Mobile phones as programming platforms

[Position Paper]

Georg Essl
Electrical Engineering & Computer Science and Music
University of Michigan
2260 Hayward St., Ann Arbor MI 48109
gessl@eecs.umich.edu

ABSTRACT

Programming is virtually equated with text entry. Program-
ming languages are defined by their syntax and semantics
that ultimately lead to functionality when translated into
system level operations. This text-entry focus is a tacit as-
sumption. It rarely is argued that one ought to expand
or alter this notion of programming. We argue that the
emergence of mobile smart phones as full-fledged computa-
tional devices may be challenging this assumption. The rea-
son why text entry was viable in the past simply has to do
with the fact that the keyboard has been the dominant in-
put modality to computers. On many mobile smart phones,
keyboard input is either reduced or unpleasant. Hence we
argue it is worthwhile to reconsider the notion of program-
ming when considering mobile devices as primary program-
ming platforms and that we need to envision programming
paradigms that are better aligned with the input capabili-
ties of the device, hence suggest a replacement of text-based
programming with other approaches. This forces a renewed
exploration of what we mean by syntax, semantics and their
relation to input and representation.

Keywords

mobile phone programming, visual programming, data-stream

programming, user interface design

1. INTRODUCTION

What happens when we consider pocket-sized mobile de-
vices our primary programming platforms? How will the
available input capability shape how we think about what
programming is? Does it make sense to try to translate ex-
isting programming paradigms literally over to the mobile
platform or should we be ready to embrace a new way of
looking at programming that embraces the input modality
as part of what programming ought to be? These questions
are at the core of this paper.

It is probably fair to say that whenever the word program-

ming is uttered or written down, the immediate and tacit
assumption is that this refers to writing lines of text, per-
haps in a context-free grammar with additional semantic
information sufficient to ”compile” or otherwise transform
it into system-level instructions that then run on the com-
putational hardware itself. That is not to say that other
paradigms have not been considered. Visual programming
languages have a storied history as well [8]. Yet text-based
programming is still the dominant type of programming lan-
guage representation today.

Here we would like to argue that we might have a case
for a need to consider alternative paradigms due to the
establishment of mobile devices as primary computational
platforms. Certainly the reason for the dominance of text-
based programming languages is simply that text based in-
put (and associated human readability) is one of the earliest
forms of interacting with computers [11]. Certainly the key-
board to this day is one of the most important interfaces
for a programmer to enter their creations. Visual program-
ming emerged both out of a relation of alternative, data-
flow driven hardware architecture ideas [8] and the recog-
nition that alternative representations can be beneficial to
the programmer as well. The mouse and the advent of color
displays certainly helped the viability of this type of pro-
gramming paradigm. Finally there is an emerging area of
so-called programming tools. These are systems that help
complete a program but the process of using them is not
typically associated directly with programming itself. An
example of such a tool would be for example an interface
builder or a GUI engine (e.g. [10]). In our view this concep-
tual separation of tool use and programming is an indication
of the dominance of text-entry being viewed as programming
while other types of input is not. Hence we might suggest
that the use of tools that contribute to completing a pro-
gram should in a broader sense also be called programming.
In fact interface building could be seen as a form of non-
data-flow visual programming.

Overall the constraint of the interface has not played an im-
portant role in the discussion how to best support program-
ming. The interface was established (keyboard and mouse)
and if discussion related to the input it had to do with im-
proving the bandwidth or support assuming these types of
input (e.g. auto-completion [9]). We would argue that the
transition to the mobile device should change how we look at
programming. Devices no longer have a full alpha-numeric
keyboard. The keyboard input ranges from reduced key-



Mapping
-

Presets
L~

Modes
L~

Figure 1: Organisation of program input keys in
SpeedDial.

blocks to 12-key numeric blocks to simulated keyboards on
single- or multi-touch devices. The form factor of mobile
devices encroaches on the space that would be needed to
design a comfortable standard keyboard. In fact ways to
support text entry is an important line of work in mobile
HCI [2]. Furthermore the dominance of the mouse as a
2-dimensional planar input device is broken in the mobile
realm. A range of technologies, from joysticks, cursor keys,
trackballs, stylus or finger-based single or multi-touch input
are being explored as alternatives.

