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Abstract

We propose iterating the fundamental solution of the 2-D wave equation to
achieve a simulation of sections of a circular drum-head. The main advantage
of this approach is the structural preservation of all features of the funda-
mental solution. The method uses the time-domain, hence displaying both
stationary as well as evolutionary behavior immediately and is intended to be
the conceptual 2-D analogue case of 1-D McIntyre-Schumacher-Woodhouse or
waveguide-type time-domain simulations. These also preserve the structure
of the fundamental solution, which in the 1-D case corresponds to traveling
impulses and steps.

Simulations show the form and scale of the well-known wake following
disturbances of an initial excitation, but also further, rarely discussed fea-
tures like a decaying residue in the neighborhood of a displacement excitation
singularity which do not occur near velocity excitations.

The method solely relies on evaluation of functions and features of the solu-
tion can be resolved up to numerical precision. The method is generalizable to
any domain-shape with known reflection behavior but is not computationally
efficient. The performance degrades linearly with the order of reflections and
hence this method in its current form is not useful for long-time simulation of
excitations or real-time sound synthesis.

INTRODUCTION

The wave equation in two dimensions has a more intricate solution than the coun-
terparts in one and three dimensions. The reason for this is the general and rather
peculiar insight in geometry, functional analysis and differential equations, that ge-
ometry in odd dimensions behaves qualitatively different than in even dimensions
[Courant & Hilbert, 1968, Stein & Shakarchi, 2003].

In the case of the wave equation in the plane, the result of this difference mani-
fests itself in various ways. One is that Huygens principle holds in three dimensions
but not in two [Stein & Shakarchi, 2003]. A related result in analysis is that solu-
tions of the wave equation in one and three dimensions can form so-called lacunae,
which are sharp fronts and no front behind them, but that this is not the case in
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two dimensions [Atiyah et al., 1970, Atiyah et al., 1973]. In general there are two
sets of solutions, those that hold for all odd dimensional wave equations and those
that hold for even dimensional ones [Courant & Hilbert, 1968].

The structure of the solution of the one-dimensional wave equation is ultimately
the reason for the success of time-domain methods like the McIntyre-Schumacher-
Woodhouse method [McIntyre et al., 1983] or the digital waveguide synthesis ap-
proach [Smith, 1997]. The solution has a particularly simple form that makes ex-
tremely efficient and stable simulations of arbitrary excitation functions feasible. In
detail, there are two parts to the simplicity of the structure of the solution of the
one-dimensional wave equation. One is geometric and one is functional.

The geometric part refers to the way reflections factor into the complexity of
the geometry of the evolution equations. In one dimensions the reflection does
not carry any additional complications with it. Reflected disturbances stay on the
same confined domain and a single closed loop can represent all of the data. In
two dimensions the geometry of wave fronts generally will form self-intersections
as well as singularities, which are semi-cubical cusps. However it has been show
[Arnold, 1990] that this is the only type of singularity that can occur for wave
fronts in the plane. Another important aspect is that only a subset of the evolution
trajectories of disturbances (often called characteristics) form finite periodic orbits
[Essl et al., 2004]. The geometric aspect of wave evolution of wave fronts on plane
domains has been explored in detail in a series of previous studies [Essl, 2006]. It is
noteworthy that in three dimensions the purely geometric part of the wave equation
under reflection is more complicated than in two because of the possibility of more
complex singularities forming.

The functional part pertains to the actual form of the solution in response to
various functional forms of a disturbance. As said in three dimensions Huygens
principle holds, which means that impulsive disturbances (or disturbances of any
particular shape) will travel at constant speed without change of the functional
shape [Stein & Shakarchi, 2003]. In one dimensional this is almost true. Velocity
excitations will lead to a step function, which however, by differentiation leads to
impulses again and hence can be simulated as propagating impulses in the wave
variable in the digital waveguide synthesis [Smith, 1997]. The functional solution of
the two dimensional wave equation is qualitatively different. An impulsive excitation
will not stay impulsive, even under differentiation or integration. This functional
part is called wake and is of course well known [Graff, 1991]. The goal here is to
to find ways to simulate this well-known structure directly, or try to preserve this
structure through numerical simulation specifically under reflections.

