
CONCEPTS AND PRACTICAL CONSIDERATIONS OF
PLATFORM-INDEPENDENT DESIGN OF MOBILE MUSIC

ENVIRONMENTS

Jong Wook Kim

University of Michigan
EECS, Ann Arbor, USA

jongwook@eecs.umich.edu

Georg Essl

University of Michigan
EECS and Music, Ann Arbor, USA
gessl@eecs.umich.edu

ABSTRACT

UrMus is a mobile music environment that provides a
live and interactive design and programming platform for
multi-touch mobile devices. Platform independence and
cross-device development and code migration are integral
to allow flexible design of musical interactions and net-
worked performances. This paper discusses software ar-
chitecture considerations that enhance device-independence
in the design of urMus as well as practical aspects of port-
ing it to Android with implications for porting other simi-
lar environments.

1. INTRODUCTION

Mobile music performers and programmers usually do not
want to be concerned with the specifics of the hardware,
but rather develop and perform on the hardware that is
available. Hence it is helpful if mobile music environ-
ments can hide or mitigate the dependency on hardware
as much as possible. Unfortunately mobile smart phones
have a diverse operating system and programming paradigm
landscape. Apple devices use iOS and Objective-C, while
Android devices use Android and primarily Java. Win-
dows Mobile 7 and RIM have their own setups, and there
are a number of smaller or legacy systems in use as well.

Unlike desktop where some standard of cross-device
programming emerged such as Posix, which both fixed
some aspects of the API and the language (variants of C),
the situation for mobile devices is more diverse.

UrMus [5] proposes numerous solutions to creating
mobile music environments, including live patching and
interface programming. Additionally it follows a layered
architecture. Part of the role of the lowest layer of this de-
sign is system abstraction as well as on-device program-
ming and cross-device code migration. For this purpose
urMus uses Lua, a light-weight, efficient embeddable script-
ing language that is especially suitable for on-the-fly and
modifiable programming[7].

The purpose of this paper is to present the design con-
siderations for platform independence, cross-device pro-
gramming and code migration, as well as document the
process of implementing interoperability between iOS and
Android platforms in the case of urMus.

Figure 1. Comparison of default urMus interface on
iPhone (left) and Android (right)

2. RELATED WORK

That sound synthesis environments transcend platforms is
typical on desktop and laptop computers. Often these en-
vironments provide their own programming language and
functional abstractions as well to further provide indepen-
dence from more system level programming as well as
provide language concepts and encapsulations more di-
rectly suitable for the development needs of musicians.
Live coding in particular has been made possible by such
environment as SuperCollider [8] and ChucK [11]. Simi-
lar environments for mobile smart-devices are only emerg-
ing or are experimental, and often only run on a specific
mobile platform such as Apple’s iOS devices.

There are a number of approaches to cross-platform
mobile application development, which resembles numer-
ous cross-platform frameworks developed back in 1990s.
Such approaches are typically based on an abstraction layer
that lies between web browser and the platforms. Using
this layer developers can write applications in languages
like Javascript and HTML to run the application on any
supported platform. A comprehensive review of the fol-
lowing existing systems can be found in [9, 10]. Rhodes
offers a Ruby-based framework that allows web applica-
tions to run on a large number of smartphone platforms



Figure 2. Cross-platform programming and code migra-
tion of urMus

without any modification. Titanium mobile supports de-
velopment of native applications through typical web de-
velopment languages including Javascript, PHP, Python,
Ruby and HTML. PhoneGap allows developers to write
cross-platform applications in Javascript and HTML with
Javascript access to hardware components such as accelerom-
eter, camera and sound. MoSync is a platform-independent
software development kit (SDK) in C/C++.

There are approaches to move existing cross-platform
to mobile realm. Bedrock is based on J2ME. Qt Mobility
is a mobile version of Qt. Adobe Flash and Flash Lite en-
able Flash player to run on mobile platforms, and Adobe
AIR allows developers to run Flash applications as stand-
alone applications.

WidgetPad provides a web-based development envi-
ronment for HTML5 web applications. jQTouch is an ex-
tension to jQuery javascript library for mobile web appli-
cations. Processing.js is a javascript version of Process-
ing, a JAVA-based open source programming language for
electronic arts and design. Corona from Ansca Mobile is
a Lua- and OpenGL ES-based platform that supports iOS
and Android, and targeted for rapid cross-platform devel-
opment.

