of attrac-
tors and shows little connection to the particular dy-
namical system under consideration. The study of dy-
namical non-linearity has mostly focused around local-
ized effects, predominantely excitation mechanisms, like
the action of a violin bow on a string or the function of
reeds in woodwind instruments [11].

With the advent of digital computers, numerical so-
lutions to dynamical equations developed rapidly in the
20th century. This drive also was used in musical acous-
tics. Numerical methods that utilize propagation ideas
in musical acoustics have focused on the one-dimensional
wave-equation, which describes a large class of musi-
cal instruments in the western musical tradition [12].
McIntyre, Schumacher, and Woodhouse realized that
many of these instruments can be studied as a con-
catenation of non-linear excitation and linear resonator.
They realized that computational effort is focused on
the reflection of traveling waves [13]. Karplus and Strong
used circular buffers to simulate plucked string sounds
which was soon realized to be an accurate discrete sim-
ulation of the one-dimensional wave-equation. This
approach, usually calledwaveguide synthesishas since
been extensively studied by Smith and others and has
been used for a range of musical instruments [14, 15].

This sketch of the history of traveling wave physics
is by the complexity of the pattern of individual contri-
butions and by nature of the space available here some-
what limited. Many of the cited references contain a
wealth of historical context, in particular Gutzwiller’s
text [3] presents the material in historical context and
with focus on the individual contributions.

3. PRESENT: BANDED WAVEGUIDES AND
THE CONVERGENCE OF
PROBLEM-SOLUTIONS

Today we see in some sense a convergence of some
of these past developments. In particular modern dy-
namical theory, spectral theory, numerical methods and
filter theory are brought together.

The authors have proposed a method calledbanded
waveguides, which attempts at combining the work of
dynamic theory of traveling waves with numerical meth-
ods like digital waveguide synthesis. The core idea is
to expand propagators into band-limited loop dynam-

ics around resonances. The most basic filter structure
capturing the idea is depicted in Figure 1. This way of
depicting the method hides much of the connection of
this structure to the past developed knowledge.

Figure 1: A simple banded waveguide system.

Conceptually this method brings various different
ideas together. For one it is a spectral method for its
spectral decomposition. It is also a numerical method
for close trajectory dynamics for its discretization of
loops.

A number of one and two-dimensional problems
have been attempted using this method [16]. In par-
ticular, the approach is very useful for modeling idio-
phones of stiff material.

A similar development of the merging of spectral
theory and dynamical theory can be observed in recent
developments in mathematics where the connection of
scattering phenomena on resonances is under scrutiny.
In particular it is suggested that propagators are an-
alyzed around resonances making the connection be-
tween spectral results and dynamical behavior the start-
ing point of the investigations [17].

The problem of treating regions where the travel-
ing wave approach apparently breaks down or is only
approximate has seen much advance. There is ongo-
ing research that studies how to make the asymptotic
treatment exact [18, 19]. For entertaining popular treat-
ments of these development, Michael Berry’s series of
articles are very recommended [20, 21]. Other related
directions use complex-valued rays, which simplify sim-
ilar problems [22].

Other significant developments include recent progress
on the isospectral problem when Kac’s question was fi-
nally answered negatively [8]. Loop dynamics are es-
sential to the progress in this area.

In the realm of numerical methods in musical acous-
tics the connection between waveguide synthesis and
finite differencing methods has seen detailed investi-
gation by Bilbao [23]. Numerical simulations using
waveguide synthesis has reached a level of maturity
[14].

However, today, many of these ideas still are only
developed in separation and can be seen as a partial
convergence only. However, the they all seem to be
reaching a certain level of individual maturity.



4. FUTURE

Much of the synthesis of these related strands of
work has yet to happen and utilized in musical acous-
tics. In part the problem may be one of translation.
This literature spans various areas from pure and ap-
plied mathematics, numerical methods, computer sci-
ence and physics. The various disciplines are not nec-
essarily aware of each others work and use different
formalisms in the respective discussion. Yet a con-
tinued effort in bringing these ideas together has var-
ious advantages. For example waveguide style numeri-
cal methods have advantages over finite element meth-
ods. They are more efficient. Their stability condi-
tions can be easily observed. The intuitive appeal of
closed trajectory description over local description be-
comes clear when one wants to understand how pertur-
bations to a system affect the response. This intuitive
appeal has been praised by various writers in the field.
Gutzwiller writes: “[..] all of these ideas deal with rela-
tively elementary questions [..]; as soon as they are un-
derstood, some readers may be tempted to call them ob-
vious because of their deceptive simplicity!” [3] Simi-
larly Zworski writes: “The results are technically quite
simple, at least by the standards of the subject, and the
appeal of this study lies in its connection with applied
problems.” [17] Most of this appealing simplicity is
however quite unknown to many and one might thus
argue that looking into the future may first require con-
necting with past ideas that haven’t been sufficiently
recognized. Gutzwiller makes a related point when he
writes: “Most scientists have not participated in the re-
cent development of ideas related to chaos in Hamilto-
nian systems; they are usually not aware of the many
different viewpoints and interpretations, the new prob-
lems and methods for their solution, and the novel ap-
plications to important experiments.” [3] We hope that
this paper helps in pointing towards knowledge that
should be beneficial in future studies in musical acous-
tics.
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