All these new input technologies bring new difficulties. Joystick-

type inputs are well known to not compete well with mouse-
like input since the seminal Fitts’ law study by Card, English
and Burr [3]. And stylus or touch input pose other problems,
the most widely recognized being the problem of occlusion.
Because the input is in the same area as the interface, fingers
and palm hide good portions of the screen. Furthermore the
finger may occlude the exact part of the screen that is to
be targeted (a problem that Baudisch coined the "fat finger
problem” [1]).

However it seems that the two prevailing modes of input
for a programmer are changing and hence it is worthwhile
to reconsider programming paradigms with the new input
modalities in mind. We believe that the field is wide open
and much remains to be discovered. In the remaining of the
paper we discuss two early examples of data-flow type visual
interfaces designed for specific instances of input.

The first example will emphasize data-flow, while the second
will also address interface building as programming. Both
these programs come from the area of building interactions
on mobile devices just using the mobile device itself, without
the need of external hardware. Hence they are example of
the philosophy that mobile devices themselves can be used
as primary computational and programming platforms.

2. PROGRAMMING ON A 12-KEY NUM-
BER PAD

How might one program a mobile phone with a standard 12-
key number block without connecting or otherwise utilizing
an external programming platform? The most direct line of
attack would undoubtedly be to simply type out programs

¥

=T |

B

=T ]|

-x-‘J SpeedDial -x-.J SpeedDial

. -
-~ -
1 -0.3
Accel X LP1Filter Range -L0:L0
2 2 0.7
LP2 Filter Top -L0:1.0
3 Lin
Func linflog

4
FM Gain

5
FH GainD

Figure 2: Data-flow and parameter editing inter-
faces of SpeedDial. Visual elements are numbers to
indicate how key strokes address them.

in a standard text based language using multi-tapping [6].
Clearly that is a significant reduction of bandwidth from a
standard keyboard, but it is in principle doable. This would
also suggest that one displays standard text based programs
on the display of the device. This too is doable but the
amount of the program that is visible would be limited by
the screen space and programming language syntax is often
not optimized to make the best use of limited screen-space.

An alternative approach would be to ask: How can func-
tionality be quickly established given the input capabilities
of the device. It is obviously not very desirable to rely on
multi-tapping routinely, hence it seems sensible to seek for
an input space that is roughly of the size of the key block.
Then we have to define how the input space relates to visi-
ble content (the program) on the mobile screen. Text input
has a direct correspondence between typed text and visual
outcome and ideally we want to retain this directness.

There are numerous ways to retain this directness. One par-
ticular choice is offered in SpeedDial [4], which is a somewhat
unfortunately named music data flow programming environ-
ment for Symbian-based mobile smart phones such as the
N95. In SpeedDial functional entities are numbered by a
grid position on the screen. The functional block hence can
be directly addressed by simply hitting the labeled key on
the key pad and as the visual grid never exceeds the number
of options on the keypad one can select, connect and dis-
connect functional units without the need of multi-tapping
or other mechanisms to expand the input space. In order
to give control to a possible large space of functional enti-
ties to be used in a data flow, SpeedDial offers a selection
mode in which one can select which functional blocks to use
in a current flow from a possibly much larger set. Finally
in order to manage a trade-off between legibility and space
management two keys are used for scrolling and a further
key is used for selection.

Conceptually what SpeedDial’s approach does, compared to
text-based programming, is the removal of selection from
a finite set of programmatic building blocks via typing. In-
stead these programmatic blocks are available as visible units
and will be opportunistically be addressable by keys when



Load Save Clear Load Save
Filter ¢ : e Filter

Sin0sc Sin0sc
— (1) — ) (1) —
Freg Freg

e Sin0sc
SinOsc - w— () —
(1) Amp:
Amp:

Vis

Sin@s¢ | Sin@sc | Sin@sc Sin@s¢ | Sin@sc | Sin@sc
Freq AMp SRate Freq AMp SRate

SinOsc OWF SinOsc OWF OWF
Time Freq Time Freq AMp

Figure 3: Multi-touch ”programming” in urMus.
Placing functional unit in grid positions connects
them with their horizontal neighbors.

they are visible. Hence while the direct correspondence of
input to specific functionality is broken, the correspondence
of visible block to input is retained and the overall band-
width needed to enter and establish functionality is reduced
to selecting and connecting blocks.

