
Crowd in C[loud] : Audience Participation Music with
Online Dating Metaphor using Cloud Service

Sang Won Lee
Computer Science and

Engineering
University of Michigan

2260 Hayward Ave
Ann Arbor, MI 48109-2121
snaglee@umich.edu

Antonio Deusany
de Carvalho Junior

Universidade de São Paulo
Rua do Matão, 1010, São

Paulo, SP, Brazil
dj@ime.usp.br

Georg Essl
Electrical Engineering &

Computer Science and Music
University of Michigan

2260 Hayward Ave
Ann Arbor, MI 48109-2121

gessl@umich.edu

ABSTRACT
In this paper, we introduce Crowd in C[loud], a networked
music piece designed for audience participation at a music
concert. We developed a networked musical instrument for
the web browser where a casual smartphone user can play
music as well as interact with other audience members. A
participant composes a short tune with five notes and serv-
ing as a personal profile picture of each individual through-
out the piece. The notion of musical profiles is used to form
a social network that mimics an online-dating website. Peo-
ple browse the profiles of others, choose someone they like,
and initiate interaction online and offline. We utilize a cloud
service that helps build, without a server-side programming,
a large-scale networked music ensemble on the web. This pa-
per introduces the design choices for this distributed musical
instrument. It describes details on how the crowd is orches-
trated through the cloud service. We discuss how it facili-
tates mingling with one another. Finally we show how live
coding is incorporated while maintaining the coherence of
the piece. From rehearsal to actual performance, the crowd
takes part in the process of producing the piece.

1. INTRODUCTION
Web Audio significantly lowers the level of complexity for

creating networked interactive music application and cloud
technologies allow for creating scaleable audience participa-
tion in this context. In this paper, we introduce a web-based
audience participation implementation as used in the mu-
sic piece, Crowd in C[loud]. A distributed musical instru-
ment is implemented entirely for a web browser, enabling
an audience to easily participate in music making with their
smartphones. This web-based instrument is designed to en-
courage the audience to play music together and to interact
with other audience members. Each participant composes
a short musical tune that serves as a musical profile of that
particular participant. Once a profile is submitted, they can
browse other people’s profiles and play a pattern they like
forming pairs. These musical profiles serve a metaphor for

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2016, April 4–6, 2016, Atlanta, USA.

c© 2016 Copyright held by the owner/author(s).

online dating websites.
To realize the network capability of the musical applica-

tion, we made use of a cloud service to exchange data. It
allowed us to create a networked ensemble without the hassle
of configuring and developing a server program. A computer
mediator and performer can actively progress the music by
orchestrating the crowd through live coding on the console
of the web browser.

In this paper, we describe the inspiration for musical aes-
thetic of the piece, justify the design choices that we make,
and introduce the technical details of the instrument. Lastly,
we share our experience of the rehearsal process and describe
the performance of the piece.

2. BACKGROUND
Mobile smart phones are an attractive platform to enable

audience participation in musical performance, as today it
is sensible to assume that many audience members do have
their own mobile device at hand. Realizing contemporary
audience participation can has taken two routes: Developing
native applications or using web technologies.

In recent years, developing (or repurposing) a native ap-
plication for smartphones has been a common approach [17,
21, 25]. This is attractive because musicians and developers
can design an instrument choosing from a full range of in-
teractivity and can utilize the full computational power of
a mobile phone. However, such an application often limits
participation to a set of people who use a certain operating
system (e.g. iOS). In addition, there are the challenges of
downloading a native app and setting up the network con-
figuration inside the app.

On the other hand, the web browser is a popular choice
for audience participation because it alleviates the aforemen-
tioned problems; no additional installation is required, the
web browser runs on multiple platforms and it is easy to
distribute or update an application. It has been used in nu-
merous previous works even before the time of Web Audio.
Freeman’s Graph Theory [11] and Piano Etudes [12] consti-
tute such examples. In these cases, participants directly and
indirectly took part in the process of composing music piece
via web browsers prior to a live performance. Instead of cus-
tomized websites, a pre-existing social network system (e.g.,
Twitter) that runs on any web browsers can be re-purposed
for real-time participation [8].

massMobile, a general framework for audience participa-
tion, facilitates rapid development of various participatory

applications and enables plug-and-play setup on mobile web
platform [29]. Another framework, SWARMED, implements
a captive portal so that any audience member can, with min-
imal configuration, connect to the web-based musical inter-
face [14]. Early usage of web browsers in audience participa-
tion without web audio was limited regarding native sound
synthesis on mobile devices. In that sense, the audience acts
as a composer, influencing the piece on stage, rather than a
performer generating sound from a mobile phone [21].

