
Distributing Mobile Music Applications for Audience
Participation Using Mobile Ad-hoc Network (MANET)

Sang Won Lee
Computer Science & Engineering

University of Michigan
2260 Hayward Ave

Ann Arbor, MI 48109-2121
snaglee@umich.edu

Georg Essl
EECS and Music

University of Michigan
2260 Hayward Ave

Ann Arbor, MI 48109-2121
gessl@umich.edu

Z. Morley Mao
EECS Department

University of Michigan
2260 Hayward Ave

Ann Arbor, MI 48109-2121
zmao@umich.edu

Abstract
This work introduces a way to distribute mobile applications
using mobile ad-hoc network in the context of audience
participation. The goal is to minimize user configuration so
that the process is highly accessible for casual smartphone
users. The prototype mobile applications utilize WiFiDirect
and Service Discovery Protocol to distribute code. With the
aid of these two technologies, the prototype system requires
no infrastructure and minimum user configuration.
Keywords
audience participation, mobile music, ad-hoc network,
network music

1. INTRODUCTION
Today’s ubiquity of smartphones and proliferation of mobile
applications facilitate new forms of artistic expression
emphasizing audience participation. Hence it is important to
be able to distribute and manage interactivity of audience in
performance setting. In this paper we utilize mobile ad-hoc
network (MANET) for distributing mobile applications to a
group of people in a particular space so that the distributed
application can be used for audience participation.
 Mobile ad-hoc network (MANET) consists of voluntary
mobile hosts that communicate with each other without a
fixed infrastructure in the middle. In MANET, mobile devices
are the nodes of the network, and it allows seamless
communication at low cost [1]. Unfortunately, MANET has
limited scalability so that it is not ideal for general-purpose
networking. However, MANET can be useful for applications
which incorporate small-scale networks and are tolerant to
limited bandwidth. In [2], MANET was used for a text-based
personal communication system based on location profiles of
users.
 Audience participation is one effective way to engage the
audience in the contexts of music performance [6],
presentation [10], and interactive classroom experience [12].
Often, performers hands out additional devices (e.g. light
sticks, clickers, paddles from above examples) to the audience
so that they can transmit interaction data to the presenter of
the event. The cost of devices is in proportion to the number
of participants, and they only allow limited types of
interaction (e.g. multiple choices for clickers). An alternative
is to utilize personal smartphones of the audience and use
mobile applications [3, 8, 9, 11]. However, this forces the
presenter to guide the audience to configure their mobile
phones (to download an app from an app store, to change

network connection to a specific one provided, to type IP
address of mobile devices or to type a given session name
inside the downloaded app), which creates an additional
technical barrier for casual mobile phone users. Web-based
approach [13] requires less configuration effort for audience
(e.g. launching web browser, typing web address) but user
interfaces on the web browser are limited at the moment in a
way that it cannot take advantage of native functionalities of a
mobile phone (e.g. sound synthesis, sensors).
 The use of IP spoofing has been proposed recently for the
purpose of content distribution to audience members [7]
although it requires that only one network router be present or
the audience be instructed how to connect to it. Ad-hoc
networking has previously been discussed in the context of
structuring networked mobile performance [5]. MANET is
more general than ZeroConf networking hence our work
expands the scope of the previous work as well.

2. DISTRIBUTION ENVIRONMENTS
2.1. Target System and Data
In this work, we utilize urMus [4] which allows flexible
design of interactive mobile applications and is able to run a
mobile application by transmitting program code over
wireless network. A user can access the mobile phone from a
computer by typing IP address on a web browser. The mobile
phone, as a web server, provides a remote programming
environment so that a user can write a program and send it to
the mobile phone to run the code within urMus application.
However, the environment provides no easy method to
distribute program code to multiple mobile devices other than
to connect each mobile device one by one.
 Given urMus can run mobile applications by transmitting
relatively small sized data (code text); a typical urMus
program is smaller than 10 KB and rarely exceed 20 KB. It
makes suitable for MANET transmit data in fairly short time.
Since the application distributed will be determined by code
text, it enables a wide range of interactions, from playing a
mobile music instrument to answering true/false questions.
The central observation why MANET is desirable for our
purposes is that no additional infrastructure is required other
than mobile devices that audience and the presenter already
have. A typical scenario where this system can be useful is a
Bring-Your-Own-Device (BYOD) event or any public event
where most of people already have smartphones.

2.2. Design Goal
 Since this network is utilized to organize audience
participatory event in a local setting where the presenter and
audience can communicate verbally, high latency is
acceptable given that data transmission will only happen
intermittently or once during the concert. However it is

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
NIME’14, June 30-July 3, 2014, Goldsmiths, London, U.K.
Copyright remains with the author(s).

