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ABSTRACT
Motivated by the addition of gyroscopes to a large number
of new smart phones, we study the effects of combining ac-
celerometer and gyroscope data on the recognition rate of
motion gesture recognizers with dimensionality constraints.
Using a large data set of motion gestures we analyze results
for the following algorithms: Protractor3D, Dynamic Time
Warping (DTW) and Regularized Logistic Regression (LR).
We chose to study these algorithms because they are rela-
tively easy to implement, thus well suited for rapid prototyp-
ing or early deployment during prototyping stages. For use in
our analysis, we contribute a method to extend Protractor3D
to work with the 6D data obtained by combining accelerom-
eter and gyroscope data. Our results show that combining
accelerometer and gyroscope data is beneficial also for algo-
rithms with dimensionality constraints and improves the ges-
ture recognition rate on our data set by up to 4%.
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INTRODUCTION
A growing number of smart phones are being equipped with
3-axis gyroscopes in addition to 3-axis acceleration sensors.
Combining the data from these two sensor types provides sig-
nificantly more motion information compared to only using
an accelerometer. On devices without a gyroscope, rotation
can be approximated using accelerometers alone by using the
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direction of gravity as a reference for tilt. However, this ap-
proximation is not reliable in certain cases, i.e. when the de-
vice is rotated in the plane perpendicular to gravity, no tilt
and thus rotation information can be obtained. The increase
in motion information provided by gyroscopes can increase
the recognition accuracy of motion gestures, which has been
shown by previous work [4]. The higher recognition accu-
racy allows more complex gesture types to be used in mobile
user interfaces, since the users can also add rotational com-
ponents to their gesture inputs. Motion gestures can be used
for a variety of applications on smart phones. These include
gaming interfaces, where, for instance, the user interacts via
a spell casting metaphor [1], entering special UI modes [11],
UI navigation tasks [12] or user authentication [3].

It is desirable to have gesture recognizers for motion gestures
on mobile devices that can be used early in the development
of an application. This requires such algorithms be easy to
implement and tune. Furthermore, for development on mo-
bile devices in particular, it is beneficial for gesture recogni-
tion algorithms to be independent of specialized libraries or
toolkits, in order to be able to deploy those algorithms on as
many devices as possible.

Template-based techniques such as nearest-neighbor search
are generally easy to implement and address most of the con-
cerns mentioned previously. However, naı̈ve template-based
techniques will generally not compensate for variations in
gesture execution time. A popular algorithm that does com-
pensate for differences in time series is Dynamic Time Warp-
ing (DTW) [13]. Protractor3D [5] is a template-based tech-
nique developed for 3D acceleration data that compensates
for rotational derivations between input sequences and tem-
plates by finding the optimal registration between input points
and templates, in a way similar to Protractor [7], which only
works with 2D data. A problem with Protractor3D is that this
algorithm does not work with data dimensionalities greater
than than 3.

In this paper we present a consensus-based approach using
two instances of a template-based gesture recognizer (such as
Protractor3D or DTW) to perform motion gesture recognition
on the 6-D data obtained from an accelerometer-gyroscope
pair. By analyzing a large corpus of motion gesture entries
by users, we show that the combination of accelerometer and
gyroscope data increases the gesture recognition rate by up



to 4% on our data set. Our results indicate that combining
acceleration data with rotation data from a 3-axis gyroscope
will improve the gesture recognition rates for motion gestures
entered on a mobile device. Reflecting on the results we ob-
tained, we provide recommendations for the choice of a mo-
tion gesture recognizers for mobile applications.

RELATED WORK
DoubleFlip [11] addresses the problem of false positive ges-
tures by employing a simple delimiter gesture (the “double
flip” gesture) for entering gesture input mode. The criteria
for choosing the “double flip” gesture were (1) the gesture
being easy to perform and (2) the gesture being sufficiently
distinct from everyday movement. To confirm the latter the
authors investigated the false positive rate for a large corpus
of everyday movement data.