In the tradition of network music, users have deployed web
browsers in the collaborative music making endeavors [6, 7].
The Web Audio API [26] accelerated emerging trends of web
browser-based music applications where sound is synthesized
and generated directly from web pages.

Recent efforts push the performance of web-based au-
dio applications towards the level of native audio applica-
tions [22, 5]. The majority of music performances presented
in the first Web Audio Conference involves audience partic-
ipation (or audience involvement) [1, 18, 24, 27, 28]. This
reflects the web audio community’s strong focus of collabora-
tive music making with the audience. This mobile approach
differs from previous approaches where the audience influ-
ences music indirectly and sound comes from a stage. Crowd
in C[loud] draws upon the ideas of existing audience partic-
ipation works and introduces a new venue for networked
web-based music app using a cloud service.

Previous works in audience participation have often re-
lied on a local network with a server developed, configured,
and managed by the developers [17, 29, 14, 21]. The use
of a cloud-computing infrastructure in the context of com-
puter music requires no physical server on the spot and the
cloud can be used in various settings — remote-networked
performances, online collaboration systems, audience partic-
ipation, and locally networked ensembles.

A series of tools to support cloud computing in the con-
text of collaborative composition. Computer Music Cloud
is a system for music composition in the cloud with a data
exchange protocol [2]. A textual representation of music no-
tation [3] and a computing architecture designed for online
music composition system [4] further add to this tool set.

Hindle’s “CloudOrch” [15] presented a system that imple-
mented a virtual soundboard on the cloud and, without a
physical soundboard or mixer, interconnected multiple au-
dio inputs and outputs. Using the cloud soundboard frees
a musician from carrying about high performance machines
for computationally heavy music performances. The author
conducted a follow-up study in the deployment of such scaled
music applications and resource allocation for many comput-
ers in cloud [16].

As opposed to using cloud servers, a commodity cloud ser-
vice provides a convenient option to build a real-time net-
work among computers. It makes the network configuration
abstract to users and can be used to distribute data via cloud
data centers located globally. An evaluation the efficiency
of a cloud service in computer music applications sending
control signals measured latency (83ms) between devices lo-
cated in North America and South America through the
Pusher1 cloud service [9]. Using the same cloud service, Su-
perCopair provides real-time shared document support for
multi-performer live coding in Supercollider [10].

1Pusher cloud service: http://www.pusher.com/

3. CROWD IN C[LOUD]
As the name of the piece suggests, the crowd (audience)

plays the musical instrument in C Major. This is directly
inspired from the piece In C, by Terry Riley [23]. In this
piece, musicians (with various instruments) were guided to
play pre-composed melodic fragments in sequence for a ran-
dom amount of time. As it is up to each musician to de-
cide how many times to play one fragment, the collective
outcome of the ensemble creates a heterophonic texture of
chance. Similarly, in Crowd in C[loud], each audience mem-
ber plays a series of short snippets composed by herself and
by other audience members. The interface provided will first
guide a participant to compose a short “tune” that has five
musical notes in C major. Once the participant finishes the
composition, he or she can browse, and play, what other
audience members have composed. It is thus quite similar
to Terry Riley’s In C, in that one determines for oneself
how long to play a tune. The difference is that there is
no pre-composed fragments but each audience member will
contribute to the piece by submitting a short melody. In
this way, participants will have their own tunes and a chord
scale become the common ground upon which the entire
audience plays. In addition, there is a separate musician
performing the piece on stage at the same time with the
audience members in Crowd in C[loud]. The role of the mu-
sician is a meta-performer who can control the chord scale
in which the audience members are playing. For example,
the meta performer can, on the fly, change the instrument
tuned in C major scale to a different chord scale (e.g., C
Minor, Pentatonic Scale). This performer cannot generate
sound at all on his/her end but only controls the harmonic
flow of the piece as generated by the crowd. The interplay
between the musician and audience members ensures that
each audience member will play individual patterns while a
musician can progress the piece by changing chord scales.
This performer-audience pairing model comes from a pre-
vious work of echobo [21] where audience members played
a simplified key instrument on smartphones with the chord
progression determined by a performer on stage and syn-
chronized over a mobile network.