Proceedings of the International Conference on New Interfaces for Musical Expression

533

problematic if the total time distribution increases in
proportion to the size of the audience (e.g. 5 seconds per
person in case there are 100 people in the event, which is over
8 minutes). Ideally, the distribution process should not
increase linearly in time so that it is scalable in terms of total
time of dissemination.
 One of the most important requirements of the system is
accessibility: it has to be easy to use (network configuration,
data transmission). Many systems rely on some type of user
configuration (typing IP address, typing URL, downloading
an app, changing network to a designated WiFi network, etc.).
Those actions are not always intuitive to general audience.
We wish to minimize the number of user actions as well as
reduce the complexity.

3. CODE DISTRIBUTION METHOD
 There are many possible options to realize the goal of
distributing data to people, from mobile ad-hoc network to
centralized web server structure. In Table 1, we review
possible options available today that are able to fulfill similar
requirements and compare them in terms of accessibility (user
configuration).

Table 1 Possible Networking methods for Distribution
Code Distribution

Methods Pros and Cons

Server–
Client/Cloud

+ straight Forward Concept
− additional Infrastructure
− requires user configuration (no proximity information)
− requires connectivity

MANES1
+ can simulate proximity
+ support any types of connectivity (WiFi/Mobile)
− need to install one more mobile application

Searching devices
over a WiFi

network

+ less user configuration
− devices needs to be connected to a same network.
− limited in searching devices

DNS-based
Service Discovery

+ zero configuration in broadcasting /discovering
− devices needs to be connected to a same network.

AllJoyn + high level API that supports many different platforms
− devices needs to be connected to a same network.

WiFi-Direct

+ proximity based connection
+ wide coverage (no WiFi network /3G/4G needed)
− not scalable for a number of nodes
− supports only WiFi Direct certified devices.

 We chose WiFiDirect and Service Discovery. WiFiDirect is
appropriate for the goal of achieving minimum user
configuration. WiFi-Direct is a way to enable peer-to-peer
communication between mobile devices. It does not require
any infrastructure so that the users do not need to change the
network configuration of the device (e.g. changing network,
typing IP address so on). In addition, WiFiDirect outperforms
other similar methods such as NFC or Bluetooth in terms of
coverage range or speed. However, one drawback of
WiFiDirect is that the network topology can only be one to
one or one to a few. The number of devices in the network is
expected to be “smaller than the number supported by
traditional standalone access points2.”
 Further we utilize Service Discovery Protocol based on
WiFiDirect, which is available from Jelly Bean Operating
System (Android 4.1 or higher). Service Discovery Protocol
(SDP) is network protocols that allow automatic detection of
devices and services offered by the devices on a network.
Without Service Discovery, a participant needs to choose a
device to connect, which is not desirable not only because it

1 http://whispercomm.org/manes/
2 http://www.wi-fi.org/knowledge-center/faq/how-many-devices-can-

connect

will require one extra user configuration but also because a
participant needs to know which device will have data to be
retrieved among many WiFiDirect enabled devices of other
audience members. Using service discovery, information of
state of a device such as whether it has (or needs) up-to-date
code can be incorporated in broadcasting a service.

4. CODE DISTRIBUTION DESIGN
For a prototype purpose, two mobile applications have been
implemented, one for the performer who has data to be
distributed (acting as server) and the other for audience who
has to receive data (client application). It is built on Android
platform. The following sections will cover our design of
code distribution procedure.

4.1. Data Transfer Iteration
Forming MANET using WiFiDirect for this purpose is
challenging because MANET does not allow many nodes in
one connected network. The basic approach taken in this
work is to make one-to-one connection multiple times to
distribute code and close the connection immediately after
data transfer is made. For each connection, the device that has
code will find a device that needs the code using SDP, makes
the connection, transfer the code using WiFiDirect, close s the
connection and look for another peer.
 In an actual performance, participants are instructed to
download an app from app store (Google Play Store or Apple
App Store) and launch the app. Once the app is launched, the
process of data transfer begins as stated in Figure 1. When a
participant launches the client application, it immediately
broadcasts a service. Whether a device of a participant
broadcast service or not will be an indicator that the device
has up-to-data code or not. Although it is more intuitive to
have the server application broadcast a service and the client
application to discover the service to retrieve the code, by
migrating broadcasting to audience device, we can guarantee
exactly one user action per user, which will be discussed in
the following section in detail.
 In the meantime, the server application tries to discover a
service within the range of WiFiDirect covers (with ranges up
to 200 meters). Once the server finds a service, it picks one of
the devices that broadcasts a service and make connection
automatically. Note that there will be services as many as the
number of participants and the server application will pick the
first device discovered. Once the server application make a
connection request to a client application, a participant needs
to confirm the pairing by pressing accept button on the
screen, which is the only user action for the participant for
network configuration. After connection is established, the
server application sends data immediately to the client
application. When audience application receives data, it sends
an acknowledgement message to the server application. The
server application closes the connection with the client
application upon receipt of acknowledgement. Since the client
application received data of interest, it needs not to broadcast
a service any more. After closing the connection, the server
application tries to discover another peer that broadcast a
service again. Naturally, client peers that did not receive data
will have a chance to make connection to the server
application. Eventually, the server application can iterate the
process of making a connection and data transmission to all
peers until no peers broadcast services. Note that the only
user configuration required in the whole process is for a
participant to press “accept” button (other than downliading
and launching the app).