UrMus is in some sense comparable to many of these
existing cross-platform solutions. It too offers its own ab-
straction, though rather than using HTML or some web
based scripting system, it utilizes Lua instead. Lua is
known for being an exceptionally fast script language and
hence helps to ensure high performance even for time-
critical interactive media heavy applications such as mo-
bile musical instruments. UrMus is in many ways differ-
ent than these platforms. Most importantly it was explic-
itly developed to support mobile music interaction design
in a platform independent manner. But urMus has a range

Figure 3. The functional structure of urMus

of other considerations embedded in its design as well that
are relevant and to be discussed in the next section.

3. CROSS-DEVICE ARCHITECTURE OF URMUS

Numerous considerations went into the design of urMus[5].
A number of the design decisions have direct implications
for cross-platform portability and more importantly cross-
platform use. urMus implements the ability to access all
of its functionality in the fast embeddable script language
Lua [7]. Hence rather than having to content with plat-
form centric language such as Objective-C for iOS or Java
for Android, now one language is used across all plat-
forms. This is not the primary motivation for introducing
a new language. Rather the script language layer has a
number of desirable properties. For one it allows to al-
ter the mobile program development cycle. Traditionally
programming of mobile devices happens not on the de-
vice itself, but rather on some standard desktop computer
or laptop. The program is compiled, simulated, tested,
then provisioned and uploaded to the mobile device. If
problems occur, changes happen offline, are recompiled
and so forth. One of the goals of urMus is to support
programming that can in principle happen on the device
alone [6], as well as provide seemless support of interac-
tive coding and code sharing between devices. Hence this
development cycle needs to be altered to make the desktop
no longer a required part of the process. The development
cycle implemented in urMus has the character depicted in
Figure 2.

The main advantage of this architecture is that it sup-



Figure 4. The layered software design of urMus

ports true code sharing and code migration between de-
vices and projects. For example, a musical piece can trans-
mit programs or program segments over the network and
these can be processed by participating devices, whether
mobile or otherwise in a democratic fashion, hiding the
specifics of the architecture.

4. DEVELOPMENT

UrMus was originally developed for iOS devices. How-
ever, since its design Android has emerged as an impor-
tant mobile operating system. Hence it became paramount
to be able to support these different platforms and offer
a shared environment. The resulting development of the
Android version of urMus is based on Android SDK 2.2
and Android NDK r4b, and tested with Google Nexus One
running Android 2.2 Froyo.

A big portion of the urMus codebase is written in a
platform independent way, which made it possible to port
to Android without rewriting the entire program. The code
base that was already platform-independent included Lua,
urMus Lua API, urSound, STK, HTTP Server and good
parts of the graphical rendering code using OpenGL ES.
Most components shown in Figure 2 are by design cross-
platform. Exceptions include event handlers, and access
to low level hardware such as the audio pipeline or multi-
touch interactions.

4.1. Gaining Platform Independence

In order to make urMus cross-platform, iOS specific parts
of urMus were rewritten or replaced with cross-platform
code.

Regions of urMus was implemented using Texture2D,
which is an Objective-C class provided by Apple that rep-
resents a 2-dimensional OpenGL ES surface with texture
and/or texts on it. This class is replaced with urTexture,

Figure 5. Comparison of the same face running on iPhone
and Android

a C++ class that represents OpenGL ES Surface in a plat-
form independent way. urMus also utilized FreeType project
[4] and ofTrueTypeFont class of openFrameworks [1],
rather than Apple’s Core Graphics, to read true type fonts
and render texts on the OpenGL Surface. Sound and im-
age files were being processed by Apple’s Core Audio and
Core Image library. This has been replaced with wave file
I/O capabilities of STK [3], device dependent low level
audio access abstractions, and libpng.

Touch handling code originally included in Objective-
C class was separated to platform-independent C/C++ func-
tions and Objective-C wrappers. This helped the Android
version to have identical touch behavior by calling those
functions with parameters given by Android OS. These
corrections on urMus codebase made it more cross-platform
and ready to be ported to other mobile operating systems,
except for the parts accessing the interface hardware.

4.2. Porting to Android

Android is considerably different from most mobile oper-
ating systems. It is designed to natively run an efficient
Java virtual machine and offer Java as primary program-
ming language. However additionally Android does al-
low programmers to use C/C++ code using Android NDK.
In order to maintain portability, all parts of the Android
version urMus were compiled using Android NDK. User
interface code and the basic application skeleton had to
be written in Java due to the particulars of the Android
architecture. The Java code receives events and signals
from the Android operating system and invokes native
C++ methodsthat uses existing urMus code.

In addition, due to the lack of full C++ support in An-
droid NDK, the project had to include STLport, a cross-
platform implementation of C++ Standard Template Li-
brary. This resolved compilation issues of STK, which
relies heavily on C++ STL.