3.1 Loop-based Instrument
The web-based musical instrument we developed for the

piece contains a simple interface that can loop a five-note
melody in a specified scale (C major scale in the beginning).
There are five circular notes (or “note dots”) that are con-
nected by lines. And there is a circular play head (or ”the
play dot”) in yellow which travels over five red (or green)
note dots, triggering a tone whenever it reaches a note dot.
The play dot moves at a constant speed so that a melodic
pattern (or “Tune”) will be looped consistently. This ensures
that the instrument will generate sound without any user in-
volvement as long as the user turns up the volume and stays
on the page. This way, the musician need not worry about
being too sparse or silent due to low participation. The ex-
pressive range of the instrument depends on where a player
places note dots on a screen. First, the vertical position
of note dots determines the pitch of the notes. The inter-
face visualizes pitch difference with alternating white and
gray divisions in the background. Secondly, the horizontal
position of a note dot determines the timbre of the tone;
the note dots placed on the leftmost side of the screen will
generate pure sine tones while the note dots on the other

end will play a tone that combines various oscillators (sine,
sawtooth, square, and triangle waves with different detune
parameters).

Sound synthesis of the instrument is entirely realized using
Web Audio API oscillators. The instrument implements a
JavaScript object for each tone (or “voice”). Each time
the play dot reaches a note dot, the program creates a voice
instance that contains a set of oscillators. The voice instance
includes a JavaScript object that contains a Gain node and
implements an ADSR envelope. The interval between the
two consecutive notes is determined by the length of the line
in between and the duration of each note is proportional to
the interval. A tune can be archived with the position data
of five note dots in order and the archived data can be later
shared with other audience members to reproduce the tune
in other devices.

Note that the duration of one’s tune can be arbitrarily
long and is not exactly the same as the tune of other au-
dience member. We embrace that asynchronicity among
ensemble members and leave the temporal expressivity of a
tune up to each player. It is similar to the original version of
Terry Riley’s In C where there was no pulse. We find that
having the synchronized global pulse and quantized beats
gives the audience a different experience and achieves a dif-
ferent style of music, the exploration of which we leave to
future work.

We wanted to design the instrument to be extremely ac-
cessible so the audience to pick it up in a few seconds but
still be good enough for a participant to be musically expres-
sive. However, simplicity can induce limited flexibility and
expressive range and hence hamper long-term engagement.
Indeed, the mixed use of note dot locations for multiple pa-
rameters (timbre, pitch, and time) constrains the expressive
space of the instrument. For example, one cannot play two
consecutive notes of the same timbre and same pitch with a
long interval in our interface. While we could have made an
effort to build a musical instrument that achieves low entry
and no ceiling [30], we take a different approach to encour-
age the participation. We find it acceptable to develop a
constrained musical instrument [13] in the hope that par-
ticipants will discover a diversity of playing style via social
interaction with other audience members.

3.2 Online Dating Metaphor
As discussed earlier, the musical instrument provided to

audience members has clear limitations; it can only loop
five notes with different pitch choices and timbre variations.
In turn, once the user finishes the composition of a short
snippet, the user is able to browse other people’s composi-
tion. This grows out of the idea of an online-dating web-
site (such as Tinder) where a user creates a personal profile
and then browses other member profiles that include pic-
tures and written descriptions about themselves. Similarly,
the networked instrument creates a temporary social net-
work that will last until the end of the performance where
a short tune is used as a musical profile. Lastly, the collec-
tion of each tune composed by individuals serves as musical
phrases such as found in Riley’s In C. The difference here
is that the number of musical phrases is the same as the
number of participants and each participant can change the
short composition on the fly.