STRUCTURE OF THE WAVE EQUATION

The wave equation in two dimensions without external forces and dissipation
reads:
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The fundamental solution of the wave equation in the plane without boundaries
is [Graff, 1991, Egorov et al., 1999]:
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where equation (2) is the response to an impulsive displacement and equation
(3) is the response to an impulsive velocity. H(·) is a step function also called the
Heaviside distribution.

These equations have two parts to them. One is the support of the solution.
This part is encoded in the Heaviside function of equations (2–3).The other is the
functional shape created by an impulse through propagation inside this support.

The first part encodes what we will call the wavefront. The geometric evolu-
tion of the wave front was discussed at length previously [Essl, 2006, Essl, 2005b,
Essl, 2005a]. The second part will be called the wake. Which is the central part of
this work.

Wave fronts are the point of first arrival of a disturbance in response to an impulse
(or a convolution of impulses). The argument of the Heaviside functions in (2) and
(3) forms a circle for constant time. The radius of the circle expands linearly with
time. Hence the wavefront inhabit a cone with the tip at the point of the impulsive
excitation. Any section of this cone will give a wavefront at a certain time, which is
a line embedded in the plane. Point of the wavefront propagate along straight lines
called rays. Hence one can think of rays as the direction of propagation of waves
and wave fronts as the points of arrival on them.

The geometric methods as well as the current discussion of waves maintains the
picture that wavefronts and waves are supported on rays. This allows one to discuss
local behavior as a sum of one-dimensional domains rather than as two-dimensional
objects simplifying observations. Additionally rays can be rendered up to numerical
precision without need of discretization of the domain itself. Hence the position
will be accurate, up to numerical accuracy on such rays and there is no numerical
dispersion by construction. Furthermore geometric features that come from crossing
of rays (such as cusp singularities) are preserved even if finite numbers of rays are
used. This is different to meshed method where cusps and other fine features are
subject to mesh dispersion and there is no guarantee for their preservation under
discretization.

For space reasons I cannot present the details of the algorithm here. These
details can be found in [Essl, 2006, Essl, 2005b]. Using this method also complicated
shapes can be simulated. If the domain is sufficiently simple the reflection code can
be replaced by an iterative function of reflection angle and reflection point. For
details see [Essl, 2006].

METHOD OF ITERATED WAKE SUMMATION

The method uses repeated summation of the fundamental solution with increas-
ing numbers of reflections to calculate the solution of an excitation. This in the core
is the image-source method on the line. But because a point source not staying a
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point source, one has to sum the respective contributions of the function at each
point. With each order of reflection two more image-sources (one per boundary) can
bring its domain of influence into the actual range of the domain, hence the length
of the summation increases by two per reflection order, one by specific reflection.

Figure 1: Reflected rays on a circular domain are repeated line segments under
rotation.

The functional aspect of the method is the same for all cases. The functional
contribution to a point on a ray are all the wake points from image sources and the
original source on a point of the domain. On a circular domain one ray follows a
regular trajectory and the line segment the reflected ray forms with the domain stays
the same as depicted in Figure 1. For this reason also the relative position of the
image source stays the same and we can unfold all reflected rays into an extended
straight line where we keep track of the reflections.

r −r

0p
3r −3r

p + 2r

2r

2r − p

Figure 2: Derivation of the image source contribution to the interior of the domain.
Vertical lines mark repeated real and virtual boundaries of the domain. Markers
represent the center of the ray as well as the excitation point and its repeated image
outside the domain.

From this one sees there there are two types of contribution for a ray through
an excitation point — one for each direction of propagation. The simplest case of
summation are rays passing through the center of the domain. In this case the
solution has a circular symmetry and repeated summation on one ray describes the
full solution of the problem.

