
Designing Mobile Musical Instruments and
Environments with urMus

Georg Essl

Electrical Engineering & Computer Science
and Music

University of Michigan

gessl@eecs.umich.edu

Alexander Müller
Deutsche Telekom Laboratories

TU-Berlin

a.mueller@telekom.de

ABSTRACT
We discuss how the environment urMus was designed to allow
creation of mobile musical instruments on multi-touch
smartphones. The design of a mobile musical instrument
consists of connecting sensory capabilities to output modalities
through various means of processing. We describe how the
default mapping interface was designed which allows to set up
such a pipeline and how visual and interactive multi-touch UIs
for musical instruments can be designed within the system.

Keywords
Mobile music making, meta-environment, design, mapping,
user interface

1. INTRODUCTION

UrMus is a meta-environment written to allow the flexible
design of sound and media synthesis systems, as well as to
support the design of mobile music instruments. We have a long
history of systems intended support music generation and sound
synthesis with computers. However these were designed for
computers with an interaction paradigm that is different to that
of a mobile device. The standard interaction modality for
desktop and laptop are keyboard, mouse and a sensibly large
screen. In mobile devices these have been replaced by multi-
touch input, dial-keys, accelerometers, and a screen size that is
limited by the size of a pocket. However, things are not all grim
for the mobile device. Certain interactions, such as hand
gestures are more natural for a mobile device due to the
ergonomic relationship of the form factor to our motor abilities.
Hence we felt that it warrants starting anew in designing a
sound synthesis environment that allows to design interactions
that more closely match the abilities that are possible on mobile
devices.

The goal of this paper is to show how urMus can be used to
design mobile music instruments. We also explain and describe
the default mapping interface. However this paper will not go
into detail about the architecture of urMus itself. Those details
can be found in separate publications [7,8]. Here we will focus
on the use of urMus for user interface design.

2. Overview of urMus
UrMus is a meta-environment. It is not currently meant to
propose one solution to interaction design or interface for a
synthesis engine on a multi-touch mobile device. Rather it
offers a way to create a wide range of such interfaces and hence
allows the exploration and comparisons of various prototype
proposals. The environment ultimately serves the goal of
supporting the development of interactions on and for mobile
devices. It currently consists of two engines: one for 2-D
layouting and one for multi-media dataflow. Both are accessible
through a higher level scripting language Lua [10]. This means
that fully flexible UI design that is not bound to a pre-defined
set of UI widgets is fully integrated with data flow that links
sensory input through data processing to actuator output. The
goal is to keep the building blocks as general as possible so that
a wide range, perhaps most conceivable mobile phone
interactions can be realized within this environment.

2.1 Related Work
A primary associated goal in the design of urMus is to keep it
inherently non-paradigmatic. This means that it should not
espouse or implement one particular interface or interaction
paradigm but rather serve as an environment where many,
perhaps all can be implemented. Eaglestone and co-workers
suggested that there might be multiple cognitive styles that
dictate how composers interact with synthesis software and that
one should design systems with these cognitive styles in mind
[5]. This work very much attempts to follow this program, by
not ab initio fixing one particular paradigm. Even more so the
boundaries between paradigms are continuously being blurred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME2010, 15-18th June 2010, Sydney, Australia
Copyright remains with the author(s).

Figure 1 - The default urMus mapping interface.

So do existing text-based synthesis environments often over
ways to create other forms of interaction. For example the
Audicle serves as a visual support, interaction and display
system for the ChucK programming language [20] and Maui is
a GUI design layer within ChucK [21] both allowing graphical
elements to be introduced in an otherwise heavily text based
paradigm. Nyquist has also been expanded to offer multiple
forms of representations recently [3]. ixiQuark [11] plays a
similar role with respect to SuperCollider [12]. At the opposite
end, script based objects have been introduced for Max/MSP
and pd [14,15,16]. For example a lua~ object exist for
Max/MSP [21] as well as a chuck~ for pd [9].