Allowing participants to browse other tunes is expected
to motivate people to play the instrument in various ways.

First, it motivates a user to compose a tune to express one-
self, to attract more people, and to find a (musical) match
among the participants. This resembles a self-presentation
strategy in online dating sites where participants post pho-
tographs and a written description that represents them-
selves well. Secondly, browsing the tunes inspire partici-
pants to discover new styles with which to play the instru-
ment. For example, suppose one created a tune with as-
cending tones in C major and then later discover a tune
that uses note dots to visually draw a certain object. Later,
one may find another tune that have five note dots in one
place close enough so that it creates a very dense rhythmic
pattern. Lastly, we bring the joy of playing together. In
MINGLE mode, discussed below, one can play his or her own
tune with another tune. When two tunes are looped on the
same screen, a user is allowed to modify his or her own tune
to musically match that of the other. It is a metaphor for
the situation where two people on an online-dating website
start a conversation, meet off-line, and explore the possi-
bility of being a match. We are planning to analyze the
interaction of the participants to investigate whether this
socially connected ensemble actually inspired each other.

While there are many different levels of interaction in
online-dating websites, we borrowed the simplest model from
a popular online dating application, Tinder. On Tinder, one
can browse profiles, press the like button, and start to chat
when it’s a match. The musical instrument can be in one
of the five different states: NAME, EDIT, WAIT, CHECK, and
MINGLE. Each state is used to design different interfaces and
determine what other states a user can reach out from and
go to. The five states are described below.

• NAME: When an audience member first visits the
link provided http://bit.ly/crowdinc, the member is
prompted to type a unique screen name that will be
used throughout the performance (Figure 1a). Once
the participant submits a valid screen name, the web
page will be redirected to the EDIT state.

• EDIT: A participant composes a tune in this state by
dragging and dropping the note dots. The play dots
will continue while editing so one can hear the current
tune (Figure 1b).

• WAIT: This is a transient state where the instrument
is waiting for a message from the cloud service after a
request for data. The incoming message contains data
for another member’s tune (Figure 1c).

• CHECK: This is a state where a participant can browse
the tunes of the other members (Figure 1d).

• MINGLE: This is the state where a participant can play
two tunes at the same time (Figure 1e). The note dots
in green are the tune composed by the user and the
note dots in red are the tune composed by another
audience member. In this mode, one can freely move
green note dots to make two tunes sound differently
and explore a new musical pattern with the combina-
tion. The red dots cannot be modified.

The interface is designed to notify social interaction by
broadcasting messages. For example, when a participant
named John “likes” Jane’s musical profile by pressing the
heart-shaped button in MINGLE mode, Jane will receive a

(a) NAME state (b) EDIT state (c) WAIT state (d) CHECK state (e) MINGLE state

Figure 1: Screenshots of Audience Interface in Five States.

message saying “John likes your tune!” Later, Jane browses
more tunes and“likes”John’s pattern. John will then receive
in the top banner saying“It’s a match! Jane liked you back!”
(Figure 1e).

On the other hand, the performer’s interface (Figure 2),
which is also a web page, is used to display the list of screen
names that are currently participating in the performance.
The performer program calculates the number of likes re-
ceived and the number of participants playing the pattern at
the moment under each individual screen name. This inter-
face works like a score-board when projected on a screen at
a concert hall. On the top right corner, it shows the screen
name of the participant whose tune is most liked and the
screen name of the participant whose tune is played most at
the moment (named “most crowded”). This projection helps
audience members realize that the nature of the participa-
tion is social and it also helps a non-participating audience
engage with the piece by looking at how their friends and
families are doing.

4. CROWD MUSICKING IN CLOUD
The performer interface and the audience interface are

available at the following sites. Performer : http://bit.ly/
performerinc, Audience : http://bit.ly/crowdinc. To try the
demo, press the “Go Live” button in the performer interface
and use multiple devices to play in the audience interface.
Currently there is only support for a single performer using
the performer interface.