Proceedings of the International Conference on New Interfaces for Musical Expression

534

Figure 1 the process of a server application (left)
transmitting code data to client application (right) for one
audience member.

4.2. Scalable Distribution
 Although this iterative connection model described in the

previous section accomplishes minimum user configuration,
this model is not scalable. If there are n peers, the total time is
n times the duration of data transmission for one peer. The
time it takes to transmit data is instant but the time it takes to
initiate connection (discover/request/ negotiate) is not. It takes
several seconds to initiate a WiFiDirect connection. The total
time of data distribution may be reduced if transmissions
happen in parallel. However, WiFiDirect is not designed to
support multiple devices, it is hard to initiate connection to
large group of peers (even 3-4 devices are challenging). To
expedite the process, the client application will distribute the
code as well once it retrieves the code successfully. As soon
as a device received code, it will look for a device that did not
receive the code. In other words, the client application with
valid data will stop broadcasting and try to discover other
client application that is broadcasting a service to seek for
code distribution. Initially the only peer, which has code data,
is the server application, but once it transmits code to a peer,
the peer and the server application are able to transmit code to
two other client applications. The number of devices that can
distribute data then grows exponentially. Figure 2 shows the
example of the whole process in four iterations when there are
15 devices from the audience and one device that runs the
server application. The time it takes to distribute to whole
group will be O(log2N). For example if there are 1000
participants and if it takes 5 seconds to transmit to one peer, it
will take log21000(≈10) times 50 seconds (less than 1 minute)
which is much more scalable than one device transmitting to
all audience devices, which will take 1000 times five seconds.
In addition, since this network is weakly connected network
where devices are not always connected but share its state by
service discovery, it is completely fine for a node to join and
leave the network.

One important characteristic in the basic connection model
described in 5.1 is that client applications broadcast a service
and the server application makes a connection request
automatically when it discovers the service, which seems
counter-intuitive. Recall that the device that receives the
connection request will require a user to press “accept”
button. In this way, we can guarantee only one button press
per user, otherwise, some participants will have to keep
pressing “accept” button many times, which will interrupt the
participant’s interaction with the device with a modal
message dialog.

Figure 2 From upper left, it shows how one server
application distribute code to 15 different devices. See it
takes four iterations of connection procedure to distribute
mobile application code.

4.3. Updating Mobile Application
Once all devices received code, all devices will try to
discover a service but none will broadcast a service (the final
state in Figure 2). This state is problematic in a scenario when
the performer wants to distribute more than one application.
For instance, imagine there are two audience participation
pieces at a performance and the performer wants to change
the musical instruments for each music piece. Or if he or she
wants to update the nature of the musical instrument during a
music piece so that it will change the texture of the overall
sound. In this case, the final state (from Figure 2) where all
devices try to discover service makes it impossible to
distribute the code because server application can only
distribute code to the devices in broadcast mode. To distribute
the new code to all audience again, the network have to go
back to the initial state.
 The approach we took to restore the initial state in this work
is to add a property of version in each service discovery and
service broadcast. Service Discovery Protocol allows a
programmer to add text data and any customized information
within the size constraint (less than 200 bytes). We embedded
the version of the app in the service so that both discovery
mode and broadcast mode is associated with an integer
number that indicates the version of the application to be
distributed. The modified procedure is exactly same with the
previous one except that the code will be distributed to the
device in broadcast mode only when the version is less than
or equal to the version of the device in discovery mode. In
addition, if a client application in discovery mode discover a
service that has version greater than the number it tries to
discover, the application is programmed to go back to
broadcast mode with updated version. This state transition
happens much faster than the code distribution procedure
because the client application only discovers broadcasted
service and does not need to make connection with other

Proceedings of the International Conference on New Interfaces for Musical Expression

535

devices at all. In addition, the signal that new distribution will
be distributed go viral. If one of the client application
discover a service with greater version, it will go to broadcast
mode immediately with the updated version number which
again help other devices to discover the service and go back
to the broadcasting mode. This will change the whole
audience to go back to broadcast mode quickly again in
exponential manner. A few seconds later, the whole group
will reach the initial state and the server application can again
discover a service with version 2 like it did in the initial state.