The initial and a driving motivation behind designing urMus is
the creation of an environment that is distinctly suitable for the
mobile platform. It should supports mobile interaction
modalities natively and naturally. In fact this motivation was
the original reason to start this project. In this context
SpeedDial is a direct precursor [6] based on 12-key
smartphones.

There are projects that address interaction design on for mobile
devices. Probably the closest to the current project is RjDj, a
commercial environment using pure data as the audio engine
[17]. It offers offline interface design and uses a pd engine for
sound rendering. MrMr is an OSC remote control system with
text-configurable UI based on predefined widgets [13]. Vessel
is a multi-media scripting system based on Lua [21]. In this
sense it is closely related to UrMus. However UrMus’ goals are
rather different from Vessel’s. The primary function of Lua in
UrMus is not to serve to script multi-media and synthesis
functionality but rather to serve as a programmatic API and a
middle layer between lower level functionality and high-level
interactions. For example the synthesis computations in UrMus’
data flow engine UrSound are fully realized in C, whereas
Vessel is designed for algorithmic generation. UrMus is
designed on principles of multi-layered design [18], and design
for variation [19,20].

3. DESIGNING MOBILE MUSICAL
INSTRUMENTS
Designing a mobile musical instrument can be viewed as the
process of taking input from device sensors, transforming them
through some algorithmic means into output which is then
displayed through some of the device's actuators which can be
speakers, display or any other modality. This is a broad
prescription and can have a wide range of realizations. For
example a mobile music instrument may simple link the signal
received from a built-in accelerometer to the frequency of a sine
oscillator, which then is played back through the speaker. Or it
may be a complex sequencer that allows polyphonic music to
be written by interacting with a dense set of visual elements on
the multi-touch screen.

Contemporary multi-touch-based mobile smart-phones have a
range of sensory input capabilities. By far the most complex of
these sensors is the multi-touch input, not only because it allows
for simultaneous channels that additionally is directly coupled
to visual display. UrMus offers a detailed multi-touch UI engine
that is inspired by the UI design offered in popular computer
games. In addition it provides a multi-rate dataflow pipeline,
which connects unit generators and algorithms into a dataflow.

Through urMus's Lua API both these engines can be made to
interact. To understand how this works in urMus we discuss
both parts in turn, beginning with the dataflow engine.

3.1 Setting up data flows

UrMus's dataflow engine urSound resembles existing synthesis
engines in many ways. Connection between elementary
processing blocks are established which then prescribed in
which order a time sequence of data is to be processed.
UrSound does not have an inherent master data rate, nor does it
define any canonical control rate. Rather the dataflow can be on
multiple rates and the rate of connected components (or if
needed external timers) defines the local rate of the data flow
network. In most cases this is not something that an author has
to be aware of as it often is natural to let each component
operate at a rate that is offered by its connected components.
However a consequence of allowing natural rates to dictate the
local rate is that data flow can go both upstream and
downstream, which specifies at which end of the flow a rate
may be specified. For example the accelerometer data is
updated at a native rate of 1000Hz. If the data flow is upstream
(or "pushed" in urSound parlance) then a processing block
connected to the accelerometer will be fed at the rate of the
accelerometer. At the other end of the pipeline, if the data
stream flows downstream (or is "pulled") the flow on the output
side will dictate the rate. For example if a unit generator is
pulled from the audio-output pipeline, the natural rate of the
audio-pipeline will propagate to the unit generator. Furthermore
inputs and outputs are signed normed signals. That is, they
always have a range of [-1, 1]. This means that processing
blocks can always be connected functionally without having to
specify scale transformations. The semantic of the inputs and
outputs is implied in the processing block. Details on this can
be found in a separate publication [8].

For our purpose here the most important mechanism is the way
interactions can be fed into the dataflow pipeline. The pipeline
allows numbers to be "pushed" or "pulled" programmatically.
This can be used to feed user interactions on a graphical user
interface into the pipeline. In this case the data rate is based on
the user's actions.