4.1 Network Structure - Cloud Service
We utilized a cloud service to exchange data among audi-

ence members and to orchestrate a chord scale of the crowd.
The performer interface and the audience interface are two
static web pages hosted on a university web server. Once
both web pages are downloaded to a device, there is no dy-
namic interaction between the device and the web server.
The performer interface runs on a laptop and the audience
interface typically runs on a participant’s smartphone. The
performer interface maintains the relevant data (in local
JavaScript data structure) regarding all the participants’
data (tunes) and all the information needed to display on
the scoreboard. Although the performer interface is a web
page running on a local machine, it acts as a server in the
traditional sense. The only difference is that the server (a

performer’s laptop) and the clients (audience’s smartphones)
communicate via a cloud service with minimal network con-
figuration, which is already hard-coded inside the JavaScript
file.

After comparing many cloud services, we chose the Pub-
Nub cloud service.2 PubNub provides better bandwidthand
reliability.While we used a free plan from PubNub for the
development and rehearsal, we purchased the cheapest paid
plan to obtain a dedicated key that will allow more than 100
participants in on the session for the actual performance.

PubNub follows a pub-sub paradigm for data communi-
cation in JavaScript. Any number of JavaScript web appli-
cation using the same application key can publish (or send)
messages to certain channels or subscribe (or listen) to one
or more channels. There are three types of channels used
in the application — performer, audience, and <uuid>.
performer is a channel that only the performer program
listens to and it is used when audience programs make a re-
quest to retrieve certain data such as a tune object. <uuid>
stands for universal unique id and is given to each partici-
pant as soon as the page is load on the device. It is used to
transfer data from the performer to each individual, which
is the response to the request mentioned previously. Lastly,
all clients subscribe to the audience channel and it is used
to broadcast a message or to change the chord scale of par-
ticipants instruments.

4.2 Orchestrating the Crowd via Live Coding
Changing the chord scale in an audience application is

pre-written as a JavaScript function and the performer can
send a signal to the audience channel to call up the function
to make changes in the entire crowd. While there are many
ways to signal the function call in audience members’ devices
(buttons, knobs, sliders, keys), we chose to live code on the
JavaScript console of the web browser. A performer can
type the following line on the console to change the chord
scale of the whole crowd.

publishMessage("audience",type:"scale",baseNote:60,scale:[0,3,7,12]);

publishMessage function is written to broadcast a mes-
sage with a JavaScript object to a specified channel
(audience in this case). type indicates that the message
is to change the scale; the parsing function in the audience

2PubNub Cloud Service: http://www.pubnub.com

Figure 2: a Screen-shot of Performer Interface

application expects baseNote and scale within the object.
And then the function call in the audience JavaScript pro-
gram will change the scale to C Minor (C,E[,G,C) start-
ing from middle C, of which the MIDI note number is 60.
Whenever a performer sends this kind of scale-control mes-
sage, they are informed with a message on the top banner
that, in a few seconds, disappears automatically.

Live coding JavaScript code on the console expands the
flexibility of what a performer can do on the crowd’s ma-
chines. For example, a performer can send any kind of text
string that can be evaluated in a JavaScript application on
the audience side using a script-typed message. See the
following three examples:

publishMessage("audience",type:"script",script:"soundEnabled=false;");
publishMessage("audience",type:"script",script:"refresh();");
publishMessage("audience",type:"script",script:"alert(’hello’);";

The first example will set a variable soundEnabled to false,
which is a boolean variable in the audience program state
to determine whether to switch on/off the sound synthesis
(all device will be muted!). The second example will run
the function refresh();, which is readily available in the
audience program to refresh the page (so everyone is forced
to start over!) The third example, maliciously enough, will
show an alert box on all smartphones and the web audio
synthesis will be halted until the user clicks the okay button.