Figure 3 The server application (A) broadcast a service to
make a device (B) go back to broadcast mode. Note that
the device that discovered the server application
broadcasted service (B) will again broadcast a service
with version 2 and signal other devices to go back to the
broadcast mode. The connection between (C) and (D) is
usual scenario that were modified with version
comparison so as to run the usual code distribution
described in section 5.2.

5. PROTOTYPE DEVELOPMENT
The server application is implemented as a simple mobile
application which contains code data and basic functionalities
such as discover / refresh / disconnect and broadcast with
version data. It prints out the current state of ongoing
connection and discovered services for monitoring purpose.
The client application is implemented on top of urMus
application. It does not have any user interface regarding the
code distribution other than a simple message on launching
screen which instructs to wait for code distribution and accept
incoming connection if any. The client application does not
run anything at all if there is no server application that
distributes the code.
 We tested two applications to evaluate code distribution in a
lap setting. The system serves its function of distributing
mobile application successfully 3 . As designed, the code
distribution procedure is efficient in achieving the goal of
making it accessible to use. It requires no configuration other
than downloading the client application from app store,
launching the application and pressing a button to accept the
incoming connection. The time it takes to make one
connection between a pair of device is measured from
multiple trials. Most of the times, the iteration is complete
within nine seconds at most. Analytically, we can calculate
the estimated time of completion for large-scale audience. For
example, 90 seconds will allow ten iterations of connection
and cover about 1000 devices (210 = 1024).

3 Demo video is available at http://youtu.be/wGTe5w7DRl0

6. CONCLUSION
This work introduces a way to distribute mobile applications
using mobile ad-hoc network in context of audience
participation. It utilizes WiFiDirect and Service Discovery
Protocol to distribute code. With the aid of these two
technologies, the system requires no infrastructure and
minimum user configuration in the procedure. It also
succeeds in mobile application distribution in a batch with
acceptable latency for a music performance. Currently we
have tested this system in small-scale but not yet in a real
music performance. We plan to make improvement in both
performance (time) and reliability on this method and realize
an audience particiaption music piece in the near future.

7. REFERENCES
[1] S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic.

Mobile Ad Hoc Networking: Wiley. com, 2004.
[2] D. R. Bild, Y. Liu, R. P. Dick, Z. M. Mao, and D. S.

Wallach. Using Predictable Mobility Patterns to Support
Scalable and Secure Manets of Handheld Devices. in
Proceedings of the sixth international workshop on
MobiArch, 2011, pp. 13-18.

[3] L. Dahl, J. Herrera, and C. Wilkerson. Tweetdreams:
Making Music with the Audience and the World Using
Real-Time Twitter Data. the International Conference
on New Interfaces for Musical Expression (NIME), Oslo,
Norway, 2011.

[4] G. Essl. Urmus - an Environment for Mobile Instrument
Design and Performance. International Computer Music
Conference, New York, 2010, pp. 76-81.

[5] G. Essl. Automated Ad Hoc Networking for Mobile and
Hybrid Music Performance. International Computer
Music Conference, 2011, pp. 399-402.

[6] J. Freeman. Extreme Sight-Reading, Mediated
Expression, and Audience Participation: Real-Time
Music Notation in Live Performance, Computer Music
Journal, vol. 32, pp. 25-41, 2008.

[7] A. Hindle. Swarmed: Captive Portals, Mobile Devices,
and Audience Participation in Multi-User Music
Performance. International Conference on New
Interfaces for Musical Expression (NIME), Daejeon,
South Korea, 2013.

[8] H. Kim. Moori: Interactive Audience Participatory
Audio-Visual Performance. in ACM, Creativity and
Cognition, Atlanta, USA, 2011, pp. 437-438.

[9] S. W. Lee and J. Freeman. Echobo : A Mobile Music
Instrument Designed for Audience to Play. the
International Conference on New Interfaces for Musical
Expression (NIME), Daejeon, South Korea, 2013.

[10] D. Maynes-Aminzade, R. Pausch, and S. Seitz.
Techniques for Interactive Audience Participation. IEEE
International Conference on Multimodal Interfaces
(ICMI), Pittsburgh, PA, 2002, p. 15.

[11] C. Roberts and T. Hollerer. Composition for Conductor
and Audience: New Uses for Mobile Devices in the
Concert Hall. the 24th annual ACM symposium adjunct
on User interface software and technology, 2011, pp. 65-
66.

[12] J. R. Stowell and J. M. Nelson. Benefits of Electronic
Audience Response Systems on Student Participation,
Learning, and Emotion, Teaching of psychology, vol. 34,
pp. 253-258, 2007.

[13] N. Weitzner, J. Freeman, Y.-L. Chen, and S. Garrett.
Massmobile: Towards a Flexible Framework for Large-
Scale Participatory Collaborations in Live Performances,
Organised Sound, vol. 18, pp. 30-42, 2013.

Proceedings of the International Conference on New Interfaces for Musical Expression

536