To illustrate all this let us explore two examples, for which we
will use the pseudo-notation -> for a push link and <- for pull
link.

 Accel(x)->SinOsc(freq)<-dac

This data flow pushes accelerometer data into the frequency of
a sine oscillator and the dac pulls samples from the sine
oscillator.

 Push(1)->SinOsc(freq)<-dac

Figure 2: Effect of anchoring regions.

 Push(2)->SinOsc(amp)

This data flow has two separate push instances that drive input
to the sine oscillator frequency and amplitude (sharing the same
instance). This instance of the sine oscillator is pulled by the
dac. The push object is similar to both the number input and the
bang object in graphical patch languages such as pd, except that
both functions have been merged.

3.2 Core Layouting Functionality
Anchors are a main mechanism for layouting. This concept also
exists in other UI layouting systems, such as Apple's Interface
Builder and is modeled closely after the API provided by World
of Warcraft. Rather than specify an absolute position, all
layouting happens because of a relative position to another
region. Figure 2 shows an example of a change in layout due to
a change in anchoring. Anchored regions inherit many
layouting properties of their parents. For example if a parent is
moved, all regions anchored to it will move also, visibility rules
do propagate to children, making it easy to hide complex
grouped regions while treating as a single entity. Anchoring
also makes it easy to do ordering operations such as insertions
of regions between two adjacent ones by treating the anchor
relationship like a linked list.

In order to allow separate visual pages that are easy to manage,
there is paging mechanism, which essentially serves as a visual
name-space (see Figure 3). New regions are always associated
with the currently active page and regions are only visible if the
page is active to which they have been associated. However the
Lua name space itself remains global. Hence multiple pages can
easily share functionality or dataflows.

3.3 Core Interaction Functionality

Figure 4: Events supported by urMus.

UrMus uses events to propagate information that is not part of
the standard program flow. There are essentially two broad
types of events: Those triggered by some kind of user generated
action or sensory input, and those generated by UI related
changes. Only regions can ever be informed by events and
events are inherently associated with its region. For example
there are a range of touch-related events, which trigger if the
event happened to this region. For example OnEnter will trigger
if a moving touch event enters a region, and OnLeave will
trigger when it leaves again. OnDoubleTap triggers if the region
is double-tapped. OnUpdate informs a region that the current UI
layout is about to be rendered in OpenGLES and hence allows
frame-rate-dependent adjustments to be written. Events for all
supported sensory input are available and offer each region to
independently react to it. For example one can easily write a UI
that consists of many regions which each randomly and in
different ways react to accelerometer input because each will be
handling this event separately. The list of all currently available
events is shown in Figure 4.

Figure 5: Example of a region taking and responding to an
input event.
To see this in action consider the code example depicted in
Figure 5. It creates a region, textures it and sets it up for a very
simple UI interaction that will successively half the region
width with each touch event.

3.4 Writing Interactive Interfaces

Figure 6: Example of a region taking and responding to an
input event.

To see how one can design a fitting interface that will
interoperate with a dataflow consider the example of creating a
very simple piano keyboard. First we find a free image of an
octave of a piano keyboard. Then we "instrument" the image by
placing regions over the image keys. A rectangular region
covers each white key. We do the same for the black keys.
These regions serve two functions. One is to take input and

Figure 3: Pages allow for a visual name space mechanism
for regions.

make the relationship between spatial position on the screen and
note pitch. The second is visual feedback. We can use these
regions for various forms of visual feedback. Animating
through various keystroke textures, or simply recoloring the key
could achieve this.