It is easy to derive from the unfolded ray the following formula for rays passing
through the center of the circle (see Figure 2):
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y+(x, t) =
l+∑

n=0

(−1)nyf (|x− p|+ n · 2r, t) (4)

y−(x, t) =
l−∑

m=0

(−1)myf (m · 2r − |x− (2r − p)|, t) (5)

y(x, t) = y+(x, t) + y−(x, t), (6)

where p is the position of the excitation point from the center of the ray, x is
coordinate position of the ray relative to the center of the ray, t is time since the
excitation started. r is the length from the center of a ray to the boundary of the
circle. y+(·) is the solution of the wave propagating in the positive direction along
a ray, having reflected l+ times and y−(·) is the solution of the wave propagating
in the negative direction along a ray, having reflected l−. It is easy to see that
|l+ − l−| ≤ 1.

In the case of an excitation at the center of a circular domain (i.e. p = 0) this
further simplifies to:

y+(x, t) =
l+∑

n=0

(−1)nyf (x + n · 2r, t) (7)

y−(x, t) =
l−∑

m=0

(−1)myf ((m + 1) · 2r − x, t) (8)

y(x, t) = y+(x, t) + y−(x, t) (9)

In the case of general points on the domain for off-center excitations, the sum-
mation becomes more complex. Rather than summing reflected contributions from
on the same ray, one sums the wake contribution of all rays whose wavefront has
over crossed a point inside the domain for all points of interest.

PROPERTIES OF THE SOLUTION FOR CENTER EXCITATIONS

Figures 3 and 4 show the radial section of a circular domain with increasing
order of reflections. The figures show snap-shots when the initial center excita-
tion repeatedly crosses the half radius point r/2 with increasing time and order of
reflections.

As one can already see from the fundamental solution of velocity excitations (2)
alone, the wavefront itself is singular. However in the case of velocity excitations
the solution is smooth everywhere else. After the first reflection (Figure 3 top right)
one sees that the interior part between the reflected wave fronts retains a negative
deflection solely from the contribution of the wake of the unreflected part of the
solution. This part, while decreasing in time, remains present in the summation for
all orders of reflection. A similar effect can be seen in the bottom right of the same
figure after a second reflection occurred. The positive deflection in between the wave
fronts now consists of contributions of both the original and the first reflected wake.
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Figure 3: Velocity Excitation: Excitation when crossing half-radius (x/4) of the
domain in increasing order.

The displacement excitation had an additional singularity at the excitation point
as can already be seen in the fundamental solution (3). This singularity persists over
time due to the contribution of the original wake. Source images can be thought
of having such a singularity, but because those lie strictly outside the geometric
domain of the solution of interest, they do never contribute to the actual solution.
Otherwise the solution behaves qualitatively in a similar way as the velocity excita-
tion. Quantitatively, velocity excitations have larger amplitude contributions over
time than displacement excitations, away from singularities. This difference is at
least three orders of magnitude as can be seen comparing the scales of Figures 3 and
4.

REMARKS ON PERFORMANCE

This method is not computationally efficient. The main reason is immediate
from equations (4-5). The order of reflections l+, l− increase linearly with time with
each spatial point calculated, whereas classical numerical methods are constant with
respect to time and only depend on the discretization itself. A further contributing
factor is geometric. In the case of center excitation symmetry reduces the problem to
just one ray. In the general case, a dense set of rays have to be calculated. While the
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Figure 4: Displacement Excitation: Excitation when crossing half-radius (x/4) of
the domain in increasing order.Figure caption

number of rays can be held constant, hence there is no chance in asymptotic behavior
of the algorithm, the increased computational cost per time step is significantly.

CONCLUSIONS

By iterating the fundamental solution of the two-dimensional wave equation, one
can calculate the complete wake contribution of the solution on a bounded domain
by iterated summation with increasing order of reflections. This yields a direct
rendering of the time domain behavior of the solution without the need of functional
transformations or decompositions and even singularities in the solution are directly
represented without dissipation introduced by discrete numerical schemes.

Future work are attempts to find reductions in complexity of direct use of the
fundamental solution for simulation with respect to both increased reflection and ge-
ometric properties. Furthermore the question how to relate the time-domain picture
of the fundamental solution under reflection to the well-known functional decomposi-
tion solution involving Hankel transforms and yielding the well-known Fourier-Bessel
form of the solution is a difficult open problem.
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