Relations between functional blocks are in part determined
by the position of elements on the screen. Blocks at the left
of the screen have different semantics than blocks in the cen-
ter and left respectively. Hence space is used to contribute
semantic meaning in a program and choice which helps man-
age the input bandwidth, because some semantic meaning
can be implied.

3. PROGRAMMING ON A MULTI-TOUCH
MOBILE DEVICE

Multi-touch mobile devices such as the iPhone have a dif-
ferent input paradigm. They do offer a reduced keyboard
with mode selection to expand the options. However typ-
ing with haptic feedback is known to be more difficult than
typing on devices with clear haptic separation of keys, even
if they are smaller. In general text input on the iPhone is
not particularly easy and is helped by an auto-completion
algorithm to counter unintentional slips in typing. While
autocompletion works particularly well on a fixed vocabu-
lary such as the syntax of a programming language it still is
much more band-limited than text based program entry on
a mobile phone.

Hence again one can prototype alternative solutions that
more directly use the input characteristics of the device. ur-
Mus is a meta-environment designed to help explore these
questions and we are yet in early stages of understanding
what would constitute desirable input paradigms for pro-
gramming and data-flow mapping [5]. But early prototypes
already hint at the possibilities that can be considered when
attempting to turn mobile multi-touch phones into primary
programming platforms.

In order to honor the finger based input, urMus uses finger-

tip sized icons are functional blocks in a data flow. It is
noteworthy that this replaces the correspondence between
key input and screen position. Hence in urMus one automat-
ically always has correspondence between visible elements on
the screen and the input. These blocks are again organized
by their broad semantic meaning such as if they correspond
to sensory input, functional processing or actuator output.
But rather than entering connections through key strokes,
connections are now established if two blocks become hor-
izontal neighbors on a grid. Hence again we use program-
ming by position, but in this case in a stronger sense. The
position of two blocks on screen alone already establishes if
they are connected and hence require no further input. This
again helps reduce input bandwidth and trades it against
semantic information on the screen.

urMus offers numerous mechanisms to manage screen space.
One can for example expand the programming grid horizon-
tally and vertically and then use touch swiping gestures to
scroll on the grid. Furthermore the selection area for func-
tional blocks can be expanded hence allowing a trade-off of
space for selection of functional units against visible space
of the program.

There are programming language concepts that support the
input of data-flow in urMus. One key concept is a type sys-
tem which carries semantic information of the data flow and
normalizes interconnectivity. This achieves that the pro-
grammer no longer has to specify the semantics information
at changes in connectivity of the data-flow and hence avoid
any need for numeric input or semantically induced type
casting.

Finally urMus offers an on-device layouting system that is
implemented through an API using the embedded Lua lan-
guage [7]. What is the crucial insight about this system is,
however, that the Lua layer is in principle not necessary to
allow "programming” of user interface layouts. These can
be designed purely graphically. Regions in the layout can
be created using multi-touch interactions and can be asso-
ciated with properties and event handling using interface
elements such as drop-downs. Hence interface design can
bypass traditional programming paradigms while still hav-
ing program-like outcomes. For example one can achieve
equivalent positioning of UI elements by either using a text-
program representation such as region:SetPosition(x,y)
or one can simply use multi-touch interactions to move the
region to said position and store the position after a suitable
interaction (double-tap, mode-selection via drop-down etc).
As the direct layouting is more convenient on mobile devices
than the text entry it suggest itself as a better representation
of programming.

4. DISCUSSION

Neither of the specific examples discussed in the previous
two sections is a definite solution. In either case there are
clear drawbacks that relate to the trade-offs chosen. Neither
of these proposed solutions is good at giving a large overview
of a complex data flow. Scrolling is required. Hence there
clearly is much to be researched to overcome the counter-
acting pressures of limited screen space and getting a good
overview.



At the same time the added constraint forces a more detailed
look at what programming means and how to best structure
both its input and visual representation. There are numer-
ous ideas encoded in the examples discussed above that ad-
dress this. Both use graphical representations. These are
both more compact in selection and input and allow com-
pression of visual real estate. Both use position as a means
of structuring program flow. This is not unusual. keywords
in a program text are also spatially organized. However,
the choice of position in space is much more deliberate in
strongly tied to not only the ability to read and aesthetics,
but also relates to how input is provided and understandable
by the programmer and how semantics is established.