The instrumentation of a key looks like this:

 whitekey[i]:Handle("OnTouchDown", PlayWhiteKey)
 whitekey[i]:Handle("OnEnter", PlayWhiteKey)
 whitekey[i]:Handle("OnTouchUp", ReleaseWhiteKey)
 whitekey[i]:Handle("OnLeave", ReleaseWhiteKey)

This means that the key is sensitive to touch events. It will play
a note if a touch presses down or moves into the region (to
allow glissando play) and it releases the key if the touch is lifted
or moved out of the region. The Handle() method registers
functions to respond to these events.

function PlayWhiteKey(self)
 local pushflowbox = _G["FBPush"]

 if pushflowbox.instances and
pushflowbox.instances[1] then

 pushflowbox.instances[1]:Push(whitepitch[self.key
])
 if pushflowbox.instances[2] then

 pushflowbox.instances[2]:Push(daccel*50.0+0.2)
 end
 end
end

This is how one could implement the event handler when a note
is to be played. It detects if the default urMus engine has
instantiated a first and second Push flowbox. If it finds the first,
it assumes that it is connected to a control of frequency and
hence will push the frequency from a pitch table into the
dataflow. If it finds a second, it will also push amplitude data,
modified by a force estimated from the accelerometer, into it.

Note that this interface does not specify which algorithm is used
beyond the push. Hence if one wants to replace this with
another dataflow, that perhaps uses a different synthesis engine
or sound, the interface can still be used unchanged. At the same
time one could change the look of the interface drastically
without modifying the PlayWhiteKey() function, which serves
as the point of interface of the instrument. Hence there is clean
separation between these two functionalities and in fact both
sides can be replaced by alternatives.

4. DESIGNING MOBILE SYNTHESIS
AND MEDIA ENVIRONMENTS

The default mapping interface is a successor to SpeedDial,
which was a generic musical instrument mapping interface for
12-key touchpad smart phones using the Symbian OS [6].
SpeedDial essentially sought to offer an on-the-fly mapping
paradigm, which minimizes interaction steps needed to achieve
functional and meaningful mappings while still retaining as
much flexibility as possible. The same goals apply to urMus's
default interface. However the input capabilities are different.
UrMus is designed to work with multi-touch screen smart
phones such as the iPhone, which do not come with a hardware
keyboard. Hence it is a primary concern to discover how to
utilize multi-touch as the primary means for editing.
Practical considerations on the design were:
• Finger size dictates size of interacting object.
• Keep things as large as possible.
• Manage space.
• Be safe if possible (avoid glitches and slips)
• Allow very fast construction of meaningful outcomes
With these considerations in mind we went through a semi-
structure design process to arrive at a first interface
implementation.

4.1 DESIGN PROCESS

Figure 8: Interactive paper prototype of default synthesis
mapping interface of urMus.

In order to prefigure design choices in actual implementation
we employed a range of exploratory pre-software design

Figure 7 - Interaction functionality of the default urMus interface.

techniques. This has two purposes. First find what the design
needs are for the system itself. The second was clarity in design
of the early interfaces.
At the beginning we started with quick drawings of the GUI and
subsequently they represented a basis for discussion within the
team. This method is getting more and more popular in
interaction and interface design [1]. Imaginary scenarios were
run to select more suitable and intelligible layout concepts for
their enhancements.
In the second stage we built Interactive Paper Interfaces, which
are dynamic lo-fi paper snippets where one sees changes in the
sketch depending on the action with movable parts [2]. This
allows one to think to temporal interaction scenarios and
streamline the steps needed to achieve goals of interactions
(Figure 8). By simulating the touch screen a feeling for the
flexible set-up was conveyed that furthermore opened up
envisioning a range of input principles.
An attempt to anticipate the mobile experience the paper
interface is transferred to the iPhone. In addition to
manipulating the interface, the physical holding and touching of
the device are factors that can be tested in the third stage of the
design process [4]. Also lab testing as well as on-the-fly
demonstration and observation can be performed. This process
already allowed us to narrow down the design decisions
substantially, and the paper prototype depicted in Figure 8
already offered many conceptual capabilities that later made the
default mapping interface of urMus.

	
Figure 9: Sketch-in-screen prototype of a raindrop
sequencer.