In orchestrating the crowd, a musician may want to
change only the subset of the crowd to produce diverse
sound, for example, half the audience playing in C Chord
the other half playing the F note only. We included
the probability property used with scale- and script-
typed messages to achieve a partial code run. If the per-
former includes probability : <a float number> to the
JavaScript object in messages as above, it will run the parsed
action with the probability of the given number. For exam-
ple, if probability : 0.5 was attached at the end of an
object, the code will run with a 50% chance, so that the
performer can make only (roughly) half of the crowd take
the change. The model of one live coder controlling crowd-
scale computer networks was proposed in [20] and we believe
this is the first realization of the idea. While the potential
of live coding has not yet been explored other than chang-
ing the scale, we believe there are novel musical styles and
aesthetics that we can achieve with this live coding of large-
scale machines. We plan to use this feature to live code
the web-based instrument [19] to achieve diverse styles of
music by changing more than just the chord scale (timbre,
interface, mapping), while leveraging human computation of
individual users for musical expression within this dynamic
scenario.

5. CROWD IN C[LOUD] IN ACTION
We premiered Crowd in C[loud] at the Winter Final Class

Concert 3 in Stamps Auditorium at the University of Michi-
gan North Campus. The audience consisted predominantly
of students and local citizens, who had little background in
computer music but were casual smartphone users.

The program note included a shortened link (bit.ly and
QR code) and a set of step-by-step instructions that de-
scribed how to participate so the audience could access the
web page and try the interface before the concert began. As
long as the participants had devices that could run a web-
audio-enabled web browser with any connectivity (mobile
or WiFi), they would be able to participate in the piece.
There were no additional steps needed such as joining a des-
ignated WiFi network, downloading a native app from app
stores or typing an IP address, which for casual users may
be challenging.

For the performance, the first author composed a short
piece and played the role of performer. The performance
was started by the performer giving a sign to the audience
and pressing the“Go-Live”button at the top of the interface.
For the first few minutes, the performer did not intervene to
change the global scale. Rather, he communicated with the
audience broadcasting chat messages to explain the instru-
ment (timbre, pitch mapping), to encourage participation,
and to introduce what the projection screen showed using
the message broadcasting. The performer started to change
the scale occasionally for the latter part of the performance.
The performer interface included frequently used code in a
textarea so that the performer could quickly copy and paste
in a contingency of possible errors in typing code or scale.
At a certain point, the performer changed the global scale
to one note so that all device would generate a one-pitched
sound. This was to facilitate the playing of a simple melody
by quickly running the series of code that had different base
note numbers. Later, the crowd was divided into two groups
using the probability option and one group played a se-
quence of unified notes while the other half played a back-
ground chord.

The performance was well received by the audience and
we got positive feedback an various levels. Video footage
showed participants, ranging from young kids to the el-
derly, actively engaged with the instrument and occasionally
watching the projection screen.

3The video footage of the first performance are available in
two following links.
https://youtu.be/wCXhGotDtFs?t=248 : audience seats
https://youtu.be/8RWgXoM2BCA?t=263 : stage

6. CONCLUSION
In this paper, we have introduced audience participation

music that uses a distributed instrument that runs on the
web browser using Web Audio API. The metaphor of col-
laborative music making comes from the social interaction
model of online dating. In addition, we hope that this work
convinces the web audio community that the cloud service
adds a convenient option to support networked ensemble
with minimal server-side programming. While web audio
has an infinite amount of opportunities to host existing mu-
sic applications, we find this piece meaningful in that it
draws upon many ideas from the web both aesthetically and
technologically.

7. ACKNOWLEDGMENTS
We would like to thank the students from winter class of

2015 Mobile Music Ensembles from University of Michigan
to help during the rehearsals. Thanks CAPES (Brazil) for
sponsoring one of the authors during the research.

8. REFERENCES
[1] J. Allison. Traversal. WAC - 1st Web Audio

Conference, 2015.

[2] J. Alvaro and B. Barros. Computer music cloud. In
S. Ystad, M. Aramaki, R. Kronland-Martinet, and
K. Jensen, editors, Exploring Music Contents, volume
6684 of Lecture Notes in Computer Science, pages
163–175. Springer Berlin Heidelberg, 2011.

[3] J. L. Alvaro. Stringscore: Composing music with
visual text. In Proceedings of the Sound and Music
Computer Conference, 2012.

[4] J. L. Alvaro and B. Barros. A new cloud computing
architecture for music composition. Journal of
Network and Computer Applications, 36(1):429 – 443,
2013.