Strategies for space management are crucial. Multi-touch
devices are much better equipped to provide easy and con-
venient navigation than key based devices. It is hard to
predict at this point if the hardware of mobile devices will
become more uniform. Currently there is an array of screen
sizes, touch input methods, and keyboard layouts. Given
the sever constraints on will likely have to consider sepa-
rate solution for each configuration to optimize the overall
programming experience.

Key aspects of our position are hence:

e Consider any input as a possible programming activity.
Input is programming as long as it established some
functional relation.

e Consider any output as a possible representation of a
program. As long as the output conveys to the pro-
grammer the functional meaning, syntax and seman-
tics of the program it is considered a proper represen-
tation.

e Multiple representations may concur and should be
supported. A program may be conventional text based,
visual data-flow or any other representation.

e Semantics of language features such as API and data
types emerge from the requirements of the interaction.

Hence the goal of turning mobile phones into primary pro-
gramming platforms requires progress in understanding the
relation of the interface hardware capabilities to program
representations, type systems and APIs. Bandwidth for
both entering and representing become crucial constraints
that are directly imposed by the hardware capabilities of
the mobile device itself.

5. CONCLUSIONS

We argued in this paper that one can consider mobile smart
phones as primary programming devices, that is as devices
which can be programmed without the need of external
hardware. However, this suggests reconsidering how we think
about programming to bring the effort of working with the
input capability and the visual representation in better align-
ment with the intrinsic strengths and weaknesses of mobile
phones. Text based input requires substantial input band-
width and is fairly poor at offering ways to utilize screen

space in supportive ways. Hence we explored numerous vi-
sual programming ideas for 12-key phones as well as multi-
touch phones to illustrate how one might start to think
about offering programming on these devices.

If this idea is successful one can hope that if one is stranded
on a lonely island with just a mobile smart phone, a power
generator (and perhaps generously with the complete works
of Shakespeare) one might still be able to write programs to
solve or support new problems that arise from the new-found
island life!

6. ACKNOWLEDGMENTS

This paper was written while the author was hosted by
Limin Jia and Lujo Bauer, both of Carnegie Mellon Univer-
sity. The hospitality and patience that allowed this paper
to happen is much appreciated! Also many thanks to the
anonymous reviewers for insightful and constructive feed-
back.

7. REFERENCES

[1] P. Baudisch and G. Chu. Back-of-device interaction
allows creating very small touch devices. In CHI ’09:
Proceedings of the 27th international conference on
Human factors in computing systems, pages
1923-1932, New York, NY, USA, 2009. ACM.

[2] L. Butts and A. Cockburn. An evaluation of mobile
phone text input methods. Aust. Comput. Sci.
Commaun., 24(4):55-59, 2002.

[3] S. K. Card, W. K. English, and B. J. Burr. Evaluation
of mouse, rate-controlled isometric joystick, step keys,
and text keys for text selection on a CRT.
Ergonomics, 21:601-613, 1978.

[4] G. Essl. SpeedDial: Rapid and On-The-Fly Mapping
of Mobile Phone Instruments. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, Pittsburgh, June 4-6 2009.

[5] G. Essl. UrMus — An Environment for Mobile
Instrument Design and Performance. In Proceedings of
the International Computer Music Conference
(ICMC) (forthcoming), June 1-5 2010.

[6] J. Gong, B. Haggerty, and P. Tarasewich. An
enhanced multitap text entry method with predictive
next-letter highlighting. In CHI ’05: CHI ’05 extended
abstracts on Human factors in computing systems,
pages 1399-1402, New York, NY, USA, 2005. ACM.

[7] R. Ierusalimschy. Programming in Lua, Second
Edition. Lua.Org, 2006.

[8] W. M. Johnston, J. R. P. Hanna, and R. J. Millar.
Advances in dataflow programming languages. ACM
Comput. Surv., 36(1):1-34, 2004.

[9] A. Nandi and H. V. Jagadish. Effective phrase
prediction. In VLDB ’07: Proceedings of the 33rd
international conference on Very large data bases,
pages 219-230. VLDB Endowment, 2007.

[10] L. Pere and M. Koniorczyk. A universal fast graphical
user interface building tool for arbitrary interpreters.
Journal of Visual Languages and Computing,
16:231-244, 2005.

[11] K. Zuse. Uber den allgemeinen Plankalkiil als Mittel
zur Formulierung schematisch-kombinativer Aufgaben.
Arch. Math., 1:441-449, 1948/49.