Unlike iOS platforms, bundled resourses such as .wav,
.png and .ttf files of an Android application resides within



its zipped package and accessible only from Java level,
not allowing C/C++ codes to access the resources directly.
This problem was resolved by installing the resources to
the document directory on the first launch of the applica-
tion.

The audio layer has also been replaced by Android’s
audio library, using the AudioTrack class.

Figure 1 and 4.1 shows the screenshots of urMus on
iPhone and Android. It is noticeable that the default ur-
Mus interface automatically adjusts to Android’s longer
screen ratio and shows four rows rather than three.

5. DISCUSSION

5.1. Teaching with a cross-device architecture

One of the main advantage we are already experiencing
with the design of the programming architecture of urMus
is that it allows us to teach courses on mobile music mak-
ing with reduced complications by the hardware require-
ments. For example iOS development necessitates access
to MacOS computers with XCode and the proper SDK in-
stalled, whereas Android development is somewhat more
flexible. Yet in either case provisioning steps are neces-
sary. All these requirements are removed in urMus. For
external programming it is only required to have access
to any computer with wireless access and a web-browser.
Programming then becomes possible by the editing en-
vironment provided by urMus itself accessible through a
web browser, which is device independent. Hence it is
possible to teach a course that can both utilize iOs and An-
droid devices without the heterogeneity having an impact.
The students are free to use whatever laptop or desktop
computer they have available to program the device.

5.2. Latency Issues

iOS devices such as the iPhone have a high quality and
low latency full-duplex audio pipeline. It is easy to achieve
latencies well below 10ms. Sadly at the time of writing
Android 2.2 on Google Nexus One has considerable la-
tency in full-duplex operation. This is due to the current
limitations on the lower-level sound support of Android.
AudioTrack is the lowest level class that Android SDK
2.2 provides. Reason for the latency is the required size of
the sound buffers of a minimum length is 8192 on Nexus
One. Hence, even with 48000Hz sample rate, the mini-
mum latency is about 170 milliseconds, which is clearly
noticable delay. We expect that the OpenSL ES support of
the latest version of Android NDK [2] will be able to help
resolve this problem.

6. CONCLUSIONS

Cross-device use of mobile music environments is critical
given the heterogeneity of mobile operating systems and
hardware. We have discussed various aspects of cross-
platform development of mobile music environment, in-
cluding the benefits of modifiable code and code migra-

tion, as well as practical considerations of porting of ur-
Mus for the Android platform.

Future work include explicit support of code sharing
and migration on the network, on-device programming
and music instrument development to remove the need
for external programming hardware completely, and the
port of the environment to additional platforms, including
Windows Mobile and RIM. With recentely released An-
droid SDK 2.3 and Android NDK r5, Android is expected
to have faster lower-level sound support as well as perfor-
mance enhancements. This includes more efficient sound
programming at native level using OpenSL ES API.

urMus, both iOS and Android version, can be found at
the official website:

http://urmus.eecs.umich.edu/

7. REFERENCES

[1] “openframeworks, http://www.openframeworks.cc/.”

[2] T. Bary, “Gingerbread sdk awesome-
ness,” Android Developers Blog, 2011.
[Online]. Available: http://android-
developers.blogspot.com/2011/01/gingerbread-
ndk-awesomeness.html

[3] G. P. Cook, Perry R.; Scavone, “The synthesis
toolkit (stk),” Proceedings of the International Com-
puter Music Conference, 1999.

[4] W. L. D. Turner, R. Wilhelm, “The freetype project,”
1996.

[5] G. Essl, “Urmus-an environment for mobile instru-
ment design and performance,” Proceedings of the
International Computer Music Conference, 2010.

[6] ——, “Mobile phones as programming platforms,”
Proceedings of the First International Workshop on
Programming Methods for Mobile and Pervasive
Systems, 2010.

[7] R. Ierusalimschy, Programming in Lua, Second Edi-
tion. Lua.org, 2006.

[8] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Comput. Music J., vol. 26,
no. 4, pp. 61–68, 2002.

[9] J. O’Dell, “5 cross-platform mobile development
tools you should try,” Mashable, 2010. [Online].
Available: http://mashable.com/2010/08/11/cross-
platform-mobile-development-tools/

[10] V. G. Sarah Allen and L. Lundrigan, Pro Smart-
phone Cross-Platform Development. Springer,
2010.

[11] G. Wang and P. R. Cook, “Chuck: a programming
language for on-the-fly, real-time audio synthesis
and multimedia,” in ACM Multimedia, 2004, pp.
812–815.