Protractor [7] is a gesture recognition algorithm for touch
screens. It is a template-based recognizer that resamples the
gesture trace to get a vector with a fixed dimension, which is
then translated to the origin and normalized. For each com-
parison with a template a rotation is performed that optimally
aligns the input and template gestures. This is done in an
efficient way using a closed-form analytic approach. Pro-
tractor3D [5] extends this idea to three dimensions. The ap-
proach is similar in principle to Protractor. However, find-
ing a closed-form analytic solution in 3D is much more com-
plicated. Compared to DTW, neither Protractor, nor Protra-
cor3D do any kind of warping in the time domain.

Hoffman et al. [4] combined accelerometer and gyroscope
data for gestural input. The addition of a gyrosope signifi-
cantly increased their gesture recognition results. They used
linear and AdaBoost [14] classifiers. Both of these methods
can cope with high-dimensional feature vectors. In this paper
we propose a method to leverage the additional motion data
provided by a gyroscope with data-driven classifiers limited
to three feature dimensions, such as Protractor3D.

EXTENDING PROTRACTOR3D WITH GYROSCOPE DATA
By design, Protractor3D cannot use data of a higher dimen-
sionality than 3. This is inherent in the mathematics it uses
to calculate the optimal registration between input points and
templates. A simple extension to add support for gyroscope
data in addition to accelerometer data is to run a second in-
stance of Protractor3D in parallel on the gyroscope data. The
remaining challenge is then to reconcile the two recognition
results in order to determine which gesture has been recog-
nized.

We propose a weighted approach that depends on the order of
similarity of comparisons between input gestures and stored
templates, i.e., templates that are less similar to the current in-
put have a lower influence on the final recognition result. Our
results indicate that the match with the lowest distance (or
highest similarity) is most probably the gesture recognized.
In other words, comparisons with a lower similarity are less
likely to contribute to the decision on the recognition result.

Figure 1 shows pseudocode for the data combination algo-
rithm (DCA) we devised. The algorithm returns the ID of

Inputs:

accResults: acceleration comparison results (list of gesture IDs sorted in
descending order by similarity to the input)
gyrResults: acceleration comparison results (list of gesture IDs sorted in
descending order by similarity to the input)
N: number of items in each of the comparison lists
bias: bias value determining influence of weaker comparisons
nGestureIDs: number of gesture classes (each class has a distinct ID)

counter = float[nGestureIDs]
for i=0 to N-1 do

accRecogID = accRresults[i]
gyrRecogID = gyrResults[i]
counter[accRecogID] += 1.0/(bias⇤i +1.0)
counter[gyrRecogID] += 1.0/(bias⇤i +1.0)

end for

bestGestureID = argmax(counter)
return bestGestureID

Figure 1. Data Combination Algorithm (DCA): pseudocode for a

weighted approach to combine recognition results for accelerometer and

gyroscope readings.

Figure 2. The influence of the bias variable in the weighted reconciliation

algorithm. In this case N = 5. Choosing a bias > 0.8 does not further

improve the gesture recognition rate, while giving each result an equal

“vote” (bias = 0) generally results in a lower gesture recognition rate.

the best matching gesture. The bias variable determines the
influence of comparison results according to their rank. Re-
sults with a low rank (i.e., lower distance to the input ges-
ture) have a higher influence on the final matching result. The
argmax() function we used returns the index corresponding
to the first occurrence if there are multiple occurrences of the
same maximum value.

The DCA can be generalized easily to combine the results for
more than two sensor data types. The only parameter of the
algorithm that needs to be chosen specifically by the devel-
oper is bias. The optimal value for bias needs to be deter-
mined by analyzing existing user inputs. Figure 2 shows the
influence of bias on Precision and Recall1 results for our data
set, where 0.8  bias < 1.0 provides the best result.

1for the definition of Precision and Recall, see Page 3, “Classifier
Performance Metrics”
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5.3.5 User Study

We conducted two user studies to evaluate three key aspects relevant to
gesture-based user authentication on mobile devices: feasibility, usability and
resistance against attacks.

(a) Left-Right (b) Circle (c) Left-Right-Arc

(d) Infinity (e) Triangle (f) Hand Rotation

Figure 5.7: Visualization of the gestures we designed for use in the first user
study.