Supported by basic software functionality and through tactile
interactivity on the screen we could enhance the discussion on
usability providing a realistic performing experience. We also
use this process to prototype specific instruments. Figure 9
shows a sketch of sequencing interface based on a raindrop
metaphor. By scanning the hand sketch and importing it into
urMus one can already start instrumenting interactions by
overlaying the image with hidden yet interactive regions and
test if the sketch works as intended when interactive.

4.2 Implementation of the default urMus
mapping interface
The urMus default interface serves as one of the most
developed conceptual prototypes to illustrate the power of the
urMus 2D layouting engine. Virtually all layouting capabilities
are used here. The interface is inherently fully multi-touch and
the number of supported touch points is only limited by the
device's capabilities (5 for iPhone/iPod touch, 11 for iPad).
Overall this is all implicit and provided by the engine. At the

Lua level the programmer can ignore the multi-touch handling.
Events that are relevant to regions will automatically be
directed to the region independent of the finger used. Hence
activating, dragging, and scrolling can all be performed in
parallel on multiple regions. At the same time as many
interaction elements as possible are kept at a size that can be
operated by finger tapping and sliding.

Figure 10 - Creating a flow by grid placements. Connections
are established automatically.
Functional flows are established by horizontal arrangement.
Flowboxes can be moved from the selector area at the bottom of
the screen into grid positions. If they are released in the
neighborhood of one of those grid positions they snap into it. If
there is a neighboring flowbox left or right of the block it will
automatically connect the blocks and establish a flow. If it is
connected to a valid sink output will be generated. This process
is depicted in Figure 10. This allows for very rapid mapping. In
fact one can quickly tap a flowbox to link and unlink an
element. We consider this a form of live mapping. By
connecting blocks implicitly one removes addtional editing
steps such as drawing the connection.

5. FUTURE HARDWARE AND
INTERFACE DESIGN
UrMus is very much designed to be platform agnostic. While
currently very much inspired by the revolution of the mobile
smart phone platform it is intended to be persistent through the
rapid changes in hardware that has been characteristic of the
mobile hardware development of the last years. This is another
reason why urMus does not provide a canonical interface
solution. Rather it offers ways to implement many different
solutions, which can be tailored towards the strengths of each
individual platform. The current architecture should easily
support interaction paradigms on emerging table or ePaper
hardware and is intended to be extensible to new hardware
sensor and actuator capabilities. We see urMus not so much as a
specific software solution, but an environment that will support
on-going and evolving research in musical instrument and
musical environment design on various computing platform.

6. CONCLUSIONS
In this paper we discussed urMus as an environment to design
both mobile music instruments and general mobile synthesis
environments. UrMus is a meta-environment meant to support
UI and interaction design at multiple levels while also
supporting key interactive functionality inherently, such as
moving, scrolling or resizing regions of a user interface. It
allows full support of all sensory capabilities of the device.
Currently urMus only runs on iPhone SDK-compatible
hardware, but we plan to extend the support to other platforms.
Also the number of developed interfaces are currently limited
and we hope that with wider use, there will be a larger chest of
suggested interfaces to choose from, or to modify.

UrMus can be found at:

http://urmus.eecs.umich.edu/

7. ACKNOWLEDGMENTS
Many thanks to the students of the Fall 2009 course "Building a
Mobile Phone Ensemble" at the University of Michigan, who
suffered through and added numerous interface and instrument
designs to urMus. Also thanks to numerous parties who offer
open source solutions that helped speed up the development of
some functionality found in urMus. urMus is inspired by ideas
found in Blizzard's World of Warcraft addon API and uses the
fast embeddable script language Lua.

8. REFERENCES
[1] Bolchini D, Pulido D, Faiola A. “Paper in Screen”�

Prototyping: An Agile Technique to Anticipate the Mobile
Experience. In: Interactions XVI, 2009:29-33.

[2] Buxton, B: Sketching User Experiences. Morgan
Kaufmann, San Francisco, 2007.