[5] B. M. J. C. M. Anand Mahadevan, Jason Freeman.
Earsketch: Teaching computational music remixing in
an online web audio based learning environment.
WAC - 1st Web Audio Conference, 2015.

[6] A. Barbosa. Public sound objects: a shared
environment for networked music practice on the web.
Organised Sound, 10(03):233–242, 2005.

[7] P. Burk. Jammin’on the web-a new client/server
architecture for multi-user musical performance. In
Proceedings of the International Computer Music
Conference, 2000.

[8] L. Dahl, J. Herrera, and C. Wilkerson. Tweetdreams:
Making music with the audience and the world using
real-time twitter data. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, pages 272–275, 2011.

[9] A. D. de Carvalho Junior, G. Essl, and M. G.
de Queiroz. Computer music through the cloud:
Evaluating a cloud service for collaborative computer
music applications. In Proceedings of the International
Computer Music Conference, Denton, Texas, 2015.

[10] A. D. de Carvalho Junior, S. W. Lee, and G. Essl.
Supercopair: Collaborative live coding on
supercollider through the cloud. In International
Conference on Live Coding, 2015.

[11] J. Freeman. Graph theory: interfacing audiences into
the compositional process. In Proceedings of the 7th

international conference on New interfaces for musical
expression, pages 260–263. ACM, 2007.

[12] J. Freeman. Web-based collaboration, live musical
performance and open-form scores. International
Journal of Performance Arts and Digital Media,
6(2):149–170, 2010.

[13] M. Gurevich, P. Stapleton, and A. Marquez-Borbon.
Style and constraint in electronic musical instruments.
In Proceedings of the International Conference on New
Interfaces for Musical Expression, 2010.

[14] A. Hindle. Swarmed: Captive portals, mobile devices,
and audience participation in multi-user music
performance. In Proceedings of the 13th International
Conference on New Interfaces for Musical Expression,
pages 174–179, 2013.

[15] A. Hindle. Cloudorch: A portable soundcard in the
cloud. In Proceedings of the International Conference
on New Interfaces for Musical Expression, 2014.

[16] A. Hindle. Orchestrating your cloud-orchestra. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, 2015.

[17] H. Kim. Moori: interactive audience participatory
audio-visual performance. In Proceedings of the 8th
ACM conference on Creativity and cognition, pages
437–438. ACM, 2011.

[18] T. Kita. Smartphone jam session with audience. WAC
- 1st Web Audio Conference, 2015.

[19] S. W. Lee and G. Essl. Live coding the mobile music
instrument, 2013.

[20] S. W. Lee and G. Essl. Models and opportunities for
networked live coding. Live Coding and Collaboration
Symposium, 2014.

[21] S. W. Lee and J. Freeman. echobo: A mobile music
instrument designed for audience to play. 2013.

[22] J. Monschke. Building a collaborative digital audio
workstation based on the web audio api. WAC - 1st
Web Audio Conference, 2015.

[23] T. Riley. In c. Composition, 1964.

[24] S. Robaszkiewicz and N. Schnell. Soundworks–a
playground for artists and developers to create
collaborative mobile web performances. WAC - 1st
Web Audio Conference, 2015.

[25] C. Roberts and T. Hollerer. Composition for
conductor and audience: new uses for mobile devices
in the concert hall. In Proceedings of the 24th annual
ACM symposium adjunct on User interface software
and technology, pages 65–66. ACM, 2011.

[26] C. Rogers. Web audio api. 2012.

[27] T. S. Sébastien Piquemal. Field #2. In WAC - 1st
Web Audio Conference, 2015.

[28] B. Taylor. Pearl river (2013 2015). WAC - 1st Web
Audio Conference, 2015.

[29] N. Weitzner, J. Freeman, Y.-L. Chen, and S. Garrett.
massmobile: towards a flexible framework for
large-scale participatory collaborations in live
performances. Organised Sound, 18(01):30–42, 2013.

[30] D. Wessel and M. Wright. Problems and prospects for
intimate musical control of computers. Computer
Music Journal, 26(3):11–22, 2002.