Feasibility addresses the question whether gesture-based authentication is in
general possible using motion sensors embedded in mobile devices. For our
system to be usable, it needs to be perceived by users as a useful alternative
or even a replacement for currently available authentication mechanisms.

In the first study 15 participants simulated the perspective of genuine users,
so that we could study the feasibility and usability aspects of our system. We
predefined six gestures for use with our system (Figure 5.7). This way, we
avoided burdening the participants with inventing their own gestures, giving
them more time to understand the authentication mechanism itself. Also, this
allowed us to evaluate semi-naı̈ve forgeries. The gesture labels helped the test
subject attach meaning to the gestures, such that they could memorize them
more easily.

Each participant provided 5 enrollment and 15 validation samples. The en-
rollment samples and 10 validation were recorded while the user was stand-
ing. Video recordings of the first user study were used in the second user
study to evaluate the risks due to visual disclos-ing the genuine gesture. We
selected two interpretations of each designed gesture and showed the video
recordings of the enrollment samples to the so-called forgers. In this study

Figure 3. Visualization of the gesture classes we designed for input by

the users.

COMBINING ACCELEROMETER AND GYROSCOPE DATA
To analyze the effects of combining 3-axis acceleration data
with 3-axis rotation data for recognition by motion gesture
recognizers, we present gesture recognition results for the fol-
lowing recognition algorithms: Protractor3D, DTW and Reg-
ularized Logistic Regression (LR) [6]. We chose DTW due
to its popularity. We chose LR because it is, in contrast to
DTW and Protractor3D, a feature-based machine learning al-
gorithm that performs well with higher-dimensional data and
it is still fairly easy to implement. LR is very efficient, since
classification basically consists of multiplying a weight vec-
tor ✓ of a fixed length N (where N corresponds to the amount
of features) with the features of the gesture input. Thus, com-
pared with Protractor3D and DTW, the execution time of LR
is independent of the number of training samples used.

Gesture Data Set
The gesture data for our analysis was gathered from 6 female
and 9 male participants. All participants were right-handed,
students and aged from 20 to 32 (µ = 24.3, � = 2.9). We
compensated all participants with a small sum of money.

We designed six different gestures for the users to enter, as
shown in Figure 3. Each participant provided a total of 15
samples for each gesture. Gestures were delimited using
a push-to-gesture button. Recording of sensor data started
when the button was pressed and ceased when the button was
released. For all further analysis, we use the first 5 entries
of each gesture by each user as (per-user) training templates
and the corresponding last 10 entries for validation (also per-
user). Our motivation for using the first 5 entries as training
templates is because this reflects a realistic usage scenario for
an mobile applications using personalized motion gestures. It
is plausible to assume that new users would be required to
train the system upon first use of the application.

In total, we recorded 15⇥ 15⇥ 6 = 1350 gesture entries. 20
gesture entries had to be discarded, because they had too few
samples due to erroneous entry. Our final data set size com-
prises 1330 gestures. Each gesture entry contains an average
of 127 time-based data samples (� = 38.4).

An iPhone 4 running a custom-built application, which pro-
vided logging and the push-to-gesture button interface, was
used for recording gesture entries. We recorded the following
data from the iPhone 4’s accelerometer2 and gyroscope3 at a
frequency of 80Hz: acceleration, rotation rate and attitude4.
All acceleration values were measured in g, all rotation was
measured in radians/second and attitude was given in Euler
angles.

Recognition Results
We evaluated Protractor3D, DTW and LR for motion gesture
recognition on the data set. As input to the algorithms, we
used the following data and combinations thereof: acc (ac-
celeration), rot (rotation), att (attitude), acc-rot (acceleration
+ rotation), acc-att (acceleration+attitude).

We configured Protractor3D to subsample and normalize the
gesture entries to contain 64 samples. In order to keep the
length of the feature representation for each gesture constant,
we used the subsampled data generated by Protractor3D as
input for LR. Each gesture was thus represented as a feature
vector with a length of 64⇥ 3 = 192 for acc, rot and att and
64 ⇥ 6 = 384 for acc-rot and acc-att. For LR, we generated
models for each gesture type for each user, and utilized per-
user multi-class classification with a one-vs.-all strategy to
classify the input gestures.