[3] Dannenberg, R. “The Nyquist Composition Environment:
Supporting Textual Programming with a Task-Oriented
User Interface,” in Proceedings of the 2008 International
Computer Music Conference, San Francisco, CA: The
International Computer Music Association, August 2008.

[4] De Sà, M., Carriço L.: Low-fi prototyping for mobile
devices. In: CHI '06 extended abstracts on Human factors
in computing systems - CHI '06. New York, USA.

[5] Eaglestone, B., Ford, N., Holdridge, P., and Carter, J.,
“Are Cognitive Styles an Important Factor in the Design of
Electroacoustic Music Software?,” Proceedings of the
2007 International Computer Music Conference,
International Computer Music Associaation, (2007), pp.
466-473.

[6] Essl, G. “SpeedDial: Rapid and On-The-Fly Mapping of
Mobile Phone Instruments,” in Proceedings of the
International Conference on New Interfaces for Musical
Expression, Pittsburgh, June 4-6 2009.

[7] Essl, G. “UrMus – an environment for mobile instrument
design and performance,” In Proceedings of the
International Computer Music Conference, 2010.

[8] Essl, G. “UrSound – live patching of audio and multimedia
using a multi-rate normed single-stream data-flow engine,”
In Proceedings of the International Computer Music
Conference, 2010.

[9] Garton, B. "[chuck~]". Available at
http://music.columbia.edu/~brad/chuck~/.

[10] Ierusalimschy, R. Programming in Lua, Second Edition.
Lua.Org, 2006.

[11] Magnusson, T. 2007. "The ixiQuarks: Merging Code and
GUI in One Creative Space." In Proceedings of the
International Computer Music Conference. San Francisco:
International Computer Music Association. 2: 332-339.

[12] McCartney, J. “Rethinking the computer music language:
Supercollider,” Comput. Music J., vol. 26, no. 4, pp. 61–
68, 2002.

[13] Mrmr, Technical documentation available at
http://poly.share.dj/projects/#mrmr, retrieved on January
20, 2010.

[14] Puckette, M. “Pure data: another integrated computer
music environment,” in in Proceedings, International
Computer Music Conference, 1996, pp. 37–41.

[15] Puckette, M. “Pure data: Recent progress,” in Proceedings
of the Third Intercollege Computer Music Festival, 1997,
pp. 1–4.

[16] Puckette, M. “Max at seventeen,” Comput. Music J., vol.
26, no. 4, pp. 31–43, 2002.

[17] RjDj, Techical discussion available at: http://trac.rjdj.me/,
retrieved on January 20, 2010.

[18] Shneiderman, B. “Promoting universal usability with
multi-layer interface design,” in CUU ’03: Proceedings of
the 2003 conference on Universal usability. New York,
NY, USA: ACM, 2003, pp. 1–8.

[19] Simone, C., Divitini, M. and Schmidt, K. “A notation for
malleable and interoperable coordination mechanisms for
cscw systems,” in COCS ’95: Proceedings of conference
on Organizational computing systems. New York, NY,
USA: ACM, 1995, pp. 44–54.

[20] Villar, N. and Gellersen, H. “A malleable control structure
for softwired user interfaces,” in TEI ’07: Proceedings of
the 1st international conference on Tangible and embedded
interaction. New York, NY, USA: ACM, 2007, pp. 49–56.

[21] Wakefield G. and Smith, W. “Using lua for multimedia
composition,” in Proceedings of the International
Computer Music Conference. San Francisco: International
Computer Music Association, 2007, pp. 1–4.

[22] Wang G. and Cook, P. R. “Chuck: a programming
language for on-the-fly, real-time audio synthesis and
multimedia,” in ACM Multimedia, 2004, pp. 812–815.

[23] Wang, G. Misra, A. and Cook, P. R. “Building
collaborative graphical interfaces in the audicle,” in NIME
’06: Proceedings of the 2006 conference on New interfaces
for musical expression. Paris, France, France: IRCAM —
Centre Pompidou, 2006, pp. 49–52.