DTW used the unmodified sensor samples as input, as this
algorithm is specifically designed to cope with length differ-
ences between inputs and templates. Our DTW implementa-
tion used the Euclidean (L2) Norm as the distance function.
We did not apply any step constraints for calculating the dis-
tance matrix.

Classifier Performance Metrics

As quantitative metrics for classifier performance, we use
Precision (P ), Recall (R) and F1 score (F1) [8, 9]. Given
the amount of true positives tp, the amount of false positives
fp and the amount of false negatives fn, Precision is defined
as P = tp/(tp + fp), i.e. the ratio of correct gesture recog-
nitions out of all generated predictions. Recall is defined as
R = tp/(tp+fn), i.e. the ratio of correct gesture recognition
out of all gestures in the data set. F1 is defined as:

F1 = 2
PR

P +R

which represents a combined metric for the accuracy of a
classifier and is based on the harmonic mean. The F1 Score
ranges from 0 to 1, where 1 is the best score obtainable.

Figure 4 shows the results for Precision (P ), Recall (R) and
F1-Score (F1) for the classifiers Protractor3D, DTW, and LR
for each of the combinations of data types acc (acceleration),
rot (rotation), att (attitude), acc-rot (acceleration + rotation),
acc-att (acceleration+attitude). The combined data was eval-
uated using the DCA. In addition, we evaluated DTW and
2STMicroelectronics STM331DLH 3-axis MEMS accelerometer
3STMicroelectronics L3G4200D (equiv.) 3-axis MEMS gyroscope
4attitude represents the absolute change of rotation with respect to
an initial reference frame, i.e. the device attitude at the beginning of
a gesture recording.



Figure 4. Mean recognition results for Protractor3D, Regularized Logistic Regression and DTW, for the data types accleration (acc), attitude (att),

rotation (rot), acceleration+attitude acc+att), acceleration+rotation (acc+rot). “Alg.” marks results the using the DCA. “6D” marks results using a 6D

merged representation of accelerometer combined with gyroscope data. The error bars show the standard deviation. DTW with acc+rot using the

combination algorithm achieved the best result with an F1 Score of 0.95. The error bars show the standard deviation of the means.

LR without the DCA by using 6D feature vectors obtained by
merging each 3D acceleration sample with its rotation coun-
terpart. DTW with acc-rot and the DCA achieved the best
result with an F1 Score of 0.95, followed by Protractor3D
using the same settings with an F1 Score of 0.92. The best
F1 Score for LR was 0.86 using combined accelerometer and
gyroscope data without the DCA. The lower score for LR sug-
gests that a larger amount of training samples may be needed
in order to obtain better results for this algorithm.

Statistical Analysis

We studied the effects of the algorithm (P3D, DTW and LR)
and the data type (acc, att, rot, acc+att and acc+rot) on
the mean F1 score per gesture type. Not observing a nor-
mal distribution of the means, we ran Kruskal-Wallis tests
for algorithm and data type, respectively. The results for al-
gorithm (H(2) = 9.46, p < 0.01) and data type (H(4) =
52.57, p < 0.001) show significant effects. Non-parametric
Dunn-Bonferroni [2] pairwise comparisons show a significant
difference between DTW and LR (Q = 20.45, p = 0.007) for
algorithm. Pairwise comparisons using the same method for
data type unfortunately did not reveal significant effects be-
tween acc and acc+rot (Q = �14.17, p = 0.1), although we
measured a 2%–4% increase in mean F1 score depending on
the algorithm used. The relatively low sample size N = 18
(mean values from 6 gestures ⇥ 3 algorithms) for each data
type and the relatively small increase in F1 score may not be
sufficient to achieve p < 0.05 statistical significance in our
case.

Algorithm Execution Times

For motion gesture recognizers, gesture recognition perfor-
mance is not the only important criterion. The execution time
is, arguably, equally important, especially on mobile plat-
forms. The runtime of template-based approaches Protrac-
tor3D and DTW directly depends on the number of training

templates, whereas this does not affect LR. To exemplify this
for our data set, Protractor3D and DTW have to compare each
of the 450 template gestures with 900 gesture entries, result-
ing in a total of 405,000 necessary comparisons for a single
pass over the data set. For each comparison, DTW needs to
construct a distance matrix with a size of n ⇥m, where n is
the number of elements in the template and m of the sample,
including evaluation of the distance function. A number of
optimizations exist to improve the speed of DTW [10]. The
results in this paper, however, reflect the performance of un-
optimized DTW. Protractor3D does not have as much over-
head as DTW, but still needs to complete the same number of
comparison operations. By contrast, LR requires just 900 ma-
trix multiplications to perform all predictions. Nevertheless,
in comparison to DTW and Protractor3D, feature-based clas-
sifiers such as LR need a large number of training samples
to work optimally, so developers face a trade-off between the
time requested from users to enter training samples and the
computational efficiency of the gesture recognizer.

Algorithm Approx. Num-

ber of required

comparisons

Profiled Cumu-

lative Execution

Time (s)

Average Pro-

cessing Time per

Gesture (s)

LR 900 0.4 0.004
Protractor3D 405,000 881 0.98
DTW 405,000 3966 4.4

Table 1. The approximate number of operations and the execution time

(including data loading and pre-processing) required by the analyzed

algorithms for a run on our data set. The average processing time per

gesture was calculated by dividing the total execution time by the num-

ber of test samples in the training set. (Unoptimized) DTW is by far

the slowest algorithm. LR has the lowest measured execution time as it

performs only a single operation for each gesture in the validation set.

Table 1 shows the measured execution times for each algo-
rithm when running on our data set. We implemented all ges-
ture recognition algorithms in Python 2.7.1 using the NumPy,
SciPy and rpy2 libraries. All computation was performed on



a Mac Pro with 2.66GHz Intel Core i7 processors. In order
to measure the classifiers’ execution time, we used Python’s
cProfile library. All classifiers were run exclusively as single-
threaded applications and did not make use of parallel pro-
cessing.

The comparison in Table 1 shows that the average per-gesture
execution time of LR is two orders of magnitude lower than
Protractor3D and three orders of magnitude lower than DTW.
The runtime advantage of LR is thus very clear but the prob-
lem remains that this algorithm requires an optimization li-
brary in order to train models. Thus, the most beneficial
use of LR would be in deployment-stage applications, with
appropriate models for gesture recognition already trained,
since the classification step does not require an optimization
library. Protractor3D compares favorably with DTW, requir-
ing about 4s less computation time. The measured processing
time per gesture could be further improved by decreasing the
subsampling size and switching from Python to a lower-level
language such as C.

Summary and Discussion
Using a substantial data set, we analyzed the effect of adding
the data of a gyroscope to accelerometer-based motion ges-
ture recognition. In particular, we were interested in showing
how adding additional gyroscope data affects dimensionally-
constrained recognition algorithms, i.e. those that cannot pro-
cess data of a dimensionality higher than 3. We devised a
method to combine two or more dimensionally-constrained
classifiers to perform motion gesture recognition for data di-
mensions greater than 3.

Confirming results obtained in previous work [4], our results
indicate that combining accelerometer with gyroscope data
leads to improvement in gesture recognition rates. Our key
insight here is that also appears to work for simpler, template-
based methods as well as dimensionally-constrained recogni-
tion algorithms, such as Protractor3D, using the data com-
bination algorithm (DCA) we propose. Concretely, we ob-
served 2%, 3%, and 4 % increases in F1 score for Protrac-
tor3D, DTW and LR, respectively. Conversely, we observed
that the proposed DCA does not improve the recognition rates
of algorithms that can cope with higher-dimensional data,
such as LR or DTW.

We recommend that developers choose their gesture recogni-
tion algorithm by (1) the number of training samples avail-
able (template-based approaches perform well, even with few
training samples), (2) the performance constraints of their tar-
get devices (we obtained the highest F1 score when using
DTW, but it was also the algorithm with the highest execu-
tion time by far) and (3) the time available for coding during
each iteration (template-based methods are easier to imple-
ment and deploy on different types of devices, since they do
not require specialized libraries).
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